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1 Introduction

Higher-spin theory aims to describe interacting particles with spin quantum numbers exceeding
those of the fundamental force carriers — gauge bosons and gravitons. At the fundamental
level, the existence of such particles seems crucial for theories of quantum gravity, such
as string theory (for a review see e.g. ref. [1]). More relevant to this work, theories with
massive higher-spin fields in Minkowski background are often understood as effective field
theories (EFTs) valid below certain energy scales [2–22].

In recent years, the application of scattering-amplitude methods to gravitational-wave
physics (see e.g. the review [23]) has provided a new arena for higher-spin theory. Indeed,
the long-range physics of compact objects can be captured by spinning point particles. For
example, consider a three-point amplitude involving two particles of spin s and mass m,
and a massless force carrier. Its dependence on the 2s+1 physical spin states of massive
particle 1 may be encoded in a symmetrized set {a1, . . . , a2s} of SU(2) indices, and likewise
for particle 2. A particularly interesting infinite family of such amplitudes, proposed by
Arkani-Hamed, Huang and Huang (AHH) [24], may be written in terms of massive Weyl
spinors [24, 25] (related to the momenta via |pa⟩α[pa|β̇ = pµσµ

αβ̇
) simply as1

AAHH(1a1...a2s , 2̄b1...b2s, 3+) = 1
m2s ⟨1(a12(b1⟩ · · · ⟨1a2s)2b2s)⟩A(0)

3 , (1.1a)

AAHH(1a1...a2s , 2̄b1...b2s, 3−) = 1
m2s [1(a12(b1 ] · · · [1a2s)2b2s)]A(0)

3 . (1.1b)

Here A(0)
3 corresponds to a minimally coupled massive scalar, e.g. A(0)

3 = 2Q ε±3 · p1 in the
electromagnetic (EM) case. For s ≤ 1, eq. (1.1) matches all EM interactions in the Standard
Model [26] and, upon switching the gauge group, also the strong interaction [27].

For A(0)
3 = −

√
32πGNewton(ε±3 · p1)2, eq. (1.1) gives equally simple amplitudes for massive

spin-s particles interacting gravitationally. Remarkably, they were shown to reproduce the
classical behavior of rotating Kerr black holes (BHs) [28], which helped solidify the link
between quantum scattering amplitudes and classical dynamics of compact objects [26, 28–39].
In the context of the classical double copy [40–43], this matching to the Kerr metric has
a gauge-theory analogue, where the interaction (1.1) implies the asymptotic EM field of
a rotating charged disk (or ring). In view of this link between the Kerr metric and the
gauge-theory counterpart, we refer to eq. (1.1) as the three-point

√
Kerr amplitudes [41]. Note

that the
√

Kerr solution is expected to also describe the EM field sourced by a Kerr-Newman
BH [44]. Here we will, however, focus on a non-gravitational origin of

√
Kerr.

Besides such BH-like objects, there exist genuine microscopic higher-spin particles that
interact electromagnetically, such as atomic nuclei. For instance, a ground state of 10Boron
has spin 3, and an observationally stable isotope of 180Tantalum has spin 9. Interactions of a
given nucleus state may be described by an EFT, whose validity range depends on its lifetime.
It may be too naive to expect nuclei EFTs to possess any kind of simplicity. Nonetheless, the
exploration of the parameter space of such theories should perhaps start with those EFTs
that do exhibit simplicity, such as those related to

√
Kerr amplitudes.

1Pauli matrices appear as σµ

αβ̇
= (1, σ1, σ2, σ3) = σ̄α̇β

µ . Lorentz SL(2,C) indices and little-group SU(2)
indices are raised and lowered via left-multiplication by Levi-Civita tensors, normalized as ϵ12 = 1 = ϵ21. The
Lorentz invariants formed out of Weyl spinors are ⟨1a2b⟩ := ϵαβ⟨1a|α⟨2b|β and [1a2b] := ϵα̇β̇ [1a|α̇[2b|β̇ .
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Despite the striking all-spin pattern of the three-point AHH amplitudes, the related
higher-point amplitudes and higher-order BH interactions are still poorly understood. An
important research direction is the study of Compton amplitudes in the classical limit
(see refs. [26, 28, 32, 38, 45–60]). These four-point tree amplitudes are building blocks for
calculating various observables related to gravitational radiation (see e.g. refs. [36, 61–69]).
Unfortunately, a straightforward extension of eq. (1.1) to four points [24, 70] is affected by
local contact-term ambiguities [26, 46, 47, 71]. This is often highlighted as a problem of
spurious poles in the opposite-helicity Compton amplitudes. However, the problem is not
the presence of the unphysical poles, but that removing them can at best be done up to
contact terms that cannot be unambiguously determined [26]. It is thus important to identify
symmetry principles that may guide the identification of the correct contact terms. In turn,
this can potentially lead to new insights into BH physics.

In this paper, we combine several methods in higher-spin field theory in order to construct
and constrain the Compton amplitudes that we believe to closely correspond to the gauge
interactions of a

√
Kerr object. Our approach starts at the quantum level using off-shell

actions either in terms of chiral [72] or non-chiral massive higher-spin fields [73–75]. The latter
are endowed with higher-spin gauge symmetry [9], which we employ as a natural guiding
principle for constraining the interactions and amplitude calculations [76].

Quantum field theory of massive higher spins has been a challenging research direction.
This is in large part because the conventionally chosen traceless symmetric tensor field
Φµ1...µs contains unphysical longitudinal modes. Even for a free action [73–75], ensuring
their non-propagation by imposing transversality ∂λΦλµ2...µs = 0 requires the introduction of
auxiliary fields. The multitude of compensating unphysical degrees of freedom complicates the
introduction of consistent interactions. One significant improvement proposed by Zinoviev [9–
11, 77–79] is to convert all second-class constraints into first-class ones, corresponding to a new
massive higher-spin gauge symmetry à la Stückelberg. In this formalism, any gauge-invariant
interaction is consistent. The price to pay is that the field content describing a single massive
spin-s particle is now even larger, including s+1 double-traceless symmetric tensors Φµ1...µk

of rank k = 0, . . . , s. Complementary to this non-chiral formalism, we will also use a powerful
chiral-field approach [72] to construct massive higher-spin theories in 4d. It relies on choosing
a spinor field Φα1...α2s in the (2s, 0) representation of the Lorentz group SL(2,C). This
approach sidesteps the issue of unphysical degrees of freedom entirely. Parity, however, is
no longer automatic and requires extra care.

Our work combines Zinoviev’s massive higher-spin symmetry and the chiral-field approach
with classical-limit considerations and heuristic assumptions, so as to construct the Compton
amplitudes, relevant for describing well-separated non-decaying charged massive higher-spin
fields. This paper gives an extended exposition of the results in the letter [76], where higher-
spin gauge invariance was identified as a key property for elucidating BH dynamics. We also
go well beyond that work and complete the study of Compton amplitudes in the

√
Kerr theory.

We give new perspectives on previous work, such as the current constraint [2, 3, 80] proposed
to single out BH amplitudes [46], and the multitude of subtleties of the classical limit. Here
we only focus on processes where the spin magnitude of the compact objects is conserved; spin-
magnitude-changing processes in the presence of gravity are more subtle [58, 81], but also an

– 3 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
6

interesting avenue for further research. Our closely related results, regarding gravitationally
interacting massive higher-spin theories and Compton amplitudes for Kerr BHs, will be
reported in ref. [82].

The paper proceeds as follows. We warm up in section 2 by discussing a
√

Kerr model
involving a massive charged spin-1 field, which can be derived as a limit of a spontaneously
broken Yang-Mills theory. This is a top-down example for the massive gauge symmetry
originating from a fundamental theory with massless gauge symmetry. Then we flip the
perspective and show how to obtain the same result in a bottom-up approach by imposing
massive gauge symmetry (off shell), or via the associated Ward identities (on shell).

In section 3, we extend these bottom-up techniques to arbitrary spin. Note that the
massive higher-spin symmetry allows for general interactions, so additional constraints are
used in concert to restrict to the

√
Kerr amplitudes. These constraints are compatible

with imposing an improved high-energy behavior [46, 76] via power counting and tree-level
unitarity [2, 80], similar to the behavior of fundamental theories. We give an explicit
construction of the spin-2 (see also ref. [77]) and spin-3 cubic Lagrangians that reproduce the√

Kerr amplitudes (1.1) using off-shell massive gauge symmetry. We also present compelling
evidence that the

√
Kerr three-point amplitudes are unique to any spin, once the massive

Ward identities and the additional constraints are employed. The on-shell part of the cubic
action is also worked out explicitly for all spins. The on-shell method of Ward identities
turns out to be more computationally efficient than the Lagrangian approach at the quartic
order, and we discuss its implementation for spin-2 and spin-3 theories.

To find contact interactions to arbitrarily high spins, we turn to the chiral-field approach
of ref. [72]. In section 4, we analyze possible parity-preserving interactions that determine
the non-minimal cubic

√
Kerr terms. A general-spin chiral Lagrangian is parametrized up

to the quartic level, which includes interactions linear in the field strength Fµν , as well as
generic F 2

µν interactions relevant for the opposite-helicity Compton amplitudes.
In section 5, using plausible constraints and choices for the contact terms in the

√
Kerr

theory, we present a manifestly local form for the quantum Compton amplitudes for all
spins and gauge groups. The amplitudes are expressed in terms of complete homogeneous
symmetric polynomials, which we observe to be a defining feature of

√
Kerr amplitudes.

Contact terms in the abelian sector are needed for consistency of the classical limit, and
we build them out of the symmetric polynomials guided by the constraints inherited from
massive gauge symmetry and other desirable properties.

The classical limit of the candidate Compton amplitude, studied in section 6, provides
perhaps the strongest physical constraint on the quartic interactions at high spin. The
abelian amplitude develops a divergence in the large-spin limit, unless contact terms are
added in a specific way. We analyze two variations of the classical limit for spin: the s → ∞
limit of quantum spin operators [37, 51, 76] and the wavefunction scaling of coherent spin
states [39]. Given our choice of constraints, we extract from the quantum amplitudes a unique
classical color-dressed Compton amplitude to all orders in spin. Possible modifications of the
constraints and the consequences for the classical amplitude are also discussed.

Conclusions can be found in section 7. The main text is supplemented with appendices:
keeping track of the notation in appendix A, discussing contact terms within the chiral
approach in appendix B, and collecting some remarks on factorization poles in appendix C.
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2 Spin-one warm-up

Before delving into the general case of higher-spin fields, let us set the stage using the familiar
spin-1 case. We will discuss three constructive approaches for dealing with massive vector
fields coupled to electromagnetism: spontaneous symmetry breaking, massive gauge invariance
order by order, and Ward identities. The point of this section is to show the importance of a
gauge symmetry for constraining the EM interactions of massive fields.

2.1 Stückelberg, Proca and Higgs

A minimal model for our purposes involves EM interactions of a Proca field Wµ. In a
bottom-up construction, one could start from the free Stückelberg theory

LStück. = −1
2 |Wµν |2 + |mWµ − ∂µφ|2, Wµν = ∂µWν − ∂νWµ , (2.1)

where φ is a complex version of Stückelberg’s auxiliary field [83]. We use the mostly-minus
metric convention ηµν = diag(1,−1,−1,−1) and work in four spacetime dimensions. The
action is invariant under the symmetry

δWµ = ∂µξ , δφ = mξ , (2.2)

where ξ is a complex gauge parameter. It can be used to remove the auxiliary field φ entirely,
which gives the Proca Lagrangian LProca := LStück.|φ=0. The equations of motion that follow
from LProca then generate the standard transversality condition ∂ ·W = 0, which is needed to
reduce the degrees of freedom down to three (complex) physical polarizations. This condition
can also be obtained as the gauged-fixed version of the field equation for φ, or as the Noether
identities for the above gauge symmetry.

The Lagrangian (2.1) is also invariant under a global U(1) symmetry, which we can
gauge and thus couple it to an EM field Aµ. However, the standard procedure of adding
minimal interactions using covariant derivatives breaks the massive gauge symmetry (2.2).
In the next section, we will explain how to introduce EM interactions order by order in the
coupling while ensuring compatibility with both the U(1) and massive gauge symmetries. In
the spin-1 case, however, this can be done to all orders at once — using the knowledge that
such interactions should come from a spontaneously broken SO(3) gauge theory.

Indeed, consider an unbroken non-abelian theory with gauge field A⃗µ and Higgs field ϕ⃗,
both in the vector representation of SO(3),

LSO(3) = −1
4∥F⃗µν∥2 + 1

2∥Dµϕ⃗∥2 + µ2

2 ∥ϕ⃗∥2 − λ

4!∥ϕ⃗∥4 , Dµϕ⃗ = ∂µϕ⃗ − gA⃗µ × ϕ⃗ . (2.3)

Here the non-abelian Lie algebra is encoded in the cross product (A⃗µ × ϕ⃗)j = iAk
µtk

jlϕ
l, with

hermitian generators tk
jl = −iϵjkl, and F⃗µν = 2∂[µA⃗ν] − gA⃗µ × A⃗ν . The minima of the Higgs

potential parametrize the sphere of size ∥ϕ⃗∥2 = v2 := 6µ2

λ . Therefore, we may reparametrize
the scalars in the standard way,

ϕ⃗ = e
i
v

(π1t1+π2t2)
( 0

0
v+h

)
, (2.4)

– 5 –
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using the Goldstone bosons πi and the massive Higgs boson h. Since we are not interested
in the Higgs boson, we may decouple it in the infinite-mass limit, where λ, µ → ∞ but v

stays finite (see e.g. ref. [84]). The resulting Lagrangian is

LU(1) = − 1
4(Fµν)2− 1

2 |Wµν |2+ |mWµ− Dµφ|2 − iQWµF µνWν− Q2|W [µWν]|2

− 1
4|φ|2

[(
sinc

(√
2Q|φ|
m

)
[φDµφ − φDµφ] − m cos

(√
2Q|φ|
m

)
[φW µ− W

µ
φ]
)2

−
(
[φDµφ − φDµφ] − m[φW µ− W

µ
φ]
)2]

,

(2.5)

where Fµν = 2∂[µAν] is the field strength of the residual U(1) gauge symmetry (along the
direction of the vacuum expectation value (VEV), Aµ = A3

µ). The remaining two gauge bosons
are given mass m = gv and correspond to the complex field Wµ = 1√

2(A1
µ + iA2

µ), with field
strength Wµν = 2D[µWν]. The Goldstone bosons are equivalent to the complex Stückelberg
field considered previously, φ = 1√

2(π1 + iπ2). The covariant derivatives Dµ = ∂µ − iQAµ,
with EM charge Q = g, now correspond to the U(1) symmetry. The apparent non-locality
in |φ|2 is canceled by series expanding in Q.

Clearly, the Lagrangian (2.5) is invariant under the U(1) gauge transformations. However,
it also inherits the following massive gauge symmetry:

δWµ = Dµξ = ∂µξ − iQAµξ ,

δAµ = iQ(Wµξ − ξ̄Wµ) ,

δφ = mξ + m

2φ

(
1 −

√
2Q|φ|/m

tan(√2Q|φ|/m)

)
(ξ̄φ − φξ) = mξ + Q2φ

3m
(ξ̄φ − φξ) + O(Q4) .

(2.6)

Note that the variation δAµ is not coming from the EM gauge transformation (i.e. shifts of
the massless spin-1 field), which is clear from the fact that the variation is strictly quadratic
in the fields. In contrast, both δWµ and δφ contain linear terms, agreeing with the linearized
massive gauge symmetry previously considered in eq. (2.2).

We may use the above symmetry to set φ = 0, which in the familiar language of weak
interactions corresponds to the unitary gauge, in which the Goldstone bosons are “eaten” by
the massive vector field, and only the terms in the first line of the Lagrangian (2.5) survive.
Note that in the context of higher-spin generalizations, however, not all auxiliary fields can be
gauged away in this way [73–75]. It is also not clear how to obtain a higher-spin analogue of
the Brout-Englert-Higgs mechanism. What is discussed in the following sections of paper can
be viewed as the first terms of a higher-spin generalization of the non-linear sigma model (2.5),
where the Higgs field has already been decoupled.

It is useful to briefly analyze the theory (2.5) from the point of view of its high-energy
behavior. For small coupling Q ≪ 1, the tree-level amplitudes do not grow too large given
that the characteristic momenta is smaller than the VEV scale, p ≤ v = m

Q . Above this
energy scale, tree-level unitarity is violated, and instead the amplitudes must be unitarized
by loop-level resummation. Because, at these energy scales, the original Lagrangian (2.3),
with µ → 0, is the better description, and since λ → ∞ the theory must be treated non-
perturbatively. Alternatively, when we tune the quartic coupling to the perturbative regime

– 6 –
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λ < 1, then tree-level unitarity is restored if we include the Higgs boson, which now can
contribute to tree amplitudes at energy scales of the Higgs mass mh =

√
2µ = m

Q

√
λ
3 .

Note that the high-energy limit is in the opposite direction of the classical limit that
we will consider in section 6. Indeed, the classical limit is a low-energy limit (large-distance
limit), and as such it does not obviously care about tree-level unitarity and completion by the
Higgs boson. Nevertheless, we find that the principles that govern the high-energy behavior
also appears to be good principles for constraining classical physics.

2.2 Spin-1 order by order

In the higher-spin case, we do not have access to a mechanism analogous to spontaneous
symmetry breaking. Nevertheless, the concept of massive higher-spin gauge symmetry has
proven to be very fruitful, even if it means working out non-linear corrections order by order
in the fields. In this section, we will pretend to be unaware of the Higgs construction for
massive spin-1 bosons and will instead build their EM interactions and gauge symmetry
anew order by order. At the same time, we will use this example to introduce the main
features of our approach to higher spins used in section 3.

The goal of this paper is to describe well-separated and non-decaying massive spinning
fields. Therefore, we may omit all self-interactions involving three or more massive fields,
physical or auxiliary, as well as interactions with a single massive field (production or decay).
In other words, the matter part of any Lagrangian must be strictly quadratic in the massive
fields. For instance, the contact term Q2|W [µWν]|2 and most of the second and third lines of
the spin-1 Lagrangian (2.5) are irrelevant for our purposes. Moreover, since the infinitesimal
gauge parameters ξ shift the auxiliary fields, they should be treated as massive fields, which
forces other massive fields to appear at most linearly in combination with ξ. For example,
the non-linear terms in the variation δφ in eq. (2.6) are irrelevant.

The general strategy is to start from a quadratic Lagrangian L2 and the linearized
massive gauge variation δ0, both minimally coupled/covariantized with respect to the EM
gauge field. Then we systematically add corrections involving more fields,

L = L2 + L3 + L4 + . . . ,

δ = δ0 + δ1 + δ2 + . . . ,
(2.7)

where Ln and δn−1 are covariant polynomials of degree n in the fields2 (massive or massless).
The gauge field Aµ only appears in the form of the field strength Fµν or inside the covariant
derivative Dµ = ∂µ − iQAµ, thus ensuring U(1) gauge symmetry. Importantly, we choose to
regard Dµ as a derivative rather than a field when counting the interaction degree.

For spin 1, we start from a minimally coupled Stückelberg action (2.1),

L2 = −1
4(Fµν)2 − 1

2 |Wµν |2 + |mWµ − Dµφ|2 , (2.8)

2When the homogeneity degree is mentioned, “fields” means both fields and gauge parameters. Since the
first step in introducing interactions is to covariantize the derivatives in L2, it is convenient to consider these
(DΦ)2-terms still be a part of L2, even though it is no longer of degree 2.

– 7 –
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where Wµν = 2D[µWν], and consider the linearized massive gauge transformation (2.2), with
covariantized derivatives

δ0Wµ = Dµξ , δ0φ = mξ , δ0Aµ = 0 . (2.9)

However, once the minimal interactions are included, Q ̸= 0, the massive gauge symmetry δ0
is broken by the term −|Wµν |2/2. To restore it, we add a non-minimal deformation to both
the Lagrangian and the gauge transformations. This is done by suitable ansätze

L3 = −ic1QW
µ
FµνW ν , δ1Wµ = 0 = δ1φ , δ1Aµ = ic2Q[Wµξ − ξ̄Wµ] , (2.10)

where ci are parameters to be determined. The ansätze may appear as fine-tuned, given the few
non-vanishing terms. However, to obtain the non-minimal interactions and transformations
we rely on a set of guiding principles, which we will consistently use for higher-spin cases
later encountered. These guiding principles include:

(SI) Self-interactions of massive fields are suppressed (as motivated by the classical limit).

(PS) Parity symmetry is imposed on interactions. Specifically, the Levi-Civita tensor ϵµνρσ

or (anti-)self-dual field strengths do not appear.

(PC) Power counting of derivatives: at most s + s′ − 1 derivatives in L3, where s and s′ are
the ranks of the two massive fields, e.g. rank 1 for Wµ and rank 0 for φ.

(PC2) Power counting: at most s + s′ − 1 derivatives in δ1, where s and s′ are the ranks of
the massive fields and their gauge parameters.3

(MC) Minimal-coupling interactions and linearized gauge transformations δ0 are fixed. This
follows from disallowing the kinetic terms L2 to be modified. Combined with (SI)
it implies that the non-minimal interactions behave as Ln ∝ (Fµν)n−2, and for the
non-minimal gauge transformations, this implies that δnΦ ∝ (Fµν)n, where Φ is a
massive field, e.g. Φ ∈ {Wµ, φ}.

From the power-counting constraint (PC), the unique non-minimal interaction is given
in eq. (2.10), where we count the derivatives appearing in Fµν . Note that (SI) implies that
the massive field variations, δWµ and δφ, should not contain multiple powers of massive fields
or gauge parameters, because they would mix with the massive self-interactions that we have
suppressed. Combined with assumptions (PC2) and (MC), this implies δ1Wµ = 0 = δ1φ.
The variation δ1Aµ is quadratic in the fields, including the gauge parameters ξ, ξ̄ that must
appear linearly. Hence the power-counting constraint (PC2), together with the Lorentz index
and reality property of the field Aµ, implies the compact ansatz in eq. (2.10).

3Note that gauge variation thus has at least one less derivative than the corresponding vertex, which is
required in order to preserve the structure of the constraints that follow from the gauge symmetry. In fact, it
is not necessary to add this constraint if we first fix the on-shell part of L3, since this bound comes out of the
general properties of the formalism (k derivatives in a vertex plus one derivative in δ0 minus two derivatives in
L0 result in k − 1 derivatives for δ1, in general), see also below.
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Finally, the free parameters c1 and c2 are uniquely fixed by requiring massive gauge
invariance to linear order in the coupling Q,

(δ0 + δ1)(L2 + L3) = O(Q2) ⇒ c1 = c2 = 1 . (2.11)

This is of course consistent with the all-order results (2.5) and (2.6), which in view of
condition (SI) become

Ln≥4 = 0 , δn≥2 = 0 . (2.12)

If we wanted to proceed systematically to O(Q2), we would need to formulate appropriate
ansätze for L4 and δ2. For the spin-1 example we can be cavalier about the details, since
the correct solution is L4 = δ2Aµ = δ2Wµ = δ2φ = 0, but for higher-spin cases it is
unclear what are the appropriate bounds we should impose on the derivative power counts.
We cannot rely on the higher-spin literature for guidance, so we lack clear higher-order
analogues of assumptions (PC) and (PC2). Instead, we proceed by gradually increasing the
allowed derivative counts in L4 and δ2 until a solution to the massive gauge transformation
is obtained. However, we require that the pieces of L4 that contribute to the Compton
four-point amplitude should not exceed the derivative count implied by the L3 interactions.
Thus the higher-order interactions should not make the high-energy behavior worse than
implied by the cubic interactions.

Note that the cubic Lagrangian obeying eq. (2.11) yields the following three-point
amplitude A(1s=1, 2̄s=1, 3), for two massive spin-1 fields with momenta p1 and p2 and one
photon with momentum p3,

A(1s=1, 2̄s=1, 3) = −2Q(ε1 · ε2 ε3 ·p1 + ε2 · ε3 ε1 ·p2 + ε3 · ε1 ε2 ·p3) . (2.13)

It is instructive to plug in the on-shell spinor expressions for the massive polarization vectors,
parametrized in appendix A among other definitions and conventions. This allows us to
write the physical amplitudes simply as

A(1s=1, 2̄s=1, 3+) = 2Q(ε+
3 · p1)⟨12⟩2

m2 , A(1s=1, 2̄s=1, 3−) = 2Q(ε−3 · p1) [12]2
m2 , (2.14)

where ⟨12⟩ := z1a⟨1a2b⟩z2b, [12] := z1a[1a2b]z2b, and for convenience we used polarizations
vectors with saturated SU(2) indices [46],

εi,µ := εab
i,µziazib = ⟨ia|σµ|ib]√

2m
ziazib . (2.15)

We observe that these spin-1 amplitudes belong to the
√

Kerr family (1.1). Notably, the√
Kerr family does not accommodate [26] the amplitudes from the minimal EM coupling (2.8),

which is not entirely surprising: despite the name, the minimal EM coupling is not a consistent
interaction, as it violates the massive gauge symmetry or, in other words, it sources unphysical
degrees of freedom. As we will discuss in more detail in the rest of this work, the same holds
for arbitrary spin. Namely, the minimal EM coupling for massive particles with spin s ≥ 1
does not give rise to the

√
Kerr three-point amplitudes and it is found to violate massive
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gauge invariance. Moreover, we checked up to s = 4 that the conditions (SI), (PS), (PC),
(PC2) and (MC), imposed on an off-shell cubic Lagrangian, yield the

√
Kerr three-point

amplitudes as unique solution. For s > 4 constructing the off-shell massive-gauge-invariant
Lagrangians is computationally challenging, so we will instead define a set of on-shell massive
Ward identities, introduced in the next section.

Note that, although it is a matter of straightforward computation at low spins, the
relationship between the Lagrangians and the on-shell amplitude expressions (1.1) tends
to be obscure. A way [72, 85, 86] to make it more transparent at the expense of explicit
parity is discussed in section 4.1.

2.3 Massive Ward identities

As an alternative to the fully off-shell approach above, we can phrase massive gauge invariance
in terms of (generalized) Ward identities for momentum-space correlation functions that
are partially on shell. To write the sort of identities most convenient for our purposes, we
take the perspective that the purpose of Ward identities is to prevent pure-gauge fields to
be sourced by physical fields when solving the equations of motion. This is of course true for
Ward identities in massless gauge theory, which set to zero any scattering amplitude involving
a single longitudinally polarized gauge boson. In the same way, we may view the massive
gauge symmetry (2.2) as an unphysical solution Wµ = ∂µξ, φ = mξ of the free theory (2.1),
which decouples from the remaining fields in any S-matrix element. Note that this unphysical
solution is not constrained by the usual mass-shell condition, hence Ward identities typically
involve one off-shell leg corresponding to the pure-gauge field.

For a flexible implementation of such Ward identities, we use off-shell vertices V (. . . ),
which we regard as pre-contracted with the corresponding planewave polarization-tensor
placeholders

ϵ
µ1...µsi
i = ϵµ1

i · · · ϵµsi
i for each particle i. (2.16)

For s > 1, this automatically implies full symmetrization over the Lorentz indices. On the
mass shell (p2

i = m2
i , all momenta are understood as incoming), the placeholders are simply

replaced by the physical polarization vectors:

ϵi,µ → εh
i,µ(p, q) particle i is massless, with helicity h = ±,

ϵi,µ → εab
i,µ(p) particle i is massive, with SU(2) spin indices a, b = 1, 2.

