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Abstract

The past five years have seen a dramatic increase in the usage of 
artificial intelligence (AI) algorithms in pure mathematics and 
theoretical sciences. This might appear counter-intuitive as 
mathematical sciences require rigorous definitions, derivations and 
proofs, in contrast to the experimental sciences, which rely on the 
modelling of data with error bars. In this Perspective, we categorize 
the approaches to mathematical and theoretical discovery as ‘top-
down’, ‘bottom-up’ and ‘meta-mathematics’. We review the progress 
over the past few years, comparing and contrasting both the advances 
and the shortcomings of each approach. We believe that although the 
theorist is not in danger of being replaced by AI systems in the near 
future, the combination of human expertise and AI algorithms will 
become an integral part of theoretical research.
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•	 Bottom-up: one can think of mathematics as being built from 
foundational axioms, in which all theorems and equations are con-
structed from the roots up using logic. We refer to this approach as 
‘bottom-up’ to reflect the rigorous nature of theoretical research. 
This is somewhat in the spirit of Hilbert’s Formalism Programme87 
(Box 1) and the logicism of Russell–Whitehead88, in which math-
ematics is formulated by acting precise rules on well-defined 
symbols.

•	 Meta-mathematics: meta-science has been used to refer to the 
science of scientific research89. In the context of this Perspective, it 
refers to looking at mathematics from a distance, especially from 
the corpora of published papers — without necessarily compre-
hending the actual details. (The term is also different from its usage 
by John McCarthy in the context of mathematical logic in AI90.)

•	 Top-down: the practicing theorist often ‘experiments’ and ‘con-
jectures’ before tackling a proof or derivation. We will refer to this 
as ‘top-down’, in which an overarching view, based on experience 
and speculation, guides one towards a problem in which truth 
can only be attained in the human mind. (This approach, though 
somewhat in the spirit of, should be distinguished from Brouwer’s 
intuitionist mathematics91.) We will argue that even a black-box AI 
can help make serious progress in formulating precise conjectures, 
in which rigour arises from statistical inference71.

There is an important point on terminology. In philosophy, top-
down means less theoretical to more theoretical. Here, we are bor-
rowing the words top-down and bottom-up from physics, where the 
starting point of bottom-up model building is from low-energy scale 
and that of top-down is from high-energy scale.

In the next sections, we will discuss in detail how AI has been 
instrumental to each of these approaches.

Bottom-up mathematics
Hilbert’s programme87 of building up mathematical truths from the 
ground formulated in the early 1920s received a fatal blow a dec-
ade later from the undecidability and incompleteness theorems of 
Gödel92, Church93 and Turing94. These essentially showed that within 
any mathematical system, there are statements whose truth value 
cannot be decided. Nevertheless, the space of decidable and interest-
ing statements is so vast that one can certainly focus first on these. 
Thus, despite the logical impossibility of building all mathematical 
statements bottom-up, theorists never stopped pursuing proofs for 
countless propositions. This led to the modern-day answer to Alfred 
North Whitehead’s and Bertrand Russell’s work on the foundations of 
mathematics ‘Principia Mathematica’88: the automated theorem prov-
ing programme (ATP). Arguably, the first AI system for mathematics —  
or indeed, the first AI system — was the logic theory machine95, an 
early computer system created by Newell, Simon and Shaw in 1956, 
around the same time as the emergence of the first trainable neural 
network96. The logic theory machine succeeded in proving a number 
of propositions of the Principia Mathematica.

Over the second half of the twentieth century, it became clear that 
an increasing number of proofs of fundamental results in mathematics 
are impossible without the computer. These have ranged from situations 
in which key steps reduce to extensive brute-force computation, such 
as in the four-colour theorem, to more extreme circumstances in which 
it takes longer than a human lifespan to go through all the details, 
such as the classification of simple finite groups. The dependence 
of the human theorist on machines has prompted such influential 

Introduction
The past five years have seen a lot of progress in the use of artificial 
intelligence (AI) in theoretical investigations in pure mathematics and 
theoretical physics. This domain is markedly different from how AI 
technology has been transforming a wide array of human activity in the 
past decade1–3. For practical purposes, many human tasks only require 
black-boxes: learning from trial-and-error and performing within a 
margin of error. For example, the primary goal of a medical doctor is to 
cure the patient; understanding the exact mechanisms of the disease 
is secondary. Black-box machine learning based on large statistical 
samples is exactly what deep neural networks do best. However, this 
approach is unsatisfactory for the scientist, whose job is to understand 
and to question, and even more so for the theorist.

