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Exact behavior of the critical Kauffman model with connectivity one1
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The critical Kauffman model with connectivity one is the simplest class of critical Boolean networks.
Nevertheless, it exhibits intricate behavior at the boundary of order and chaos. We show that the model is
equivalent to a deceptively simple algebraic system of polynomials which count the number and length of cycles.
The polynomial for multiple loops is the product of the polynomials for individual loops. Using this perspective,
we prove that the number of cycles scales as 2m, where m is the number of nodes in loops—as fast as possible
and faster than previously believed.
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I. INTRODUCTION13

Exactly solvable models play a special role in physics, for14

several reasons. First, they are archetypal, in that they capture15

the important behavior of a broad class of systems. Second,16

stripped of extraneous detail, they are amenable to analytic17

solutions, allowing us to peer under the hood and see what’s18

driving the behavior. Third, they suggest lines of attack for19

more realistic models that cannot be solved exactly. Fourth,20

they are a gift that keeps on giving: new approaches to solving21

them reveal additional structure and insights.22

One such model is the critical Kauffman model with con-23

nectivity one [1,2]. It is the simplest class of Boolean networks24

at the boundary of order and chaos, at which many biological25

systems seem poised. But before we describe it, let’s summa-26

rize the general Kauffman model.27

Introduced as a simple model of genetic computation [3,4],28

the Kauffman model is a Boolean network in which there are29

N nodes and each node has exactly K inputs, randomly chosen30

from the N nodes. Each node is permanently assigned one of31

the 22K
possible Boolean functions on K inputs. Then, starting32

from some initial configuration of 0 s and 1s, at each time step33

the state of the network is simultaneously updated according34

to the Boolean functions at the nodes. Because the number of35

configurations is finite, the network eventually enters into a36

repeating set of states, or a cycle.37

Depending on the choice of K and the Boolean functions,38

the behavior of a Kauffman model falls into two regimes.39

In the frozen regime, perturbations die out, and the cycle40

lengths do not grow with system size. In the chaotic regime,41

perturbations grow exponentially, and the cycle lengths grow42

with system size. These regimes are separated by a critical43

boundary, in which a perturbation to one node propagates to,44

on average, one other node. This boundary is of particular45
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interest because of the celebrated and controversial hypothesis 46