(2.17)

Note that only εi are assumed to obey the usual properties expected from polarization vectors,
such as εi · pi = 0. For example, V (W1W2A3) is a scalar function of ϵi,µ and momenta
pi, i = 1, 2, 3, containing all off-shell information about the EM interaction vertex of the
spin-1 field, while the corresponding amplitude is obtained by putting every leg on shell,
which we write as

A(1s=1, 2̄s=1, 3) := V (W1W2A3)
∣∣
(1,2,3) . (2.18)

In this notation, a spin-1 Ward identity due to the Stückelberg symmetry (2.2) looks like

mV (φ1W2A3) − ipµ
1

∂

∂ϵµ
1

V (W1W2A3)
∣∣∣∣
(2,3)

= 0 , (2.19)
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where we used ∂
∂xµ ↔ −ipµ assuming incoming momenta. Throughout this work we use the

subscript notation (i, j, . . . ) to indicate that the on-shell conditions p2
i −m2

i = εi · pi = ε2
i = 0

are applied to particles {i, j, . . . }, in this case particles 2 and 3, for all terms displayed. Note
that requiring that the expression vanishes in the fully off-shell sense would be a different
and overly strong claim, since it is violated even by the Lagrangian (2.5). Indeed, the Ward
identity (2.19) follows from

(δ0L3 + δ1L2)
∣∣
on-shell = δ0L3

∣∣
on-shell = O(Q2) , (2.20)

which is weaker than the full off-shell gauge invariance of the action at this order, as expressed
by eq. (2.11). Hereabove, δ1L2 = δ1(δS2/δΦ) is a multiple of the free equations of motion
to this order4 in Q. Therefore, the second term vanishes when the corresponding legs are
put on-shell. On the other hand, once we found an L3 that is gauge invariant on shell,
one can take its (non-unique) off-shell extension and read off δ1, cf. footnote 3. Indeed,
δ0L3

∣∣
on-shell = 0 means that δ0L3 is a multiple of the free equations of motion and, hence,

can be compensated by a suitable δ1.
In order to constructively use eq. (2.19), we first come up with an ansatz for the vertices,

schematically,

V (W1W2A3) ∼ m ϵ1 ϵ2 ϵ3

(
p

m

)
→ 6 terms , (2.21a)

V (φ1W2A3) ∼ m ϵ2 ϵ3
(
p0) → 1 term , (2.21b)

where we specify the power counting in various ingredients but omit momentum labels,
index contractions and free coefficients. We have already used the derivative-counting
assumption (PC) and parity (absence of the Levi-Civita tensor). Furthermore imposing the
reality condition V (W1W2A3) = −V (W2W1A3), as per assumption (PS), determines three free
coefficients. Imposing the Ward identity (2.19) reduces the remaining four coefficients to one.
This last free parameter is fixed to the coupling Q by identifying the minimal-coupling (MC)
terms that originate from an appropriate kinetic term |D[µWν]|2. This gives the final result

V (W1W2A3) = −Q
[
ϵ1 · ϵ2 ϵ3 ·(p1 − p2) + ϵ2 · ϵ3 ϵ1 ·(p2 − p3) + ϵ3 · ϵ1 ϵ2 ·(p3 − p1)

]
, (2.22a)

V (φ1W2A3) = iQm ϵ2 · ϵ3 . (2.22b)

The kinematic form of the spin-1 vertex is identical to the 3-gluon Feynman rule, which is no
coincidence in view of the discussed construction of the Lagrangian (2.5) from non-abelian
gauge theory, which results in the same trivalent vertices as above. The on-shell amplitude
A(1s=1, 2s=1, 3) can be computed from the vertex V (W1W2A3) and it agrees with eq. (2.13),
thus reproducing the

√
Kerr result.

An important advantage of eq. (2.19) is that we do not need to construct an ansatz
for the non-minimal gauge transformations δ1, since it only depends on the free-theory
transformations δ0|Q=0, as discussed in eq. (2.20). This significantly reduces the number of

4It is worth recalling that L2 is chosen to contain the minimal interactions introduced via ∂ → D.
Nevertheless, we can neglect the cubic part of L2 in eq. (2.20), since its variation is multiplied by δ1, which is
bilinear in the fields.
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free parameters and hence allows us to compute amplitudes with higher multiplicity and
higher values of the spin s. For the purpose of computing the Compton diagram one does
not even have to solve Ward identities for all the vertices: one leg has to be the physical
spin-s field, i.e. the vertices with two Stückelberg fields and one gauge field A can be omitted.
However, such reduced Ward identities are in general less constraining than imposing massive
gauge invariance on the full off-shell Lagrangian. Although eq. (2.19) is enough to fix the
three-point amplitude uniquely, for s > 1 the reduced Ward identities alone are not sufficient,
and they will need to be supplemented by additional on-shell constraints. We will discuss
this in detail in the next section.

3 Higher-spin gauge theory with massive gauge symmetry

Having already outlined the problem of unphysical degrees of freedom, in this section we
discuss Zinoviev’s solution to it [9] based on massive gauge symmetry, which intertwines
the primary higher-spin field with its auxiliary-field descendants, as well as with the gauge
field with which it interacts.

3.1 General Lagrangian, gauge fixing and Feynman propagator

We are now ready to review how to construct general integer-spin theories using massive
gauge symmetry. In addition to the physical symmetric spin-s field Φµ1...µs , which we will
sometimes shorten to Φs, Zinoviev [9] introduced auxiliary fields Φs−1, Φs−2, . . . , Φ1, Φ0, where
the last one is a scalar field. These fields are assumed to be complex and double-traceless
Φλν

λνµ5...µk
= 0, such that even the physical, maximal-rank field Φs contains more off-shell

degrees of freedom than the field chosen in earlier literature [73–75].
The fields {Φk}s

k=0 are subject to massive gauge transformations

δ0Φµ1...µk
= ∂(µ1ξµ2...µk) + mαkξµ1...µk

+ mβkη(µ1µ2ξµ3...µk) , (3.1)

where the complex gauge parameters are traceless, ξλ
λµ3...µk

= 0, and the numerical co-
efficients are

αk =
√

(s − k)(s + k + d − 3)
(k + 1)(2k + d − 2) , βk = kαk−1

2k + d − 6 , d = 4 . (3.2)

Note that αs = 0, implying that the physical field Φs cannot be set to zero by a gauge
choice, and the relevant parameters are {ξk}s−1

k=0. Of course, for s = 1 we simply recover
Stückelberg’s massive gauge transformations (2.2).

In ref. [76], we found that the free Lagrangian for a complex massive spin-s field that
is invariant under the massive gauge transformations (3.1) can be written as

Lfree = LF − Lgf, (3.3a)

with

Lgf = −
s−1∑
k=0

(−1)k(k + 1)Gµ(k)G
µ(k) , (3.3b)
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where LF = Lfree + Lgf is the Lagrangian in Feynman gauge, obtained by adding the gauge-
fixing term Lgf to the gauge-invariant Lagrangian Lfree. The Feynman-gauge Lagrangian
LF is completely diagonal,

LF = −
s∑

k=0
(−1)k+1

[
Φ̄µ(k)(□ + m2)Φµ(k) − k(k − 1)

4
¯̃Φµ(k−2)(□ + m2)Φ̃µ(k−2)

]
, (3.4)

with Φ̃µ(k−2) := Φλ
λµ3...µk

denoting single traces, see also [87] for the earlier appearance of
this gauge, where it was called de Donder-like.

The gauge-fixing functions Gµ(k) = G(µ1...µk) contain the off-diagonal contributions and
are given by

Gµ(k) := ∂λΦλµ(k)− k

2∂µΦ̃µ(k−1) +mαkΦµ(k)−mαk+1
k+1

2 Φ̃µ(k)−mαk
k−1

4 ηµµΦ̃µ(k−2) , (3.5)

where we use the convention that repeated all-upper (or all-lower) indices ηµµΦµ(k), ∂µΦµ(k)

are a compact notation for symmetrization of indistinguishable indices. Note that traces of
rank-0,1 fields are defined to be zero, Φ̃µ(−2) = Φ̃µ(−1) := 0.

The gauge-fixing functions have a simple gauge transformation following from eq. (3.1),

δ0Gµ(k) = 1
k + 1(□ + m2)ξµ(k) . (3.6)

The appearance of the Klein-Gordon operator (□ + m2) implies that gauge-fixing constraints,
such as the equivalent of Lorenz gauge Gµ(k) = 0, are invariant under gauge transformations
with parameters ξµ(k) that satisfy the mass-shell constraint p2 = m2. Hence, a residual
gauge freedom remains present.

The diagonal form of the gauge-fixed action (3.4) is particularly advantageous when
extending our analysis to four-point amplitudes, where the propagator for each field is
required. The Feynman-gauge propagator ∆(s) for a spin-s field is diagonal and has trivial
momentum dependence. It is unique, and we find that in d = 4 dimensions it is given by
the simple generating function [76]

∆(ϵ, ϵ̄) =
∞∑

s=0
(ϵ)s·∆(s)·(ϵ̄)s = i

p2−m2+i0
1 − 1

4ϵ2ϵ̄2

1 + ϵ · ϵ̄ + 1
4ϵ2ϵ̄2 , (3.7)

where, as before, ϵµ, ϵ̄µ are auxiliary vectors regarded as independent, and ϵ · ϵ̄, ϵ2, ϵ̄2 are
standard Lorentz contractions. Remarkably, this propagator already includes the appropriate
projectors that enforce the double-tracelessness of the rank-s fields.5 Note that the Feynman
propagator does not discern between physical and auxiliary fields, but treats them all on the
same footing, which is also clear from the Feynman-gauge-fixed Lagrangian (3.4).

In order to introduce interactions in the spin-s theory (3.3) one can first attempt to
minimally couple it to electromagnetism. As before, we covariantize the free Lagrangian,
and we obtain the minimally coupled interacting spin-s theory,

L2 = Lfree
∣∣∣
∂µ→Dµ=∂µ−iQAµ

, (3.8)

5While the Feynman-gauge kinetic term does not a have unique inverse, the additional requirement that
the propagator acts as a double-traceless projector gives the unique formula.
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where the subscript on L2 is to emphasize that this comes from the quadratic terms.6
However, this step alone will not give rise to a consistent theory. The minimal interactions
spoil the counting of the degrees of freedom, since we have not ensured that the massive
gauge symmetry is preserved.

As was the case in section 2.2, covariantizing L2 and δ0 is not sufficient, and we must
add non-minimal interactions,7 L3 + . . ., and gauge transformations, δ1 + . . .. In section 2.2,
we discussed the systematic approach for fixing the theory at the Lagrangian level, as shown
in eq. (2.7). This involves constructing the action and gauge transformations order by order,
fully off shell. For instance, at cubic order, we need to consider two types of contributions
to the off-shell cubic vertex,

V (Φs
1Φs′

2 A3) = VL2(Φs
1Φs′

2 A3) + VL3(Φs
1Φs′

2 A3) , (3.9)

where VL2(Φs
1Φs′

2 A3) is extracted from the minimally coupled Lagrangian L2 in eq. (3.8), and
VL3(Φs

1Φs′
2 A3) from the non-minimal cubic interactions L3 linear in the field strength of the

massless boson Fµν . The L2 term can be written out explicitly,

VL2(Φs
1Φ̄s′

2 A3) = 2Qδss′(−1)s(ip2 · ϵ3)(ϵ1 · ϵ2)s−2
[
(ϵ1 · ϵ2)2 − s(s − 1)

4 ϵ2
1ϵ2

2

]
+ VLgf(Φs

1Φ̄s′
2 A3) , (3.10)

where the first line comes from LF and the second line comes from the covariantized Gµ(k)G
µ(k)

term. In the resummed form VLgf is given by

VLgf(Φ1Φ̄2A3) = Q
s−1∑
k=0

(−1)k+1(k + 1)

×
{

imϵk
12(αkϵ23 − αk+1

k+1
2 ϵ2

1ϵ23) + imk

2 ϵk−1
12 (−αkϵ13ϵ2

2 + αk+1
k+1

2 ϵ2
1ϵ2

2ϵ13)

+ k

2 ϵk−1
12 ((p1 · ϵ2)ϵ2

1ϵ23 + 1
2(p2 · ϵ3)ϵ2

1ϵ2
2) + k − 1

4 ϵk−2
12 ϵ2

1ϵ2
2ϵ23(p2 · ϵ1) − (1 ↔ 2)

}
, (3.11)

where ϵij ≡ ϵi · ϵj and ϵ2
i ≡ ϵi · ϵi.

The VL3 interactions are constructed as an ansatz, together with the non-minimal gauge
transformations δ1, and the free coefficients are fixed by requiring off-shell massive gauge
invariance. We will do this explicitly for spin-2 and spin-3 fields in section 3.3, and we will
see that it is a significant computational challenge even at low spins.

On the other hand, in section 2.3 we introduced an approach influenced by on-shell
techniques, working with identities at the level of the vertices. This approach only requires
the free-field massive gauge transformations, which lets us bypass ansatzing the non-linear

6We emphasize that, unlike L2, the gauge-fixing term is kept quadratic, so that the Feynman vertices are
not affected by the gauge choice. Alternatively, one can also covariantize the gauge-fixing term with respect to
massless gauge transformations, but this approach will not be pursued here.

7Note that neither the “minimal EM” nor non-minimal terms are consistent interactions when considered
independently of each other. Only very specific linear combinations of such terms form consistent interactions.
Those can be found be requiring the longitudinal modes to decouple, which is equivalent to imposing the
massive higher-spin gauge symmetry.
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gauge transformations and thus provides a significant computational advantage. Moreover,
there is an immediate connection to scattering amplitudes, which is an advantage considering
our goal of comparing to the

√
Kerr three-point amplitudes and extending them to four points.

We will use this method to compute arbitrary-spin three-point amplitudes in section 3.3, and
four-point Compton amplitudes for spin-2 and spin-3 particles in section 3.4.

Note, however, that solving the Ward identities, which are partially on-shell, and finding
a fully off-shell gauge-invariant Lagrangian are two equivalent approaches. Indeed, consider
the cubic vertex in eq. (3.9), the Ward identities δ0V |on-shell = 0 guarantee that δ0V is a
multiple of the free equations of motion and, hence, δ1 can be read off once the variation is
kept off-shell, see eq. (2.20). Different ways of extending VL3 off-shell will lead to different δ1,
which are related via field redefinitions. Therefore, the ambiguity in the off-shell extension
does not carry any information about the physics. Let us note, however, that, in practice,
we solve the reduced Ward identities where one of the fields is the physical spin-s field and
additional constraints are required, which are discussed below.

3.2 Massive Ward identities again

The discussion of the Ward identities in section 2.3 can easily be extended to any spin s.
At the cubic order we have the vertices (3.9) that encode interactions between two fields
from the massive spin-s multiplets and a gauge field, V (ΦkΦn

A), where k, n = 1, . . . , s run
over the auxiliary fields k, n = 1, . . . , s−1 and the physical field k, n = s. In practice, one
factorizes fields via the unconstrained polarizations ϵµ

i introduced in eq. (2.16). As a result,
in momentum space V (ΦkΦn

A) becomes a scalar function of ϵi,µ and pi, i = 1, 2, 3, which
we denote V (Φk

1Φn
2 A3) with the subscript referring to the i-index of ϵi,µ.8 We can and will

use the same polarization vectors ϵi to factorize the gauge parameters ξµ(k), k = 0, . . . , s−1
since ϵi,µ is merely a book-keeping device. The tracelessness of the gauge parameters is
ensured by further imposing ϵ2

i = 0.
We then consider the linearized gauge transformation δ0 in eq. (3.1), and exhibit all fields

that pick up a change proportional to the gauge parameter ξ
µ(k)
i . Recalling that the same

polarization vectors can be used for fields and gauge parameters, we arrive at the following
implementation of the gauge transformations

δ0Φµ(k)
1 = mαkξ

µ(k)
1 → mαkV (Φµ(k)

1 · · · )
∣∣∣
ϵ2

1=0
,

δ0Φµ(k+1)
1 = ∂µξ

µ(k)
1 → 1

k + 1
∂

∂xν

∂

∂ϵν
1

V (Φµ(k+1)
1 · · · )

∣∣∣
ϵ2

1=0
,

δ0Φµ(k+2)
1 = mβk+2ηµµξ

µ(k)
1 → mβk+2

(k + 2)(k + 1)
∂

∂ϵ1
· ∂

∂ϵ1
V (Φµ(k+2)

1 · · · )
∣∣∣
ϵ2

1=0
.

(3.12)

Now we consider the (reduced) massive Ward identity for a process involving three plane
waves, and apply the gauge transformation δ0 that is due to ξµ(k) to the first leg. First, using
the relations (3.12), and plugging in βk+2 = 1

2ak+1(k+2)/(k+1), we construct an off-shell

8Note that it is not necessary to impose double-tracelessness of the fields Φµ(k)
i , since either the on-shell

conditions or the Feynman propagator (3.7) will automatically enforce it.
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version of the gauge-transformed three-point vertex,

V (ξk
1 Φ̄s

2A3) := mαkV (Φk
1Φ̄s

2A3) − ip1
k+1 · ∂

∂ϵ1
V (Φk+1

1 Φ̄s
2A3) + mαk+1

2(k+1)2

(
∂

∂ϵ1

)2
V (Φk+2

1 Φ̄s
2A3),

(3.13)
where the notation reminds us that we are effectively scattering the gauge parameter ξ

µ(k)
1 .

Then, the massive Ward identity at three points is given by setting the above vertex to zero
after imposing on-shell conditions on legs 2, 3 and tracelessness on leg 1.

Since we plan to work with the reduced Ward identities, we now state the additional
constraints that we will impose on the three point interactions for the spin-s theory:

(WI) Massive Ward identities due to Zinoviev’s gauge symmetry (3.1):

V (ξk
1 Φ̄s

2A3)
∣∣
(2,3),ϵ2

1=0 = 0 . (3.14)

(CC) Current constraint following from high-energy unitarity, as discussed in ref. [46]:

p1 ·
∂

∂ϵ1
V (Φs

1Φ̄s
2A3)

∣∣∣∣
(2,3),ϵ2

1=0
= O(m) . (3.15)

(ND) Near-diagonal interactions of two massive fields. The cubic vertices differ at most by
one unit:9

V (Φn−k
1 Φ̄n

2 A3)
∣∣
k>1 = 0 . (3.16)

In addition, the previously introduced constraints (SI), (PS), (PC), (MC) should still be
imposed on the spin-s theory.

Let us discuss the new constraints. As we will see in section 3.3.3, they are needed, in
combination with the reduced massive Ward identities, to fix the three-point

√
Kerr amplitudes

uniquely.10 However, in the off-shell Lagrangian approach, the
√

Kerr amplitudes follow
uniquely from massive gauge invariance without the need to impose additional constraints,
as we checked up to s = 4. Therefore, it is possible that (CC) and (ND) encode information
about massive gauge symmetry, which is somehow missed by the reduced on-shell Ward
identities, since they do not probe all three-point vertices but only those with one leg being
the physical spin-s field. To confirm this, we would need to push the off-shell computation
to higher values of spin, s > 4.

The (ND) constraint is obeyed by the minimally coupled theories that follow from the free
Lagrangians (3.3), so we propose that it should be extended to the non-minimal interactions.
The current constraint (CC) has been argued [2, 3, 80] to give rise to scattering amplitudes
with an improved high-energy limit. For instance, in the spin-1 theory discussed in section 2,
the massive propagator in unitary gauge (UG) becomes

∆UG
µν = −i

ηµν − pµpν

m2

p2 − m2 + i0 . (3.17)

9In practice, it is applied to n = s since we consider only the reduced Ward identities where the physical
spin-s field is present.

10Note that leading-Regge open-string higher-spin amplitudes violate the constraints that we are imposing.
Specifically, it is the combination of (PC)+(CC) that are too constraining for string amplitudes above s > 2.
In particular, string amplitudes involve non-minimal interactions.
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In the high-energy limit p/m → ∞, it is clear that the second term in the propagator
numerator give rise to a divergence. The implication for a physical process, such as the
Compton amplitude A(1s=1, 2̄s=1, 3−, 4+), is that such divergences appear in the massive-
exchange diagrams and are proportional to the contraction of the exchanged momentum pµ

and the three-point vertices, namely p
m · ∂

∂ϵp
V (Φs

pΦ̄s
i Aj)

∣∣
(i,j). The current constraint (3.15)

cures this type of divergences by removing the factor of the mass m from the denominator.
On the other hand, in Feynman gauge the propagators (3.7) do not contain momentum-

dependent terms. In that case, the divergences appear in the vertices of the theory. For
instance, we can modify the s = 1 Lagrangian in section 2.2 by adding the term

iQc̃1F µν
(

W µ − 1
m

Dµφ

)(
Wν − 1

m
Dνφ

)
, (3.18)

where c̃1 is a free coefficient. The resulting Lagrangian is still gauge-invariant at cubic order,
since the structure in the brackets is invariant under the free gauge transformations (2.9).
However, it violates the current constraint, namely,

p1 ·
∂

∂ϵ1
V (W1W 2A3)

∣∣∣
(2,3)

= Qc̃1(2ε2 ·p1 ε3 ·p1 − p2
1 ε2 ·ε3) + O(m) . (3.19)

In Feynman gauge, the terms in eq. (3.18) proportional to 1/m give rise to high-energy
divergences in scattering amplitudes, unless c̃1 = 0 as required by the current constraint.

Vertex (3.18) is also an illustration of the fact that the massive higher-spin gauge symmetry
needs to be supplemented with appropriate constraints on the number of derivatives in the
interactions. Indeed, one can take any function of Wµ, W µ and replace them by the expressions
in the brackets of eq. (3.18), the resulting vertex being gauge-invariant. However, such a
cavalier approach induces higher derivatives for the auxiliary fields. For example, eq. (3.18) is
a three-derivative vertex, while the minimal interaction is a two-derivative one. The current
constraint is a way to improve the derivative counting at least at the cubic order. It is
reasonable to expect that

√
Kerr theories correspond to the best possible scenario [76], where

the number of derivatives is kept the lowest at all orders.

3.3 Massive gauge symmetry at cubic order

3.3.1 Example: spin-2
√

Kerr theory

In this section, we apply the methods outlined in section 2.2 to the case of a massive
spin-2 field coupled to a photon. We work in d = 4 dimensions and start with the free
massive spin-2 Lagrangian L2 and then add non-minimal terms L3. For convenience, and
following ref. [77], we decompose the spin-s Lagrangians as L(s)

n,k, where n is the number of
fields (the gauge field in Dµ is not counted) and k is the number of derivatives (counting
both Dµ and the derivative in Fµν).

The minimally coupled spin-2 Lagrangian is then

L(2)
2 = L(2)

2,2 + L(2)
2,1 + L(2)

2,0 , (3.20)
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where

L(2)
2,2 = DαΦµνDαΦµν − 2D · ΦµD · Φµ + D · ΦνDνΦ̃ + DνΦ̃D · Φν − DµΦ̃DµΦ̃ + DαφDαφ

− DµBνDµBν + D · B D · B ,

L(2)
2,1 =

√
3m(D · Bφ + φ̄D · B) −

√
2m(D · ΦνBν + BνD · Φν) −

√
2m(Φ̃D · B + D · BΦ̃) ,

L(2)
2,0 = −m2(ΦµνΦµν − Φ̃Φ̃) −

√
3
2m2(Φ̃φ + φ̄Φ̃) + 2m2φ̄φ . (3.21)

Here we recall the shorthand notation D ·Φµ1...µk := DρΦρµ1...µk and Φ̃µ1...µk := ηρσΦρσµ1...µk ,
and for clarity we renamed the Stückelberg fields to Bµ and φ.

The minimally coupled massive gauge transformations δ0 are given by

δ0Φµν = D(µξν) + m√
2

ηµνζ ,

δ0Bµ = Dµζ + m√
2

ξµ ,

δ0φ =
√

3mζ .

(3.22)

As before, for Q ̸= 0 this gauge symmetry is broken and we need to add non-minimal
deformations to restore it. Assuming (SI), (MC), (PC) and (PC2) the allowed ansatz for the
Lagrangian contains 37 free parameters, whereas the ansatz for the gauge transformations
contains 42 free parameters. Imposing massive gauge invariance leaves 12 free parameters in
the Lagrangian and 18 in the gauge transformations. The leftover free parameters arise due
to field-redefinition redundancies and higher-point effects, since none of them contributes to
the on-shell three-point amplitude, which is uniquely predicted and it matches the known√

Kerr answer,

A(1s=2, 2̄s=2, 3+) = 4Q

m2 ε1 ·p2ε2 ·p1(ε1 ·ε3 ε2 ·p3 + ε2 ·ε3 ε1 ·p2 + ε1 ·ε2 ε3 ·p1) (3.23)

+ Qε1 ·ε2(4ε1 ·ε3 ε2 ·p3 + 4ε2 ·ε3 ε1 ·p2 + 2ε1 ·ε2 ε3 ·p1) = 2Q ε+
3 ·p1

⟨12⟩4

m4 .

One explicit solution for the full cubic Lagrangian L3 is

L(2)
3 = L(2)

3,3 + L(2)
3,2 + L(2)

3,1 , (3.24)

where

L(2)
3,3 = 2iQ

m2 F µν
(
DµΦαβDαΦβ

ν − DαΦβνDµΦαβ + DαΦβµDαΦβ
ν − 2DαΦβµDβΦα

ν

− DµΦαβDνΦαβ + DµΦναD · Φα − D · ΦαDµΦν
α + D · ΦµD · Φν

− D · ΦµDνΦ̃ + DνΦ̃D · Φµ − DµΦναDαΦ̃ + DαΦ̃DµΦν
α + DµΦDνΦ̃

)
, (3.25a)

L(2)
3,2 = i

√
2Q

m
F µν

(
D · ΦµBν − B̄νD · Φµ − DµΦ̃Bν + B̄νDµΦ̃

)
(3.25b)

L(2)
3,1 = iQF µν

(
2Φ̄µαΦν

α + B̄µBν

)
, (3.25c)

where we recall that Φ̃ := Φµ
µ and Fµν := 2∂[µAν].
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The non-minimal gauge transformations δ1 are

δ1Φµν =− iQ

m2

{
(F µ

α D[αξν] + F ν
α D[αξµ]) + 1

2ηµνF αβD[αξβ]
}

,

δ1Aµ =− iQ

m2

{
2DαΦβµD[αξβ] − 2D[αξβ]D

αΦβ
µ +

√
2m(Bα

D[µξα] − D[µξα]B
α)

+ m2(Φ̄µαξα − ξ̄αΦµα) − m2(B̄µζ − ζ̄Bµ)
}

.