In this Perspective, we use the term ‘theoretical science’ to include 
both pure mathematics and the development and testing of theories 
and hypotheses using mathematics, exemplified by theoretical phys-
ics. In other words, we adhere to the British academic convention and 
consider the fields such as theoretical physics or theoretical computer 
science as subdisciplines of mathematics.

Although experimental physicists at CERN, searching for new 
particles, were among the first scientists to use AI4 in the 1990s, it 
was not until 2017–2018 that machine-learning techniques emerged 
in theoretical physics5–9 and in pure mathematics10,11. The desire for 
interpretability and explicability is likely the reason why the use of AI 
in theoretical science has been a relative latecomer compared with 
other areas of science.

But this field is catching up fast. In theoretical physics, examples 
of AI-driven research include particle phenomenology from string 
theory12–20, establishing dictionaries between field theory and deep 
learning21–23, theoretical cosmology9,24,25, quantum field theories26–30 
and uncovering fundamental symmetries31–36. In parallel, in pure math-
ematics, examples span algebraic geometry5,10,37–44, algebraic structures 
and representation theory45–47, symbolic algebra and computation48–54, 
differential and metric geometry55–57, number theory58–61, graph theory 
and combinatorics43,62,63, to knot theory47,64,65.

In general, the question of what role AI technology will play in 
society is approached with a mixture of optimism66–73 and anxiety2,3,74,75. 
The purpose of this Perspective is to overview and discuss the advances 
that have been made in the past few years in the use of AI in theoretical 
science10,71,76–80, highlighting the concerns and limitations81–84. We cau-
tion against both overenthusiasm and unwarranted fear and convey 
that the future of the mathematical sciences will be an inevitable, and 
hopefully harmonious, union between human and AI.

AI-driven mathematics and theoretical science
To answer the question of what is AI-driven or AI-assisted theoretical 
research, one needs to first ask a more basic question: how do math-
ematicians do mathematics? Without delving into the philosophy 
of mathematics or the philosophy of science, we take a pragmatic 
approach to problem-solving. In an earlier review85, we discussed two 
opposite directions of how machine learning could help with uncov-
ering mathematical structures. In the light of the advances in large 
language models (LLMs), it is expedient to add a third direction. In 
some ways, this trio echoes the three major philosophical schools86 
of mathematics (formalism, logicism and intuitionism) at the turn of 
the last century, to which we pay tribute. The reader is also referred 
to a recent information-theoretic treatment73 of what a mathemati-
cian is. We classify the approaches to doing mathematics/theoretical 
science as follows:
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figures as Terence Tao97, and addresses at the International Congress 
of Mathematicians98, to seriously consider the future of mathematics.

Although the first proof-assistant99 appeared in the 1970s, Isabelle/
HOL100, Coq101, Agda102 and Lean103 softwares are spear-heading the ATP 
programme in this century. One notable direction well underway is the 
Xena project (https://xenaproject.wordpress.com/) aiming to formal-
ize all (every statement and every step of proof) of undergraduate-level 
mathematics into Lean. Last year, Lean’s MathLib library was used to 
prove the polynomial Freiman–Ruzsa conjecture104. The effort to estab-
lish a full database of all of the contemporary mathematics in Coq or 
Lean format is still far from completion (private communications with 

Kevin Buzzard and James Davenport). For example, only earlier this year 
was a new project launched to formalize all the requisite pieces to Wiles’ 
proof of Fermat’s last theorem. This suggests that having AI automation 
on selecting correct proof strategies given a proposition or conjecture 
is still a way to come (private communication with Kevin Buzzard and 
James Davenport). Nevertheless, such a mathematics database will 
enable data mining for new theories, which brings us to the next point.

Meta-mathematics
From the Principia Mathematica to the advancement of computer sci-
ence, there has been a tradition of viewing mathematics as a language105. 

Box 1 | Mathematics glossary
 

Four colour theorem:� one of the most famous standing problems 
in mathematics conjectured in the 1850s and only settled in 1976 
by Kenneth Appel and Wolfgang Haken. It states that any map (in a 
plane) can be coloured with at most four different colours such that 
no neighbouring countries have the same colour. This can be phrased 
in terms of graphs theory as: the vertices of every planar graph can be 
labelled with at most four labels such that no two adjacent vertices 
receive the same label.