that life operates at the edge of order and chaos [5,6]. If the 47

Boolean functions are uniformly drawn from those that are 48

possible, then K = 2 alone gives criticality; lower K leads to 49

freezing and higher K to chaos. 50

In a series of advances, researchers honed in on how the 51

number of attractors in the critical regime grows with network 52

size N . The growth rate was first thought to be
√

N [4], then 53

linear in N [7], faster than linear [8], a stretched exponential 54

[9,10], and faster than any power law [11]. But a definitive 55

answer has remained elusive. 56

Reducing K = 2 to K = 1 drastically simplifies the Kauff- 57

man model, so much so that the model might seem trivial. 58

The network is composed of loops and trees branching off of 59

loops, as shown in Fig. 1 top. Because the nodes in the trees 60

are enslaved by the loops, they do not contribute to the number 61

or length of cycles, which are set by the m nodes in loops. 62

Each node can have one of four Boolean functions: on, off, 63

copy, and invert. But the critical version of the model requires 64

that the functions be copy or invert, because just one on or off 65

in a loop freezes it, rendering it irrelevant [2,12]. 66

Despite its simplicity, the K = 1 critical Kauffman model 67

exhibits startlingly rich and subtle behavior. An exact solution 68

was first laid out in an incisive paper by Flyvbjerg and Kjaer 69

[1]. Later, Drossel, Mihaljev and Greil [2] obtained a more 70

complete, if tersely presented, understanding of the critical 71

behavior by generating networks through a growth process. 72

In this paper we take a new tack, translating the problem into 73

a purely algebraic system. Doing so reveals new quantitative 74

insights and offers a fresh perspective for further research. 75

This paper is organized as follows. In part 2, we introduce 76

an expression for the number and length of cycles for a single 77

loop, which we call a primitive cycle polynomial. In part 3, 78

we show that the cycle polynomial for multiple loops can 79

be obtained by taking the appropriate product of primitive 80

cycle polynomials. We deduce some useful properties of cycle 81

polynomials in part 4, and in part 5 we calculate the number 82

of cycles for multiple loops by summing the cycle polynomial 83

coefficients. In part 6, we prove that the number of cycles 84

scales as 2m to first order in m. This is the first proof that 85
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FIG. 1. A Kauffman network and its cycles. (Top) This typical
Kauffman network with connectivity one has N = 50 nodes and m =
10 nodes in loops: a 2-loop, a 3-loop, and a 5-loop. Only the nodes
in loops contribute to the cycles. (Bottom) When all of the Boolean
functions are copy, the 210 states form 8 cycles of length 1, 4 cycles
of length 2, and so on, up to 12 cycles of length 30. We denote this
by the cycle polynomial: D2D3D5 = 8x + 4x2 + 8x3 + 24x5 + 4x6 +
12x10 + 24x15 + 12x30, where D2, D3, and D5 are given in Table I.

the number of cycles grows as fast as possible with m. We86

discuss our two main take-home messages in part 7, where we87

also compare our scaling result with the best known bounds88

of 20.5m and 20.47m [1,2].89

While this paper was under review, we were able to trans-90

late the growth rate of the number of cycles from a function91

of loop nodes m to network nodes N . This gives a long-sought92

answer to how the number of cycles depends on network size,93

and was reported in late 2023 [13].94

II. SINGLE LOOP95

We start with a single loop of length l . There are 2l ways96

of assigning copy and invert to the l nodes, but these lead to97

just two behaviors [2,12]. If the number of inverts is even, the98

number and length of cycles is identical to all of them being99

copy; this is called an even loop. If the number of inverts is100

odd, the number and length of cycles is identical to all of them101

being copy apart from one invert; this is called an odd loop.102

To be clear, even and odd refers to the parity of the number of103

inverts, and not the loop size itself.104

We can express the number and length of cycles of even 105

and odd loops in terms of the well-known sequences 106

a(k) = 1

k

∑
j|k

μ( j)2k/ j and b(k) = 1

2k

∑
odd j|k

μ( j)2k/ j, (1)

where μ is the Möbius function and the first sum is over all 107

j that divide k and the second is over all odd j that divide 108

k. These are described in OEIS A001037 and A000048 [14]. 109

The a(k) are the number of binary Lyndon words of length k, 110

that is, the number of circular binary strings inequivalent up to 111

rotation and not having a period smaller than k. For example, 112

the six Lyndon words of length five are 00001, 00011, 00101, 113

00111, 01011, and 01111. The b(k) are the number of such 114

Lyndon words with an odd number of ones—or, equivalently, 115

when 0 and 1 can be interchanged. 116

An even l-loop, indicated by {l}, has cycles of length k 117

if and only if k divides l; there are a(k) of them. An odd l- 118

loop, indicated by {l}, has cycles of length 2k if and only if 119

k divides l and l/k is odd; there are b(k) of them. Let Axν
120

denote A cycles of length ν. Then we can represent the number 121

and length of cycles in a given loop by the cycle polynomials, 122

which we introduce here: 123

Dl (x) =
∑
k|l

a(k)xk and Dl (x) =
∑

k|l, l/k odd

b(k)x2k

(we dropped the braces around l and l in Dl and Dl for 124

convenience). The first eight Dl and Dl are shown in the left of 125

Table I. We call these primitive cycle polynomials, because, as 126

we shall see, all other cycle polynomials are built out of them, 127

like how the composite numbers are built out of the primes. 128

We note in passing that, since all 2l states of the loop 129

belong to cycles, 130

∑
k|l

ka(k) = 2l and
∑

k|l, l/k odd

2kb(k) = 2l .