(3.26)

The next step is to study the spin-2 theory in the language of massive Ward identities,
as outlined in section 3. From the free-theory part of eq. (3.22), we compute the gauge-
transformed vertices

V (ξ1Φ̄2A3) = − ip1
2 · ∂

∂ϵ1
V (Φ1Φ̄2A3) + m√

2
V (B1Φ̄2A3) , (3.27a)

V (ζ1Φ̄2A3) = m

2
√

2
∂

∂ϵ1
· ∂

∂ϵ1
V (Φ1Φ̄2A3) − ip1 ·

∂

∂ϵ1
V (B1Φ̄2A3) +

√
3mV (φ1Φ̄2A3) , (3.27b)

and impose the massive Ward identities

V (ξ1Φ2A3)
∣∣
(2,3) = V (ζ1Φ2A3)

∣∣
(2,3) = 0 (3.28)

together with the assumptions (SI), (MC), (PC) and (PC2). The solution yields a three-point
amplitude A(1s=2, 2̄s=2, 3) with a single free parameter c:

A(1s=2, 2̄s=2, 3) = Q

(
c

m2 ε1 ·p2 ε2 ·p1 + 4+c

2 ε1 ·ε2

)(
ε1 ·ε2 ε3 ·p1 + ε2 ·ε3 ε1 ·p2 + ε3 ·ε1 ε2 ·p3

)
− Qα

2 (ε1 ·ε2)2 ε3 ·p1 . (3.29)

If we additionally impose the constraints (CC) and (ND), we find c = 4, matching eq. (3.23).
In summary, the combination of massive Ward identities, the current constraint and

the (ND) assumption encodes the same information on the cubic theory as the off-shell
Lagrangian gauge invariance, but the former is considerably simpler to implement and easier
to push to higher orders.

3.3.2 Example: spin-3
√

Kerr theory

We can repeat the above analysis for a massive spin-3 field coupled to electromagnetism.
We begin with the minimally coupled Lagrangian

L(3)
2 = L(3)

2,2 + L(3)
2,1 + L(3)

2,0 , (3.30)

where

L(3)
2,2 = −DµΦνρσDµΦνρσ + 3D ·ΦµνD ·Φµν + 3

2D ·Φ̃D ·Φ̃ + 3DµΦ̃νDµΦ̃ν (3.31a)

− 3DµΦ̃νD ·Φµν − 3D ·ΦµνDµΦ̃ν + DµHνρDµHνρ − 2D ·HµD ·Hµ

+ DµH̃D ·Hµ + D ·HµDµH̃ − DµH̃DµH̃ − DµBνDµBν + D ·BD ·B + DµφDµφ ,

L(3)
2,1 = 2

√
3mΦ̃µD ·Hµ + 2

√
3mD ·HµΦ̃µ +

√
3mD ·ΦµνHµν +

√
3mHµνD ·Φµν

+
√

3
2 mD ·Φ̃H̃ +

√
3

2 mH̃D ·Φ̃ −
√

5mH̃D ·B −
√

5mD ·BH̃ −
√

5mD ·HµBµ

−
√

5mB̄µD ·Hµ +
√

6mD ·Bφ +
√

6mφ̄D ·B , (3.31b)
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L(3)
2,0 = m2Φ̄µνρΦµνρ − 3m2Φ̃µΦ̃µ + 3

2m2H̃H̃ − 3
2m2B̄µBµ + 5m2φ̄φ +

√
15
2 m2Φ̃µBµ

+
√

15
2 m2B̄µΦ̃µ −

√
15
2 m2H̃φ −

√
15
2 m2φ̄H̃ . (3.31c)

Here Φλµν is the spin-3 field, and for clarity we renamed the lower-rank auxiliary fields
to Hµν , Bµ and φ. As before, we use the shorthands D · Φµ1...µk := DρΦρµ1...µk and
Φ̃µ1...µk := ηρσΦρσµ1...µk . The minimally coupled gauge transformations are

δΦλµν = ∂(λξµν) +
√

3
4 mη(λµξν) ,

δHµν = ∂(µξν) + m√
3

ξµν +
√

5
2 mηµνξ ,

δBµ = ∂µξ +
√

5
2 mξµ ,

δφ =
√

6mξ ,

(3.32)

in terms of the gauge parameters ξµν , ξµ and ξ, where ξµ
µ = 0.

In order to restore the gauge symmetry for Q ̸= 0, we construct an ansatz for the non-
minimal cubic Lagrangian L(3)

3 and the non-minimal gauge transformations δ1. Assuming (SI),
(MC), (PC) and (PC2), the allowed ansatz contains 432 free parameters in the Lagrangian
and 436 in the gauge transformations. Imposing massive gauge invariance leaves 141 free
parameters in the Lagrangian and 260 in the gauge transformations. As before, the leftover
free parameters are due to field redefinitions and higher-point effects, since they do not
contribute to the on-shell three-point amplitude given by

A(1s=3, 2̄s=3, 3+) = −8Q

m4 (ε1 ·p2)2(ε2 ·p1)2(ε1 ·ε3 ε2 ·p3 + ε2 ·ε3 ε1 ·p2 + ε1 ·ε2 ε3 ·p1)

− 4Q

m2 ε1 ·ε2 ε1 ·p2 ε2 ·p1 (4ε1 ·ε3 ε2 ·p3 + 4ε2 ·ε3 ε1 ·p2 + 3ε1 ·ε2 ε3 ·p1)

− 2Q(ε1 ·ε2)2 (3ε1 ·ε3 ε2 ·p3 + 3ε2 ·ε3 ε1 ·p2 + ε1 ·ε2 ε3 ·p1)

= 2Q ε+
3 ·p1

⟨12⟩6

m6 . (3.33)

This matches the known
√

Kerr amplitude (1.1).
The explicit solutions for the non-minimal Lagrangian and gauge transformations are

rather cumbersome, so we omit them in this work. Instead, we can reproduce the above
results in a simpler fashion using massive Ward identities. From eq. (3.32) we read off the
gauge-transformed vertices

V (ξµν
1 Φ̄2A3) = − ip1

3 · ∂

∂ϵ1
V (Φ1Φ̄2A3) + m√

3
V (H1Φ̄2A3) , (3.34)

V (ξµ
1 Φ̄2A3) = m

8
√

3
∂

∂ϵ1
· ∂

∂ϵ1
V (Φ1Φ̄2A3) − ip1

2 · ∂

∂ϵ1
V (H1Φ̄2A3) +

√
5m

2 V (B1Φ̄2A3) ,

V (ξ1Φ̄2A3) =
√

5m

4
∂

∂ϵ1
· ∂

∂ϵ1
V (H1Φ̄2A3) − ip1 ·

∂

∂ϵ1
V (B1Φ̄2A3) +

√
6mV (φ1Φ̄2A3) ,
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and impose the (reduced) massive Ward identities

V (ξµν
1 Φ̄2A3)

∣∣
(2,3) = V (ξµ

1 Φ̄2A3)
∣∣
(2,3) = V (ξ1Φ̄2A3)

∣∣
(2,3) = 0 , (3.35)

together with the assumptions (SI), (MC), (PC), (PC2). This leaves two free parameters
in the on-shell amplitude. Additionally imposing (CC) and (ND) fixes the leftover freedom
and reproduces the amplitude (3.33).

3.3.3 Uniqueness of spin-s
√

Kerr

In the arbitrary-spin case it is hard to obtain expressions for the non-minimal off-shell
Lagrangian and gauge transformations. The main issue is that such objects are not uniquely
defined, because they depend on field redefinitions. One option is to study fixed values of
spin and choose field redefinitions that manifest some nice properties of the Lagrangians, in
the hope that such special choices can be extrapolated to arbitrary spin. In this work, we
instead focus on reduced Ward identities, which produced the same on-shell results as the
Lagrangian approach in the cases discussed above, but are much simpler to implement for
arbitrary spin. We write down ansätze for the vertices V (Φk

1Φs
2A3), use them to compute

the gauge variations V (ξk
1 Φs

2A3) as discussed in section 3.2, and impose combinations of
the conditions (MC), (PC), (WI), (CC), (ND).

Imposing (MC)+(PC)+(WI) in spin-s
√

Kerr theory and extracting the on-shell three-
point amplitude, we find

A(1s, 2̄s, 3+) = A(0)
3

⟨12⟩2s

m2s

{
1 +

s−1∑
k=1

ck

(
[12]k
⟨12⟩k

− 1
)}

, (3.36)

where ck are free parameters and A(0)
3 = 2Q(ε3 · p1) is the scalar amplitude. Imposing (ND)

does not modify eq. (3.36), whereas (CC) requires ∑k ck = 0. However, (CC)+(ND) fix
ck = 0 and yield the AHH amplitudes (1.1).

The calculations outlined above for the
√

Kerr theories were performed explicitly up to
s ≤ 10. However, we do not expect any new feature beyond this spin and believe the above
results to be valid for any spin. Note that the off-shell analysis done in the previous sections
lands us unambiguously on the

√
Kerr amplitude, and it only required the conditions (SI),

(PS), (PC), (PC2) and (MC). We believe that a complete set of Ward identities is equivalent
to the off-shell constraints, and hence it will only require the conditions (MC)+(PC)+(WI)
to derive the

√
Kerr amplitudes. By contrast, the reduced Ward identities (with one leg

always having spin s) leave us with free parameters, which are, nevertheless, fixed with the
help of the constraints (CC) and (ND). Therefore, provided we follow the off-shell approach
or impose all Ward identities, the latter constraints are redundant.

3.3.4 On-shell cubic
√

Kerr Lagrangians

As discussed, it is difficult to obtain arbitrary-spin expressions for off-shell Lagrangians,
due to their redundant nature. However, it is much easier to write down the part of the
arbitrary-spin Lagrangian that contributes to the on-shell three-point amplitude. In this
subsection, we derive expressions for arbitrary-spin on-shell Lagrangians that reproduce the√

Kerr amplitudes (1.1), in terms of a convenient choice of variables.
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It is convenient to re-express the spin-s field as a tensor product of s spin-1 fields in
the (generalized) double-copy sense:

Φs = Φµ1µ2...µs = W (µ1 ⊗ W µ2 ⊗ · · · ⊗ W µs) , (3.37)

where the tensor product is understood to hold in momentum space, or equivalently as a
convolution in position space. We expand the

√
Kerr gauge theory Lagrangian in terms of

operators contributing at different orders in the coupling g

L(s)√
Kerr = −1

4(Fµν)2 + L(s)
2 + igL(s)

3 + g2L(s)
4 + . . . . (3.38)

Up to cubic order we may assume, without loss of generality, that the non-trivial interactions
are abelian and hence g = Q. Moreover, we will only analyze the Lagrangian terms that
contribute on shell at three points.

The minimal Lagrangian, obtained from the covariantization of eq. (3.3), is

L(s)
2 = (−1)s

(
Dµ0Φµ1...µsDµ0Φµ1...µs − m2Φ̄µ1...µsΦµ1...µs + . . .

)
, (3.39)

where the ellipsis correspond to terms that vanish on shell. Recall that the covariant derivative
is Dµ0Φµ1...µs = ∂µ0Φµ1...µs − iQAµ0Φµ1...µs thus the minimal-coupling cubic interaction terms
coming from L(s)

2 are

(−1)siQ∂µ0Φµ1...µsAµ0Φ̄µ1...µs− (Φ ↔ Φ̄) → 2Q(ε3 · p1)(−ε1 · ε2)s . (3.40)

In terms of spinor-helicity variables, the minimal-coupling gauge-theory amplitude for a
positive-helicity photon is then

Amin(1s, 2̄s, 3+) = 2Q(ε+
3 · p1)⟨12⟩s[12]s

m2s
, (3.41)

and the negative-helicity case is simply obtained by ε+
3 → ε−3 . There is no additional

information in the negative-helicity amplitude since we will only use parity-invariant operators,
hence we can focus on the positive-helicity case.

It is now an easy task to compute the difference between the above amplitude and
the

√
Kerr amplitude (1.1) and reverse-engineer the cubic operators that correspond to the

mismatch. We decorate the on-shell part of the cubic Lagrangians with a tilde to emphasize
that they need to be supplemented by off-shell-completion terms to restore Zinoviev’s massive
gauge invariance,

L(s)
3 = L̃(s)

3 + (gauge-invariance completion terms) . (3.42)

At spin s = 1, one can identify two independent candidate operators that contribute on shell,

O1 = −W µF µνWν → 2Q

m2 (ε+
3 · p1)⟨12⟩(⟨12⟩ − [12]) ,

O2 = − 1
m2 W ρµF µνWν

ρ → − 2Q

m2 (ε+
3 · p1)[12](⟨12⟩ − [12]) ,

(3.43)
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where Fµν = 2∂[µAν] and Wµν = 2∂[µWν] are (linearized) field strengths for the massive and
massless fields (here Φµ = W µ). Using the spinor-helicity representations on the right-hand
side, it is clear that L̃(1)

3 = O1 reproduces the
√

Kerr amplitude.
For s > 1 we can construct the L̃(s)

3 operators recursively, by tensoring the O1 and
O2 operators with spin-1 building blocks that are insensitive to the photon helicity. For
three-point on-shell kinematics there are only two such independent building blocks,

u = − 1
m2 W µνW µν → 1

m2
(
⟨12⟩2 + [12]2

)
,

v = −W µW µ → ⟨12⟩[12]
m2 .

(3.44)

Using eq. (3.37) to decompose Φµ1...µs into spin-1 fields, we can now write down L̃(s)
3 to

any spin. Through spin 3, the non-minimal interaction terms are

L̃(0)
3 = 0 , L̃(2)

3 = (u + v)O1 + vO2 ,

L̃(1)
3 = O1 , L̃(3)

3 = (u + v)
(
uO1 + vO2

)
.

(3.45)

When combined with the minimally coupled interactions (3.40), these terms reproduce the√
Kerr amplitudes up to spin 3.

For spin 4 and higher, we find that the non-minimal
√

Kerr interaction terms satisfy
the following recurrence formula,

L̃(s)
3 = (u2 − 2v2)L̃(s−2)

3 − v4L̃(s−4)
3 + (2v + u)vs−2(O1 + O2

)
. (3.46)

For example, for spin s = 4, 5, 6 we have the non-minimal interactions

L̃(4)
3 = u(u2 + uv − v2)O1 + uv(u + v)O2 , (3.47a)

L̃(5)
3 = (u2 − v2)(u2 + uv − v2)O1 + uv(u2 + uv − v2)O2 , (3.47b)

L̃(6)
3 = (u2 − v2)(u3 + u2v − 2uv2 − v3)O1 + v(u2 − v2)(u2 + uv − v2)O2 . (3.47c)

As an alternative to the recursive formula, we can also explore a generating-function description
of the cubic on-shell Lagrangian L̃3. Indeed, it is straightforward to obtain the generating
function by summing eq. (3.46) over all spins, giving an equation for the sum with solution

∞∑
s=0

L̃(s)
3 = O1 + vO2

(1 − v)(1 − u + v2) . (3.48)

For simplicity, we have suppressed the auxiliary generating variable, since this leads to
no ambiguity.

In terms of standard Lagrangian notation, using the fields Φµ1···µs and covariantizing the
derivatives, the non-minimal cubic interactions up to spin-3 take the form

L̃(1)
3 = − Φ̄µF µνΦν , (3.49a)

L̃(2)
3 = Φ̄µνF ν

ρΦρµ + 4
m2 D[µΦν]ρF ρσD[µΦν]

σ + 4
m2 D[µΦν]ρF ν

σD[σΦµ]ρ , (3.49b)

L̃(3)
3 = − 4

m2 D[µΦν]ρλF ρ
σD[µΦν]σλ − 4

m2 D[µΦν]ρλF ν
σD[σΦµ]ρλ (3.49c)

− 24

m4 D[νD[µΦρ]σ]λFλ
κD[νD[µΦρ]

σ]κ − 24

m4 D[σD[µΦρ]ν]λFν
κD[κD[µΦρ]

σ]λ .
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Note that the above Lagrangians have derivatives appearing only as curls of the spin-s field,
which is the general structure of interactions of massless fields, see e.g. ref. [88].

As mentioned above, eq. (3.49) contains the operators that contribute to the on-shell
three-point amplitude. In order to have the full cubic Lagrangian L(s)

3 , we would need to add
additional terms that vanish on shell, yet they are needed to preserve massive gauge invariance.
For the highest derivative terms in L(s)

3 we can find the completions, since they correspond
to having gauge invariance in the high-energy limit. The following leading-derivative terms
are compatible with the above on-shell analysis and high-energy gauge invariance:

L(s)
3 = (−1)s 22s−2

m2s−2

(
Φ[µ1;ν1][µ2;ν2]···[µs−1;νs−1]ρFρ

σΦ[µ1;ν1][µ2;ν2]···[µs−1;νs−1]σ

+ Φ[µ1;σ][µ2;ν2]···[µs−1;νs−1]ρFµ1
ν1Φ[σ;ν1][µ2;ν2]···[µs−1;νs−1]ρ (3.50)

+ 1
2DρΦ[µ1;ν1][µ2;ν2]···[µs−1;νs−1]ρFµ1

σΦ[µ2;ν2]···[µs−1;νs−1]σν1

+ 1
2Φ[µ2;ν2]···[µs−1;νs−1]ρν1Fρ

µ1DσΦ[µ1;ν1][µ2;ν2]···[µs−1;νs−1]σ

)
+ O

( 1
m2s−4

)
,

where the [µ; ν] notation is shorthand for curls, e.g. with one curl we have Φµ1µ2...[µi;νi]...µs :=
D[νiΦµ1µ2...µi]...µs , and similarly for taking curls repeatedly. The Stückelberg fields all enter
L(s)

3 as lower derivative terms, thus they are hidden in the O(m−2s+4) corrections.

3.4 Massive gauge symmetry at quartic order

Finding consistent quartic interactions for massive higher-spin fields is a notoriously hard
problem. In the Stückelberg formalism discussed in this work, it requires solving gauge
invariance to quadratic order in the coupling Q,

(δ0 + δ1 + δ2)(L2 + L3 + L4) = O(Q3) . (3.51)

At linear order, the above equation reduces to eq. (2.11) and the implementation of gauge
invariance has already been discussed. The new information comes at O(Q2), where the
non-minimal quartic interactions in L4 starts contributing. At this order, we need to compute
the variation of the quartic vertices under the free-theory gauge transformations, namely
δ0L4 and also δ0(L2 + L3) from expanding the covariant derivatives. We also need to vary
the free Lagrangian L2|Q=0 under O(Q2) corrections to the gauge transformations, δ2, which
are quadratic in the fields and linear in the gauge parameters. Both L4 and δ2 require writing
down an ansatz and hence introducing new free parameters.

The number of derivatives required in the ansatz, and hence the number of free parameters,
increase rapidly with spin. To see this, we consider the contribution of the three-point vertices
to the four-point Compton amplitude, given by{

∆P

(
∂

∂ϵP
,

∂

∂ϵ−P

) s∑
l=0

V (Φs
1Φ̄l

P A4)V (Φl
−P Φ̄s

2A3) + (3 ↔ 4)
}∣∣∣∣

ϵP ,ϵ−P→0
, (3.52)

where the Feynman propagator-generating function ∆P (ϵ, ϵ̄) (3.7) has become an operator
through the substitution of its arguments by derivatives, which act on the polarization vectors
of the internal line. The lowest-derivative solution for the three-point vertices contains 2s−1
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derivatives, as discussed in the previous sections. Since eq. (3.52) contains two such vertices
and a propagator, and the latter subtracts two derivatives, we expect at least 4s−4 derivatives
in the Compton amplitude and in the four-point contact terms in L4. This will produce up
to 4s−3 derivatives in the term δ0L4. We expect the same power of derivatives in the term
δ2L2, and since L2 has two derivatives, δ2 should have 4s−5.

Moreover, we need to consider the variation of the cubic vertices under the first non-linear
corrections to the gauge transformations, for instance in the term δ1L3. Both δ1 and L3
are partially fixed by the higher-spin generalization of eq. (2.11), but in general there are
leftover free parameters. Provided we fix the cubic amplitude, all the leftover parameters
are associated with field redefinitions and with redefinitions of gauge parameters, i.e. they
represent no physical information and can be set at will, for instance, to zero. Nevertheless,
eq. (3.51) at O(Q2) is a system of coupled equations containing many tensor structures,
and it is very hard to solve in general.

Alternatively, we can resort to the same Ward identities that provided simplification in
the cubic case. This requires computing a four-point Compton amplitude using the three-point
solutions to the cubic Ward identities and the Feynman-gauge propagators defined in eq. (3.7).
More precisely, we need to compute the abelian amputated correlation function11

⟨Φk
1Φ̄s

2A3A4⟩U(1) :=
{

∆P

(
∂

∂ϵP
,

∂

∂ϵ−P

) s∑
l=0

V (Φk
1Φ̄l

P A4)V (Φl
−P Φ̄s

2A3) + (3 ↔ 4)
}∣∣∣

ϵP ,ϵ−P→0

+ VL2(Φk
1Φ̄s

2A3A4) + VL3(Φk
1Φ̄s

2A3A4) + VL4(Φk
1Φ̄s

2A3A4) . (3.53)

The terms VL2 and VL3 pick up the quartic terms from L2 ∼ (DΦ)2 and L3 respectively,
which are due to Aµ inside the covariant derivatives Dµ. In addition, we need the four-point
contact terms of form

VL4(Φk
1Φ̄s

2A3A4) = Ansatz(k,s)(pi, ϵi) , (3.54)

where the ansatz for the contact terms must involve two field strengths L4 ∝ FµνFρσ.
Let us also define a gauge-transformed amputated correlator for each gauge parameter ξk,

in the same fashion as in eq. (3.13),

⟨ξk
1 Φ̄s

2A3A4⟩ := mαk⟨Φk
1Φ̄s

2A3A4⟩−
ip1

k+1 · ∂

∂ϵ1
⟨Φk+1

1 Φ̄s
2A3A4⟩+ m

2 βk+2

(
∂

∂ϵ1

)2
⟨Φk+2

1 Φ̄s
2A3A4⟩.

(3.55)
The four-point Ward identities then become

⟨ξk
1 Φ̄s

2A3A4⟩
∣∣
(2,3,4),ϵ2

1=0 = 0 , (3.56)

where legs 2, 3 and 4 are on-shell states, meaning that they obey p2
i − m2

i = ε2
i = εi · pi = 0,

and the leg 1 is traceless ϵ2
1 = 0. Likewise, the spin-s amplitude can be obtained from the

amputated abelian correlator, where all legs are taken on shell:

AU(1)(1s, 2̄s, 3, 4) := −1
2⟨Φ

sΦ̄sA3A4⟩U(1)

∣∣∣
(1,2,3,4), Q→1

, (3.57)

11We refer to eq. (3.53) as an amputated correlation function, since it can be obtained from an ordinary
correlation function by stripping the propagators off the external legs.
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where have removed the coupling constant and tweaked the overall normalization to be
compatible with later formulae of color-stripped Compton amplitudes. In general, A(. . .)
denote amplitudes without couplings and color factors, as opposed to full amplitudes A(. . .).

When using Ward identities, only the free-theory gauge transformations δ0
∣∣
Q=0 contribute,

so we do not have to worry about non-linear corrections δ1 and δ2. As discussed, the number
of terms in the ansatz for δ2 increase rapidly with increasing spins, so this provides a major
simplification. In general, eq. (3.56) is also a quadratic equations, since the three-point free
parameters in V (Φs′

i Φ̄s
jAk) get squared in eq. (3.53). In practice, however, once we fix the

on-shell three-point amplitude as described in previous sections, the free parameters left
in V (Φs′

i Φ̄s
jAk) are four-point contact terms, since they vanish in the factorization limit.

Therefore, we can choose to reabsorb them in the ansatz for V (Φk
1Φ̄s

2A3A4) and thus linearize
the system of equations (3.56).

We can also study the non-abelian case. We work at the level of color-ordered amplitudes,
hence the cubic vertices are the same as the ones discussed in previous sections, once the
abelian charge Q is replaced by the non-abelian gauge coupling Q → g/

√
2. Then we compute

the non-abelian color-ordered amputated correlation function

⟨Φk
1Φ̄s

2A3A4⟩ord :=
{

∆P

(
∂

∂ϵP
,

∂

∂ϵ−P

) s∑
l=0

V (Φk
1Φ̄l

P A4)V (Φl
−P Φ̄s

2A3)
}∣∣∣∣

ϵP ,ϵ−P→0

+ 1
s12

∂

∂ϵq
· ∂

∂ϵ−q
V (Φk

1Φ̄s
2Aq)Vg(A−qA3A4)

+ ṼL2(Φk
1Φ̄s

2A3A4) + ṼL3(Φk
1Φ̄s

2A3A4) + ṼL4(Φk
1Φ̄s

2A3A4) .

(3.58)

Note that in this case we only need one massive-exchange diagram, given by the first line,
since the other one in eq. (3.53) contributes to a different color ordering. Instead, we need
to add the gluon-exchange diagram, given by the second line, where Vg(AiAjAk) is the
color-ordered three-gluon vertex and the derivative operator (∂/∂ϵq) · (∂/∂ϵ−q) contracts the
Lorentz indices corresponding to Aq and A−q polarizations.

As before, ṼL2 and ṼL3 are the quartic terms coming from L2 and L3. Then we need
the four-point contact terms involving two field strengths,

ṼL4(Φk
1Φ̄s

2A3A4) = Ansatz(k,s)(pi, ϵi) . (3.59)

Note that in the abelian case (3.54) the vertex VL4(Φk
1Φ̄s

2A3A4) must be symmetric under
1 ↔ 2 exchange and 3 ↔ 4 exchange separately. In the non-abelian case, instead, the
vertex is only symmetric under the combination of both exchanges, therefore the ansatz
will contain additional free parameters.

In the rest of this section, we will apply the Ward identities outlined above to the cases
of spin-2 and spin-3 particles and will derive explicit abelian and non-abelian Compton
amplitudes. The latter are color-decomposed as follows:

A(1s, 2̄s, 3, 4) := 2g2
[
T c3T c4A(1s, 2̄s, 3, 4) + T c4T c3A(1s, 2̄s, 4, 3)

]
= ⟨ΦsΦ̄sA3A4⟩

∣∣
(1,2,3,4) ,

⟨ΦsΦ̄sA3A4⟩ := 2T c3T c4⟨ΦsΦ̄sA3A4⟩ord + 2T c4T c3⟨ΦsΦ̄sA4A3⟩ord . (3.60)

Namely, when extracting the ordered amplitudes from the four-point color-dressed amplitude,
we choose to strip 2g2 along with the color factor. We can also relate the amputated correlators
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of the abelian and ordered type, using g2 = 2Q2,

⟨ΦsΦ̄sA3A4⟩U(1) = ⟨ΦsΦ̄sA3A4⟩ord + ⟨ΦsΦ̄sA4A3⟩ord , (3.61)

which is an echo of the usual Kleiss-Kuijf relation for color-ordered partial amplitudes.