Polynomial Freiman–Ruzsa conjecture:� in the field of additive 
combinatorics, a central problem is concerned with the so-called 
doubling constant K: given a set A of integers, A + A is the set of all 
possible pairwise sums, and K is the ratio of the size of A + A to that 
of A. Freiman’s theorem roughly states that if K is small, then the 
elements of A, when sorted, grow linearly. The polynomial Freiman–
Ruzsa conjecture, formulated by Katalin Marton, is a generalization 
of Freiman to abelian groups.

Fermat’s last theorem:� perhaps the most celebrated statement 
in mathematics, Fermat’s last theorem was a proposition made 
without proof formulated by Pierre de Fermat in the seventeenth 
century: no three positive integers a, b and c satisfy the equation 
an + bn = cn for any integer n > 2. (The case of n = 1 is trivial with 
infinitely many solutions, and n = 2 also has infinitely many solutions 
that constitute integer sides of Pythagoras’ right-angle triangle, 
such as (a, b, c) = (3, 4, 5).) The final proof, made by Andrew Wiles 
in 1994, had to use a host of sophisticated results from modern 
mathematics.

Birch–Swinnerton-Dyer conjecture:� a Millennium Prize problem, the 
conjecture of Birch–Swinnerton-Dyer (BSD), is concerned with integer 
points on an elliptic curve, a cubic polynomial in two variables, such 
as y2 = x3 + 1. Elliptic curves are central to modern mathematics. For 
example, Wiles’ proof of Fermat’s last theorem relied on it, being 
phrased in terms of integer points on a particular elliptic curve (called 
the Frey curve). BSD conjectures that the number (called the rank) of 
infinite families of integer points on any elliptic curve, for example, 
y2 = x3 + 1, can be determined by the analytic properties of a function 
(called the L-function), which encodes the solutions of the curve 
when reduced over each prime p. Here, using the aforementioned 
example, reduction over p means to find integers (x, y) such that 

≡ +y x p1 ( mod )2 3 .

Murmurations conjectures:� relevant to BSD, the recently formulated 
murmuration conjectures constitute a first non-trivial discovery in 
number theory based on human–artificial intelligence collaboration. 
It states that L-functions for elliptic curves defined earlier, averaged 
over different curves in a certain range, show an oscillatory 
(murmuration) behaviour. Curves of different ranks have different 
types of murmurations, reflecting BSD. This murmuration is expected 
to hold also for other classes of L-functions.

Riemann hypothesis:� the Riemann hypothesis is another 
Millennium Prize problem and the most important unsolved 
mathematical problem. Tens of thousands of theorems, including 
many on such fundamental results as the distribution of primes, rely 
on it, being true. Proposed in 1859 by Bernhard Riemann, there have 
been hundreds of equivalent formulations thereof. Here is perhaps 
the simplest one. Consider the Möbius mu-function alluded to 
in the text. For a positive integer n, it is defined as follows: μ(n) = 0 
if n has any repeated factors in its prime factorization (for example,  
μ(12) = μ(22 ⋅ 3) = 0 because 2 is repeated); otherwise, it is (−1) to 
the power of the number of distinct prime factors (for example, 
μ(42) = μ(2 ⋅ 3 ⋅ 7) = (−1)3 = −1). In other words, μ detects the parity of 
distinct prime factors of n. Now consider the function = ∑ ≤M x μ n( ) ( )n x .  
The Riemann hypothesis states that M(x) roughly grows as x . 
(More strictly, that for every ε M x Kx0, ( ) ε1

2> ≤ +  for some positive 
real number K as x → ∞.)

Hilbert’s programme:� to avoid paradoxes and inconsistencies which 
have arisen in the preceding century, David Hilbert in the 1920s 
proposed to ground all existing mathematics to a finite, complete 
set of axioms and provide a proof that these axioms be consistent. 
This programme was shown to be essentially unachievable by the 
incompleteness theorems of Gödel in the 1930s.

Brouwer’s intuitionist mathematics:� in the philosophy of 
mathematics, intuitionism is an approach in which mathematics is 
considered to be purely the result of constructive, human mental 
activity, rather than the discovery of fundamental principles that exist 
in an objective reality. The mathematician and philosopher Luitzen 
Brouwer proposed in the 1920s of the ‘subjectivity’ of mathematics 
that a mathematical statement corresponds to a mental construction, 
and a mathematician can assert the truth of a statement only by 
verifying the validity of that construction by intuition.

https://xenaproject.wordpress.com/
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Inspired by Ludwig Wittgenstein106, one can think of ‘Mathematics 
as Language’ and any proposition is just a set of symbols, led to by 
sequences of symbols that one calls proof or derivation.

