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Recent technological advances have allowed the fabrication of large arrays of coupled qubits, serving as
prototypes for quantum processors. However, the optimal control of such systems remains notoriously
challenging, limiting the potential of large-scale quantum systems. Here, we investigate a model problem
of quantum state transfer in a large nearest-neighbor-coupled qubit array. We derive an optimal control
strategy that simultaneously achieves maximal fidelity and minimal transfer time, reaching the quantum
speed limit in a lattice with time-varying couplings.
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Introduction—Rapid progress in quantum technologies
has enabled large-scale quantum systems capable of per-
forming quantum algorithms and quantum simula-
tions. Existing platforms include trapped ions [1–3], cold
atoms [4], photonic systems [5,6], as well as arrays of
superconducting qubits [7–12]. Recently, there has been
significant growth in the capabilities of these noisy inter-
mediate-scale quantum systems [13,14], accompanied by
active discussions of the quantum supremacy concept
[7,8,12,15,16].
To fully harness the scale of modern quantum systems, it

is important to achieve their complete and flexible control.
Therefore, strategies of quantum optimal control [17,18]
are under active investigation. Popular approaches include
counteradiabatic driving [19–21], shortcuts to adiabaticity
[22,23], as well as the quantum brachistochrone method
[24–28], which utilizes a geometric approach [26,29].
The quantum brachistochrone technique is based on a

variational formulation that aims to minimize the time of
the transition between the prescribed quantum states given
the constraints on the system’s Hamiltonian. This approach
has a geometric interpretation in terms of geodesics [26]
and yields a tractable system of differential equations [25],
which can be solved analytically for relatively simple
quantum systems with few degrees of freedom. However,
the direct application of this or any other method to large-
scale quantum systems is challenging due to the over-
whelming number of degrees of freedom and the extremely
large parameter space.
In this Letter, we make a conceptual step toward solving

this problem. As a physically motivated example, we
consider an array of N nearest-neighbor-coupled qubits,
assuming that the couplings JmðtÞ between them can be

tailored on demand and controlled in real time, while the
overall sum

P
m J2mðtÞ is bounded by the constant value J20

[Fig. 1]. Although challenging, such real-time control of
couplings is technically feasible. For instance, in super-
conducting architecture, this could be achieved by inserting
auxiliary off-resonant qubits. The change of their eigen-
frequencies renormalizes the effective couplings Jm
[30,31]. For clarity, we neglect the effects of dissipation
and decoherence, focusing on the control of a Hermitian
system. As the simplest protocol relevant for quantum
communication, we consider the transfer of a single
excitation, initiated in the first (leftmost) qubit, to the
Nth (rightmost) position. Using a suitable modification of
the quantum brachistochrone approach, we derive the
optimal control for this system, enabling minimal transfer
time and defining the quantum speed limit [32] in a nearest-
neighbor coupled lattice with time-varying couplings with a
fixed sum

P
m J2m. Interestingly, the transfer time scales

linearly with the length N of the array, correlating with the

FIG. 1. An artistic view of a single-particle transfer under the
time-optimal control of couplings JmðtÞ in an array of N ¼ 10
coupled qubits. The qubits are depicted by the dark blue
cylinders.
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results for quantum spin chains [33] and aligning with the
intuitive picture of a Gaussian-type wave packet traveling
through the array at the highest possible speed.
We model the array of qubits with a Hamiltonian

Ĥ ¼
X
m

JmðtÞ
�
â†mâmþ1 þ â†mþ1âm

�
; ð1Þ

where âm is an annihilation operator in the m th qubit and
Planck’s constant ℏ is set to unity for simplicity. We also
assume that the eigenfrequencies of all qubits are identical,
such that the term