3.4.1 Quartic spin-2 interactions

We can consider the opposite-helicity amplitude A(1s=2, 2̄s=2, 3−, 4+) between two massive
spin-2 fields and two massless spin-1 bosons. We first construct an ansatz for the off-shell
quartic vertices between the rank-2 field Φ2 = Φµν and the auxiliary fields {Φ1, Φ0} with
the following schematic derivative counts:

V (Φ2
1Φ̄2

2A3A4) ∼ ∂4 ,

V (Φ1
1Φ̄2

2A3A4) ∼ ∂5 ,

V (Φ0
1Φ̄2

2A3A4) = 0 ,

(3.62)

where the last vertex is set to zero from the start, as it is consistent with our guiding principles.
In the abelian case, imposing Ward identities yields the amplitude [76]

AU(1)(1s=2, 2̄s=2, 3−, 4+) = ⟨3|1|4]2(U + V )4

m8t13t14
− ⟨13⟩⟨3|1|4][42]

m8t13
4U(U2 + V 2) (3.63)

+ ⟨13⟩⟨32⟩[14][42]
m8 (3U2 + V 2 + W 2

− − W 2
+) + C

(2)
−+ ,

where we use the variables U = 1
2(⟨1|4|2] − ⟨2|4|1]) − m[12], V = 1

2(⟨1|4|2] + ⟨2|4|1])
introduced in ref. [76], as well as W± = m

2 (⟨12⟩ ± [12]), and the contact term is

C
(2)
−+ = c1

m6 (⟨12⟩+[12])2⟨13⟩⟨32⟩[14][42]+ c2
m6 (⟨12⟩− [12])2⟨13⟩⟨32⟩[14][42]

+ c3
m8

(
⟨3|1|4]⟨12⟩

(
⟨3|1|4][12]⟨12⟩2 +(⟨12⟩+[12])(⟨1|3|2]⟨23⟩[14]+⟨2|3|1]⟨13⟩[42])

)
+s12⟨12⟩[12]⟨13⟩⟨32⟩[14][42]

)
. (3.64)

The three coefficients cn are free parameters not fixed by the Ward identities, nor by off-shell
gauge invariance. In the non-abelian case, were we use the same power counting for the
derivative in the vertices Ṽ (ΦkΦ̄2A3A4) as above, and after imposing the Ward identities
we obtain the color-ordered amplitude

A(1s=2, 2̄s=2, 3−, 4+) = ⟨3|1|4]2(U + V )4

m8s12t14
− ⟨13⟩⟨3|1|4][42]

m8s12
4U(U2 + V 2)

+ ⟨13⟩⟨32⟩[14][42]
m4ss12

[
t13(3U2 + V 2 + W 2

− − W 2
+) − 4m2V (U − W+)

]
+ C̃

(2)
−+ ,

(3.65)

The contact term now contains one additional free parameter,

C̃
(2)
−+ = −1

2C
(2)
−+ + c4

m6 ⟨12⟩[12]
(
⟨23⟩2[14]2 − ⟨13⟩2[42]2

)
, (3.66)

which we cannot fix in the absence of further constraints.
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We can also consider the consequences for other helicity sectors, since our procedure
gives amplitudes expressed in terms of covariant polarization vectors. Specializing to the
positive same-helicity amplitude gives

AU(1)(1s=2, 2̄s=2, 3+, 4+) = ⟨12⟩4[34]2
m2t13t14

+ C
(2)
++ , (3.67)

where the contact term contains an additional five free parameters,

C
(2)
++ = [34]2

m6 (c5⟨12⟩3[12] + c6⟨12⟩2[12]2 + c7⟨12⟩[12]3)

+ ⟨12⟩
m6 (c8[12] + c9⟨12⟩)([13]2[24]2 + [14]2[23]2) .

(3.68)

Finally, the non-abelian color-ordered amplitude, in the positive same-helicity sector, is
given by

A(1s=2, 2̄s=2, 3+, 4+) = ⟨12⟩4[34]2
m2s12t14

+ C̃
(2)
++ , (3.69)

and there are no new free parameters compared to the abelian case, i.e. C̃
(2)
++ = −1

2C
(2)
++.

In later sections of this paper additional structures and patterns will be used, such that
we can fix these free parameters. In particular, we will choose to use cn>1 = 0 and c1 = 1/2.

3.4.2 Quartic spin-3 interactions

We can also consider the amplitude A(1s=3, 2̄s=3, 3, 4) between two massive spin-3 fields and
two photons or gluons. The Lagrangian can be written in terms of a rank-3 field Φ3 = Φµνρ

and three lower-rank Stückelberg fields {Φ2, Φ1, Φ0}. In the abelian case we consider an
ansatz for the off-shell quartic vertices with the following derivative count,

V (Φ3
1Φ̄3

2A3A4) ∼ ∂8 ,

V (Φ2
1Φ̄3

2A3A4) ∼ ∂9 ,

V (Φ1
1Φ̄3

2A3A4) = 0 ,

V (Φ0
1Φ̄3

2A3A4) = 0 .

(3.70)

We will not show the details of this calculation, as it is much more involved compared the
lower-spin cases that we already elaborated on.

Solving the massive Ward identities yields 53 free parameters in the on-shell amplitude
A(1s=3, 2̄s=3, 3, 4), with 21 free parameters that only appear in the opposite-helicity amplitude
A(1s=3, 2̄s=3, 3−, 4+) and 32 free parameters that only appear in the same-helicity amplitude
A(1s=3, 2̄s=3, 3+, 4+). We omit the explicit expressions since they are rather cumbersome, and
we will study Compton amplitudes for spins s ≥ 3 in more detail in the next section.

4 Chiral higher-spin gauge theory

In the previous section, we have seen how to simplify the study of massive-gauge-invariant
Lagrangians through the use of on-shell Ward identities. We have applied these identities at
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three points to re-derive the
√

Kerr amplitudes from first principles, and we have extended
them to four points to compute new results for the Compton amplitudes. Ward identities
require constructing ansätze for all vertices V (Φk

1Φ̄s
2 . . . ) and fields Φk

1 with 0 ≤ k ≤ s. This
quickly becomes computationally intense, and we were able to find explicit results at four
points only up to spin s = 3.

In this section, we make use of a complementary new approach to massive higher-spin
theory [72], which in four dimensions allows us to forego auxiliary fields altogether. The
approach amounts to trading the SO(1,3) symmetric tensors Φµ1...µs for SL(2,C) chiral
symmetric tensors Φα1...α2s . Recall that SO(1,3) symmetric traceless tensors correspond to
non-chiral tensors Φα1...αsβ̇1...β̇s

:= Φµ1...µsσµ1
α1β̇1

· · ·σµs

αsβ̇s
in SL(2,C) notation, hence switching

to Φα1α2...α2s as the fundamental field is a radical reformation, that nevertheless encodes the
same on-shell degrees of freedom. In principle, any rank-2s SL(2,C) tensor field is capable
of describing the degrees of freedom of a spin-s particle. However, in general, the off-shell
field contains a lot of redundant components upon reduction to the Wigner little group
SU(2), and eliminating them requires additional constraints. Preserving such constraints
when interactions are turned on has been the main difficulty that we were dealing with in
the previous sections. The advantage of the chiral-field formulation is that Φα1...α2s contains
exactly 2s+1 components, which is the number of physical degrees of freedom of the massive
spin-s field. Therefore, no further constraints are needed. The price to pay is that the parity
properties of the interactions become highly non-trivial, and it is best to treat the theory
perturbatively as an expansion around the chiral sector. Even the familiar spin-1 W -boson
Lagrangian (2.5) develops spurious poles in the mass and has an infinite geometric series
expansion in the fields, as we will see below.

4.1 Spin-1 in chiral formulation

As an illuminating example of the chiral-field framework, let us return to the spin-1 case, for
which the transition from the non-chiral formulation is well established [86]. For simplicity,
we use a real uncharged Proca field, to be generalized shortly. Consider the standard Proca
Lagrangian and add a topological term (proportional to the derivative ∂µ[ϵµνρσWν∂ρWσ]),

−1
4(Wµν)2 + m2

2 (Wµ)2 − i

8ϵµνρσW µνW ρσ = −1
4W αβWαβ + m2

2 (Wµ)2 . (4.1)

The mass-independent kinetic term now only depends on the anti-self-dual field strength in
the SL(2,C) notation Wα

β := (σµν)α
β∂µWν , where σµν = σ[µσ̄ν]. We then “integrate in” a

new chiral symmetric spinor field Φαβ by effectively adding the quadratic form
1
4
(√

2mΦαβ − W αβ
) (√

2mΦαβ − Wαβ

)
(4.2)

to the action (4.1). This corresponds to multiplying the path integral by an irrelevant
Gaussian integral. The new Lagrangian can be integrated by parts and rewritten as

m2

2 ΦαβΦαβ + m2

2 (Wµ)2 − m√
2

Wµ tr(σµν∂νΦ) , (4.3)

where the trace is over the SL(2,C) indices. We can now integrate out the original vector
field Wµ, which gives the new kinetic term −1

4 tr(σµν∂νΦ) tr(σµρ∂ρΦ) = −1
2∂µΦαβ∂µΦαβ.
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We thus obtain a chiral spin-1 Lagrangian12

−1
2∂µΦαβ∂µΦαβ + m2

2 ΦαβΦαβ =: −1
2⟨∂

µΦ|∂µΦ⟩ + m2

2 ⟨Φ|Φ⟩ , (4.4)

where in the last step we converted to bra-ket notation, |Φ⟩ := Φαβ, instead of writing out
the spinor indices. This is convenient when the number of spinorial indices becomes high.

The chiral gauge-interacting Lagrangian for massive spin-1 was first introduced in ref. [86]
for the purpose of describing electroweak vector bosons. Adapting it to a general non-abelian
gauge group, with |Φ⟩ transforming in a matter representation, we find the chiral version
of the action (2.5) to be given in the bra-ket notation by

L(1) = ⟨Φ|
{
|
←
D|
→
D| ⊗ 1

1 − ig
m2 |F−|

}
|Φ⟩ − m2⟨Φ|Φ⟩ + O(Φ4) (4.5a)

= ⟨DµΦ|DµΦ⟩ − m2⟨Φ|Φ⟩ + ig⟨Φ|F−|Φ⟩ + ig

m2 ⟨Φ|
{
|
←
D|
→
D| ⊗ |F−|

}
|Φ⟩ (4.5b)

− g2

m4 ⟨Φ|
{
|
←
D|
→
D| ⊗ |F−|F−|

}
|Φ⟩ + O(F 3) + O(Φ4).

The arrows over the covariant derivatives
←
Dαβ̇ =

←
∂αβ̇ + igAαβ̇ ,

→
Dα̇β = ∂α̇β − igAα̇β ,

Aµ = Ac
µT c, T c† = T c, tr T cT c′ = 1

2δcc′ , (4.6)

indicate on which matter field they act, and this notation implicitly assumes that the
covariant derivatives do not act on the field-strength factors |F−| of the massless gauge
boson. The minus label emphasizes that this is the anti-self-dual part of the field strength,
|F−| := F−α

β := 1
2(σµσ̄ν)α

βFµν , where the (anti-)self-dual parts satisfy 1
2ϵµνρσF ρσ

± = ±iF±µν .
These labels are also correlated with the gluon helicities that are allowed to appear in the
tree-level amplitude. Hence, at leading order interaction terms with k factors of |F−| only
contribute to amplitudes that have k negative-helicity gluons.

The gauge-group indices are subsumed by the indexless bra-ket notation, and we can
assume without loss of generality that kets |Φ⟩ belong to the fundamental representation
and bras ⟨Φ| to the anti-fundamental representation of the gauge group. (The Lagrangian is
also valid for general complex or real representations.) Although the indexless notation is
convenient for dealing with SL(2,C) indices, it admittedly obscures the multiplication order
of the non-abelian gauge-group generators. To be more precise, let us write the generic term
in the expansion of eq. (4.5a) such that the non-abelian order is displayed, at the expense
of having explicit spinorial indices:

⟨Φ|
{
|
←
D|
→
D| ⊗ |F−| · · · |F−|︸ ︷︷ ︸

n

}
|Φ⟩ := (Dαε̇Φαβ)⋆(F−c1)β

ζ2 · · · (F−cn)ζn
δT c1 · · ·T cn(Dε̇γΦγδ) , (4.7)

12The overall sign of the Lagrangian (4.1) comes from that of eq. (4.1), which includes the same overall (−1)⌊s⌋

oscillation that can be observed e.g. in the non-chiral action (3.4) and which comes from the mostly-minus
metric convention. In the chiral formulation, we choose to drop it starting from eq. (4.5).
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Here and below, the star is used to flip g → −g and conjugate the gauge-group indices —
but without conjugating the spacetime indices (which would otherwise imply an unwanted
chirality switch). For instance,

(Dγδ̇Φαβ)⋆
ȷ̄ =

(
∂γδ̇Φαβ− igAc

γδ̇
T cΦαβ)⋆

ȷ̄
:= ∂γδ̇(Φ⋆)αβ

ȷ̄ + ig(Φ⋆)αβ
ı̄ T c

iȷ̄A
c
γδ̇

. (4.8)

Note that the action (4.5) obeys the following reality condition:∫
d4xL⋆ =

∫
d4xL, (4.9)

which we will always demand of a chiral-field Lagrangian, and this will imply that the theory
can be equivalently described in a conventional (i.e. non-chiral) formulation using a real-valued
Lagrangian.13 In particular, this condition allows for a consistent projection of the theory
to the case of real-valued generators,14 such as the adjoint representation of SU(Nc) or the
fundamental representation of SO(Nc), considered in ref. [72].

4.2 Cubic
√

Kerr Lagrangian for arbitrary spin

After having introduced the chiral-field framework in the familiar spin-1 context, it is now
straightforward to generalize it to the spin-s case. In particular, we combine the kinetic terms
and minimal cubic interactions of ref. [72], and then add appropriate cubic non-minimal
interactions to restore parity invariance of three-point amplitudes. The resulting cubic
Lagrangians are simple, and we give the new result without further ado.

The family of chiral spin-s Lagrangians that reproduce the three-point
√

Kerr gauge-
theory amplitudes (1.1) can be written compactly as

L(s) = ⟨DµΦ|DµΦ⟩ − m2⟨Φ|Φ⟩ +
2s−1∑
k=0

ig

m2k
⟨Φ|
{
|
←
D|
→
D|⊙k⊗ |F−|

}
|Φ⟩ + O(F 2) . (4.10)

We have used the ⊙ symbol to denote symmetrized tensor product [32]. Here we additionally
define it to symmetrize the internal spinor indices. In the higher-spin multi-index notation,
in which all indices denoted by the same letter are understood as symmetrized among
themselves, we may write more explicitly

⟨Φ|Φ⟩ :=
(
Φα(2s))⋆Φα(2s) , (4.11)

⟨DµΦ|DµΦ⟩ :=
(
DµΦα(2s))⋆DµΦα(2s) ,

⟨Φ|
{
|
←
D|
→
D|⊙k⊗|F−|

}
|Φ⟩ :=

(
Dα(k)γ̇(k)Φα(k+1)γ(2s−k−1))⋆(F−c)α

βT cDγ̇(k)β(k)Φβ(k+1)γ(2s−k−1),

where Dα(k)β̇(k) := D(α1(β̇1
· · ·Dαk)β̇k) and Dα̇(k)β(k) := D(α̇1(β1 · · ·Dα̇k)βk).

As explained in ref. [72], the on-shell wavefunctions for the massive particles, described
by the chiral fields, are simply |Φ⟩ → |p⟩2s/ms. To guide the reader, it may be helpful to

13Strictly speaking, the equivalence between the chiral and the usual tensorial approaches has been shown
only for the lower spins and minimal interactions [85, 86]. However, given that we do not see any obstruction
in getting any consistent cubic and quartic amplitudes within the chiral-field approach, it seems plausible that
it covers all possible interactions at all orders.

14In our current conventions, which are tailored to hermitian generators, the real representations of SU(Nc)
or SO(Nc) actually have imaginary-valued generators.
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evaluate some of the Lagrangian terms by plugging in on-shell wavefunctions, and obtain
explicit matrix elements. For example, consider on-shell three-point kinematics applied to
the first two terms of eq. (4.10),

⟨DµΦ|DµΦ⟩
∣∣∣
(2,3±,1)

= ig
(
⟨AµΦ|∂µΦ⟩ − ⟨∂µΦ|AµΦ⟩

)∣∣∣
(2,3±,1)

= 2gT c3(p1 · ε±3 )⟨21⟩2s

m2s
. (4.12)

Here we generalize the subscript notation (i1, . . . , in) introduced in eq. (2.19), to indicate
that we extract the n-particle component of the corresponding Lagrangian operators, and
we impose the usual on-shell conditions. Eq. (4.12) shows that the chiral “minimal-coupling”
terms reproduce the

√
Kerr amplitudes (1.1) for a positive-helicity [72], but not for a negative-

helicity gluon. Since the two
√

Kerr amplitudes are related by a parity transformation, the
minimal-coupling chiral-field Lagrangian explicitly breaks parity. However, let us now show
that the non-minimal terms restore it.

Let us evaluate the three-point matrix element of the non-minimal coupling terms. They
are non-vanishing only for the minus-helicity gluon and evaluate to

1
m2k

⟨Φ|
{
|
←
D|
→
D|⊙k⊗|F−|

}
|Φ⟩
∣∣∣
(2,3−,1)

= −i
√

2T c3⟨23⟩⟨31⟩[21]k ⟨21⟩2s−k−1

m2s
. (4.13)

We can now sum the kinematic factors over all powers k:

2s−1∑
k=0

⟨23⟩⟨31⟩[21]k⟨21⟩2s−k−1 = ⟨23⟩⟨31⟩
( [21]2s− ⟨21⟩2s

[21] − ⟨21⟩

)
=

√
2(p1 · ε−3 )

(
[21]2s− ⟨21⟩2s),

(4.14)
where we used the identity ⟨23⟩⟨31⟩ =

√
2(p1 · ε−3 )

(
[21] − ⟨21⟩

)
to make locality manifest.

When the non-minimal matrix element is combined appropriately with the negative-helicity
amplitude (4.12), the ⟨21⟩2s factor is canceled out, and instead replaced by [21]2s. We get
the chiral-Lagrangian amplitudes as

A(1s, 2̄s, 3+) = 2gT c3(p1 · ε+
3 )⟨21⟩2s

m2s
, A(1s, 2̄s, 3−) = 2gT c3(p1 · ε−3 ) [21]2s

m2s
. (4.15)

In summary, we have shown that the action (4.10) restores parity at the three-point level
and yields the known

√
Kerr amplitudes [41].

Although we refer to eq. (4.10) as the cubic Lagrangian, it also automatically incorporates
higher-point vertices. For instance, the non-minimal cubic terms can be shown to give the
following contact-term contributions to the opposite-helicity Compton amplitude:

ig

m2k
⟨Φ|
{
|
←
D|
→
D|⊙k⊗|F−|

}
|Φ⟩
∣∣∣
(2,3−,4+,1)

= g2

2m2s
⟨21⟩2s−k−1[21]k⟨2|[ε−3 , ε+

4 ]|1⟩[T c3 ,T c4 ]

+
√

2g2

m2s+k
⟨21⟩2s−k−1⟨23⟩⟨31⟩

{ [2|ε+
4 |1⟩

[2|4|1⟩
(
[2|1+4|1⟩k−mk[21]k

)
T c3T c4 (4.16)

−⟨2|ε+
4 |1]

⟨2|4|1]
(
⟨2|1+3|1]k−mk[21]k

)
T c4T c3

}
.

The first line comes from the non-linearity of the self-dual field strength, and the other two
lines are more complicated as they come from the gauge-field dependence of the powers of
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covariant derivatives. Note that the expression is local, as the spurious denominators can
be canceled against the numerators after expanding out the powers in k. Furthermore, note
that this contact term does not respect massless gauge invariance by itself, as it needs to be
combined with the corresponding cubic exchange diagrams in a gauge-invariant amplitude.
The gauge-invariant contact terms will be discussed in the next subsection.

Eq. (4.16) illustrates a general property that the (anti-)self-duality of the explicit field
strength in the Lagrangian gives rise to a helicity-selection rule, but only at the lowest
multiplicity for which it starts to contribute to an amplitude, whereas at higher multiplicities
it includes both helicities. Namely, the operator on the left-hand side contains only a negative-
helicity gluon at three points, but both helicities at four points and higher. However, the
leading-order helicity separation of the terms involving |F±| is very helpful, since the strategy
is to add such terms only when they are needed. For instance, to restore parity in amplitudes
with k negative-helicity gluons one should consider operators involving k field strengths |F−|.

4.3 Parity of Compton amplitudes

Before we proceed to discussing quartic interactions in more detail, let us recall that, by
construction [72], the first two “minimal-coupling” terms of the Lagrangian (4.10) imply

A(1s, 2̄s, 3+, 4+) = −2g2 ⟨21⟩2s[34]2
m2s−2s12

[
T c3T c4

t14
+ T c4T c3

t13

]
, (4.17a)

where the Mandelstam variables are s12 = (p1 + p2)2 and tij = 2pi · pj . This same-helicity
amplitude is known to follow from its factorization limits [24, 70, 89] onto the three-point
amplitudes (4.15), as well as to have a well-behaved classical limit [38], given below in
eq. (6.44). From minimality considerations, it is expected to correspond to a

√
Kerr object,

so we do not wish to modify it in any way. In particular, we have checked that the tower of
non-minimal cubic terms in eq. (4.10) does not contribute to this amplitude, which is not
trivial in the non-abelian case, in which |F−| contains terms quadratic in the potential Aµ.

Although we are discussing a chiral-field framework, we maintain our parity assump-
tion (PS), as stated during the non-chiral construction of gauge interactions in the previous
sections. Parity demands that the negative-helicity counterpart of eq. (4.17a) be

A(1s, 2̄s, 3−, 4−) != −2g2 [21]2s⟨34⟩2

m2s−2s12

[
T c3T c4

t14
+ T c4T c3

t13

]
. (4.17b)

The cubic Lagrangian (4.10) alone is consistent with this amplitude for s = 0, 1/2, but already
for s = 1 it must be corrected by a quartic contact term involving |F−|F−|, as seen in eq. (4.5).
Since the desired same-helicity amplitude (4.17b) for

√
Kerr is known from non-Lagrangian

considerations, we leave specifying higher-spin F 2
− terms for future work.

From now on we focus on the opposite-helicity sector. We have explicitly computed the
corresponding amplitude from the cubic Lagrangian (4.10) through s = 5. Thus we found
the following closed-form expression for the color-ordered amplitude for any s ≥ 1:

A(1s, 2̄s, 3−, 4+) = N2R2s−2

s12t14
+ t14

s12
⟨13⟩2[42]2

2s−4∑
j=0

R2s−4−j

mj+6

j∑
i=0

⟨21⟩i+1[21]j−i+1

− ⟨13⟩[42]
s12

[
N

2s−2∑
j=1

R2s−2−j

mj+2
(
⟨21⟩j + [21]j

)
− ⟨3|1|4]

m2s+1

2s−3∑
i=0

⟨21⟩i+1[21]2s−i−2
]

,

(4.18)
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where N = ⟨13⟩[42] + [14]⟨32⟩ and R = ⟨1|1+4|2]/m2 = (U + V )/m2. The result for the
second color ordering may be obtained from the above by relabeling:

A(1s, 2̄s, 4+, 3−) = (−1)2sA(2s, 1̄s, 3−, 4+) := (−1)2sA(1s, 2̄s, 3−, 4+)
∣∣
1↔2 . (4.19)

Recall that a color-stripped amplitude is sensitive to the ordering but not to the color
representation of the matter particles, so we may move the bar freely between them.

Interestingly, these results automatically satisfy the amplitude-level parity constraint[
A(1{a}ı̄1 , 2̄{b}i2

, 3h3
c3, 4h4

c4, . . . )
]∗ = A(1̄{a}i1 , 2{b}ı̄2 , 3−h3

c3 , 4−h4
c4 , . . . ) . (4.20)

This roughly means that flipping helicities amounts to swapping left- and right-handed Weyl
spinors. For example, the parity equivalence of eqs. (4.17a) and (4.17b) is implied by the
spinor conjugation properties ⟨1a2b⟩∗= [1a2b] and [34]∗= ⟨34⟩. Here and below, we assume
that energies satisfy p0

1, p0
3 > 0 > p0

2, p0
4, which is the interesting kinematics for the Compton

scattering process.15 In view of the relabeling property (4.19), the color-stripped version of
eq. (4.20) may be rewritten as a constraint on a single ordered amplitude:[

A(1s, 2̄s, 3−, 4+)
]∗∣∣∣z̄1a→z1a

z̄2b→z2b

= (−1)2sA(1s, 2̄s, 3−, 4+)
∣∣∣1↔2
3↔4

, (4.21)

which can be directly verified. Here we have reinstated the little-group contraction with
the SU(2) spinors zia, and in this purely bookkeeping context they are treated as real so
as to implement the index conjugation of eq. (4.20).

At four points, we can rearrange the conjugation and two-fold relabeling of the parity
constraint (4.21) into two Z2 operations: (1 ↔ 2) and (3 ↔ 4)|c.c.. Any kinematic block
may be decomposed into the even and odd pieces with respect to these operations, and the
parity property will follow, as shown in table 1. In the following, we will therefore organize
our contact terms so as to make these Z2 properties explicit.

Note that the choice of color factors in table 1 follows from the eigenvalue of the
permutation (1 ↔ 2). This is because, as shown in eq. (4.19), the (1 ↔ 2) exchange relates
the two color-ordered amplitudes A(1s, 2̄s, 3 , 4) and A(1s, 2̄s, 4 , 3), which multiply the color
factors T c3T c4 and T c4T c3 , respectively, and hence it determines the relative sign between
these color structures. This argument is easiest seen once the matter particle is taken to be
self-conjugate and, for instance, charged with respect to SO(Nc) gauge group.

4.4 Quartic interactions for
√

Kerr

Let us discuss the quartic contact interactions that should be added to the cubic chiral-field
Lagrangian (4.10). A fully general approach to the contact-term freedom is described in
appendix B. Here we focus on operators involving two field strengths of opposite helicity,
and we choose them such that at four points they give rise to kinematic structures with
well-defined properties under the two Z2 transformations described in table 1.

15For generic real kinematics, there is a subtle, convention-dependent overall sign in eq. (4.20) and below,
which depends on particles’ energies due to spinor conjugation properties

|k⟩∗ = sgn(k0)[k| , |pa⟩∗ = sgn(p0)[pa| ⇔ [pa|∗ = − sgn(p0)|pa⟩ .
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kinematic Z2 × Z2 resulting consistent
1 ↔ 2 (3 ↔ 4)|c.c. parity color factor

+ + even {T c3 , T c4}
− − even [T c3 , T c4 ]
+ − odd {T c3 , T c4}
− + odd [T c3 , T c4 ]

Table 1. The kinematic building blocks of the Compton amplitude can be assigned Z2 × Z2 charges.
The consistent color factor follows from the first charge, whereas the (spacetime) parity of the amplitude
is the product of the two charges. The first column assumes bosonic spin-s particles, the fermionic
case is obtained by reversing the signs of this column (without affecting parity).