Indeed, the field of Natural Language Processing (NLP) is rooted 
in Turing’s original proposal of his eponymous test107. Advances in AI 
technology and the availability of internet data have propelled NLP 
to the era of the LLMs. Chatbots built on LLMs have passed the Turing 
test108. The important point here is that LLMs have no ‘understanding’ 
of the underlying material; these models merely group together words 
in the right order based on large corpora of statistical samples. The 
philosophical meaning of ‘understanding’ aside (and this is why we 
chose to call this direction ‘meta-mathematics’), it is clear that LLMs 
have been transformative in mimicking human communication.

One of the earliest experiments109 using an LLM for theory was the 
application of the Word2Vec110 neural network (perhaps the most basic 
LLM technique) to the titles of several sections of the arXiv preprint 
server, the most comprehensive repository for contemporary research 
in mathematics and theoretical physics. Perhaps more interesting than 
in retrieving seemingly sensible linguistic identities (for example, 
‘string-theory + Calabi–Yau = M-theory + G2’) was a comparison with 
the viXra preprint server, the repository of fringe ideas not accepted 
by main-stream science. From the titles alone, one could significantly 
distinguish (from the confusion matrix) different subfields of theoreti-
cal physics (high-energy theory, high-energy phenomenology, general 
relativity/quantum cosmology and so on) in arXiv, whereas in viXra 
this is not the case. In other words, the syntax of proper theoretical 
science is more self-consistent than that of fringe science even at the 
level of titles. (By enriching the data with the inclusion of abstracts, 
the application of Word2Vec on papers in material science uncovered 
new chemical reactions111.)

Today, Word2Vec has been superseded by other deep learning 
architectures such as transformers, and the programme of LLM for 
mathematics is blooming112–119. Notably, in parallel to projects led by 
OpenAI120 and MetaAI121 in the space of mathematics education, Deep-
Mind’s AlphaGeo116 has recently been able to generate correct, human-
understandable proofs for Olympiad-level problems in Euclidean 
geometry. However, one should note that a non-trivial part of the 
success of AlphaGeo involved old-fashioned search using the AR+DD 
(Algebraic Rules and Deductive Database). These advances suggest 
that when and if a complete linguistic database in the precise format 
of, say, ‘Lean’ will exist for all contemporary mathematics, then the 
LLM approach to this vast data set should produce new mathematics.

Top-down mathematics
Everything we have discussed so far has to do with building correct 
mathematical statements. But frequently, one has no idea what state-
ment one should try to demonstrate. Indeed, how does the practicing 
mathematician actually work? In many ways, our papers are writ-
ten backwards. From day to day, we doodle on paper and on board, 
experimenting with ideas, mistakes and expressions, until something 
sensible comes out. Then, we go back and formalize with definitions 
followed by theorems and derivations that lead to logical conclusions. 
Thus, journal papers in mathematics and theoretical physics look 
bottom-up, even though the discovery process is quite the opposite. 
The duality between these two directions is called ‘synthesis versus 
analysis’122. Historically, this is how some of the greatest theoretical 
discoveries were made. Isaac Newton and Leonhard Euler were freely 
manipulating formal expressions in calculus, centuries before a 
proper notion of analysis and convergence; Evariste Galois showed 

the unsolvability of the quintic by radicals by seeing the structures 
of permutation groups, before the definitions of groups and fields 
taught today. In physics, theorists freely manipulate Feynman integrals 
to obtain results that agree with experiment to astounding accuracy, 
even though a mathematically rigorous formulation of quantum field 
theory is lacking.

Over the past couple of years, the worry that AI will replace the 
human mathematician has been growing123. Some see the human 
mathematician as a bottom-up Logical Theory Machine, building 
sentences (proofs and derivations) from definitions. In reality, actual 
mathematical research is based on a combination of inspiration, intui-
tion and experience. In contrast with the dry bottom-up narrative, 
we call this almost fuzzy, aesthetics-driven approach124 top-down. 
Of course, at the end of the day, all statements must be rigorous and 
any fuzziness and inaccuracies must be distilled out (see a recent 
Perspective71). With this in mind, let us discuss this approach in detail, 
with illustrative examples.