P
m ωmâ

†
mâm contributes only to a

constant energy shift, which does not affect the transfer
process and is therefore omitted in Eq. (1) for clarity.
The Hamiltonian Eq. (1) commutes with the total

number of excitations n̂ ¼ P
m â†mâm: ½Ĥ; n̂� ¼ 0. As a

result, the number of excitations is conserved, and the
N-dimensional single-particle sector, spanned by the
basis vectors jmi ¼ â†mj0i, is decoupled from the full
2N-dimensional Hilbert space of the system. This reduces
the complexity of the problem, allowing us to present the
Hamiltonian as the N × N Hermitian matrix.
Quantum brachistochrone method and governing

equations—To find an optimal strategy for switching the
couplings JmðtÞ, we adapt the quantum brachistochrone
method [24–26,28]. We introduce the evolution operator
ÛðtÞ, which connects the states of the system at two distinct
times as jψðtÞi ¼ ÛðtÞjψð0Þi and satisfies Schrödinger
equation

i∂tÛ ¼ ĤðtÞÛ: ð2Þ

Since Tr Ĥ ¼ 0 at all times, the Hamiltonian of the array
belongs to the ðN2 − 1Þ-dimensional space of zero-
trace Hermitian matrices. Of these, (N − 1) matrices
Ân ¼ ðâ†nânþ1 þ â†nþ1ânÞ=

ffiffiffi
2

p
describe the coupling of

neighboring sites, spanning the subspaceA. The remaining
ðN2 − NÞ matrices, B̂l ∈B, account for the complex
Hermitian couplings and long-range interactions, which
are absent in our system. The introduced matrices are
normalized by the conditions TrðÂmÂnÞ¼ δmn, TrðB̂kB̂lÞ ¼
δkl, TrðÂmB̂kÞ ¼ 0.
We aim to minimize the transfer time τ, given a

fixed bound J20 on the sum of squares of the couplings.
Although this can be done directly [24,25,34], there is an
equivalent, but simpler formulation that seeks to minimize
J0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
n J

2
n

p
for a fixed time of the transfer τ. In turn, the

sum 2
P

n J
2
n can be recast as Tr Ĥ2 ≡ jjĤjj2, resulting in

the cost functional S0 ¼
R
τ
0 jjĤðtÞjjdt.

If the Hamiltonian were unrestricted, the best possible
strategy would be to couple the initial jψ0i and target jψ1i
state directly by the maximal possible coupling [24].
However, in our case, the Hamiltonian includes only
nearest-neighbor couplings, which prevent the direct

transfer from the first to the Nth qubit. Therefore, we
introduce an additional contribution S1 ¼

R
τ
0 TrðD̂ ĤÞdt,

where D̂ ¼ P
l λlB̂l contains the matrices from the B

subspace, and λl are time-dependent Lagrange multipliers
ensuring that the Hamiltonian at any moment of time does
not contain any of the B̂l matrices: TrðĤB̂lÞ ¼ 0.
Finally, we add two boundary terms to ensure that the

state jψ0i in the initial moment t ¼ 0 is transferred to the
target state jψ1ieiϕ at t ¼ τ, where the global phase ϕ is
irrelevant. Hence, the overall cost functional takes the form

S ¼
Z

τ

0

jjĤðtÞjjdtþ
Z

τ

0

TrðD̂ ĤÞdt

þ
Z

τ

0

Tr
�
R̂0ðÛP̂0Û

† − P̂0Þ
�
δðtÞdt

þ
Z

τ

0

Tr
�
R̂1ðÛP̂0Û

† − P̂1Þ
�
δðt − τÞdt; ð3Þ

where R̂0 and R̂1 are the matrices of Lagrange multipliers,
and P̂0;1 matrices project on the initial and target states of
the system as P̂0 ¼ jψ0ihψ0j, P̂1 ¼ jψ1ihψ1j.
Since the Hamiltonian is expressed in terms of Û as

Ĥ ¼ ið∂tÛÞÛ†, the above functional depends on the
evolution operator ÛðtÞ, its time derivative, and the
Lagrange multipliers λl, R̂0, R̂1. Varying with respect to Û
and requiring δS ¼ 0, we derive the quantum brachisto-
chrone equation [25,26,28]