We consider the four-point contact interactions of the following schematic form,16

L4 = g2

m4

∑
i,j,k,l

cijkl⟨Φ|Djkl ⊙ Fi |Φ⟩ + (higher-derivative Mandelstam terms) , (4.22)

where the operators Fi contain combinations the self-dual and anti-self-dual field strengths
|F±|, Djkl are constructed only out of covariant derivatives, and cijkl are the free Wilson
coefficients. SL(2,C) covariance requires the self-dual field strength F+ to be contracted with
derivatives whenever it appears inside Fi, which we choose to act only on the matter fields,
namely |

←
D|F+|

→
D|. Similarly, Djkl have an even number of derivatives. We furthermore split

Fi into the two types of operators that either depend on the commutator or anticommutator
of the gauge-group generators:

Fi := {T c, T c′}Fcc′
i or F̃i := [T c, T c′ ]Fcc′

i . (4.23)

Let us consider the following six distinct structures quadratic in the field strength:

Fcc′
1 = 1

2 Tr
(
|F c
−|
←
D|F c′

+ |
→
D|
)

,

Fcc′
2 = 1

4
(
|F c
−|
←
D|F c′

+ |
→
D| + |

←
D|F c′

+ |
→
D|F c

−|
)

α1
β1 ,

Fcc′
3 = 1

4
(
|F c
−|
←
D|F c′

+ |
→
D| − |

←
D|F c′

+ |
→
D|F c

−|
)

α1
β1 ,

Fcc′
4 = 1

4
{

(F c
−)α1α2(

→
D|F c′

+ |
→
D)β1β2 − (

←
D|F c′

+ |
←
D)α1α2(F c

−)β1β2
}

,

Fcc′
5 = 1

4
{

(F c
−)α1α2(

→
D|F c′

+ |
→
D)β1β2 + (

←
D|F c′

+ |
←
D)α1α2(F c

−)β1β2
}

,

Fcc′
6 = 1

4 |F
c
−|α1

β1 |
←
D|F c′

+ |
→
D|α2

β2 .

(4.24)

Here Fcc′
1 is a scalar, as all of its spinorial indices are traced over. Operators Fcc′

2 and Fcc′
3

are spin-1/2 operators with indices α1 and β1 contracting into ⟨Φ| and |Φ⟩, respectively.
Operators Fcc′

4 , Fcc′
5 and Fcc′

6 are spin-1 operators, as they have two pairs of indices contracting
16Note that the displayed operators ⟨Φ|Djkl ⊙ Fi |Φ⟩ form a slightly overcomplete basis, see appendix B for

further details.
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into the bra and ket states. All these Fi operators have derivative counting 4, and at four
points they correspond to the following spinor structures (after setting T c = 1/

√
2):

⟨Φ|F1|Φ⟩
∣∣
(2,3−,4+,1) = ⟨3|1|4]2 ⟨21⟩2s

m2s
, (+, +) ,

⟨Φ|F2|Φ⟩
∣∣
(2,3−,4+,1) = 1

2⟨3|1|4]
(
⟨23⟩[41] + [24]⟨31⟩

)⟨21⟩2s−1

m2s−1 , (−, +) ,

⟨Φ|F3|Φ⟩
∣∣
(2,3−,4+,1) = 1

2⟨3|1|4]
(
⟨23⟩[41] − [24]⟨31⟩

)⟨21⟩2s−1

m2s−1 , (+,−) ,

⟨Φ|F4|Φ⟩
∣∣
(2,3−,4+,1) = 1

2
(
⟨23⟩2[41]2 − [24]2⟨31⟩2)⟨21⟩2s−2

m2s−2 , (−,−) ,

⟨Φ|F5|Φ⟩
∣∣
(2,3−,4+,1) = 1

2
(
⟨23⟩2[41]2 + [24]2⟨31⟩2)⟨21⟩2s−2

m2s−2 , (+, +) ,

⟨Φ|F6|Φ⟩
∣∣
(2,3−,4+,1) = 1

2⟨23⟩⟨31⟩[24][41]⟨21⟩2s−2

m2s−2 (+, +) .

(4.25)

Here the (±,±) charges indicate the properties under the Z2 × Z2 exchange of particles at
the lowest relevant spin. The first charge determines the color factor, as shown in table 1.
The second charge then indicates if, at the lowest relevant spin, the consistently dressed
contact term obeys the parity constraint (4.20). Assuming that contact terms come with
s-independent Wilson coefficients, we observe that neither of the terms (4.24) is ruled out.

In addition, we should allow for additional derivatives in the form of the Djkl operators,

Djkl := 1
m2(j+k+l) |

←
D|
→
D|⊙j ⊙ |

←
D|
→
D+|⊙k ⊙ |

←
D+|

→
D|⊙l . (4.26)

Apart from the matter derivatives |
←
D|
→
D|, that are already familiar from the cubic La-

grangian (4.10), the building blocks of Djkl can be written out with spinorial indices

|
←
D|
→
D+| :=

(
|
←
D|
→
D| + |

←
D|D+|

)
α1

β1 , |
←
D+|

→
D| :=

(
|
←
D|
→
D| + |D+|

→
D|
)

α1
β1 , (4.27)

where |D+| acts only on the field |F+| and its derivatives via the adjoint-representation action.
For example, if we make all indices explicit, we can write

D+
αα̇ ⊙ F +c

ββ̇
:= ∂(α(α̇F +c

β)β̇) + gf cdeAd
(α(α̇F +e

β)β̇) . (4.28)

Higher derivatives |D+|⊙k⊙|F+| are defined recursively in an analogous way. Most importantly,
we define |D+| not to act on any of the other fields, |F−|, ⟨Φ| and |Φ⟩, nor on the matter
derivatives |

←
D| and |

→
D|.

Let us consider an explicit operator and show how it is used. Taking F6 with abelian
generators T c = 1/

√
2 and assuming 2s ≥ j + k + l + 2, the four-point matrix element is

⟨Φ|Djkl ⊙ F6|Φ⟩|(2,3−,4+,1) = ⟨13⟩⟨32⟩[14][42]
2m2s+k+l−2 [21]j [2|1+4|1⟩k(−⟨2|2+4|1]

)l⟨21⟩2s−j−k−l−2.

(4.29)
Now that we have discussed the generic structure of operators that contribute to the

opposite-helicity Compton amplitude, we move on to studying a specific class of such operators
that are connected to the

√
Kerr amplitudes in the next section.
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5 Quantum Compton amplitudes for
√

Kerr

In this section, we will present our final formulae for the opposite-helicity spin-s Compton
amplitudes in the

√
Kerr theory, which combine the results obtained in sections 2 and 3

using the principle of massive gauge symmetry [9], and those obtained in section 4 using the
chiral-field formalism [72]. In addition, we constrain our Compton amplitudes using ansätze
based on observed patterns and classical-limit analysis. The latter is considered in section 6,
whereas in this section we focus on the quantum Compton amplitudes.

In order to set the stage, we quote a chiral-field Lagrangian that is fully compatible
with the final spin-s Compton amplitudes, given later in this section. That is, the

√
Kerr

theory that we choose to work with in this section is

L = ⟨DµΦ|DµΦ⟩ − m2⟨Φ|Φ⟩ +
2s−1∑
k=0

ig

m2k
⟨Φ|
{
|
←
D|
→
D|⊙k⊙ |F−|

}
|Φ⟩ + O(|F−|2) (5.1)

−
2s−4∑

k≤l=0

2s−3−l∑
j=0

g2

m2(j+l)+6 ⟨Φ|
{(
|
←
D|
→
D|+m2)⊙|

←
D|
→
D|⊙j⊙|

←
D|
→
D+|⊙k⊙|

←
D+|

→
D|⊙(l−k)⊙F6

}
|Φ⟩ .

The second line involving F6 = 1
4{T c, T c′}|F c

−|⊙ |
←
D|F c′

+ |
→
D| corresponds to a chosen non-

minimal L4 completion in the opposite-helicity sector, which we will motivate in the following.
The fully negative-helicity sector needs further operators O(|F−|2) to restore parity, however,
we will not need them in this paper.

While we have shown in section 3 that such principles as massive gauge symmetry, parity
and power counting, among others, can be used to fix the cubic interactions uniquely, the
contact-term freedom in the opposite-helicity Compton amplitudes, or in the L4 interactions,
is substantially more difficult to pin down from first principles. Nevertheless, in the discussion
below we will make a heuristic choice and commit to explicit contact terms that are simple
and give consistent classical properties, discussed in detail in section 6. Other choices of
contacts terms are possible, which we will briefly discuss later.

5.1 Abelian Compton amplitude

We now consider the spin-s Compton amplitudes for the abelian
√

Kerr theory. They can
be obtained by plugging in U(1) generators T c = 1/

√
2, and for convenience also setting

g2 = 2Q2 = −1, in the chiral-field Lagrangian (5.1).
After some non-trivial work, the family of spin-s abelian Compton amplitudes in the

opposite-helicity sector can be written in a compact and manifestly local form:

AU(1)(1s, 2̄s, 3−, 4+) = ⟨3|1|4]2(U + V )2s

m4st13t14
− ⟨13⟩⟨3|1|4][42]

m4st13
P

(2s)
2 + ⟨13⟩⟨32⟩[14][42]

m4s
P

(2s−1)
2

− ⟨13⟩⟨32⟩[14][42]
m4s−2 ⟨12⟩[12]P (2s−1)

4 + C(s) . (5.2)

The quadratic and cubic part of the chiral-field Lagrangian (5.1), give rise to the first four
terms above, of which the first three terms were obtained already in ref. [76]. The additional
contact term C(s) accounts for non-minimal quartic interactions, and below we will find an
expression that explains the choice made in eq. (5.1).
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Notation. Let us explain the notation used in eq. (5.2). P
(k)
n are local polynomials that

are central to our presentation of the amplitude. They are functions of the spin-dependent
variables U, V, ⟨12⟩, [12], where we recall that

U = 1
2
(
⟨1|4|2] − ⟨2|4|1]

)
− m[12] , V = 1

2
(
⟨1|4|2] + ⟨2|4|1]

)
. (5.3)

A priori, there is little reason to expect that the polynomials that multiply the helicity-
dependent factors in eq. (5.2) have a simple structure, given the intricate form of the amplitude
in eq. (4.18). However, from explicit calculations at fixed s, we find that the P

(k)
n polynomials

are exceedingly simple when expressed in appropriate variables.
For integers n > 0 and k ≥ 0, we define17 the symmetric homogeneous polynomials

P (k)
n :=

n∑
i=1

ςk
i∏n

j ̸=i(ςi − ςj) = ςk
1

(ς1 − ς2)(ς1 − ς3) · · · (ς1 − ςn) + perms , (5.4)

where “+ perms” is shorthand for inequivalent terms obtained by permuting the ςi variables.
The appearance of denominators is innocuous, since one can easily check that the residue of
a potential pole 1/(ςi − ςj) is always zero, hence they are polynomials of degree k − n + 1.

For the Compton amplitude (5.2), we only need P
(k)
n≤4 that depend on up to four variables,

and we globally identify them as

ς1 := U + V = ⟨1|4|2] − m[12] , ς3 := −m⟨12⟩ ,

ς2 := U − V = −⟨2|4|1] − m[12] , ς4 := −m[12] .
(5.5)

To be clear, let us write some of the relevant polynomials in various forms:

P
(2s)
1 = ς2s

1 = (U + V )2s ,

P
(2s)
2 = ς2s

1
ς1 − ς2

+ ς2s
2

ς2 − ς1
= (U + V )2s − (U − V )2s

2V
=

∑
i+j=2s−1

ς i
1ςj

2 ,

P
(2s−1)
4 =

∑
i+j+k+l=2s−4

ς i
1ςj

2ςk
3 ς l

4 .

(5.6)

In particular, note that the (U + V )2s factor in eq. (5.2) is simply the one-variable polyno-
mial P

(2s)
1 , so every term in the Compton amplitude is multiplied by some polynomial P

(k)
n .

Indeed, this observation, which was already made in ref. [76] for the case n = 2, is crucial
for constraining the contact term C(s). The ubiquitous appearance of these polynomials
motivates us to conjecture that:

the complete spin-s Compton amplitude for
√

Kerr theory should be a finite
superposition of only the symmetric homogeneous polynomials P

(k)
n .

17For k < 0 we define P
(k<0)
n = 0. Note that P

(k)
n appears in the mathematics literature under the name

“complete homogeneous symmetric polynomials”, although we do not make use of any established property.
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Constraints. Therefore, to determine C(s) we assume that it is a linear combination of
these polynomials:

C(s) = C(s)[P (k)
n ] . (5.7)

Furthermore, we impose the following heuristic constraints on the complete amplitude:

• well-behaved classical limit s → ∞;

• amplitudes with s < 2 not modified: C(s<2) = 0 ;

• compatible with massive higher-spin gauge invariance;

• s-independent numerical coefficients;

• parity invariance imposed, see eq. (4.21);

• all contact terms have spinor-helicity structure ∼ ⟨13⟩⟨32⟩[14][42];

• classical spin quadrupole fixed by s = 1 amplitude;

• no dissipation effects, nor contributions from non-perturbative considerations.

We find that the simplest contact term C(s) that satisfies all of the above constraints is

C(s) = −⟨13⟩⟨32⟩[14][42]
2m4s−1 (⟨12⟩ + [12])

(
P

(2s)
4 − P

(2s−2)
2

)
. (5.8)

The overall normalization is fixed by the classical limit, which will be further discussed in
section 6. The relative normalization of the two P

(k)
n is fixed by the requirement that for

s = 3/2 they cancel each other out. The appearance of the overall ⟨12⟩ + [12] factor comes
from compatibility with the massive higher-spin gauge invariance, specifically, the s = 2 case
in eq. (5.8) matches the c1 contact term in eq. (3.64). The absence of dissipation effects is
equivalent to considering hermitian (or CPT-invariant) interaction terms, corresponding to
imposing exchange symmetry of the massive states, 1 ↔ 2, on the contact term C(s). While
this constraint appears compulsory for a QFT, it can be relaxed for the purpose of describing
irreversible processes, such as classical dissipation of the Kerr Compton amplitude [90].
Similarly, here we will not consider terms analogous to polygamma contributions that
appeared in concert with non-perturbative contributions in the Kerr case of ref. [90].

Note that while the third and fourth terms of the amplitude (5.2) are also contact terms,
they originate from the cubic part of the action, as discussed around eq. (4.16). Furthermore,
they are related to pole terms of the non-abelian

√
Kerr amplitude via the Kleiss-Kuijf

relation, as will be discussed in the next subsection.
The contact term C(s) has the same helicity structure, ⟨13⟩⟨32⟩[14][42], as the third

and fourth terms in the amplitude (5.2), which is no accident, as the classical limit is not
well-behaved without such a contribution. Specifically, the fourth term in eq. (5.2) generates
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s 0 1/2 1 3/2 2 5/2

P
(2s)
2 0 1 2U 3U2+V 2 4U(U2+V 2) 5U4+10U2V 2+V 4

P
(2s−1)
2 0 0 1 2U 3U2+V 2 4U(U2+V 2)

P
(2s−1)
4 0 0 0 0 1 2(U+W+)

P
(2s)
4 − P

(2s−2)
2 0 0 0 0 −2W+ W 2

− − 4UW+ + 3W 2
+

Table 2. Low-spin examples of how the polynomials P
(2s)
n contribute to the abelian spin-s Compton

amplitude. Last two rows contribute starting at s = 2, compatible with the analysis of ref. [76]. Here
W± = m

2 (⟨12⟩ ± [12]).

a divergence in the limit s → ∞ that needs to be canceled18 by C(s), as we will discuss in
section 6.5. We also checked that in the s → ∞ limit our choice of contact term give rise to a
spin quadrupole moment ∼ S2 that matches the corresponding spin-1 result, which is the
preferred choice in the literature [47]. However, in principle this condition can be relaxed
independently of the other constraints, as discussed in section 6.6.

It is possible to add further contact terms that have other helicity structures, but given
our current limited analysis, we do not see the need for such terms. However, if dissipation
effects were to be taken seriously, for example from analysis of some putative classical

√
Kerr

system, then additional spinor-helicity structures would likely be needed.

Checking contact term. We can now check that the L4 contact term in the chiral-field
Lagrangian (5.1) has the correct matrix elements to reproduce the C(s) contact term. Adapting
eq. (4.29), we find that the matrix element is given by

∑
j,k,l

1
m2(j+l)+6 ⟨Φ|

{(
|
←
D|
→
D|+m2)⊙|

←
D|
→
D|⊙j⊙|

←
D|
→
D+|⊙k⊙|

←
D+|

→
D|⊙(l−k)⊙F6

}
|Φ⟩
∣∣∣
(2,3−,4+,1)

= ⟨13⟩⟨32⟩[14][42]
2m4s

2s−4∑
k≤l=0

2s−3−l∑
j=0

(ς3 + ς4)ςk
1 ς l−k

2 ς2s−j−l−3
3 ςj

4 , (5.9)

where we used the shorthand notation (5.5) for the spin-dependent variables ςi. The sum
can be further rewritten in terms of the promised combination of polynomials:

(ς3 + ς4)
2s−4∑

k≤l=0

2s−3−l∑
j=0

ςk
1 ς l−k

2 ς2s−j−l−3
3 ςj

4 = −m(⟨12⟩ + [12])
(
P

(2s)
4 − P

(2s−2)
2

)
. (5.10)

This matrix-element contribution should be further multiplied by g2{T c3 , T c4}, which in the
abelian amplitude we replace by 2Q2 = −1, thus matching eq. (5.8).

18Alternative contact terms can be found that satisfy all the desired properties, with identical classical limit
as C(s). A simple alternative such choice is

−⟨13⟩⟨32⟩[14][42]
m4s−2 ⟨12⟩[12]

(
2P

(2s−1)
4 + m

2
(
⟨12⟩ + [12]

)
P

(2s−2)
4

)
.
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Figure 1. In the massless limit, the abelian opposite-helicity Compton amplitude (5.2) grows as
1/m4s−2. Its same-helicity counterparts (4.17) have a tamer, explicitly 1/m2s−2, dependence and are
thus not shown. The data were obtained for the kinematics t13 = 2, t14 = −1, s12 = −1, but the plots
look similar for other generic kinematic points, as well as for the non-abelian amplitude (5.11). The
dashed straight lines are exact power-law functions ∝ 1/m4s−2. The inset shows the zoomed region of
O(1) masses, where the mass dependence is no longer described by a power law.

Note that the maximum derivative count of the chosen contact-interaction L4 is ∂4s

m4s ,
as also seen on the left-hand side of eq. (5.9). However, all terms in the sum (5.10) have at
least two powers of ς3 or ς4 (each proportional to m), which reduce the maximum derivative
count down to ∂4s−2

m4s−2 . This agrees with our expectation from the pole contributions to the
opposite-helicity Compton amplitude. Indeed, the minus-helicity cubic interaction in the
Lagrangian (5.1) contains 4s−1 derivatives, its plus-helicity counterpart has the minimal
one derivative, and the massive propagator reduces the number of derivatives by two. The
resulting derivative count corresponds to the leading divergence at high energies, which can
be probed numerically by taking m → 0 with fixed momentum invariants. The amplitude’s
behavior in such a limit is illustrated in figure 1.

As a summary of the abelian calculation, we note that the chiral Lagrangian (5.1) gives
abelian amplitudes that reproduce the established results for s ≤ 3/2 in the literature. For
spins 0 ≤ s ≤ 1, the amplitudes agree with those constructed from factorization properties in
refs. [24, 70], and for s = 3/2 the amplitude (5.2) reproduces the one obtained in ref. [46] using
the current constraint (3.15). At higher spins, s ≥ 2, the first three terms of eq. (5.2) were
obtained in ref. [76], but it was suggested that new terms would be needed to restore massive
gauge symmetry. We have now seen that the cubic chiral Lagrangian (4.10) automatically
gives the fourth term, while the fifth “true contact” term C(s) comes from the chosen quartic
interaction, both of which start to contribute at s = 2, as expected. Table 2 shows how the
relevant polynomials P

(2s)
n contribute to the low-spin abelian amplitudes.
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5.2 Non-abelian Compton amplitude

Here we consider the non-abelian spin-s Compton amplitude generated by the chiral-field
Lagrangian (5.1). Let us focus on the color-stripped amplitude that multiplies the color
factor 2g2T c3T c4 . We have found a compact and manifestly local form for it:

A(1s, 2̄s, 3−, 4+) = ⟨3|1|4]2(U + V )2s

m4ss12t14
− ⟨13⟩⟨3|1|4][42]

m4ss12
P

(2s)
2 + ⟨13⟩⟨32⟩[14][42]

m4ss12
t13P

(2s−1)
2

− ⟨13⟩⟨32⟩[14][42]
m4s−2s12

(
t13⟨12⟩[12]P (2s−1)

4 + 2V P
(2s)
4

)
− 1

2C(s) , (5.11)

where the polynomials P
(k)
n and the contact term C(s) are identical to the ones given for

the abelian amplitude, see eqs. (5.6) and (5.8), respectively.
If C(s) is omitted, the amplitude (5.11) matches numerically the presentation (4.18) of

the same amplitude. However, the contact term is necessary for consistency between the
abelian and non-abelian results, as expressed by a Kleiss-Kuijf relation [91]:

AU(1)(1s, 2̄s, 3−, 4+) = −A(1s, 2̄s, 3−, 4+) − A(1s, 2̄s, 4+, 3−) . (5.12)

The two orderings on the right-hand side are related by the relabeling property (4.19), which
follows from the assumed consistency of the amplitude in the adjoint representation of SU(Nc).
Since the contact term (5.8) is symmetric under the same relabeling 1 ↔ 2, it contributes
to each of the two orderings equally, with a factor of −1/2. One could consider including
further contact terms that are odd under this Z2 symmetry, in which case they would not
contribute to the abelian amplitude, only the non-abelian one. Currently, we have no good
reason to include such terms, but neither can we exclude their existence. In particular, the
consistency of the classical limit for the non-abelian amplitude does not require additional
contact terms. In fact, as will be discussed in section 6.7, contact terms that are odd under
this Z2 symmetry will not contribute classically, unless some of the assumptions used for
C(s) in section 5.1 are relaxed.

Note that the above non-abelian ordered amplitude (5.11) matches the known
√

Kerr
results for s ≤ 1 [24, 70], obtained by the on-shell sewing of

√
Kerr three-point amplitudes. It

also matches the non-abelian s = 3/2 amplitude that can be computed from the cubic spin-
3/2 Lagrangian given in ref. [46], and this is compatible with the absence of a non-minimal
four-point contact term C(s≤3/2) = 0. For s = 2, the amplitude is consistent with the analysis
of massive gauge invariance done in ref. [76] and in section 3.4.1.

It might be helpful to display the full amplitude assembled from eqs. (5.2) and (5.11):

A(1s, 2̄s, 3−, 4+) = 2g2
{[

T c3T c4

s12t14
+T c4T c3

s12t13

][⟨3|1|4]2
m4s

(U +V )2s−⟨13⟩⟨3|1|4][42]
m4s

t14P
(2s)
2 (5.13)

+ ⟨13⟩⟨32⟩[14][42]
m4s

t13t14
(
P

(2s−1)
2 − m2⟨12⟩[12]P (2s−1)

4
)]

− ⟨13⟩⟨32⟩[14][42]
m4s−2

( [T c3, T c4 ]
s12

2V P
(2s)
4 − {T c3, T c4}

4m

(
⟨12⟩+[12]

)(
P

(2s)
4 −P

(2s−2)
2

))}
.
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This is the complete opposite-helicity spin-s Compton amplitude that can be computed from
the chiral-field Lagrangian (5.1). In particular, the {T c3, T c4} contribution in the last line
corresponds to the contact term C(s) that follows from the chosen L4 interaction.

As can be deduced from the factorization of color and kinematic structures in eq. (5.13),
the first two lines of the amplitude obey the BCJ partial-amplitude relations [92, 93], A(1s, 2̄s, 4+, 3−)= t14

t13
A(1s, 2̄s, 3−, 4+)

AU(1)(1s, 2̄s, 3−, 4+) = s12
t13

A(1s, 2̄s, 3−, 4+)


lines 1-2 of eq. (5.13)

, (5.14)

whereas the third line, containing the commutator and anticommutator contributions, does
not fully adhere to these relations. The third line contributes for s ≥ 3/2 and, curiously, still
exhibits an enhanced behavior in the classical limit that partially satisfies19 the BCJ amplitude
relations. As already alluded to, further contact terms could in principle be added to the
amplitude (5.13) that might enhance some desirable properties. However, there are no obvious
additional contact terms that would fully restore the BCJ relations, either for the quantum
Compton amplitude or in the classical limit. Any attempt to restore the BCJ relations
would modify the factorization channels and thus implicitly modify either the three-point
amplitudes or the exchange spectrum for spins s ≥ 3/2, as already discussed in ref. [70].

As discussed, the constraints from the classical limit inform us about the abelian contact
terms, which multiplies the anticommutator {T c3 , T c4}. One may wonder if a similar analysis
would require new contact terms proportional to the commutator [T c3 , T c4 ]. However, in our
classical-limit analysis we find that such contact terms will not contribute to the classical
amplitude, unless their numerical coefficients violate our assumptions and grow as a function
of the spin eigenvalue s, see section 6.7.

6 Classical Compton amplitudes for
√

Kerr

A major reason for studying the
√

Kerr theory is that it exhibits interesting behavior in the
classical limit, corresponding to a charged rotating ring (or disk) [40–42], in close analogy
with the ring singularity of a classical Kerr black hole. We thus proceed to analyze the
classical limit of our Compton amplitude.

6.1 Classical kinematics and variables

Classical Compton scattering corresponds to a process where the massive particle is only
slightly deflected and the radiation (massless gauge bosons) is soft. One can extract classical
physics from the scalar quantum Compton amplitudes by parametrizing Compton momenta
and kinematic variables such that, when ℏ → 0, they behave as [34]

pµ := pµ
1 ∼ 1 , qµ := (p3 + p4)µ ∼ ℏ , qµ

⊥ := (p4 − p3)µ ∼ ℏ , χµ := ⟨3|σµ|4] ∼ ℏ , (6.1)

and the independent Lorentz invariants behave as

p2 = m2 ∼ 1 , q2
⊥ = 2p · q = −q2 ∼ ℏ2 , p · q⊥ ∼ ℏ , p · χ ∼ ℏ . (6.2)

19The third line of eq. (5.13) contains superclassical contributions that obey the BCJ relations, and classical
contributions that violate the BCJ relations.
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In the classical limit, we can identify the physical parameters ω, θ as follows:

ω = −p · q⊥
2m

, cos θ = 1 + q2

2ω2 = 1 + 2
ξ

, (6.3)

where ω is the energy of the radiation in the rest frame of the
√

Kerr object, and θ is the
deflection angle of the radiation, due to the scattering with the massive object. The variable
ξ = (p · q⊥)2/(m2q2) is known as the optical parameter.

The classical limit reduces the non-spinning color-dressed amplitude in eq. (5.13) to

A(1s=0, 2s=0, 3−, 4+) = ⟨3|1|4]2
(

T c3T c4

s12t14
+ T c4T c3

s12t13

)
= (p · χ)2

( [T c3 , T c4 ]
q2(p · q⊥) + 1

2
{T c3 , T c4}
(p · q⊥)2

)
+ O(ℏ) .