Perhaps contrary to common conception, an indispensable com-
ponent to even the purest mathematical discovery is data. This is not 
experimental data in the sense of, say, particle trajectories from CERN, 
with errors and variance, but results of classifications and computa-
tions, for example, tables of characters of finite groups. These ‘pure 
data’ are exact and without statistical error and shed light on the under-
lying theory. To quote mathematician Vladimir Arnold125, ‘mathematics 
is the part of physics where experiments are cheap’.

Confronted with the ancient problem of finding patterns in primes, 
which dates back at least to the time of Euclid, 16-year-old Carl Friedrich 
Gauss defined the prime counting function, which gives the number 
of prime numbers not exceeding a positive real Rx ∈ +

π x p x p( ) = #{ ≤ : prime}. (1)

He consulted tables available at the time and computed tens of thou-
sands more (by hand!) and simply plotted π(x). Gauss conjectured that 
π x x x( ) ~ /ln( ). This profound observation had to wait for the establish-
ment of complex analysis by Augustin-Louis Cauchy and Bernhard 
Riemann to be proven by Jacques Hadamard and Charles Jean de la 
Vallée Poussin in 1896. It is now known as the prime number theorem, 
one of the most important results in mathematics.

In the twentieth century, mathematicians Bryan John Birch and 
Peter Swinnerton-Dyer plotted, using the early computers of the 1960s, 
ranks and other quantities for elliptic curves and conjectured that the 
order of vanishing of the L-function L(s) for the curve (which encodes 
the number of integer points on it modulo different prime numbers) 
at s → 1 equals to the rank. This observation is known as the Birch–
Swinnerton-Dyer conjecture and is a Millennium Prize problem126 
central to modern mathematics.

The above are but two of the countless examples in which experi-
menting with pure data can lead to profound results. They illustrate the 
importance of conjectures. In theoretical research, finding the inter-
esting problem is vital, and this process is often guided by the almost 
undefinable process of intuition. Godfrey Harold Hardy’s definition 
of mathematics127 is succinct: ‘A mathematician, like a painter or a 
poet, is a maker of patterns’. Most scientists who study real world data 
from observations would first distil the problem into a mathematical 
setting. Then it again becomes a mathematical game of pattern spot-
ting, from graphs and plots, to formal symbols. But there is one thing 
that AI systems can do better than humans, that is pattern recognition, 
especially when the data are in high dimensions. This is exemplified 
in Box 2.
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The Birch test
The key steps to top-down mathematics are first, identifying the prob-
lem and second, identifying a strategy to attack the problem. Both 
depend on experience, with a healthy dose of intuition. Although LLMs 

applied to databases such as Lean’s MathLib103 are making baby-steps 
in the latter, the former is formally known as conjecture formula-
tion, exemplified by the aforementioned cases of Gauss and Birch–
Swinnerton-Dyer. Can AI systems assist in telling a good conjecture from 

Box 2 | Playing with binary sequences
 

Let us perform the following simple experiment. First, given the 
sequence {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1} and asked what 
the next number is, any human would instantly say 0. One way to 
explain why is that the sequence shows whether n divides 3, for 
positive integers ∈ >Zn 0. Next, try {0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 
0, 0, 0, 1, 0, 0, 0, 0, 0}. An inspired person might, after some 
experimentation, conclude that the next number is 1; this is the 
sequence of PrimeQ, whether the nth positive integer is prime or 
not. Finally, try {1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 
1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1}. This is the 
sequence of whether the nth positive integer has an even (0) or odd 
(1) number of prime factors counted with multiplicity, a shifted 
version of the so-called Liouville lambda-function (see a recent 
artificial intelligence (AI) treatment144 of the closely related Möbius 
mu-function). Uncovering patterns in the lambda-function would 
have incredible repercussions for mathematics: there are 
equivalent formulations of the Riemann hypothesis in terms of this 
sequence145.

