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Emergence of anyonic correlations from spin and charge dynamics in one dimension
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We propose a transformation for spin and charge degrees of freedom in one-dimensional lattice systems,
constrained to have no doubly occupied sites, that allows direct access to the dynamical correlations of the
system. The transformation delivers particle creation and annihilation operators in a form of a spinless particle
and a nonlocal operator acting on the space of states of a spin-1/2 chain. This permits a decomposition of
dynamical correlation functions as a convolution of those for impenetrable anyons together with those of a spin
chain. Further analysis can be done by methods tailored for each part of the convolution, greatly increasing the
impact and flexibility of the approach.
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I. INTRODUCTION

The physics of many-body quantum systems incorporates
effects from interaction and statistics of bare particles. The
emerging quasiparticles could inherit the statistics of their
noninteracting peers, free fermions turning into a Fermi
liquid, and free bosons into a Bose-Einstein condensate. Re-
ducing a system’s dimensionality enhances interaction effects
and masks out signatures of the statistics of the constituent
particles. In one dimension, arbitrarily weak repulsion pre-
cludes a macroscopic occupation of a single state with zero
momentum, that is, destroys the Bose-Einstein condensate [1].
Furthermore, interactions may transform the bosonic excita-
tion spectrum into a fermionic one, an example being the
bosons repelling each other through a δ-function potential of
infinite strength, the system known as the Tonks-Girardeau
gas, whose excitation spectrum is identical to that of a free
Fermi gas [2].

The interplay of spin and charge degrees of freedom could
be particularly intricate in one dimension. Systems having a
linear excitation spectrum at low energies fall into a Luttinger
liquid (LL) universality class regardless of the statistics of
the bare particles. Spin and charge degrees of freedom of the
microscopic theory are represented by commuting terms in the
LL Hamiltonian and factor out in the dynamical correlation
functions, the phenomenon referred to as spin-charge sepa-
ration [3,4]. Accounting for nonlinearities of the excitation
spectrum within the effective field theory approach requires
proper modification of the LL description, the cases studied
recently being spin and charge dynamics above the highly
degenerate ground state (spin-incoherent regime [5–7]), in
presence of the quadratic branch of the excitation spectrum
(itinerant ferromagnetic regime [8–12]), and in the vicinity of
the edge of the excitation spectrum [13]. Whether and how
the concept of the spin-charge separation may be extended
beyond the LL effective field theory description is a chal-
lenging open question, relevant, in particular, for ultracold gas
experiments [14].

Studying systems with no double occupancy (NDO) con-
straint (any two particles cannot occupy the same lattice site)
is a must for understanding how spin and charge degrees of
freedom are coupled at all energy scales. Disregarding the
unoccupied sites (“squeezing” the lattice) reduces the space of
states of the original system containing N spin-1/2 particles
to the space of states of the spin-1/2 chain of length N .
The state of individual spins on the squeezed lattice could
be controlled and manipulated directly by ultracold quantum
gas microscopy [15–17]. On the theory side, some dynam-
ical correlation functions have been evaluated by making
use of the coordinate representation for the many-body wave
functions, whose structure is very special due to the NDO
constraint [18–26]. The formalism of the second quantization,
expressing basic microscopic fields of the system in terms
of the collective spin and charge variables, could serve as
a systemic approach revealing contributions from spin and
charge dynamics into any correlation function. However, such
a formalism has not been developed so far.

In this paper we present a transformation from the spin-1/2
fermions subjected to the NDO constraint to the collective
charge (spinless fermions on a lattice) and spin (spin-1/2
operators on another lattice) variables. These collective charge
and spin variables commute with each other, and enter into
the transformation in a highly nonlocal way, as shown in
Eqs. (9)–(12). Being used for correlation functions, the trans-
formation leads to the charge dynamics of the impenetrable
anyons, whose statistical angle is averaged out with the weight
function defined by spin configurations.