(6.4)

The color factors are best expressed in terms of the commutator and anticommutator
of the gauge-group generators, as the corresponding kinematic factors scale differently.
In the classical limit, the kinematic factor multiplying the commutator scales as O(ℏ−1),
while the factor of the anticommutator scales as O(ℏ0). So in order to obtain a proper
classical limit containing both terms, we assume that the commutator and anticommutator
themselves scale as

[T c3 , T c4 ] ∼ ℏ , {T c3 , T c4} ∼ 1 . (6.5)

The above limit corresponds to considering large representations of the gauge group, in which
case the commutators become suppressed compared to the anticommutators. This is the
appropriate limit for classical color charge (see e.g. ref. [94]).

Next we consider classical spin, which is a vector quantity Sµ = maµ. We will mostly
make use of the transverse spacelike vector aµ, p · a = 0, and call it a ring radius in analogy
with that of a Kerr BH, for which its magnitude |a| =

√
−a2 corresponds to the size of the

ring singularity. In the classical limit, we assume that the ring radius is a macroscopic length,
so in Planck units it must scale inversely with ℏ,

aµ ∼ 1
ℏ

. (6.6)

The classical helicity-conserving Compton amplitude can be written as an entire function
in the following four spin-dependent, helicity-independent and dimensionless variables

x = a · q⊥ , y = a · q ,

z = |a|p · q⊥
m

, w = a · χ p · q⊥
p · χ

.
(6.7)

The z variable is sometimes called the spheroidicity parameter [95]20 and is not to be confused
with the SU(2) little-group wavefunction, for which we use the same letter.

In addition to the four spin-dependent classical variables that can appear to any power,
the classical Compton amplitude can be a non-trivial function of a single dimensionless

20In our convention, z = 2ω|a| has an extra factor of two compared to ref. [95].
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kinematic variable, which we take to be the optical parameter ξ. However, we need to account
for the Gram-determinant relation, G(p, q, q⊥, a, χ) = 0, which in the classical limit gives a
relation between the optical parameter and the above spin-dependent variables

ξ−1 = m2q2

(p · q⊥)2 = (w − x)2 − y2

z2 − w2 . (6.8)

In principle, the optical parameter ξ can be eliminated, however we choose to include ξ in
our ansatz to avoid introducing spurious poles in the spin variables x, y, z, w. Thus we allow
for inverse powers ξ−I , with integer I ≥ 0, since the combination z2Iξ−I = (−a2q2)I is local.

At intermediate steps we will encounter Levi-Civita tensors contracted with four of the
five vectors pµ, qµ, qµ

⊥, aµ, χµ. Since the ring radius is a pseudo-vector, certain contractions
involving it can be reduced to simple dot products. For example, we have the following
useful relations in the classical limit:21

iϵ(p, q, q⊥, a)
p · q⊥

= w − x + w

ξ
= x + 1

w

(
y2 − x2 + z2

ξ

)
,

iϵ(p, q, χ, a)
p · χ

= w − x ,

(6.9)

where we divided by appropriate dot products so as to make the right-hand sides have
classical scaling and no helicity dependence.

Taking into account all of the above classical variables we can now assemble a generic
ansatz for a classical tree-level amplitude that is broad enough to capture every physical
theory. A helicity-conserving Compton amplitude for a classical spinning non-abelian massive
object should have the form

A(1, 2, 3−, 4+) = [T c3 , T c4 ] (p · χ)2

q2(p · q⊥)

(
E(x, y, z, w) +

∞∑
I=1

z2Iξ−IEI(x, y, z, w)
)

+ 1
2{T c3 , T c4} (p · χ)2

(p · q⊥)2

(
Ẽ(x, y, z, w) +

∞∑
I=1

z2Iξ−I ẼI(x, y, z, w)
)

,

(6.10)

where the E , Ẽ , EI , ẼI are general functions that must be analytic at the origin (i.e. have
a Taylor series expansion around the spinless case). In fact, based on the structure of
our quantum amplitudes, we expect that the functions must be analytic everywhere in the
complex plane C4, hence they are entire functions.

The requirement of locality (absence of spurious poles) gives the following refinements
for the E ’s

E(x, y, z, w) = E(x, y, z, 0) + wE ′(x, y, z, 0) + w2

2 E ′′(x, y, z, 0) , (6.11)

and there is a analogous three-term expansion for Ẽ . The reason that w can appear at most
quadratically is that it contains a spurious pole in the variable p · χ, which can be canceled
by the same overall helicity factor of the amplitude (6.10).

21We denote ϵ(p, q, q⊥, a) := ϵµνρσpµqνqρ
⊥aσ, and the Levi-Civita tensor is normalized as ϵ0123 = 1.
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For the EI ’s (and ẼI ’s), the analogous locality constraint combined with the Gram
determinant constraint gives the refinement22

EI(x, y, z, w) = EI(x, y, z, 0) + wE ′I(x, y, z, 0) . (6.12)

The reason we only expand to linear order in w is that the Gram-determinant relation (6.8)
allows us to reduce any quadratic term ∼ w2ξ−1. Further locality constraints can be obtained
by considering the absence of the simultaneous poles in p · q⊥ and q2 in the first line of (6.10).
However, we will not need these here, as we will in practice get the physical pole terms
correct from the quantum amplitude.

Hermiticity and parity invariance of the quantum theory translates to further Z2 × Z2
constraints on the functional form, see table 1. Exchange symmetry of the two massive
particles (equivalent to time-reversal symmetry ω → −ω) demands that the variable z appears
quadratically z2 = 4ω2|a|2 in the amplitude. Exchange symmetry of the massless particles
combined with parity demands that the variable y also appears quadratically in eq. (6.10).
Hence the entire functions satisfy

E(x,±y,±z, w) = E(x, y, z, w) , EI(x,±y,±z, w) = EI(x, y, z, w) , (6.13)

and likewise for the entire functions Ẽ and ẼI , which have identical expansion patterns.
Although in this paper we will not consider dissipative effects, in order to include such

effects one may need to relax the exchange symmetry of the massive legs, since the incoming
and outgoing

√
Kerr object may not be related by CPT symmetry. This means that dissipative

effects show up as odd functions in z ∝ |a| [90], and correspond to non-hermitian interactions
that violate time-reversal symmetry.

From the known literature [28, 37, 39, 96], the first few spin-multipole orders are known
to exponentiate up to quadrupole order

E(x, y, z, w) = Ẽ(x, y, z, w) = ex+w + O(a3) = ex

(
1 + w + w2

2

)
+ O(a3) (6.14)

and the remaining functions have currently no known non-zero contributions

z2IEI(x, y, z, w) = O
(
amax{3, 2I}) = z2I ẼI(x, y, z, w) . (6.15)

6.2 Spin variables for quantum amplitudes

Before we can discuss the classical limit of amplitudes involving spin, we need to introduce
an alternative basis for quantum amplitudes. Starting from generic Lorentz generators Mµν ,
we can obtain the Pauli-Lubanski pseudo-vector

Sµ = 1
2m

ϵµνρσpνMρσ , (6.16)

which is a spin operator that acts on Lorentz-group representations. The Lorentz generators
are normalized as [Mµν , Mρσ] = i

(
ηµρMσν − (µ ↔ ν)

)
− (ρ ↔ σ).

22In principle, the second term could admit the form wE ′
I(x, y, z, 0) → w

z
E ′

I(x, y, z, 0), since the non-locality
cancels against the positive z powers in eq. (6.10), however, such odd-z powers can only appear in time-reversal
asymmetric amplitudes (dissipation).
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We will not make much use of Sµ, as we prefer to work with spin operators that act on
the physical states, i.e. little-group representations. First we introduce the appropriate spin
expectation values, then we extract the needed operators. For spin 1/2, we can construct
a ring-radius vector as

āµ := − 1
4m2

(
⟨1̄|σµ|1] + ⟨1|σµ|1̄]

)
= 1

m2 ⟨1̄|S
µ|1⟩ = − 1

m2 [1̄|Sµ|1] , (6.17)

with spinors for momentum p = p1 defined as |1⟩ = |1a⟩za, |1] = |1a]za, |1̄⟩ = |1a⟩z̄a, |1̄] =
|1a]z̄a. The magnitude of this vector is |ā| =

√
−ā2 = 1

2m |z|2, where |z|2 = zaz̄a = z1z̄2 − z2z̄1
gives the squared norm of the corresponding SU(2) wavefunction.

The spin-s ring-radius vector is defined by the expectation value

aµ := −(zaz̄a)2s−1 s

2m2

(
⟨1̄|σµ|1] + ⟨1|σµ|1̄]

)
= 1

m2s+1 ⟨1̄|
2sSµ|1⟩2s , (6.18)

and it is related to the spin vector by the usual relation Sµ = maµ. The magnitude is
|a| =

√
−a2 = s|z|2s/m, which for properly normalized wavefunctions |z|2 = 1 becomes the

expected relation between the spin quantum number and the ring radius |a| = s/m.
We can also define quantum-mechanical spin operators Ŝµ and âµ acting on the space

of spin-s wavefunctions (z)2s := za ⊗ za ⊗ · · · ⊗ za, related to the spin vectors Sµ and aµ

through an expectation value,

Sµ =
〈
Ŝµ〉 := (z̄)2s · Ŝµ · (z)2s , aµ =

〈
âµ〉 := (z̄)2s · âµ · (z)2s , (6.19)

where the spin operators can be extracted from eq. (6.18) by taking 2s derivatives with
respect to both za, z̄a variables,23

(Ŝµ)a1···a2s
b1···b2s := 1

(2s)!2

 2s∏
j=1

∂

∂z̄aj

∂

∂zbj

Sµ , âµ = Ŝµ

m
. (6.20)

The spin operator Ŝµ satisfies the appropriate quantum-mechanical properties and transver-
sality,

[Ŝµ, Ŝν ] = iϵµνρŜρ , Ŝ2 = −s(s + 1)1 , pµŜµ = 0 , (6.21)

where the SU(2) structure constants are given by the Levi-Civita tensor ϵµνρ = pσ

m ϵσµνρ. Note
that Ŝµ is a spacelike vector, hence Ŝ2 is negative in mostly-minus signature.

In order to express scattering amplitudes in terms of the spin variables defined above,
we begin by defining the Weyl spinors of particle 2 through a Lorentz boost24 acting on the

23Alternatively, it is not difficult to work out the Clebsch-Gordan coefficients needed for changing from
spin-1/2 to spin-s representation. This gives the following representation of the spin-operator:

(Ŝµ) B
A = Sµ

∣∣∣
z̄2s−k

2 z̄k
1 z2s−l

1 zl
2 → ik+l√

C2s
k

C2s
l

δkAδlB
,

where Cn
k are the binomial coefficients and A, B, k, l = 0, 1, . . . , 2s.

24The Lorentz boost guarantees that the |2⟩ and |2] spinors automatically satisfy the Dirac equation for
particle 2, and obey the same normalization constraints as in eq. (A.3).
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spinors of particle 1, satisfying Λp1 = p1 + q = −p2 and Λε̄1 = ε2,

|2⟩ = |2a⟩z̄a := 1
c

(
|1̄⟩ + 1

2m
|q|1̄]

)
,

|2] = |2a]z̄a := −1
c

(
|1̄] + 1

2m
|q|1̄⟩

)
,

(6.22)

such that the corresponding “bra” Weyl spinors are

⟨2| = z̄a⟨2a| = 1
c

(
⟨1̄| − 1

2m
[1̄|q|

)
,

[2| = z̄a[2a| = −1
c

(
[1̄| − 1

2m
⟨1̄|q|

)
,

(6.23)

where the variable c is a boost-dependent coefficient (see also ref. [38])

c =

√
1 − q2

4m2 = cosh ζ

2 . (6.24)

Here ζ is the rapidity boost gained by the BH due to the Compton scattering (note that
q2 < 0), e.g. an initial BH at rest recoils and gains the 3-momentum |p| = m sinh ζ. In the
classical limit, the recoil is insignificant, ζ ∼ ℏ, and in all of our classical calculations c = 1 is
a good approximation. We can also write the Lorentz boost explicitly in terms of ζ,

Λ = exp
( iζ

sinh ζ

qµpν

m2 Mµν
)

. (6.25)

This boost can be used to relate the massive polarization vector εµ
2 to the conjugate of

the polarization vector εµ
1 ,

εµ
2 = Λµ

ν ε̄ν
1 = ε̄µ

1 + q · ε̄1
2m2c

(
pµ

1 + 1
2qµ

)
, (6.26)

although this will not be needed for any calculation, as we will use spinor-helicity formulae.
The spin dependence of the Compton amplitude is encoded in the two spin-dependent and
crossing-(anti)symmetric complex vectors,

ρµ := 1
2
(
⟨1|σµ|2] + ⟨2|σµ|1]

)
, (6.27a)

ρ̄µ := 1
2
(
⟨1|σµ|2] − ⟨2|σµ|1]

)
. (6.27b)

Given their spinorial weight, ρ and ρ̄ are natural spin-1/2 variables, however, one can span
the spin-s variables by taking products of the vectors. For integer spin, there is a quadratic
map between the massive polarizations and ρ , ρ̄,

εµ
1 εν

2 = 1
2m2

(
ρµρν − ρ̄µρ̄ν − ηµνρ2 − iϵµνστ ρσρ̄τ

)
, (6.28)

and further relations can be found in appendix A.
While the physical meaning of these vectors is less clear, their spin dependence can

be made explicit with some algebra,

ρ̄µ = 2m2c āµ − pµ q · ā

c
,

ρµ = |ā|m
c

(pµ
1 − pµ

2 ) − i

c
ϵµ(p, q, ā) ,

(6.29)
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where we again use a short-hand notation for the partially contracted Levi-Civita tensor
ϵµ(p, q, ā) = ϵµνρσpνqρāσ. We have also used the identity |z|2 = 2m|ā|, since the latter is
the more convenient variable in the classical limit.

6.3 Classical limit: infinite versus coherent spin

In section 6.1, we introduced the macroscopic spin vector Sµ = maµ, and the appropriate
classical variables used to parametrize any classical Compton amplitude. In order to map the
quantum Compton amplitudes to these classical variables, we need to take a classical limit,
where the ring-radius vector aµ emerges from the expectation values of the corresponding
quantum operator âµ,

⟨â(µ1 âµ2 · · · âµn)⟩ → aµ1aµ2 · · · aµn . (6.30)

This is equivalent to taking a limit where the quantum variance and higher central moments
of the operator vanish,

⟨
n∏

i=1
âµi⟩ −

n∏
i=1

⟨âµi⟩ ℏ→0−→ 0 . (6.31)

One can formulate a consistent classical limit for spin in various ways (see e.g. refs. [37, 39, 41,
51, 76]). In this paper, we will discuss two distinct approaches in parallel, and demonstrate
that they produce the same classical Compton amplitudes. The two approaches differ in
which quantum states are used, and what variables are scaled with respect to ℏ. They are

(I) large quantum spin s → ∞, with fixed wavefunction normalization zaz̄a = 1;

(II) coherent spin states, with wavefunction scaling za, z̄a ∼ 1√
ℏ

such that zaz̄a ∼ 1
ℏ .

The limit (I) is practically implemented by re-expressing the spin-s quantum amplitude
in terms of the operator âµ, acting on the spin-s representation wavefunction. To simplify the
calculation, the rule (6.30) can be used such that the variables that scale classically according
to the ℏ-scalings (6.2), (6.5), (6.6) can be pre-selected, and quantum O(ℏ) terms can be
immediately dropped. Finally, the limit s → ∞ can be taken to obtain the classical amplitude

A(1, 2, 3, 4) = lim
s→∞

A(1s, 2̄s, 3, 4) . (6.32)

One must be careful to identify the s-dependence appropriately when working at finite spin,
in order to enforce the scaling ℏs ∼ O(1).25

While this approach requires some delicacy, it has practical advantages for the case where
amplitudes are only known up to a fixed spin, since the s → ∞ limit is delayed until the very
last step and can be carried out with only partial knowledge of the s-dependence.

The spin-s amplitudes are polynomials of spin-1/2 quantum variables; variables that
can be re-expressed exactly in terms of the ring-radius vector āµ of a spin-1/2 state, given
in eq. (6.17). This conversion to ā can be done via the ρµ, ρ̄µ vectors (6.27) and their
identities (6.27).

25In particular, naively neglecting terms like s p · q⊥ based on the scaling of the momentum qµ ∼ ℏ violates
the classical limit. Making use of the relation |a| = s/m, we find that such terms contribute classically as
s p · q⊥

ℏ→0−−−→
s→∞

mp · q⊥|a|.
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ℏ0 ℏ1 ℏ≥2

W+/m2 −1 1
4mq2|ā| O(ℏ3)

W−/m2 −q · ā 0 O(ℏ3)
U/m2 1 + q⊥ · ā − 1

4mq2|ā| − 1
2m2 p · q⊥q · ā O(ℏ2)

V/m2 1
m |ā| p · q⊥ − 1

2m2 iϵ(p, q, q⊥, ā) O(ℏ3)
⟨3|ρ|4]/m2 2

m |ā| p · χ − 1
m2 iϵ(p, q, χ, ā) O(ℏ3)

⟨3|ρ̄|4]/m2 2χ · ā − 1
m2 p · χ q · ā O(ℏ2)

Table 3. In classical limit (I), the six spin-dependent quantum variables are expanded using the
spin-1/2 ring-radius vector āµ. The identity 2m|ā| = 1 has been used for the leading contribution on
the first and third line. The ℏ scalings indicate the final behavior of the variables, relevant for the the
macroscopic ring-radius vector. Note that W± = m

2 (⟨12⟩ ± [12]).

In table 3, we summarize the map between the quantum variables and the leading few
orders in the classical limit. The ℏ scalings in table 3 reflects the final scaling after the ring-
radius vector has become macroscopic, since this is more useful for our purposes. Note that
one might naively anticipate that the ℏ0 column will give all relevant classical contributions;
however, this is not true as quantum and superclassical terms have the potential to conspire.
While in principle all orders in ℏ should be kept to maintain the relation ℏs ∼ O(1), in
practice we find our classical amplitudes are insensitive to terms beyond ℏ1 so that we can
pre-select the relevant terms.

All variables in table 3 are in principle linear in āµ; however, we have made use of the
identity 2m|ā| = zaz̄a = 1 for two of the terms, in order to not artificially add divergences
in the classical limit.26

Once the spin-s amplitude is expressed in terms of the spin-1/2 ring-radius vector
āµ = ⟨âµ⟩, we need to re-write it into its correct quantum-mechanical representation. This is
done using the spin-representation change formula for products of such objects,

āµ1 āµ2 · · · āµk = (2s − k)!
(2s)!

〈
â(µ1 âµ2 · · · âµk)〉+ O(â2) , (6.33)

which introduces combinatorial factors of s that are sensitive to how many spin operators are
present. The correction terms O(â2) correspond to contributions that have Casimir factors
ηµiµj â2 ∼ ηµiµj s(s + 1). We will later argue that these terms are always suppressed in the
large-s limit, and can be dropped from any classical-limit calculation. Note that this does
not mean that all Casimir factors are suppressed; here we mean only those that are coming
from the above spin-representation change formula.

Note that in the letter [76], we introduced a complimentary scaling of the spin variables,
where we scaled the wavefunctions

za , z̄a ∼ 1√
ℏ

while zaz̄a ∼ 1 , (6.34)

26While the identity 2|ā| = 1 can be freely used in finite spin quantum amplitudes, the infinite-spin limit
requires that |ā| gets replaced by |a| via eq. (6.33). This introduces spin-dependent combinatorical factors
that alter the naive classical behavior and may introduce divergences in s.
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instead of the quantum spin number s ∼ ℏ−1. The scaling (6.34) works at fixed quantum spin
s and can be implemented numerically. However, it is ultimately unphysical as it requires
the wavefunctions za and z̄a to be large and independent. This can only be achieved if we
analytically continue the ring radius to complex values, and thus za and z̄a are no longer
related by complex conjugation (hence SU(2) is generalized to SL(2)). Nonetheless, this
unphysical approach is still able to reproduce a remarkable portion of the classical information
contained in the physical classical limit of (I). Notably, the final scaling of the variables in
table 3 can be read off immediately given that ā scales as ℏ−1. However eq. (6.34) misses
any classical contributions of |a| terms, as such terms are now subleading compared to aµ.
Therefore, in this paper we implement limits (I) and (II), although the scaling in eq. (6.34)
can reproduce all classical results in the upcoming sections up to missing |a| terms.

The coherent spin states construction (II) involves a similar scaling of the wavefunctions
as eq. (6.34)

za , z̄a ∼ 1√
ℏ

, while zaz̄a ∼ 1
ℏ

, (6.35)

but now the normalization of the wavefunctions is no longer constrained. Despite the
superclassical scaling of |z|2, the coherent-state approach avoids divergences due to the
fundamental differences in the setup of the scattering. As explained in detail in ref. [39], one
should scatter coherent spin states in place of the massive spin particles. Schematically, the
coherent state is constructed from a sum over spin eigenstates |s, {a}⟩,

|coherent⟩ = e−|z|
2/2

∞∑
s=0

(za)⊗2s√
(2s)!

|s, {a}⟩ , (6.36)

where here {a} denotes the set of SU(2) little-group indices (not to be confused with the
ring radius). The classical amplitude corresponds to the ℏ → 0 limit of an infinite sum
over diagonal finite-spin amplitudes,

A(1, 2̄, 3±, 4±) = lim
ℏ→0

e−|z|
2
∞∑

s=0

1
(2s)!A(1s, 2̄s, 3±, 4±) . (6.37)

In principle, there could be non-diagonal contributions where the spins of external massive
particles differ, s1 ̸= s2. However, we will neglect such contributions in this paper, since
we have not included off-diagonal interactions between physical fields in the Lagrangians
in sections 3 and 4.

In this approach the ℏ → 0 limit must be taken after resumming the coherent states,
such that there is no distinction27 between the spin-1/2 expectation value āµ and the classical
ring radius aµ, and there is no need to change representation [39]. Thus limit (II) generates
different scalings for the expansion of the spin variables directly in terms of the classical
ring radius aµ, as shown in table 4.

While in table 4 we have indicated the distinct ℏ scaling of each term, we will find that
the classically relevant terms remain the same as those indicated in table 3. Note that in this
approach possible s divergences are traded for possible wavefunction divergences, however
any spurious divergence automatically cancels out because of the overall normalization e−|z|

2

in eq. (6.37).
27Coherent states and classical ring radius satisfy the identities aµ = ⟨coherent|âµ|coherent⟩ = āµ.
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ℏ−1 ℏ0 ℏ1 next term

W+/m2 −2m|a| 0 1
4m |a|q2 O(ℏ3)

W−/m2 0 −q·a 0 O(ℏ2)

U/m2 2m|a| q⊥·a − 1
2m2 p · q⊥q·a − 1

4m |a|q2 O(ℏ2)

V/m2 0 p · q⊥|a|/m − 1
2m2 iϵ(p, q, q⊥, a) O(ℏ2)

⟨3|ρ|4]/m2 0 2|a|p·χ/m −iϵ(p, q, χ, a)/m2 O(ℏ2)
⟨3|ρ̄|4]/m2 0 2χ·a −p·χ q·a/m2 O(ℏ2)

Table 4. Scaling of spin variables in the coherent-state approach. Note that W± = m
2 (⟨12⟩ ± [12]).

6.4 Same-helicity intermezzo

Let us first analyze the same-helicity amplitude (4.17), whose spin dependence can be factored
out fully from the helicity and pole structures. In the large-s limit (I) the spin-dependent
term can be expanded as

⟨21⟩2s

m2s
≈ (1 + q · ā)2s =

2s∑
k=0

(2s)!
(2s − k)!k! (q · ā)k =

〈
eq·â〉+ O(â2) , (6.38)

where ≈ implies we have only kept up to O(ℏ0) in table 3. We first used the binomial
expansion, and then the representation change formula in eq. (6.33). Equating the finite
sum with the exponential operator is justified from the finite-spin representation of â, and
the difference will only involve contributions O(â2) that are proportional to powers of the
Casimir â2 ∼ s(s + 1). Another source of such Casimir contributions, in the above O(â2)
term, come from their appearance in the spin-representation change formula (6.33).

Now let us show that the O(â2) terms in eq. (6.38) are suppressed in the classical limit.
While in the large-wavefunction limit (6.34) such terms are clearly subleading, in the proper
large-spin classical limit (I) it is not a priori clear whether they are classical or quantum
since there are s-dependent combinatorial factors in eq. (6.33). In table 5, we work out a few
examples of such multipoles. To get these results, we used explicit matrix representations of
the spin operator and matched the symmetrized products of the formulae in table 5 with the
spinorial expression of the same-helicity amplitude. Note that all above operator products
are symmetrized over all orderings, which we also assume throughout this paper.

We can work out the O(â2) terms to any order in the spin-multipole expansion,

O(â2) = −â2q2
∞∑

n=2

(q · â)n−2

(n − 2)!
n − 2 − 3s

(n − 2)(n + 1) − 12s2
= −â2q2 eq·â

4s
+ O

( 1
s2

)
, (6.39)

which clearly vanish in the classical limit s → ∞. For the O(â4) terms, one can also work
out the general behavior,

O(â4) = â4q4
∞∑

n=4

(q · â)n−4

2(n − 4)!
τn,s

θn,s
= â4q4 eq·â

32s2 + O
( 1

s3

)
, (6.40)
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eq·â O(â2) O(â4)

dipole â · q 0 0

quadrupole 1
2(â · q)2 − s

4s2
â2q2 0

octupole 1
3!(â · q)3 −1

4
1−3s
1−3s2

â2q2(â · q) 0

hexadecapole 1
4!(â · q)4 −1

4
2−3s
5−6s2

â2q2(â · q)2 s
8

7−29s+6s2(2+3s)
12(5−6s2)

â4q4

s2(1/3−s2)

dotriacontapole 1
5!(â · q)5 −1

4
3−3s

27−18s2
â2q2(â · q)3 1

8
14−63s+83s2−30s4

20(3−2s2)(1−3(1−s2)s2) â4q4(â · q)

Table 5. The same-helicity factor ⟨21⟩2s/m2s converted to quantum-mechanical spin operators
at finite s, where the columns give leading and subleading orders in the Casimir â2, and the rows
give the multipole expansion. Here s2 := s(s + 1) stands for the quantum-mechanical “square”, and
transversality projectors are inserted as q2 := (q · q) − (q · p)2/m2.

where

τn,s = (n − 4)(n − 2)(n + 1)(5n − 11) + 3(n − 2)(129 − n − 10n2)s (6.41)
− 3(642 − 253n + 5n2)s2 + 360(n − 5)s3 − 540s4 ,

θn,s =
(
(n − 2)(n + 1) − 12s2

)(
(n−4)(n+1)(30 − 23n + 5n2) − 5!(n − 3)(n − 2)s2 + 6!s2

2

)
.

This also vanishes in the classical limit.
From the observed patterns, we can conjecture the leading-s behavior of each O(â2n)

Casimir term,

O(â2n) = (−1)na2nq2n eq·a

4nn!sn
+ O

( 1
sn+1

)
. (6.42)

Given that these corrections vanish increasingly fast as ∼ 1/sn in the classical s → ∞ limit,
this suggests the Casimir terms generated in eq. (6.33) are always quantum.

We are able to crosscheck that the O(â2) terms are indeed quantum by computing the
classical amplitude via the coherent-spin approach (II). Considering again only the factor
⟨21⟩2s and summing over all spins generates

e−|z|
2
∞∑

s=0

1
(2s)!