For example, in D6, 1 · 2 + 2 · 1 + 3 · 2 + 6 · 9 = 26. 131

We can get some intuition for Eq. (1) by observing that it 132

relies on an inclusion-exclusion argument. Consider an even 133

loop of size 6. The number of cycles of length 6 is (26 − 23 − 134

22 + 2)/6 = 9. The first term is the number of binary strings 135

of length 6, while the second and third subtract off strings 136

with period 3 and 2. The last term adds back on strings with 137

period 1 that had been doubly subtracted. Finally, the total 138

is divided by 6 to account for rotations around the loop. The 139

Möbius function μ tracks how many times a divisor has been 140

counted: μ( j) = 0 if j has any repeated prime factors and 141

μ( j) = (−1)i if j is the product of i distinct primes. 142

III. MULTIPLE LOOPS 143

Multiple loops can give rise to more complex behavior, 144

where the cycle lengths of the set of loops are the least com- 145

mon multiples of the cycle lengths of individual loops. As an 146

example, Fig. 1 shows the cycles resulting from a network 147

containing a 2-loop, a 3-loop, and a 5-loop. 148

The cycle polynomial for multiple loops can be deduced 149

from the cycle polynomials for individual loops by defining 150

an appropriate product—not the familiar one—between the 151

polynomials. The key observation is that, given A cycles of 152
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TABLE I. Cycle polynomials for single loops and loops of the same size. The primitive cycle polynomial Dl (x) indicates the number and
length of cycles in a loop of size l . For example, D3(x) = 2x + 2x3 reads as two cycles of length one and two cycles of length three. An even
parity loop of size l has a(k) cycles of length k if k divides l . An odd parity loop of size l has b(k) cycles of length 2k if k divides l and l/k is
odd. The cycle polynomial for two loops is given by the product of the individual primitive cycle polynomials, where the product is defined by
Eq. (2). Note in particular that Dl (x)Dl (x) = Dl (x)Dl (x).

Even loop Odd loop Two even loops Two odd loops

D1 = 2x D1 = x2 D1D1 = 4x D1 D1 = 2x2

D2 = 2x + x2 D2 = x4 D2D2 = 4x + 6x2 D2 D2 = 4x4

D3 = 2x + 2x3 D3 = x2 + x6 D3D3 = 4x + 20x3 D3 D3 = 2x2 + 10x6

D4 = 2x + x2 + 3x4 D4 = 2x8 D4D4 = 4x + 6x2 + 60x4 D4 D4 = 32x8

D5 = 2x + 6x5 D5 = x2 + 3x10 D5D5 = 4x + 204x5 D5 D5 = 2x2 + 102x10

D6 = 2x + x2 + 2x3 + 9x6 D6 = x4 + 5x12 D6D6 = 4x + 6x2 + 20x3 + 670x6 D6 D6 = 4x4 + 340x12

D7 = 2x + 18x7 D7 = x2 + 9x14 D7D7 = 4x + 2340x7 D7 D7 = 2x2 + 1170x14

D8 = 2x + x2 + 3x4 + 30x8 D8 = 16x16 D8D8 = 4x + 6x2 + 60x4 + 8160x8 D8 D8 = 4096x16

length ν and B cycles of length ξ , their product is153

Axν · Bxξ = AB gcd(ν, ξ )xlcm(ν,ξ ).

Then the product between two cycle polynomials is154

∑
i

Aix
νi ·

∑
j

B jx
ξ j =

∑
i, j

AiB jgcd(νi, ξ j )x
lcm(νi,ξ j ). (2)

For example, the cycle polynomial for two odd 3-loops is155

D2
3
(x) = (x2 + x6)(x2 + x6)

= 2x2 + 2x6 + 2x6 + 6x6

= 2x2 + 10x6.

The cycle polynomial in Fig. 1 is156

D2(x)D3(x)D5(x) = (2x + x2)(2x + 2x3)(2x + 6x5)

= 8x + 4x2 + 8x3 + 24x5 + 4x6 + 12x10 + 24x15 + 12x30.

More examples of cycle polynomials for multiple loops are157

given in Table I and Table II.158

IV. PROPERTIES OF CYCLE POLYNOMIALS159

The cycle polynomials satisfy two properties that will160

prove useful. Both involve n loops of the same size l , which161

we call a cluster of l-loops.162

The first property is that, in a cluster, odd parity loops are163

contagious. Consider a cluster with p � 0 even parity loops164

and q = n − p � 0 odd parity loops, which we denote by165

{l p, l
q}. If all the loops in the cluster are even, we call it 166

an even cluster. If one or more loops is odd, then the cycle 167

polynomial is the same as if all loops were odd, and we call it 168

an odd cluster. Specifically, for q � 1, 169

Dp
l (x)Dq

l
(x) = Dp+q

l
(x). (3)

For example, with p = q = 1, 170

D4D4 = (2x + x2 + 3x4)(2x8) D4D4 = (2x8)(2x8)

= 4x8 + 4x8 + 24x8 = 32x8

= 32x8.