II. TRANSFORMATION TO SPIN
AND CHARGE VARIABLES

We consider spin-1/2 fermions on an infinite one-
dimensional lattice. There, ψ̂

†
jα , ψ̂ jα , and n̂ jα = ψ̂

†
jαψ̂ jα are

the creation, annihilation, and particle number operators for
site j (−∞ � j � ∞), and α =↑,↓ is the spin index. The lo-
cal spin vector ŝ( j) = (ŝx( j), ŝy( j), ŝz( j)) can be represented

2469-9926/2024/109(1)/012209(6) 012209-1 ©2024 American Physical Society

https://orcid.org/0000-0002-2889-8487
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.012209&domain=pdf&date_stamp=2024-01-12
https://doi.org/10.1103/PhysRevA.109.012209


GAMAYUN, QUINN, BIDZHIEV, AND ZVONAREV PHYSICAL REVIEW A 109, 012209 (2024)

as

ŝ( j) = 1

2
(ψ̂†

j↑ψ̂
†
j↓)σ

(
ψ̂ j↑
ψ̂ j↓

)
, (1)

where σ = (σx, σy, σz ) is the vector composed of the three
Pauli matrices. The spin-ladder operators ŝ±( j) = ŝx( j) ±
iŝy( j) read ŝ+( j) = ψ̂

†
j↑ψ̂ j↓ and ŝ−( j) = ψ̂

†
j↓ψ̂ j↑, respec-

tively. We require the total number of fermions in the system,
N̂ = ∑

j n̂ j , to be conserved. Each site can be occupied by
either zero fermions or one fermion,

n̂ j ≡ n̂ j↑ + n̂ j↓ = {0, 1}, (2)

due to the NDO constraint. The projection operator

X̂ =
∞∏

j=−∞
(1 − n̂ j↑n̂ j↓) (3)

eliminates basis states |�〉 = ψ̂
†
j1α1

· · · ψ̂†
jN αN

|0〉 that contain
at least one doubly occupied site. The remaining ones can be
uniquely identified as a product of the states | f 〉 and |�〉:

|�〉 = | f 〉 ⊗ |�〉. (4)

Here, | f 〉 = ĉ†
j1

· · · ĉ†
jN

|0〉 is defined by spinless fermions on an
infinite lattice placed at the positions of the original spin-1/2
fermions. The vacuum |0〉 for the states |�〉 and | f 〉 contains
no fermions, ψ̂ j |0〉 = 0, and ĉ j |0〉 = 0, respectively. The state
|�〉 = |α1 · · · αN 〉 of a spin-1/2 chain of length N can be repre-
sented as |�〉 = �̂−(m1) · · · �̂−(mM )| ⇑〉. The set {m1, . . . , mM}
indicates the positions of the down spins among {α1, . . . , αN },
M being the total number of the down spins. For example,
| ↑↓↑↓↓〉 gives {m1, m2, m3} = {2, 4, 5}. The vacuum | ⇑〉 is
the spin-up polarized state. The operator �̂(m) = σ(m)/2 acts
on the spin state of the mth particle, and �̂± = �̂x ± i�̂y.

We now express spin-1/2 fermion fields via operators act-
ing into the spaces formed by | f 〉 and |�〉. The number of
particles to the left from the jth site is

N̂ j =
j∑

a=−∞
n̂a. (5)

Here, n̂ j = ĉ†
j ĉ j acting onto | f 〉 corresponds to n̂ j defined by

Eq. (2), acting onto |�〉. Note that the spectrum of the operator
N̂ j is integer valued. Any operator Ô depending on N̂ j can be
understood by the following formula:

Ô(N̂ j ) =
∞∑

m=−∞
Ô(m)δm,N̂ j

. (6)

The operator Ô(m) characterizes the state of the mth particle,
and the Kronecker delta

δm,N̂ j
=

∫ 2π

0

dλ

2π
eiλ(N̂ j−m) (7)

is equal to 1 for the lattice site at which the mth particle is
located, and is equal to zero otherwise. The composition law

Ô1(N̂ j )Ô2(N̂ j ) =
∞∑

m=−∞
Ô1(m)Ô2(m)δm,N̂ j

(8)

stems directly from Eqs. (6) and (7).

FIG. 1. Shown is the action of the operator P onto the states
of the spin chain. The arrows indicate the directions of the transfer
of the local states. The outcome of the action of the composition
PN+1,mPm′,N+1 is illustrated for m′ > m.