⟨21⟩2s

m2s
= e−|z|

2−⟨12⟩/m = eq·a + O(ℏ) , (6.43)

where the wavefunction normalization |z|2 = 2m|a| cancels out against a similar term in
⟨12⟩, as seen in table 4.

In summary, the classical same-helicity (helicity-violating) Compton amplitude takes
the following simple form in the classical limit,

A(1, 2̄, 3+, 4+) = −2g2eq·a[34]2
( [T c3 , T c4 ]

q2(p · q⊥) + 1
2
{T c3 , T c4}
(p · q⊥)2

)
, (6.44)

which means that it is given by the Newman-Janis shift of the non-spinning Compton
amplitude for a charged scalar [38, 41].
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6.5 Opposite-helicity analysis

In contrast to the same-helicity case, the color structure and poles cannot be fully factored
out in the opposite-helicity color-dressed amplitude (5.13). This remains the case in the
classical limit, such that the abelian and color-dressed amplitudes differ by more than just
their pole structure (6.10).

Non-abelian amplitude. We will proceed by first considering the terms proportional to
the commutator [T c3 , T c4 ] in eq. (5.13), computing the classical spin-dependent functions
E and EI in the first line of eq. (6.10).

After factoring out the scalar amplitude (6.4), the first spin-dependent function in (5.13)
can be expanded in the large-s limit (I) as

(U + V )2s ≈ (1 + q⊥ · ā + |ā|p · q⊥/m)2s =
2s∑

k=0

(2s)!
(2s − k)!k! (q⊥ · ā + |ā|p · q⊥/m)k

=
〈
eq⊥·â+|â|p·q⊥/m

〉
+ O

(1
s

)
. (6.45)

Here ≈ implies that we only keep terms where each q, q⊥ is matched with a ā factor, since other
contributions are ℏ-suppressed, and the last step involves changing the representation of the
spin operator (6.33). The O

(
1/s

)
terms coming from the representation change of the q⊥ · ā

factors can be obtained by swapping q → q⊥ in the corresponding all-plus formula (6.39),

O
(1

s

)
=
(
q2 + (q⊥ · p)2

m2

)
â2 eq⊥·â

4s
+ O

( 1
s2

)
. (6.46)

Other such O(1/s) terms come from the representation change of the |ā| factor; however |â|
is a mathematically ambiguous operator and its precise definition is not needed.28 In the
following, we will neglect all O(1/s) contributions in the representation change formula (6.33),
since they are both irrelevant and uninteresting terms. Thus only the leading-order term
contributes to the classical function E(x, y, z, 0) in eq. (6.10),

lim
s→∞

(U + V )2s = lim
s→∞

〈
eq⊥·â+|â|p·q⊥/m

〉
= ex+z , (6.47)

where x = q⊥ · a, z = |a| p · q⊥/m and aµ = ⟨âµ⟩.
In the coherent-state approach (II), we first resum the s dependence and then expand

the variables according to table 4,

e−2m|a|
∞∑

s=0

(U + V )2s

(2s)! = e−2m|a|+U+V = ex+z + O(ℏ) , (6.48)

such that we confirm the result in eq. (6.47). Note that here we have written the SU(2)
wavefunction normalization |z|2 in terms of |a| in order to not confuse it with our classical
variable z, which uses the same letter.

Continuing with the large-spin analysis, we find the second spin-dependent term in
the commutator sector of the color-dressed amplitude (5.13) generates contributions to

28In the complete amplitude odd |â| terms are guaranteed to cancel out by time-reversal symmetry. The
even factors can be defined as |â|2 = −â2 and |â|f(â) |â| = −â2f(â) + O(1/s) for some function f .
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both E(x, y, z, 0) and E ′(x, y, z, 0) in eq. (6.10). Namely, after factoring out the scalar
amplitude, we get

− t14⟨3|ρ̄+ρ|4]
2⟨3|1|4] P

(2s)
2 ≈−

(1
2 + mχ · ā

2p ·χ|ā|

)(
(1+q⊥ · ā+ |ā|p ·q⊥)2s−(1+q⊥ · ā−|ā|p ·q⊥)2s

)
s→∞= −eq⊥·asinh

(
|a|p ·q⊥

)
−eq⊥·a χ ·ap ·q⊥

p ·χ
sinhc

(
|a|p ·q⊥

)
.

= −exsinhz−w exsinhcz , (6.49)

where w = (χ · a)(p · q⊥)/(p · χ) and sinhc z = sinh z
z . In the first line we have dropped

higher orders in ℏ, whilst in the limit s → ∞ we used the simplified representation-change
formula (6.33) that is insensitive to the Casimirs O(â2). An analogous, but simpler, calculation
using coherent states confirms the result. Note that the odd powers in z cancels between
eqs. (6.48) and (6.49), as is guaranteed by the time-reversal symmetry of our Compton
amplitude. See eq. (C.2) in appendix C for a brief discussion on the non-trivial 1 ↔ 2 identity
satisfied by the pole terms of our Compton amplitude.

In the large-spin approach, the entire functions are generated when resumming the
binomial with the relevant combinatorial factors dictated by the representation change
formula in eq. (6.33). In comparison, in the coherent-state approach, the entire functions are
generated by the infinite sums in s. These infinite sums can in general be rather difficult to
perform. However, the special polynomials in our amplitudes ensure that sums encountered
are remarkably simple. They are variations of the following two cases:

∞∑
k=0

1
k!P

(k)
2 = eς1

ς1 − ς2
+ (ς1 ↔ ς2) , (6.50a)

∞∑
k=0

1
k!P

(k)
4 = eς1

(ς1 − ς2)(ς1 − ς3)(ς1 − ς4) + cyc(ς1 , ς2 , ς3 , ς4) . (6.50b)

This means that the coherent-spin approach is vastly simpler for our amplitudes than it
could have been.

Continuing the amplitude analysis, the third term in eq. (5.13), proportional to P 2s−1
2 ,

vanishes in the classical limit, as confirmed by both the large-spin limit and coherent-spin
approach. The last two terms in the color-dressed amplitude require a more careful treatment.
Individually, they contain divergences: in the large-s limit they appear as divergences in s,
but as superclassical ℏ−1 terms in the coherent-state approach.

Once we factor out the relevant scalar amplitude and the color factor [T c3 , T c4 ], the
relevant terms in the non-abelian amplitude (5.13) have the following behavior:

term 4: t13t14
⟨13⟩⟨32⟩[14][42]

m4s−2⟨3|1|4]2 ⟨12⟩[12]P (2s−1)
4 ∼ O(s) ,

term 5: t14
⟨13⟩⟨32⟩[14][42]

m4s−2⟨3|1|4]2 2V P
(2s)
4 ∼ O(s) ,

(6.51)

where, in the second line, we use the following ℏ-expansion for the V prefactor,

V = 1
2p · q⊥ − 1

2 iϵ(q⊥, p, q, ā) + O(ℏ3) . (6.52)
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Compared to table 3, we have used the identity 2m|ā| = 1 in order to get the softer scaling
V ∼ ℏ, such that the powers of qµ, qµ

⊥ and powers of āµ match in this expression. Remarkably,
the divergences of the O(s) behavior cancel between the two terms, so that in the sum the
following finite classical contribution is obtained:

−t14
⟨13⟩⟨32⟩[14][42]

m4s−2⟨3|1|4]2
[
t13⟨12⟩[12]P (2s−1)

4 − 2V P
(2s)
4

]
s→∞= (w2 − z2)

2
[
E
(
x, y, z

)
− 2iϵ(q⊥, p, q, ā)

p · q⊥
Ẽ
(
x, y, z

)]
,

(6.53)

where E and Ẽ are entire functions given by

E(x, y, z) = ey − ex cosh z + (x − y)ex sinhc z

(x − y)2 − z2 + (y → −y) , (6.54)

Ẽ(x, y, z) = 2x cosh y − 2xex cosh z + (x2 − y2 + z2)ex sinhc z + (x2 + y2 − z2) sinhc y(
(x − y)2 − z2)((x + y)2 − z2) .

The cancellation of the individual divergences also follows in the coherent-state picture, where
the superclassical pieces cancel and the classical terms match eq. (6.53).

The full non-abelian sector of the classical amplitude, generated independently by (I)
and (II), is given by

A(1, 2̄, 3−, 4+)|[T c3 ,T c4 ] = 2g2 (p · χ)2

q2(p · q⊥)
(
ex cosh z − w exsinhc z + w2− z2

2 E(x, y, z)

− (w2− z2) iϵ(p, q, q⊥, a)
p · q⊥

Ẽ(x, y, z)
)
[T c3, T c4 ] ,

(6.55)

where we recall x = a · q⊥, y = a · q, z = |a| p · q⊥/m, w = (χ · a)(p · q⊥)/(p ·χ). Note that the
Levi-Civita term is not an independent variable and can be written as a function of x, y, z

using eq. (6.9) and the classical-limit Gram determinant (6.8) such that

(w2 − z2) iϵ(p, q, q⊥, a)
p · q⊥

= x(w2+ z2) − w(x2− y2+ z2) . (6.56)

One can read off the entire functions in eq. (6.10) from the above expression

E(x,y,z,0) = ex cosh z−z2

2 E(x, y, z)−xz2Ẽ(x, y, z) , E ′′(x,y,z,0) = E(x, y, z)−2xẼ(x, y, z) ,

E ′(x,y,z,0) = −exsinhc z+(x2− y2+ z2)Ẽ(x, y, z) , EI(x,y,z,w) = 0 . (6.57)

We will postpone further analysis of the expression until we have the full color-dressed
classical amplitude.

Abelian amplitude. The abelian amplitude shares many terms with the non-abelian sector
such that the first two terms of the classical abelian amplitude are identical to those in
eq. (6.55) up to differing pole structure. The difference lies in the treatment of the shared
diverging term, i.e. term 4 in eq. (6.51). In the abelian sector, the cubic Lagrangian does
not generate a term that cures the divergence in O(s), suggesting the amplitude is only
consistent if we add contact terms to cure the divergence.
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Following the construction of contact terms explained in section 5.1, we find the simplest
consistent contact term to be

C(s) = −⟨13⟩⟨32⟩[14][42]
2m4s−1

(
⟨12⟩ + [12]

)(
P

(2s)
4 − P

(2s−2)
2

)
. (6.58)

It conspires with the divergent fourth term, such that a classically finite result is obtained:

−⟨13⟩⟨32⟩[14][42]
m4s−2 ⟨12⟩[12]P (2s−1)

4 + C(s) s→∞= − (p · χ)2

(p · q⊥)2
w2 − z2

2 E(x, y, z) , (6.59)

where E is the same entire function (6.54) that appeared in the non-abelian sector. The
corresponding classical abelian amplitude is then

AU(1)(1, 2̄, 3−, 4+) = − (p · χ)2

(p · q⊥)2

(
ex cosh z − w exsinhc z + w2 − z2

2 E(x, y, z)
)

. (6.60)

Once again the entire functions Ẽ , Ẽ ′, Ẽ ′′ can be read off from the amplitude and correspond
to the functions defined in (6.57) where Ẽ is set to zero.

As mentioned at the end of section 5.1, the choice of quantum contact term C(s) is not
unique, even after imposing classical consistency. An example of an alternative contact term,
which is fully consistent with our constrains, is

C ′
(s) = −⟨13⟩⟨32⟩[14][42]

m4s−2 ⟨12⟩[12]
(
2P

(2s−1)
4 + m

2
(
⟨12⟩ + [12]

)
P

(2s−2)
4

)
. (6.61)

However, C ′(s) and all other such quantum contact terms contribute identically to C(s)

in the classical limit, such that the abelian amplitude is uniquely fixed, given our chosen
constraints below eq. (5.7). In section 6.6 and section 6.7, we discuss the consequences of
weakening certain constraints in our contact-term construction and discuss how it introduces
free parameters in the classical amplitude.

Color-dressed amplitude. We can now assemble the full, color-dressed classical Compton
amplitude in the candidate

√
Kerr theory. It is given, to all orders in spin, by

A(1, 2̄, 3−, 4+)

= 2g2(p · χ)2
{( [T c3 , T c4 ]

q2(p · q⊥) + 1
2
{T c3 , T c4}
(p · q⊥)2

)(
ex cosh z − w exsinhc z + w2− z2

2 E(x, y, z)
)

− [T c3 , T c4 ]
q2(p · q⊥)

(
x(w2+ z2) − w(x2− y2+ z2)

)
Ẽ(x, y, z)

}
. (6.62)

It is instructive to inspect the spin-multipole expansion at low orders. We first note the
similarity in the expansion of the two entire functions E(x, y, z) and Ẽ(x, y, z),

E(x, y, z) = 1 + 2
3x + 1

12(3x2 + y2 + z2) + 1
30x(2x2 + y2 + 2z2) + O(a4) ,

Ẽ(x, y, z) = 1
6 + 1

12x + 1
120(3x2 + y2 + z2) + 1

360x(2x2 + y2 + 2z2) + O(a4) .
(6.63)

The relationship between the monomials in the E and Ẽ expansions is captured by the
differential equation

∂

∂λ
λ3Ẽ(λx, λy, λz)

∣∣∣
λ=1

= 1
2E(x, y, z) . (6.64)

– 57 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
6

The classical amplitude (6.62) expanded up to the octupole order is then

A(1, 2̄, 3−, 4+) = 2g2(p · χ)2

×
{( [T c3 , T c4 ]

q2(p · q⊥) + 1
2
{T c3 , T c4}
(p · q⊥)2

)(
1 + x − w + 1

2(w − x)2 + 1
6(w − x)(2wx − x2 − z2)

)
− [T c3 , T c4 ]

6q2(p · q⊥)
(
x(w2 + z2) − w(x2 − y2 + z2)

)}
+ O(a4) . (6.65)

The expansion up to quadrupole order matches that of the exponential ex−w, consistent
with ref. [97]. This follows from our chosen constraints below eq. (5.7), since the finite-spin
classical limit of the spin-1 amplitude has this expansion. However, in principle, this property
can be relaxed, see section 6.6 below for more details. Starting at the octupole order, the
spin multipoles deviate from the exponential pattern, which they need to, since factors of w3

and higher powers would give rise to unwanted poles. Our classical amplitude is free from
unphysical poles and has the expected factorization properties, see appendix C.

As a final minor remark, we note that beyond quadrupole order the amplitude (6.62)
does not exhibit the spin shift symmetry aµ → aµ + qµ/q2 proposed in refs. [47, 48]. While
the variables x, w are invariant under the shift, the breaking is due to the dependence on
y2 and z2 in (6.62). Therefore, the classical amplitude (6.62) differs from the analogous
gauge-theory Compton amplitudes obtained in ref. [47]. The difference in the result is due
to contact terms proportional to z2, as discussed in section 6.7.

6.6 Observations on spin universality

The three-point
√

Kerr amplitudes exhibit a universal behavior in a fixed-spin classical
limit, a property referred to in the literature as spin universality [29–31, 47, 51]. Indeed,
the quantum amplitudes can be exactly expressed as an exponential of the spin operator
sandwiched between spin-s eigenstates [51],

AAHH(1s, 2̄s, 3±) = A(0)
3 ⟨e±â·q⟩ , (6.66)

even before any limit ⟨eâ·q⟩ → ea·q is taken.
More generally, a fixed-spin classical amplitude is typically obtained from some ℏ → 0

procedure while working with a fixed quantum spin number s, giving a pseudo-classical
amplitude of the form

Acl(1s, 2̄s, 3, . . .) =
2s∑

k+l=0
c

(s,l)
µ1···µk |a|laµ1 · · · aµk + O(a2s+1) . (6.67)

Here the tensors c
(s,l)
µ1...µk contain the physical information that informs us of the Sk+l multipoles

at finite s, and O(a2s+1) denotes terms not accessible from a computation involving finite-spin
representations. Since a proper classical limit should correspond to s → ∞, the classical
amplitude can in principle be inferred from c

(∞,l)
µ1···µk . However, in practice, the amplitudes

might not be known beyond a certain fixed s, thus complicating matters.
Families of amplitudes that exhibit spin universality will have Sk+l-multipole coefficients

that are independent of s,

c
(s,l)
µ1···µk = c

(∞,l)
µ1···µk , (6.68)
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and as such they can be determined by a calculation involving any quantum amplitude of
spin 2s ≥ k + l. This is a very desirable property, since each multipole can be computed from
a single quantum amplitude, rather than from an infinite family of amplitudes.

Let us briefly discuss the
√

Kerr family of same-helicity Compton amplitudes, which
clearly exhibit a version of spin universality, similar but not identical to the above three-point
case. The quantum same-helicity amplitude has the form (6.38),

A(1s, 2̄s, 3+, 4+) = A(0)
4 ⟨eâ·q⟩ + O

(1
s

q2â2
)

+ O(ℏ) , (6.69)

where A(0) is the scalar amplitude, and the expectation value ⟨eâ·q⟩ consists of the exponen-
tiated spin operator acting on the spin-s wavefunctions. The correction terms O(q2â2/s)
correspond to Casimirs that originate both from spin-representation change (see eq. (6.33))
and finite-representation identities of the â operator, and the terms O(ℏ) come from small
q factors that are not balanced by corresponding â factors. If we ignore the two last terms
in eq. (6.69), we can read off the spin-multipole tensors in eq. (6.67) from the exponenti-
ated quantum multipole moments, such that c

(s,l)
µ1...µk = δl0 qµ1 . . . qµk

/k!, and we define the
pseudo-classical amplitude as

Acl(1s, 2̄s, 3+, 4+) = A(0)
4 ea·q, (6.70)

which also happens to be the correct classical amplitude. That is, the s dependence is
completely absent on the right-hand side, which thus exhibits spin universality. While the
terms that we neglected in eq. (6.69) do not exhibit spin universality, this is not of any practical
issue, since those terms are easy to identify and remove, by hand, from any finite-s calculation.

We can apply the same analysis to the general-spin opposite-helicity Compton amplitude.
The sector of the non-abelian amplitude (5.13) proportional to the commutator [T c3 , T c3 ] in
the classical limit behaves in an analogous way to the same-helicity amplitudes. One can
define the pseudo-classical amplitude by computing the fixed-spin quantum amplitudes and
neglecting any Casimirs generated from the spin-representation change (6.33). However, the
individual terms of that amplitude do not necessarily exhibit it, for instance the third term,
proportional to P

(2s−1)
2 , has an explicit dependence on s

t13t14
⟨13⟩⟨32⟩[14][42]

m4s⟨3|1|4]2 P
(2s−1)
2

cl∼ −2
s

(
ex(w2 − z2) sinhc z

)
, (6.71)

where cl∼ indicates that we extracted the pseudo-classical terms. Thus the term seemingly
breaks the spin universality. However, this s-dependence is canceled against a similar
contribution on the second line of eq. (5.11), such that the non-abelian amplitude as a whole
is spin universal. The observed spin universality is partially explained by the fact that, in
the non-abelian color-stripped amplitude, only the superclassical terms ∼ ℏ−1 survive when
multiplied by [T c3 , T c3 ] ∼ ℏ, and thus these terms are chiefly pole-term contributions that
inherit the spin universality of the three-point amplitude. However, as discussed in the next
subsection, contact terms can also develop a superclassical scaling if they grow with s, and
thus in principle alter the universality properties.

In contrast, the abelian sector of (5.13), proportional to the anticommutator {T c3 , T c4},
does not exhibit spin universality, as there is residual spin-dependence even after neglecting
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the Casimirs in the representation-change formula. The full color-dressed amplitude has
the following non-universal contribution

Acl(1s, 2̄s, 3−, 4+) −A(1, 2̄, 3−, 4+)

= g2 (p · χ)2

(p · q⊥)2
w2 − z2

2s(2s − 1)ex(cosh z + (x + 1 − 2s)sinhc z
)
{T c3 , T c4} ,

(6.72)

and since only {T c3 , T c4} appears the breaking of spin universality is in the abelian sector.
Note, here A is the proper classical amplitude and Acl is the pseudo-classical one, as is
clear from the indicated s dependence.

The breaking of spin universality in the abelian sector can be traced back to a sole term
in the abelian amplitude: the P

(2s−2)
2 contribution in the contact term C(s). If we remove it

by modifying the contact term C(s) → C(s) − ∆C(s), where the offending term is

∆C(s) = ⟨13⟩⟨32⟩[14][42]
2m4s−1

(
⟨12⟩ + [12]

)
P

(2s−2)
2 , (6.73)

then the abelian amplitudes also exhibit spin universality. However, this modification violates
one of our main constraints used in the construction of the contact term, listed in section 5.1,
since ∆C(3/2) ∝ P

(1)
2 ̸= 0. Thus, with this modification, the spin-3/2 amplitude obtained in

ref. [46] would receive corrections. Such a modification is not necessarily in conflict with the
constraints given by massive gauge invariance; however, it would potentially require worsening
the high-energy behavior of the spin-3/2 quantum amplitude, which appears undesirable
from a fundamental-theory perspective. It is also important to note that, for the purpose of
classical scattering, the ∆C(s) term is irrelevant, and whether or not to keep it depends on
one’s preferences. We choose to work with the original contact term (5.8), were C(3/2) = 0.

6.7 Consequences for other contact-term choices

So far we have restricted our analysis to the amplitudes and contact terms that satisfy
the constraints listed in section 5.1, which result in a unique color-dressed classical ampli-
tude (6.62). As expected, if we break one or several constraints, the classical amplitude is
no longer unique and depends on free parameters.

For instance, let us consider loosening the constraint on the spin quadrupole; that is, we
no longer assume the quadrupole is given by the spin-1 quantum amplitude. We can modify
the abelian contact term by C(s) → C(s) + ∆C(s), where

∆C(s) = δ
⟨13⟩⟨32⟩[14][42]

2m4s
W+

(
P

(2s)
4 − W 2

+ P
(2s−2)
4 − P

(2s−2)
2

)
, (6.74)

which is constructed to satisfy all other constraints listed in section 5.1. In the classical limit,
the free parameter δ survives and the classical abelian amplitude is deformed to

AU(1)(1, 2̄, 3−, 4+) = − (p · χ)2

(p · q⊥)2

(
ex cosh z − w exsinhc z + (1 − δ)w2 − z2

2 E(x, y, z)
)

. (6.75)

The one free parameter modifies the classical amplitude to all orders in spin, starting with
the quadrupole. To restore the spin-1 quadrupole, which is the expected result even if it is
not currently proven from first principles, the parameter must be fixed to δ = 0. Exploring
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more complicated but similar modifications ∆C(s), constructed from polynomials P
(k)
2 and

P
(k)
4 , suggests that removing the quadrupole constraint always lead to the one-parameter

classical amplitude (6.75).
In section 5.2, we choose to not add any contact terms proportional to the commutator

[T c3 , T c4 ], since the candidates were irrelevant in the classical limit. In order to contribute
classically, such contact terms must have kinematic dependence that is superclassical O(ℏ−1)
and are ruled out by restrictions on helicity structure and spin dependence. Let us now consider
relaxing more constraints so that we do get non-abelian contact terms in the classical limit.

If we constrain ourselves to the ⟨13⟩⟨32⟩[14][42] helicity structure, contact terms that
respect the symmetries of the amplitude, see section 4.4, are forced to be subleading in
the classical limit. Contact terms can only contribute classically if we allow for coefficients
that explicitly grow with s, breaking one of the constraints introduced in section 5.1. For
example, the following terms grow linearly in s:

∆C(s) ∼ s
⟨13⟩⟨32⟩[14][42]

m4s−3 (t14 − t13)P (2s+1)
4 [T c3 , T c4 ] ,

∆C(s) ∼ s
⟨13⟩⟨32⟩[14][42]

m4s−1 V P
(2s)
4 [T c3 , T c4 ] ,

(6.76)

where we restored the non-abelian commutator for clarity. Both examples above give the
same classical-limit expressions,

∆C(∞) ∼ −(p · χ)2 w2 − z2

(p · q⊥)2
z2

p · q⊥
Ẽ(x, y, z)[T c3 , T c4 ] , (6.77)

and will contribute from the S4 spin-multipole order.
There exist other relevant contact terms that do not have explicit s prefactors, if we allow

other helicity-dependent structures. Starting at s = 2 the structure ⟨13⟩2[42]2 − ⟨23⟩2[41]2 is
compatible with massive gauge invariance, as shown in eq. (3.66). A viable contact term is then

∆C(s) ∼ ⟨13⟩2[42]2 − ⟨23⟩2[41]2
m4s−3 P

(2s+1)
4 [T c3 , T c4 ] . (6.78)

The term contributes classically as

∆C(∞) ∼ −(p · χ)2 wz2

(p · q⊥)3 Ẽ(x, y, z)[T c3 , T c4 ] , (6.79)

and will contribute starting with the spin octupole. Note that this contact term is odd in
w, as opposed to the (w2 − z2) prefactor present in all other contact terms and inherited
from the helicity structure ⟨13⟩⟨32⟩[14][42]. When attempting to match to the spin-shift
symmetric result in ref. [38], we note the need to add contact terms with more general helicity
structures, given the mismatch is not proportional to (w2 − z2). However, such contact
terms seem less natural from the quantum amplitude structure, obtained from the chiral-field
Lagrangian (5.1), and would require further justification for their inclusion.

7 Conclusion

The present paper builds upon recently introduced ideas for describing higher-spin amplitudes
for Kerr black holes, such as massive higher-spin gauge symmetry [76] and the chiral-field
approach [72], and applies them to the gauge-theory case known as

√
Kerr [41].
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The classical
√

Kerr object should correspond to a rotating charged ring (or disk) of
matter [40] interacting with an electromagnetic or non-abelian gauge field. For our purposes,
it is simply an interesting toy model where we can learn about the same features that
one encounters for a Kerr BH. The connection between Kerr and

√
Kerr comes from the

classical double copy [40]. Its quantum counterpart at three points corresponds to the spin-s
AHH amplitudes [24], while at the Compton level the correspondence is expected to be less
immediate for higher-spin cases [46, 70].

Construction of higher-spin gauge-theory Compton amplitudes has seen some recent
activity [47, 53, 56, 59] as a stepping stone for obtaining gravitational amplitudes. While
the gravitational Compton amplitudes can be inferred from general-relativity matching
calculations using black-hole perturbation theory [67], a suitable gauge-theory framework
for

√
Kerr has not been explored. Since it is currently not clear what is the precise physics

that controls the contact ambiguities of the
√

Kerr Compton amplitudes, we explore a range
of possible approaches and constraints in this work. In the forthcoming paper [82], we will
report our detailed findings regarding gravitationally interacting massive higher-spin theories
relevant for Kerr Compton amplitudes.

There are several complementary higher-spin ideas used in the current work: off-shell
higher-spin gauge symmetry, its on-shell version in the form of Ward identities, and the
chiral-field description. A priori, massive fields are non-gauge systems with complicated
second class constraints that are hard to control, and the main idea behind introducing
the gauge description of higher-spin fields is to make the constraints manifest themselves
as gauge invariance, which is conceptually easy to impose, see e.g. refs. [9–11, 77–79] and
the recent ref. [98]. The free Lagrangian L2 is invariant under the linear gauge symmetries
δ0, and the interactions are constructed order by order in fields, starting from the cubic
terms L3 and from the deformations δ1 of the gauge symmetries that are linear in fields.
Importantly, certain constraints on the number of derivatives have to be imposed on the
deformations. An observed guiding principle for targeting

√
Kerr objects, as well as Kerr

BHs, is to look for the interactions with the lowest possible number of derivatives and hence
the best possible high-energy behavior.