This contagion property can be seen as follows. Consider the 171

n loops as concentric circles, and let ui
j be the value of the jth 172

node in loop i. Let α j be the values of a radial cut through the 173

circles: α j = u1
j , . . . , un

j . Assume all n loops are even, with 174

no inverts. Then α j is just copied around the loops of the 175

same size. Now assume all loops are even except the first, 176

with a single invert. A first pass around the loops maps all 177

the α j to u1
j , . . . , un

j (here u means not u), which on a second 178

pass is mapped back to α j . Similar arguments apply for any 179

combination of the loops in which one or more of the loops 180

are odd. 181

The second property of cycle polynomials is that there is 182

a shortcut for computing the cycle polynomial for a cluster 183

of n loops of the same size. Instead of multiplying out the n 184

polynomials explicitly, we can write the cycle polynomial for 185

TABLE II. Cycle polynomials for loops of different sizes. Here we show the cycle polynomials for multiple loops of different sizes. They
are computed using the product formula in Eq. (2). The cycle polynomials for individual loops, which we call primitive cycle polynomials, are
given in Table I. Note that Dl1 Dl2

and Dl1
Dl2 are not in general the same.

Two even loops Even and odd loops Odd and even loops Two odd loops

D1D2 = 4x + 2x2 D1D2 = 2x4 D1D2 = 4x2 D1D2 = 2x4

D1D3 = 4x + 4x3 D1D3 = 2x2 + 2x6 D1D3 = 2x2 + 2x6 D1D3 = 2x2 + 2x6

D2D3 = 4x + 2x2 + 4x3 + 2x6 D2D3 = 4x2 + 4x6 D2D3 = 2x4 + 2x12 D2D3 = 2x4 + 2x12

D1D4 = 4x + 2x2 + 6x4 D1D4 = 4x8 D1D4 = 4x2 + 6x4 D1D4 = 4x8

D2D4 = 4x + 6x2 + 12x4 D2D4 = 8x8 D2D4 = 16x4 D2D4 = 8x8

D3D4 = 4x + 2x2 + 4x3 + 6x4 + 2x6 + 6x12 D3D4 = 4x8 + 4x24 D3D4 = 4x2 + 6x4 + 4x6 + 6x12 D3D4 = 4x8 + 4x24
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even and odd clusters as186

Dn
l (x) =

∑
k|l

an(k)xk and Dn
l
(x) =

∑
k|l, l/k odd

bn(k)x2k,

where187

an(k) = 1

k

∑
j|k

μ( j)2nk/ j and bn(k) = 1

2k

∑
odd j|k

μ( j)2nk/ j .

Examples are given in the right half of Table I.188

This property can be seen as follows. Again consider the189

n loops as concentric circles. Since α j is in one of 2n states,190

we can think of the cluster of loops as a single loop in which191

each node can take 2n states. The an(k) are the number of192

2n-ary Lyndon words of length k, and the bn(k) are the number193

of such words when each color can be interchanged with a194

unique other color. The sequences a2 and a3 are described in195

OEIS A027377 and A027380 [14].196

V. NUMBER OF CYCLES197

The cycle polynomial for a set of loops contains the num-198

ber and length of cycles generated by the loops. In particular,199

we can extract the number of cycles by evaluating the poly-200

nomial at x = 1, which just sums the coefficients. Consider201

a collection of loops in which there are s loop sizes and202

therefore s clusters. For a given cluster, there are ni loops of203

size li, of which pi are even and qi = ni − pi are odd. The204

number of cycles c is205

c
(
l p1
1 , l

q1

1 . . . l ps
s , l

qs

s

) =
(

Dp1

l1
Dq1

l1
. . . Dps

ls
Dqs

ls

)∣∣∣
x=1

.

Consider two cycle polynomials206

E =
∑

i

Aix
νi and F =

∑
j

B jx
ξ j .

From our product formula in Eq. (2),207

(EF )
∣∣
x=1 =

∑
i, j

AiB jgcd(νi, ξ j )

�
∑
i, j

AiB j

= E |x=1 F |x=1.