What if one gave the sequence to an AI system to solve 
(for instance, using a supervised machine learning (ML) algorithm)? 
To establish a reasonable training set, one could choose the following 
representation (and indeed the choice of representation is extremely 
important). Take one of the aforementioned infinite sequences 

= …a{ }i i 1,2,3,  and a sliding window of length N. In other words, consider 
a set of sequences …= … = … + = + … + −a a a{{ } , { } , { } }i i N i i N i i k k N k1,2, , 2,3, , 1 , 1, , 1  
for some k. Here, k will be taken to be sufficiently large (say 100,000) 
to create a decent-size data set, and N will be taken to be sufficiently 
large (say 100) to give enough features. (After all, mathematical data 
are cheap.) One can then consider each of the finite subsequences 
as a single vector in RN and label it by the next number outside the 
window:

⟶

⟶

⟶

a a
a a
a a

{( ) ,
( ) , ,
( ) }.

(2)
i i N N

i i N N

i i k k N k N k

1,2, , 1

2,3, , 1 2

, 1, , 1

…
= … +

= … + +

= + … + − +

Note that one has chosen the sequences judiciously to standardize 
everything into a binary classification problem of binary vectors of 
dimension N. The question is then: having seen k labelled samples, 
how well will the ML algorithm predict on k′ unseen vectors? This 
familiar supervised ML paradigm can then be compared with the 
human performance on the same task.

One can readily check that with the most basic ML algorithms 
suited for this problem, such as decision trees, support vector 
machines, relatively shallow feed-forward neural networks with 
rectified linear unit activation functions and so on, on equation (2) 
applied to the three sequences. For the first one, 100% accuracy is 
reached very quickly for any of the ML algorithms. For the second, 

one reaches about 80% (in this case because of the increasing rarity 
of primes — approximately by a factor of x x/ln( ) owing to the prime 
number theorem — window size needs to be scaled accordingly), and 
for the third one struggles to find any AI algorithm that would beat 
50%. What this means is that the first sequence, a trivial problem for 
humans, is as trivial for the AI system; for the second, the AI approach 
might be finding some version of the Sieve of Eratosthenes for 
checking PrimeQ; and for the last the AI system is not beating a 
random guess. Of course, should one find an algorithm which does, 
then one might be well underway in finding a new approach towards 
the Riemann hypothesis.

Many of the papers referenced in the introduction use similar 
ideas to the previous paragraph, but to much more sophisticated 
situations. Indeed, what (computable) mathematics, in the sense of 
a Turing machine, does not fall into some version of equation (2)?  
We can make the situation even more visual and suited to AI by 
wrapping each N vector into an m × n = N matrix, which can be 
interpreted as a pixelated image in which 1 is black and 0 is white. 
For instance, suppose N = 100, the first vector for the second 
sequence can be wrapped into a 10 × 10 matrix, together with a 
label 1 (since 101 is prime), illustrated subsequently. Take, as a much 
more elevated example, the problem of computing a topological 
invariant for a manifold in algebraic geometry (which involves 
advanced calculations). Yet, one can represent the manifold as a 
pixelated image by tensorizing the multidegree information of the 
manifold as an algebraic variety5,10. In a similar manner, one could 
reframe any mathematical computation as an image recognition 
problem. Learning and gaining experience and intuition from 
many calculations — as mathematicians and theorists do during 
their careers — is in analogy to training a neural network. We could 
summarize this paradigm loosely as: bottom-up mathematics (and 
meta-mathematics) is language processing, whereas top-down 
mathematics is image processing.

1
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a useless one? Which patterns found from mathematical data lead to 
interesting, as opposed to, trivial mathematics? AI-guided conjecture 
formulation has been given much systematic thought47,85,128–133.

In a 6-month workshop in Cambridge in 2023 which I helped to 
co-organize, participants attempted to give some criteria on AI-driven 
theoretical discovery and, in particular, on AI-assisted conjectures. 
The following criteria for AI-assisted discovery in theoretical science 
were identified:

•	 Automaticity: the discovery is completely made by AI from 
pattern-spotting, without any human intervention;

•	 Interpretability: any statements — conjectures or conclusions —  
must be precise to a human mathematician, who cannot distinguish 
them from the ones given by a human colleague;

•	 Non-triviality: the insight is non-trivial enough that the community 
of human experts will work on it.

Because the points were inspired by a talk given by Birch134, the 
set of criteria is referred to as the Birch test135. These are very stringent 
criteria and so far no AI-assisted theoretical discovery has passed all 
three parts of the test. We now highlight with some examples in which 
they succeeded and failed.