Using Ward identities on amputated correlation functions (off-shell amplitudes) has
immediate practical advantages. The deformations δk>1 of the free gauge symmetry δ0 are
not needed explicitly, and the amputated correlation function evaluated on shell directly gives
the amplitude, which is the main objective. In order to constrain the Compton amplitude,
one can solve the reduced Ward identities at the cubic level, i.e. only for the vertices that
actually contribute to the exchange diagram.

A single double-traceless tensor Φµ1...µs , also known as the Fronsdal field [99], is sufficient
for describing a single free massless spin-s field; similarly, there is a part of δ0 which is the
usual massless gauge symmetry. It is then not surprising that, at least at the cubic order, the
leading part of the vertex coincides with the one of a massless spin-s field. For the EM and
gravitational interactions, the simplest vertex is known to have 2s − 1 and 2s − 2 derivatives,
respectively, see e.g. refs. [100–102].29 It would be interesting if there is a more direct relation

29Note that the are also electromagnetic and gravitational vertices with one and two derivatives, respec-
tively [101], whose existence seem to also play a role for massive higher-spin fields.
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to higher-spin gravities (theories with massless higher-spin fields that are governed by infinite-
dimensional gauge symmetries) beyond cubic vertices, which require infinite multiplets of
massless higher-spin fields, e.g. via a higher-spin analog of the Higgs mechanism.

We employed the chiral-field approach for constructing interactions of massive higher-
spin fields, proposed in ref. [72]. The main idea is to rely on field variables Φα1...α2s that
are in (2s, 0) representation of the Lorentz algebra sl(2,C). The central advantage is the
relaxation of the transversality constraint; however, parity invariance is not automatic. At
least for low spins, the chiral fields are directly related to the (spin)-tensor fields via certain
parent actions [85, 86]. There exists other ideas for controlling the degrees of freedom for
massive higher-spin fields, which would be interesting to apply in the future: the covariant
ones [103–106] and the light-cone gauge [13, 102, 107].

Additional assumptions were used to narrow down the
√

Kerr Compton amplitude,
including consistency with previously known patterns. The need for additional constraints
does not immediately imply that the massive higher-spin gauge symmetry is less restrictive.
Indeed, gauge symmetry is a way to construct all consistent interactions, and extra assumptions
related to minimality of interactions is needed in order to land on the correct theory describing
the dynamics of Kerr BHs and

√
Kerr objects. Other compact objects can be modelled by

turning on higher-derivative non-minimal interactions. It would be interesting to see if
the minimality of the interactions imposed at higher orders will automatically fix the free
coefficients at lower orders, starting from the quartic one, see e.g. ref. [54] for an example
of the cubic-quartic interplay. For example, this is what happens in higher-spin gravities:
while consistency at the cubic order leaves infinitely many parameters free, the higher-order
consistency fixes them completely, see e.g. refs. [108–110]. The same effect can be observed
in supergravities, but (gauged) supersymmetry still leaves infinitely many free parameters
to be seen via counterterms. Another interesting direction would be to relate our approach
to recent versions of the worldline formalism with spin [111–116]. For instance, one could
explore realizations of massive gauge symmetry on the worldline, or see if connecting the
two approaches can help nail down the BH amplitudes uniquely.

One effect that has not been considered in the paper at all, but can in principle be
implemented is the spin-changing interactions. Indeed, one can add various vertices of type
s−s′−1 or s−s′−2, for electromagnetic and gravitational interactions, respectively. On the
same footing one can introduce mass-changing interactions. Such interactions have recently
be considered in refs. [58, 81, 117]. Provided both types of interactions are introduced and
the masses are kept discrete (with arbitrarily small gaps), one gets a spectrum that is similar
to string theory, i.e. infinitely degenerate in spin with mass gaps of order α′−1. Therefore,
the complete effective theory of BH dynamics is a string-like theory in 4d, whose spectrum
contains massive higher-spin fields and a graviton. Whether it is valid beyond the EFT
regime can be an interesting question on its own.
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A Variables and conventions

The massive Weyl spinors for particle i = 1, 2 are defined following ref. [46],

|i⟩ = |ia⟩zia , |̄i⟩ = |ia⟩z̄ia ,

|i] = |ia]zia , |̄i] = |ia]z̄ia ,
(A.1)

where the unbarred spinors are incoming, and the barred spinors are outgoing. The za and
z̄a variables are SU(2) little-group spinors, they describe the physical (spin up or down)
wavefunction for a massive particle. The little-group indices are raised and lowered using
the SU(2) Levi-Civita symbol, e.g. za = ϵabzb and za = ϵabz

b, where ϵ12 = ϵ21 = 1. Under
complex conjugation, the variables behave as (za)∗ = z̄a and (za)∗ = −z̄a.

The massive spinors obey the on-shell constraints, i.e. the Dirac equation:

pi · σ|i] = m|i⟩ , pi · σ̄|i⟩ = m|i] . (A.2)

They are normalized as

⟨īi⟩ = [iī] = m|zi|2 , ⟨ii⟩ = [ii] = 0 , (A.3)

and, in general, the spinor brackets are antisymmetric ⟨ij⟩ = −⟨ji⟩, [ij] = −[ji]. The
natural contraction of the SU(2) spinors is

|zi|2 = ziaz̄a
i = zi1z̄i2 − zi2z̄i1 , (A.4)

and we often assume the constraint |zi|2 = 1 to have properly normalized wavefunctions.
Note that the wavefunctions can also be defined projectively as “rays”, in which case |z|2 ̸= 1
but the overall scale is irrelevant. With either the constraint or the projective interpretation,
the za coordinates parametrize the 3-sphere (SU(2) group manifold).

Having introduced the massive spinor-helicity variables, we can now construct massive
polarization vectors for particles 1 and 2 out of their massive spinors,

εµ
1 = ⟨1|σµ|1]√

2m
, εµ

2 = ⟨2|σµ|2]√
2m

, (A.5)

such that they are null, ε2
i = 0, and satisfy transversality pi · εi = 0. The individual little-

group components can be extracted by taking derivatives with respect to the wavefunctions
za

i , see ref. [46] for more details.
We will consider Compton scattering in an all-incoming convention. The incoming massive√

Kerr object (with momentum p1 and spin s) and massless plane wave (with momentum
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p3 and helicity h3) scatter and produce outgoing
√

Kerr object (−p2 and s) and massless
plane-wave (−p4 and helicity −h4), where

p1 + p2 + p3 + p4 = 0 , p2
1 = p2

2 = m2 , p2
3 = p2

4 = 0 . (A.6)

For convenience, we also make use of the following independent momenta

p = p1 , q = p3 + p4 , q⊥ = p4 − p3 , (A.7)

which satisfy

p2 = m2 , q2
⊥ = 2p · q = −q2 , q⊥ · q = 0 . (A.8)

For the opposite-helicity configuration h3 = −1, h4 = 1, we choose the massless polarization
vectors as

ε−µ
3 = ⟨3|σµ|4]√

2[34]
, ε+µ

4 = ⟨3|σµ|4]√
2⟨34⟩

, (A.9)

which corresponds to picking the gauge where p4 · ε−3 = 0 = p3 · ε+
4 , although all the

amplitudes written are gauge-invariant. We can thus encode the helicity information in a
complex vector χµ := ⟨3|σµ|4].

Vector variables. Note that for the opposite-helicity Compton amplitude one can trade all
spinorial variables for the following (over-)complete basis of six vector variables

pµ , qµ , qµ
⊥ , χµ , ρµ , ρ̄µ , (A.10)

defined in eqs. (6.1) and (6.27). Any quantum opposite-helicity Compton amplitude must
be built out of Lorentz invariants formed by these six vectors. There are at most nine
independent such dot products:

p · q⊥ , q2 , p · χ ,

p · ρ , ρ · q⊥ , ρ · χ , (A.11)
p · ρ̄ , ρ̄ · q⊥ , ρ̄ · χ .

The simple linear relations that eliminate the remaining dot products are

p2 = m2 , q2
⊥ = −q2 , p · q = −1

2q2 ,

ρ̄2 = −ρ2 , p · ρ̄ = −1
2q · ρ̄ ,

q · q⊥ = q · ρ = q · χ = q⊥ · χ = ρ · ρ̄ = χ2 = 0 ,

(A.12)

as well as the simple quadratic relation

ρ2 = (p · ρ)2 − (p · ρ̄)2

m2 . (A.13)
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There are further more complicated non-linear relations, most of which follow from Gram
determinant relations, since the six vectors span an overcomplete basis in four dimensions.
The following quadratic identity, in principle, allows to eliminate the spinless variable p · χ:

p · χ = 2p · ρ ρ · χ − ρ̄ · q⊥ρ · χ + ρ · q⊥ ρ̄ · χ

2ρ2 . (A.14)

However, since it comes at the expense of a spurious non-locality, this relation must be
used with some care. Likewise, the Mandelstam variables q2 and p · q⊥ can be eliminated
at the expense of spurious non-localities:

q2 = 1
m2

4
(
ρ · p p · χ − m2ρ · χ

)2 − (p · χ)2(q · ρ̄)2

(ρ · χ)2 − (ρ̄ · χ)2 ,

(p · q⊥)2 =
−4p · χ q⊥ · ρ

(
p · χ q⊥ · ρ − 2p · q⊥ ρ · χ

)
+ q4(ρ̄ · χ)2

4(ρ · χ)2 .

(A.15)

In principle, we could also consider Levi-Civita terms built out of the six vectors, however,
they all reduce to combinations of the nine dot products (A.11). This can be deduced from
the three dualization identities

iϵµνρσqρχσ = qµ
⊥χν − qν

⊥χµ ,

iϵµνρσq⊥ρχσ = qµχν − qνχµ ,

iϵµνρσp1νρρρ̄σ = ρ̄µ (p1 · ρ̄) − ρµ (p1 · ρ) + pµ
1 ρ2.

(A.16)

Let us check that one can re-express the spinorial Compton variables into the above
vector variables; we have the helicity-independent variables

W+ = m

2 (⟨12⟩ + [12]) = −p · ρ ,

W− = m

2 (⟨12⟩ − [12]) = p · ρ̄ ,

U = 1
2
(
⟨1|4|2] − ⟨2|4|1]

)
− m[12] = p · ρ + 1

2 ρ̄ · q⊥ ,

V = 1
2
(
⟨1|4|2] + ⟨2|4|1]

)
= 1

2ρ · q⊥ .

(A.17)

Compton building blocks. For the matrix elements considered in eq. (4.25), we have
the following expressions:

⟨Φ|F1|Φ⟩
∣∣s=0
(2,3−,4+,1) = ⟨3|1|4]2 = (p · χ)2 ,

⟨Φ|F2|Φ⟩
∣∣s=1/2
(2,3−,4+,1) = 1

2⟨3|1|4]
(
⟨23⟩[41] + [24]⟨31⟩

)
= 1

2(p · χ)(ρ · χ) ,

⟨Φ|F3|Φ⟩
∣∣s=1/2
(2,3−,4+,1) = 1

2⟨3|1|4]
(
⟨23⟩[41] − [24]⟨31⟩

)
= −1

2(p · χ)(ρ̄ · χ) ,

⟨Φ|F4|Φ⟩
∣∣|s=1

(2,3−,4+,1) = 1
2
(
⟨23⟩2[41]2 − [24]2⟨31⟩2) = −1

2(ρ · χ)(ρ̄ · χ) ,

⟨Φ|F5|Φ⟩
∣∣s=1
(2,3−,4+,1) = 1

2
(
⟨23⟩2[41]2 + [24]2⟨31⟩2) = 1

4
(
(ρ · χ)2+ (ρ̄ · χ)2) ,

⟨Φ|F6|Φ⟩
∣∣s=1
(2,3−,4+,1) = 1

2⟨23⟩⟨31⟩[24][41] = 1
8
(
(ρ · χ)2− (ρ̄ · χ)2) .

(A.18)
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k\s 0 1
2 1 3

2 2 5
2 3 7

2 4

0 1 6 20 46 87 146 226 330 461
1 2 10 28 58 102 162 240 338 458
2 3 14 37 74 127 198 289 402 539
3 4 18 46 90 152 234 338 466 620
4 5 22 55 106 177 270 387 530 701

Table 6. The number of independent four-point operators for the opposite-helicity Compton amplitude.
The operators are classified by spin s and the power k of Mandelstam variables. The C, P and T

symmetries are not yet imposed, which would reduce the counts.

s 0 1
2 1 3

2 2 5
2 3 7

2 4

0 0 3 12 30 60 105 168 252

Table 7. Counting independent operators for the interesting case where the two Mandelstam variables
as well as χ · p are absent. These are given by the tetrahedral numbers (2s − 1)2s(2s + 1)/6 times a
factor of 3, because of the three possible quadratic monomials of ρ · χ, ρ̄ · χ.

Using the above vector variables, together with the linear and non-linear constraints, one
can build up independent matrix elements for the Compton contact terms, which are in one-to-
one correspondence with independent local operators. We find that the number of independent
four-point operators for the opposite-helicity Compton amplitude are given by the formula

Ns,k = (2s + 1)(4s2 + 2s + 1)(k + 1) − NGD
s,k , (A.19)

where k is the power of the Mandelstam variables ∼ Di · Dj (where no chiral indices are
contracted with the fields).

The function NGD
s,k is the subtraction needed from the naive count, and it is due to Gram

determinant relations as well as the non-linear constraint eq. (A.14),

NGD
s,k =

{
s(2s − 1)2 , k = 0

2
3s(2s − 1)(4s − 1) + 4ks2(2s + 1) , k > 0

}
(A.20)

and we use the rule that Mandelstam variables are reduced to the lowest power possible using
the Gram-determinant relations. Note that these operators are counted without imposing any
crossing or CPT symmetries, and thus they include abelian, non-abelian and non-hermitian
terms (dissipative). See tables 6 and 7 for the explicit counts at low spin s and low powers
k of Mandelstam-variable factors.

Under the two Z2 symmetries (combinations of crossing symmetry and complex conjuga-
tion, as in the parity constraint (4.21)) of the amplitude, these variables transform as

1 ↔ 2 :

 U → −U , V → V , W± → −W± ,

p · χ → −p · χ , ρ · χ → ρ · χ , ρ̄ · χ → −ρ̄ · χ ,
(A.21a)
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3 ↔ 4 + c.c. :

 U → U , V → −V , W± → ±W± ,

p · χ → −p · χ , ρ · χ → −ρ · χ , ρ̄ · χ → ρ̄ · χ .
(A.21b)

The polynomials P
(k)
2 and P

(k)
4 are invariant under the latter symmetry, while they pick up a

factor of (−1)k+1 under the former. For bosonic states Φs, the Compton amplitude is invariant
under both symmetries, and for fermionic states it is odd under the first symmetry and even
under the second. In terms of our polynomials, this translates to {P

(k=odd)
2 , UP

(k=even)
2 }

depending only on powers of {U2, V 2}, and likewise {P
(s=integer)
4 , UP

(s=half-integer)
4 } depending

only on powers of {U2, V 2, W 2
±, UW+}, since these variable combinations are invariant under

the symmetries.

B Chiral contact-term freedom

Here we present a way to classify the terms that can be freely added to the basic chiral-field
Lagrangian ⟨DµΦ|DµΦ⟩ − m2⟨Φ|Φ⟩. As we have seen in section 4.2, such non-minimal terms
are required to restore parity. Moreover, they are needed to describe compact objects that
are more complicated than black holes.

By definition, the set of non-trivial contact terms is the quotient by field redefinitions
of all possible contact terms that do not vanish on shell. In practice, one often wishes to
impose certain (anti)-symmetry with respect to the exchange of the massive legs due to
the reality condition (4.9), but let us not take it into account for the moment. In order to
write down the on-shell non-trivial terms, we need to know the on-shell jet space (in the
mathematical sense) of the gauge fields and the chiral massive fields. The former amount to
the gluon’s (anti)-self-dual field strengths F αβ

− and F α̇β̇
+ . It is quite easy to show that all of

their derivatives that are distinct on shell can be parametrized by

F α(n+2),β̇(n) := Dαβ̇ · · ·Dαβ̇F αα
− , F α(n),β̇(n+2) := Dαβ̇ · · ·Dαβ̇F β̇β̇

+ , n ≥ 0 , (B.1)

where all like indices are understood as symmetrized. Meanwhile, the on-shell derivatives of
the massive field are in one-to-one correspondence with the following set of spin-tensors:

Φα(2s−2k+n),β̇(n) := Dα(n−k)γ(k)β̇(n)Φα(2s−k)
γ(k) , n ≥ 0 , 0 ≤ k ≤ n . (B.2)

Any contact term is a linear combination of singlets in the tensor product of the appropriate
number of the above spin-tensors. Total derivatives can be modded out by requiring one
external leg not to have derivatives.

Let us denote the irreducible representation corresponding to a symmetric spin-tensor
T α(m),β̇(n) as (m, n) and discuss the relevant lower-point vertices. For instance, the set of
three-point operators of the type (D . . . DΦ)⋆(D . . . DΦ)F+ is spanned by singlets in

(2s − 2k + n, n) ⊗ (2s − 2k′ + n′, n′) ⊗ (0, 2) . (B.3)

Since all undotted indices must be contracted between the first and the second entry, we have
2s − 2k + n = 2s − 2k′ + n′. The two dotted indices of the third (field-strength) entry, on
the other hand, may be contracted either with both (matter) entries or with one of them.
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This means that either n = n′ or n = n′ ± 2, and hence k = k′ or k = k′ ± 1, respectively.
Note that the AHH amplitudes (4.15) did not require us to introduce any operators of this
kind. Instead, the actual 2s three-point operators in the Lagrangian (4.10) belong to the
type (D . . . DΦ)⋆(D . . . DΦ)F−, for which we consider

(2s − 2k + n, n) ⊗ (2s − 2k′ + n′, n′) ⊗ (2, 0) . (B.4)

The singlets require n = n′, therefore k = k′ or k = k′ ± 1, where only the first option is
realized in eq. (4.10). Moreover, only the k = n operators were shown to contribute, i.e.
for each dotted derivative index of (D . . . DΦ) one undotted index is contracted between a
derivative and Φ. This is clearly a small subspace of possible cubic vertices.

More generally, we know from purely on-shell considerations [24] that there are 2s

independent three-point couplings contributing to the minus-helicity amplitude (excluding
the covariant-derivative coupling constant). On the other hand, if we assume the maximum
number of derivatives is 2(2s − 1), as suggested by the cubic Lagrangian (4.10), we observe
s(6s − 1) off-shell operators of the type (D . . . DΦ)⋆(D . . . DΦ)F−. This overcounting can be
explained by the possibility to generate trivial interactions via field redefinitions Φ → Φ +
(D . . . DF−)(D . . . DΦ), which we have not tried to rule out here. In other words, the present
analysis gives us a significantly overcomplete set of off-shell operators. At each multiplicity n,
however, we may make a suitable choice, such as the three-point action (4.10), which will
automatically include certain higher-order contributions, but the same analysis at the next
order will once again give us access to the entire space of (n + 1)-point couplings.

At the quartic level, there are three types of contact terms that are given by the singlets
in the following tensor products:

(2s − 2k + n, n) ⊗ (2s − 2k′ + n′, n′) ⊗ (m + 2, m) ⊗ (2, 0) (B.5)

for terms of the type (D . . . DΦ)⋆(D . . . DΦ)(D . . . DF−)F−,

(2s − 2k + n, n) ⊗ (2s − 2k′ + n′, n′) ⊗ (m + 2, m) ⊗ (0, 2) (B.6)

for (D . . . DΦ)⋆(D . . . DΦ)(D . . . DF−)F+, and finally

(2s − 2k + n, n) ⊗ (2s − 2k′ + n′, n′) ⊗ (m, m + 2) ⊗ (0, 2) (B.7)

(D . . . DΦ)⋆(D . . . DΦ)(D . . . DF+)F+.
The cubic Lagrangian (4.10) suggests that only a limited number of possible contact

terms should be relevant if we are interested in modeling black holes, for which a certain
minimality concept is believed to exist. In particular, [72] explains that no terms of the third
type (D . . . DΦ)⋆(D . . . DΦ)(D . . . DF+)F+ are needed at all. In fact, the spin-1 action (4.5a)
contains only certain terms of the first type (D . . . DΦ)⋆(D . . . DΦ)(D . . . DF−)F− and none
of the second type (D . . . DΦ)⋆(D . . . DΦ)(D . . . DF−)F+. More generally, we need terms of
the first type to restore parity and cannot entirely rule out the terms of the second type.

Let us illustrate this general method on a few lower-spin cases. To bound this problem,
we need to formulate a power-counting assumption applicable in the chiral-field formalism.
Note that we cannot use our intuition from the non-chiral actions, as even the three-
point assumption (PC) of having at most 2s−1 derivatives is explicitly violated by the
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s 0 1/2 1 3/2 2 5/2 3
count 0 0 0 15 84 279 714

Table 8. Number of singlets in the four-point chiral operator product space (B.6).

cubic chiral Lagrangian (4.10), which contains 4s−1 derivatives, including those in the field
strength. Taking this 4s−1 counting as a given, we can minimally extend it to four points
by assuming that

(PC3) the number of derivatives in higher-point vertices contributing to an amplitude should
not exceed the momentum counting of the cubic diagrams in this amplitude.

This assumption is consistent with the all-plus amplitudes, such as (4.17a), that follow
strictly from the minimal-coupling part of the Lagrangian (4.10) and thus require that all
additional terms involve at least one F−. For instance, the cubic vertex for positive helicity
has 1 derivative, so the cubic diagrams contributing to A(1s, 2̄s, 3+, 4+) have 1 + 1 − 2 = 0
derivatives, if we take into account −2 derivatives from the propagator. Since we insist that
all higher-point vertices depend on the four-potential Aµ through the field-strength, such
a counting forbids any vertices that only involve F +.

Applying this to the opposite-helicity case, we observe that A(1s, 2̄s, 3−, 4+) contains only
up to 1 + (4s − 1) − 2 = 4s − 2 derivatives, judging by the trivalent diagrams. Since two
derivatives are contained within the two corresponding field strengths F− and F +, there are
a maximum of n + n′ + m = 4s − 4 derivatives that need to be addressed when classifying
singlets in the tensor-product space (B.6). The counts produced by our code are given in
table 8. As explained above, these counts only give an upper bound for the number of
independent operators under the described assumptions.

C Details on factorization poles

In this appendix, we give some useful formulae for checking the factorization channels of the√
Kerr Compton amplitudes, both in the quantum and classical cases.

First we note that the residues of the physical poles in the abelian Compton amplitude (5.2)
can be shown to match those of the corresponding AHH amplitude [24],

(⟨3|1|4]2(U + V )2s

m4st13t14
− ⟨13⟩⟨3|1|4][42]

m4st13
P

(2s)
2

)∣∣∣∣
poles

=
(
⟨13⟩[42] + ⟨23⟩[41]

)2s

t13t14⟨3|1|4]2s−2

∣∣∣∣
poles

, (C.1)

where the two massive poles are located at t13 = (p1 + p3)2 − m2 = 0 and at t14 = (p1 +
p4)2 − m2 = 0. While the AHH amplitude on the right-hand side also contains so-called
spurious poles, ⟨3|1|4] = 0, the left-hand side is manifestly free of them. The absence of
spurious poles is, of course, a consequence of working with amplitudes that originate from
a local Lagrangian (5.1).

Note that there is an obvious asymmetry between the appearance of the two denominators,
t13 versus t14, on the left-hand-side of eq. (C.1), but not on the right-hand side. However,
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this is an artifact of our chosen compact presentation of the amplitude (5.2). The following
non-trivial identity holds for generic kinematics and spin:

⟨3|1|4]2(U + V )2s

m4st13t14
− ⟨13⟩⟨3|1|4][42]

m4st13
P

(2s)
2 = ⟨3|1|4]2(U − V )2s

m4st13t14
− ⟨23⟩⟨3|1|4][41]

m4st14
P

(2s)
2 . (C.2)

Thus, in principle, one could average over these two presentations of the pole terms, and
obtain a manifestly symmetric presentation, at the price of a slightly longer formula.

For the non-abelian color-ordered amplitude (5.11), the physical pole structure again
match those of the corresponding AHH amplitude [24],[⟨3|1|4]2(U + V )2s

m4ss12t14
− ⟨13⟩⟨3|1|4][42]

m4ss12
P

(2s)
2 + ⟨13⟩⟨32⟩[14][42]

m4ss12
t13P

(2s−1)
2 (C.3)

− ⟨13⟩⟨32⟩[14][42]
m4s−2s12

(
t13⟨12⟩[12]P (2s−1)

4 + 2V P
(2s)
4

)]∣∣∣∣
poles

=
(
⟨13⟩[42] + ⟨23⟩[41]

)2s

s12t14⟨3|1|4]2s−2

∣∣∣∣
poles

,

where the t14 = 0 residue matching follows from the abelian case (C.1), but the s12 = 0
residue matching is more non-trivial as it requires several many terms.

It is interesting to also exhibit the factorization properties of the classical all-spin
Compton amplitude (6.62). On the massless factorization pole, s12 = q2 = 0, the classical
Gram determinant (6.8) reduces to

0 = (w − x − y)(w − x + y) , (C.4)

where the two solutions correspond to the two choices of helicity for the propagating gluon.
On the massless pole, the only surviving term in the classical amplitude (6.62) comes from
the interplay between the functions E and Ẽ,

w2−z2

2
(
E(x, y, z) + iϵ(q⊥, p, q, a)

p · q⊥
Ẽ(x, y, z)

)
−−−→
q2→0

w2−z2

2
(
E(x, y, z) + (w−x)Ẽ(x, y, z)

)
= x2 − y2 − z2

2
(
E(x, y, z) ± yẼ(x, y, z)

)
= e±y + O(ex+z, ex−z) , (C.5)

where the terms proportional to O(ex+z, ex−z) cancel against the first two terms in eq. (6.62).
The remaining exponential factor corresponds to the product of the classical three point
amplitudes, e±y = e±p3·a × e±p4·a.

On the massive pole t14 = 0, the kinematics enforces all momentum dot products to
be at least of order O(ℏ2):

p1 · p3 + p1 · p4 + p3 · p4 = 0 ⇒ p1 · p3 = −1
2q2 = O(ℏ2) . (C.6)

Therefore, we should take w, z → 0 and p · q⊥ = 1
2q2, such that the classical amplitude (6.62)

on the factorization pole simplifies to

t14A(1, 2, 3−, 4+)
∣∣
t14→0 = −2g2 (p · χ)2

q2 ex
(
[T c3 , T c4 ] + {T c3 , T c4}

)
= 2g2(p · ε−3 )(p · ε+

4 )exT c3T c4 .

(C.7)

This is once again the expected product of three-point amplitudes ex = ep4·a × e−p3·a, where
the mismatch in the frame choice of aµ is thus shown to be irrelevant.
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