Thus we see that the number of cycles is superadditive:208

c
(
l p1
1 , l

q1

1 . . . l ps
s , l

qs

s

)
� c(l p1

1 )c
(
l

q1

1

)
. . . c

(
l ps
s

)
c
(
l

qs

s

)
. (4)

For odd clusters, all cycle lengths are even. Since gcd(i j, ik)209

= i gcd( j, k),210

c
(
l

q1

1 . . . l
qs

s

)
� 2s−1c

(
l

q1

1

)
. . . c

(
l

qs

s

)
. (5)

Focusing on a single loop,211

c(l ) =
∑
k|l

a(k)

=
∑
k|l

1

k

∑
j|k

μ( j)2k/ j

= 1

l

∑
k|l

φ(k)2l/k,

where φ(k) is the Euler totient function: φ(k) counts the 212

numbers up to k that are relatively prime to k. The last 213

step makes use of the standard Dirichlet convolution identity, 214

φ(k) = ∑
j|k j μ(k/ j). 215

Using similar arguments, we can write down the number of 216

cycles for even and odd clusters: 217

c(ln) = 1

l

∑
k|l

φ(k)2nl/k and c(l
n
) = 1

2l

∑
odd k|l

φ(k)2nl/k .

For n = 1, these are described in OEIS A000031 and 218

A000016 [14]. Taking just the k = 1 term gives the following 219

good bounds, which we will use later: 220

c(ln) > 2nl/l and c(l
n
) > 2nl/(2l ). (6)

VI. MINIMUM NUMBER OF CYCLES 221

Equipped with the above results, we can now calculate the 222

minimum number of cycles for m nodes in a set of loops L. We 223

divide the s clusters into two categories: those in which one or 224

more of the loops is odd—of which there are some number 225

r—and those in which they are all even: 226

c(L) = c
(
l p1
1 , l

q1

1 , . . . , l pr
r , l

qr

r , lnr+1
r+1 , . . . , lns

s

)
.

Assume at least one of the clusters in L is odd (we will deal 227

with the alternative case below). By the contagion property in 228

Eq. (3), 229

c(L) = c
(
l

n1

1 , . . . , l
nr

r , lnr+1
r+1 , . . . , lns

s

)
.

Applying the inequalities in Eqs. (4) and (5), 230

c(L) � 2r−1c
(
l

n1

1

)
. . . c

(
l

nr

r

)
c
(
l nr+1
r+1

)
. . . c

(
l ns
s

)
.

Using the bounds in Eq. (6), 231

c(L) >
1

2

s∏
i=1

2nili

li
.

Since
∑s

i=1 nili = m, 232

c(L) > 2m−1
s∏

i=1

1

li
. (7)

If no cluster in L is odd, the bound is twice this. 233

To minimize the right side of Eq. (7), we want to maximize 234

the product of the li, which occurs when the ni are all 1, that 235

is,
∑s

i=1 li = m. We want the distinct li as small as possible 236

but greater than 1. For m = (s+1)(s+2)
2 − 1, the optimal choice 237

of the li is 2, 3, . . . , s + 1. As m increases, this sequence 238

progresses by incrementing one element at a time, from right 239

to left. The process restarts after the leftmost element is incre- 240

mented. For example, for s = 3 and m = 9, the progression 241

is: 2,3,4; 2,3,5; 2,4,5; 3,4,5; 3,4,6; and so on. When m reaches 242
(s+2)(s+3)

2 − 1, the number of li increases from s to s + 1. Thus 243∏
li is at most

∏s+1
i=2 i for s(s+1)

2 − 1 < m � (s+1)(s+2)
2 − 1. 244

Returning to Eq. (7), with the li set to 2, 3, . . . , s + 1, 245

c(L) > 2m−1/(s + 1)!.

Since m > s(s+1)
2 − 1, s <

√
8m+9−1

2 <
√

2m (the latter for 246

m > 1). Since (s + 1)! > 2ss, we find the bound on the num- 247

ber of cycles for a set of loops L no longer depends on the 248
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individual loops sizes, but rather their sum m = ∑
i=1 nili. For249

m � 1, and writing c(L|∑i=1 nili = m) as c(m), we have250

c(m) > 2m−2−√
2m log2

√
2m, (8)