Take the early experiments of obtaining topological invariants 
by deep-learning algebraic varieties5,10. They have been improved 
to >99.9% accuracy41, which hints at underlying and yet-unknown 
structures in algebraic geometry that facilitate calculations with-
out recourse to standard and computationally expensive methods 
in long-exact sequences and Gröbner bases136. These results suffer 
from the typical shortcoming of deep neural network approaches: 
there is no interpretable formula one could extract. Thus, they fail 
the interpretability condition of the Birch test. A better situation45 is 
where a support vector machine found a separation between simple 
and non-simple finite groups by plotting the Cayley multiplication 
tables. However, the hypersurface of separation is so complicated 
and deforms further with the addition of more samples of groups that 
the interpretability condition is still not fulfilled. The knot invariant 
relations found by saliency analyses47 and the Reidemeister moves 
needed to untangle extremely complicated knots64, although novel, 
interesting and precise, were either already proven or have not become 
sufficiently influential in the field; thus they fail the non-triviality 
condition. Likewise, the continued fraction identities found by the 
Ramanujan machine130 or the physical conservation laws found by 
AI Feynman33 also belong to this category. Even in a practical task, 
the faster matrix multiplication algorithm found by DeepMind137 
was shortly thereafter beaten by an algorithm devised by human 
researchers138.

The closest any AI-guided theoretical discovery to fulfil the three 
criteria is the murmuration conjectures in the number theory139. This 
approach fulfils the interpretability and non-triviality but fails the 
automaticity because human researchers intervened in the process 
by digging under the hood. Surprised by why AI was doing so well 
at distinguishing ranks of elliptic curves in the context of the Birch–
Swinnerton-Dyer conjecture, the researchers had to home in on a 
principal component analysis and then look at the weight matrices to 
extract an unexpected formula.

Outlook
The human theorist is not in danger of being put out of the job in the 
foreseeable future. From the lack of a complete bottom-up MathLib 
database103 for all of mathematics, to the challenges LLMs would 

face given the vast search space of proof strategies even with such a 
database, to the exacting requirements of the Birch test in top-down 
mathematics, we are far from automating theoretical discovery.

Nevertheless, it is undeniable that AI is beginning and will con-
tinue to play a pivotal role in partnership with the human mathema-
tician and theoretical scientist. In each of our three directions we 
discussed in this Perspective, there is both pressing and long-term 
work to be done.

•	 For bottom-up, after the formalization of Wiles’ proof, it would be 
expedient to start the formalization and cross-check the classifica-
tion theorem of finite simple groups, one of the foundational and 
yet never scrutinized theorems in mathematics (the entire proof 
runs over some 10,000 pages)140. This is likely to take a number 
of years as currently Lean103 has more arithmetic geometry than 
other branches of mathematics.

•	 For meta-mathematics, the clear path ahead is a concerted effort 
by the scientific community to use LMMs to mine the knowledge 
on the arXiv. A primitive version was done for disciplines related 
to mathematical physics some time ago109, and arXiv also has 
its internal language models that, for instance, auto-classifies 
submissions. Now, Llama141 has included the arXiv in its LLM. It 
would be great to extract new mathematical ideas using Llama. 
That said, meta-mathematics is challenging. For example, one 
could ask ChatGTP to differentiate a function and it would do so 
quite accurately (without doing any mathematics). However, when 
faced with a seemingly much simpler question of, for example, 
‘find the 20th digit in the decimal expansion of 7/11’, it would fail 
miserably and not outperform a 10% random guess. This ques-
tion can only by answered by actually doing long division. Even 
throwing more compute to ‘LLM for maths’ would not solve this 
issue; one needs to know when to invoke genuine mathematical 
software, as is beginning to be done in Wolfram Alpha in conjecture 
with ChatGTP142.

•	 For top-down mathematics, we are on the verge of passing the 
Birch test. In the coming years, one would imagine the fully auto-
mated generation of non-trivial conjectures. The challenge here 
is to have a system that selects them and have them guide human 
mathematicians. This hope resonates well with the comments of 
mathematician Jordan Ellenberg143: ‘Some people imagine a world 
where computers give us all the answers [in mathematics]. I dream 
bigger. I want them to ask good questions’.

In the eighteenth and nineteenth centuries, Gauss’s intuitions 
alone were good enough to spot patterns that led to such profound 
results as the prime number theorem. In the twentieth century, 
computer experimentations were needed alongside the insights of 
Birch and Swinnerton-Dyer to raise their conjecture. In the twenty-
first century, AI systems will help human experts to find new insights, 
conjectures and strategies for derivations and proofs.

Published online: xx xx xxxx
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