We propose the following expressions for the fermion cre-
ation operators,

ψ̂
†
j↑ = PN̂ j ,N̂

ĉ†
j , (9)

ψ̂
†
j↓ = PN̂ j ,N̂

�̂−(N̂ )ĉ†
j , (10)

and the corresponding annihilation operators:

ψ̂ j↑ = ĉ j η̂(N̂ )P†
N̂ j ,N̂

, (11)

ψ̂ j↓ = ĉ j �̂+(N̂ )P†
N̂ j ,N̂

. (12)

The operator η̂ = �̂+�̂− = | ↑〉〈↑ | in Eq. (11) acts on the site
of the spin chain defined by the value of the number operator
N̂ . A way to interpret the dependence on N̂ j is explained by
Eqs. (6) and (7). The cyclic shift operator Pm,m′ on a lattice
encompassing the sites from m to m′ is

Pm,m′ = �m,m+1�m+1,m+2 · · · �m′−1,m′ . (13)

The permutation operator �m,m′ interchanges the states on the
sites m and m′; in case of spin-1/2 particles it reads

�m,m′ = 1
2 [σ(m) ⊗ σ(m′) + I ⊗ I]. (14)

Here, I is the identity matrix. Evidently, � is its own in-
verse, (�m,m′ )2 = I; Hermitian, �

†
m,m′ = �m,m′ ; and unitary,

�
†
m,m′�m,m′ = I . This implies Pm′,m = P−1

m,m′ = P†
m,m′ . The ac-

tion of the operator (13) onto the states of the spin chain
is illustrated in Fig. 1. Note that the local spin operator (1)
consists of the pairs ψ̂

†
jαψ̂ jα′ where ψ̂† and ψ̂ are taken at

the same site j. As a consequence, the permutation operator
cancels out when using Eqs. (9)–(12), leading to the represen-
tation

ŝ( j) = n̂ j �̂(N̂ j ) (15)

already known in the literature [12]. We demonstrate how ef-
ficacious are Eqs. (9)–(12) in revealing the contributions from
the spin and charge degrees of freedom into the dynamical
correlation functions in the remaining part of the paper.
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III. HAMILTONIAN

We apply the transformations (9)–(12) to the Hamiltonian

Ĥ = Ĥf + Ĥ�, (16)

where

Ĥf = X̂

⎡
⎢⎢⎣−th

∞∑
j=−∞
α=↑,↓

(ψ̂†
jαψ̂ j+1α + H.c.) − hN̂

+ 1

2

∞∑
j j′=−∞

: n̂ jUj− j′ n̂ j′ :

⎤
⎥⎥⎦X̂ (17)

is SU(2) invariant, and the term

Ĥ� = 2BX̂ ŜzX̂ , Ŝz =
∞∑

j=−∞
ŝz( j) (18)

breaks this symmetry due to the magnetic field B applied
along the z projection of the total spin. The symbols H.c.
and : · · · : in Eq. (17) stand for the Hermitian conjugate and
the normal ordering, respectively. The projection operator X̂ ,
given by Eq. (3), imposes the NDO constraint. Note that the
on-site interaction term : n̂2

j : U0/2 implies an infinite energy
cost for having two particles on any site in the U0 → ∞ limit.
This way, the use of X̂ is equivalent to letting U0 → ∞ in
the Hamiltonian (16) with no X̂ . The actual value of U0 is
irrelevant when X̂ is used, since X̂ : n̂2

j : X̂ = 0.
Using the transformation (9)–(12) we get Eq. (17) written

in terms of the spinless fermions exclusively,

Ĥf = − th

∞∑
j=−∞

(ĉ†
j ĉ j+1 + H.c.) − hN̂

+ 1

2

∞∑
j, j′=−∞

: n̂ jUj− j′ n̂ j′ :, (19)

and Eq. (18) containing the spinless fermions as well as the
spin operators:

Ĥ� = 2B
∞∑

j=−∞
n̂ j �̂z(N̂ j ). (20)

Amazingly, the action of Ĥf (Ĥ�) onto the state (4) is nontriv-
ial for the | f 〉 (|�〉) part only:

Ĥf |�〉 = E f | f 〉 ⊗ |�〉, Ĥ�|�〉 = | f 〉 ⊗ E�|�〉. (21)

The energy E� = 2BLz, where Lz is the eigenvalue of the oper-
ator L̂z = ∑N

m=1 �̂z(m), measuring the z projection of the total
spin for the state |�〉 of the spin chain. Hence, the spin degen-
eracy of the Hamiltonian (16) takes place for any Lz �= ±N/2.
Furthermore, Ĥ� = 0 for B = 0, implying 2N -fold degeneracy
as long as the system is not put into a finite volume with some
boundary conditions.