which to first order in the exponent is 2m. This is the first251

proof that the number of cycles grows as fast as possible with252

m. We compare our result with the best known bounds in the253

Discussion.254

VII. DISCUSSION255

This paper contains two take-home messages about the256

critical Kauffman model with connectivity one. The first is257

a new interpretation: the model is equivalent to a system of258

primitive cycle polynomials and their products. The second is259

a new result about the number of cycles: to first order in m,260

the number of cycles grows as 2m, which is as fast as possible.261

Let’s start with the first take-home message. The math-262

ematical structure of the K = 1 critical Kauffman model is263

entirely described by a deceptively simple algebraic system,264

namely, products of the primitive cycle polynomials Dl and265

Dl in Table I. These polynomials do not satisfy ordinary266

polynomial multiplication, but rather have a product defined267

by Eq. (2). Combining loops or sets of loops in a network is268

equivalent to multiplying out the relevant cycle polynomials.269

One special property of the primitive cycle polynomials270

is the contagion of odd parity loops. In particular, for loops271

of the same size, DlDl = DlDl . This is important, because it272

means that clusters of equal-sized loops behave in just one of273

two ways: as if all of the Boolean functions are copy, or as274

if each loop has one invert. One open question is whether the275

contagion of odd loops extends beyond loops of the same size.276

As Table I suggests, in many instances Dl1 Dl2
and Dl1

Dl2
are277

identical, and it seems that factors of 2 in the loop sizes play a278

key role in determining this.279

The two quantities of interest in a critical Kauffman model280

are the number of cycles c and the mean attractor length281

A. Both can be readily obtained from the cycle polynomial.282

Let E (x) be the product of primitive cycle polynomials: E =283

Dp1

l1
Dq1

l1
. . . Dps

ls
Dqs

ls
. The number of cycles and the mean attrac-284

tor length for the set of loops {l p1
1 , l

q1

1 . . . l ps
s , l

qs

s } are285

c = E |x=1 and A = E ′/E |x=1, (9)

where E ′(x) = d/dxE (x). Note that E ′|x=1 = 2m.286

We conjecture that a finite fraction of the 2m states of the m287

nodes in loops belong to cycles of the largest length. Specifi-288

cally, we conjecture that the exponent times the coefficient in289

the last term of E divided by 2m is at least
∏

(2p − 2)/2p =290

0.346, where the product is over all primes p. For example, for291

the network in Fig. 1, the fraction of states in cycles of length 292

30 is 30 · 12/210 = 0.352. 293

Now we turn to the second take-home message. To first 294

order in m, the number of cycles scales as 2m. This is con- 295

siderably faster than the lower bounds of 20.47m derived by 296

Drossel et al. in [2] and, using a more detailed calculation, 297

20.5m derived by Flyvbjerg and Kjaer in [1]. Ours is the first 298

proof that the number of cycles grows as fast as possible 299

with m. 300

We can re-express this result in terms of the number of 301

nodes in the network N , whereby m becomes a random vari- 302

able: choose uniformly from the distribution of single input 303

networks and see what m is. In the large N limit, the mean 304

number of loops of length l is exp(−l2/(2N ))/l . Summing 305

over this, the mean number of nodes in loops m is asymptot- 306

ically
√

π
2 N . Since this is convex, by Jensen’s inequality we 307

can replace m with its mean, giving 308

c(N ) > 21.25
√

N ,

compared to the best known bounds on the growth rate, 309

20.63
√

N [1] and 20.59
√

N [2]. 310

While this paper was under review, we were able to use 311

some of the results in it to more carefully translate c(m) to 312

c(N ), by averaging c(m) over the distribution of m given N . 313

Our result—that the number of cycles grows as (2/
√

e)N — 314

recently appeared in Ref. [13]. This current paper can be seen 315

as a precursor to [13], and one which opens the door to further 316

insights by introducing a new analytic technique for studying 317

the critical Kauffman model. 318

But what about the mean attractor length A? Note that A(m) 319

can always be 1, even for large m, by choosing all the loops 320

to be of size 1. So our Jensen’s inequality approach used 321

above is no use here. Calculating A(N ) requires a detailed 322

understanding of the distribution of loop sizes given a uni- 323

form distribution over single input networks. What makes this 324

particularly difficult is that the probabilities of finding loops 325

of different sizes are not independent. 326

One topic we do not consider here is a network’s resilience 327

to a perturbation, such as a change of the state of a node 328

from 0 to 1, or the Boolean function of a node from copy 329

to invert [7,15]. Our technique of taking the product of cycle 330

polynomials could help to understand how an error in one loop 331

infects the number and length of cycles in a set of loops. 332
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