∂tðĤ þ D̂Þ þ i½Ĥ; D̂� ¼ 0; ð4Þ

which defines the change of the Hamiltonian in time. An
immediate consequence of Eq. (4) is

Tr D̂ ¼ const; ð5Þ

where the constant on the right-hand side is determined by
the initial conditions.
However, finding the optimal protocol from Eq. (4) is

generally a challenging task, since the initial conditions for
the couplings Jmð0Þ and the Lagrange multipliers λlð0Þ are
unknown. For small-scale quantum systems, this issue can
be overcome by defining the evolution operator at the initial
and final moments of time and solving the resulting
boundary value problem either analytically or by the
shooting method [25]. Further improvement is obtained
by relating the solutions of Eq. (4) to the geodesics in space
with a special metric [26]. Here, we take a different
approach and derive the boundary conditions by varying
the two terms of S with the delta function:

Ĥð0Þ þ D̂ð0Þ ¼ −i½P̂0; R̂0�; ð6Þ

ĤðτÞ þ D̂ðτÞ ¼ i½P̂1; R̂1�: ð7Þ
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Some of the scalar equations in the system (6) and (7) are
independent of R̂0 and R̂1 components, and those provide
the boundary conditions of interest. This formulation of
quantum brachistochrone Eqs. (4)–(7) significantly sim-
plifies the calculation, as we have to seek not the entire
matrix of the evolution operator with N2 components, but
rather the wave function jψiwith onlyN entries solving the
Schrödinger equation

i
∂jψi
∂t

¼ Ĥjψi ð8Þ

with 2N − 1 initial and boundary conditions for the wave
function:

ψnð0Þ ¼ δn1; ψkðτÞ ¼ 0; ð9Þ

where n ¼ 1;…; N and k ¼ 1;…; N − 1.
Control algorithm—To proceed with the solution, we

choose a specific basis in the ðN2 − 1Þ-dimensional space
of traceless Hermitian matrices. To that end, we introduce a
matrix function

X̂mnðzÞ ¼
1ffiffiffi
2

p ðzEnm þ z�EmnÞ; ð10Þ

where z is an arbitrary complex number and Enm is a matrix
with the elements ðEnmÞpq ¼ δnpδmq. In these notations,

Âm ¼ X̂m;mþ1ð1Þ. In turn, the matrices from the B subspace
are constructed as B̂e

m;mþq ¼ X̂m;mþqðiq−1Þ for 1 < q ≤
N −m, B̂o

m;mþq ¼ X̂m;mþqðiqÞ for 1 ≤ q ≤ N −m, and

B̂m;m ¼ ðPm
p¼1 Epp −mEmþ1;mþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðm2 þmÞ

p
where

1 ≤ m < N. This choice of the matrices provides a slight
modification of the generalized Gell-Mann matrices [35].
In such a basis, the quantum brachistochrone equation,

Eq. (4), results in a set of scalar equations [36]

ffiffiffi
2

p
∂tJm ¼ Jmþ1λm;mþ2 − Jm−1λm−1;mþ1; ð11Þ

∂tλk;kþn ¼ Jkþnλk;kþnþ1 − Jk−1λk−1;kþn

− Jkþn−1λk;kþn−1 þ Jkλkþ1;kþn; ð12Þ

where 2 ≤ n ≤ N − k and 1 ≤ k ≤ N − 2. Notably, the
system only contains Lagrange multipliers λm;mþq corre-
sponding to the matrices B̂e

m;mþq, while the terms associated
with B̂o

m;mþq and B̂m;m drop out due to the structure of
the problem.
Applying the boundary conditions Eqs. (6) and (7), we

recover [36] that most of the couplings at the initial moment
are zero Jmð0Þ ¼ 0 for m ≠ 1, while at the final time
JmðτÞ ¼ 0 for m ≠ N − 1. This result is very intuitive: to
transfer the excitation from the first qubit elsewhere, one