IV. FIELD-FIELD CORRELATION FUNCTIONS
IN THE THERMAL STATE

We consider the one-body correlation functions, describing
the particle propagation,

Gα
p ( j − j′, t ) = 1

Z
〈ψ̂ jα (t )ψ̂†

j′α (0)〉T , α =↑,↓, (22)

and the hole propagation,

Gα
h ( j − j′, t ) = 1

Z
〈ψ̂†

jα (t )ψ̂ j′α (0)〉T , α =↑,↓, (23)

evaluated at temperature T , chemical potential h, and mag-
netic field B, on a thermal state:

〈· · · 〉T =
∞∑

N=0

∑
f ,�

〈�|e−βĤ · · · |�〉, (24)

where |�〉 is given by Eq. (4). The sum over f runs through
all possible values of the free-particle momenta characterizing
the N-fermion state | f 〉. The sum over � runs through all
possible configurations of the z projection of the spins, Z is
the grand partition function, and β = T −1. The symmetry

G↑
p(h)( j − j′, t ; h, B) = G↓

p(h)( j − j′, t ; h,−B) (25)

makes it sufficient to evaluate G↑ only.
Using Eqs. (6)–(12) we factorize the matrix element from

Eq. (22) into two parts:

〈�|ψ̂ j↑(t )ψ̂†
j′↑(0)|�〉

=
∞∑

m,m′=−∞

∫ 2π

0

dλ

2π

dλ′

2π

e−iλm+iλ′m′
e−β(E f +E� )Cp(λ, λ′; j − j′; t )S (m, m′).

(26)

The first one encompasses the contributions from the state | f 〉
of spinless fermions:

Cp(λ, λ′; j − j′; t ) = 〈 f |ĉ j (t )eiλN̂ j (t )e−iλ′N̂ j′ (0)ĉ†
j′ | f 〉. (27)

Its nontrivial time evolution is governed by the Hamiltonian
(19). The second one involves the state |�〉 of the spin chain,
and the existence of the free fermions is only noticed through
their total number N , which defines the length of the chain:

S (m, m′) = 〈�|PN+1,mPm′,N+1|�〉

= 〈�|
max{m,m′}∏

j=min{m,m′}

[
1

2
I + �̂z( j)

]
|�〉. (28)

This part is time independent, since the cyclic shift operator,
Eq. (13), does not change the value of the z projection of
the total spin, Lz. The action of the operator PN+1,mPm′,N+1,
illustrated in Fig. 1, leads to vanishing S if any spin between
the sites m and m′ is pointed down. This way we get the
right-hand side of Eq. (28).

We proceed further by substituting Eq. (28) into Eq. (22)
and taking the sum over the spin configurations:

∑
�

e−βE�S (m, m′) = [2 cosh(βB)]N

ν|m−m′ | , (29)
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where ν = 1 + e2βB. We get

G↑
p ( j − j′, t ) = 1

Z

∑
{N}

e−βẼ f

∫ 2π

0

dλ

2π

dλ′

2π

Cp(λ, λ′; j − j′; t )
∞∑

m,m′=−∞

e−iλm+iλ′m′

ν|m−m′ | ,

(30)

where

Ẽ f = E f − 1

β
N ln[2 cosh(βB)], (31)

and the sum over {N} encompasses the ones over N and
f . The partition function Z can be taken over the fermion
configurations f with the energies given by Eq. (31). We
have

∞∑
m,m′=−∞

e−iλm+iλ′m′

ν|m−m′ | = 2πδ(λ − λ′)F (λ; T ), (32)

where

F (λ; ν) = 1 +
∞∑

m=1

ν−m(eimλ + e−imλ). (33)

Therefore,

G↑
p ( j − j′, t ) =

∫ 2π

0

dλ

2π
F (λ; ν)Cp(λ; j − j′; t ; T ), (34)

where

Cp(λ; j − j′; t ; T ) = 1

Z

∑
{N}

e−βẼ f Cp(λ; j − j′; t ), (35)

and we write Cp(λ) in place of Cp(λ, λ) in order to
lighten notations. The summation on the right-hand side
of Eq. (35) represents the definition of the thermal
state for the spinless fermions with the spectrum given
by Ẽ f .

The hole correlation function (23) is treated the same way
as the particle one. The result is given by Eqs. (34) and (35)
with Cp replaced by

Ch(λ; j − j′; t ) = 〈 f |eiλN̂ j (t )ĉ†
j (t )ĉ j′e

−iλN̂ j′ (0)| f 〉. (36)

V. EMERGENCE OF IMPENETRABLE ANYONS

The operator â j = ĉ je−iλN̂ j satisfies the commutation rela-
tions

â j â
†
j′ + e−iλε( j− j′ )â†

j′ â j = δ j j′ , (37)

â j â j′ + eiλε( j− j′ )â j′ â j = 0, (38)

where ε(x) = |x|/x, and ε(0) = 0. This is the fermion-anyon
mapping discussed in Ref. [27]. The function Cp(λ) turns into

Cp(−λ; j − j′; t ) = 〈 f |â j (t )â†
j′ (0)| f 〉, (39)

which is a correlation function of the impenetrable anyons on
a lattice, the variable λ being the statistical angle.

The emergence of the anyon correlation function and its
subsequent integration over λ with the function F in Eq. (34)

could be understood as follows. Let us consider a system
with M spin-up and N − M spin-down particles. Pick one
spin-up particle among them, and pull it through the whole
system, subsequently interchanging its coordinate with those
of the other particles. The interchanges with the spin-down
particles are nontrivial: the spin part of the wave function
could give any phase factor since its symmetry is not re-
stricted by the fermion symmetry of the total wave function.
We stress that formalizing our a posteriori explanation of
the structure of Eq. (34) by examining exact finite-N wave
functions in the coordinate representations (given, for exam-
ple, in Refs. [21,28]) goes beyond the scope of the present
paper.

Nowadays, there exists a number of proposals to design
a system with anyon correlations [29]. They include shaking
optical lattices [30], tuning the hopping parameters by the
external driving fields [31], and electrical circuit emulation
[32]. Our paper demonstrates that anyon correlation can lay
behind a transformation of the collective degrees of freedom
of a particularly simple interacting system.

VI. PLACE AMONG OTHER APPROACHES

The Hamiltonian (16) with Uj− j′ = 0 represents the ex-
actly solvable t − 0 model, also known as the Hubbard model
in the limit of infinitely strong repulsion [33]. There, Eq. (34)
has been obtained in the form of a Fredholm determinant
with the use of the exact wave functions in the coordinate
representation [21,28,34]. The transformation (9)–(12) lead-
ing to Eq. (34), combined with the ones given in Ref. [35]
for the function (27), bring us the same Fredholm determi-
nant representation through much shorter calculations. Note
that the model (16) is also exactly solvable when Uj− j′ =
Uδ j, j′±1. In this case, the Hamiltonian (19) can be mapped
onto the one of the XXZ Heisenberg magnet, and the func-
tion (27) can, in principle, be calculated by the Bethe ansatz
method.

Special attention has been paid in the literature to the
model in the T → 0 limit, which is highly nontrivial. The
ground state of the system is nondegenerate and spin-up (-
down) polarized for B negative (positive). In the former case,
Eq. (34) describes a spin-up fermion propagating through a
gas of the other spin-up fermions. We have F = 2πδ(λ) in
Eq. (33), hence G↑

p = 〈ĉ j (t )ĉ†
j′ 〉. In the latter case, Eq. (34)

describes a spin-up fermion (an impurity particle) propagating
through a gas of spin-down fermions. We have F = 1, and the
long-time and -distance asymptotic behavior of G↑

p reveals the
logarithmic diffusion phenomenon [8,9]. The nondegeneracy
of the ground state at B �= 0 stands in sharp contrast to the
high degeneracy at B = 0, where F is given by Eq. (33)
with ν = 2. This regime is known as the spin-incoherent one
[5–7]. A challenge put forward in the aforementioned works
was to find a low-energy effective field theory, since the
low-energy spectrum of spin excitations cannot be linearized
for B > 0 and B = 0, and the LL theory is inapplicable.
The representation (34) resolves this problem in the follow-
ing way: the LL theory is applicable to the function Cp;
the spin excitations are accounted for by the integral over
λ with the weight function F without any approximation,
which is equivalent to counting the number of worldlines
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within the first-quantized path-integral approach implemented
in Refs. [6,8].

VII. CONCLUSION

In our paper, we presented a transformation separating
collective spin and charge degrees of freedom at a level of fun-
damental operators entering the Hamiltonian and correlation
functions. This approach is exact and applicable regardless of
whether the system is integrable or exactly solvable. While the
NDO constraint is a must for it to work, the particles constitut-
ing the system are not bound to be fermions. In particular, the
results for the exactly solvable model of impenetrable bosons
[28,34,36] follow readily. As one application, we mention
the use of our approach to obtain the correlation function
for the investigation of spin diffusion in the one-dimensional
Hubbard model [37].
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