has to maximize the coupling J1 while keeping the rest of
the couplings zero.
What is less intuitive is that the majority of the

coefficients λk;kþn are also zero at t ¼ 0 and t ¼ τ, with
the only nonzero coefficients being λ1;2þnð0Þ and λn;NðτÞ
for 1 ≤ n ≤ N − 2.
Thus, our problem has NðN þ 1Þ=2 unknowns, includ-

ing N complex components of the wave function jψi,
(N − 1) real couplings Jm, and ðN − 1ÞðN − 2Þ=2 real-
valued Lagrange multipliers. These unknowns satisfy
the same number of independent differential equations (4)
and (8).
This is supplemented by ðN2 − N þ 1Þ initial and

boundary conditions, including (2N − 1) conditions for
the wave function Eqs. (9) and ðN − 1ÞðN − 2Þ conditions
for quantum brachistochrone equation [36]. Hence, starting
from N ¼ 3, the number of conditions exceeds the number
of equations, and the system becomes overdetermined.
Physically, this reflects the fact that the optimal solution
may not exist. However, as we demonstrate below, the
optimal solution does exist and is uniquely constructed.
Specifically, we determine J1ð0Þ and λ1;2þnð0Þ by the

shooting method. Importantly, our formulation requires
only (N − 1) initial conditions for the shooting. As a result,
the numerical search for short arrays (N < 5) converges to
the same result for a practically random initial guess.
The computation becomes more complex for longer

arrays. In this case, we proceed iteratively, using the
solution for the array with N − 1 qubits to construct the
initial guess for N-qubit problem. The standard shooting
method works relatively well on a personal computer for
N < 17. For longer arrays, we seek J1ð0Þ and λ1;1þqð0Þ by
the gradient optimization method yielding the solution for
N as large as 100.
Key results—To illustrate our approach, we compute the

optimal control and the associated evolution of the wave
function for an array consisting of 15 qubits. Figure 2(a)
shows the probability distribution jψnj2 for the quantum
state at several representative moments of time. We observe
that the excitation propagates in the array as a tightly bound
wave packet retaining its shape with modifications occur-
ring only near the boundaries.
On the other hand, by tracking the evolution of the

probabilities jψnj2 versus time for various n [Fig. 2(b)], we
observe that the curves peak as the wave packet passes the
respective site. The curves for different sites n are practi-
cally identical up to the shift in time.
Finally, Fig. 2(c) shows the evolution of the quantum

state both in space and time. The expectation value of the
wave packet’s position, shown by the red dashed line,
exhibits linear growth over time. For clarity, we compare
the derived time-optimal strategy with two alternative
scenarios that ensure maximal fidelity of the transfer.
The first approach involves stepwise switching of the

couplings. At each time step of duration Δτ ¼ π=ð2J0Þ,
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only two qubits are coupled with each other. By switching
the couplings one after another in this manner, the
excitation can be transferred from the first to the Nth qubit
within the time

τst ¼
ðN − 1Þπ

2J0
: ð13Þ

The expectation value of the particle’s position as a
function of time in this case is shown in Fig. 2(c) by the
dashed white line.
Another strategy is to keep all couplings in the array

constant over time, but dependent on the coordinate:
Jm ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðN −mÞp

=2. This scenario, known as perfect
transfer [37], also ensures maximal fidelity. However, the
timing in this case is clearly nonoptimal,

τp ¼ π=γ ¼ π

J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN2 − 1Þ

24

r
; ð14Þ

and scales roughly as N3=2. This scenario is illustrated in
Fig. 2(c) by the dashed green line. Notably, both scenarios
are significantly slower compared to our time-optimal
solution [Fig. 2(c)].
Having an efficient numerical procedure to solve quan-

tum brachistochrone equations, we now analyze the scaling

of the transfer time with the length N of the array
[Fig. 3(a)]. In our calculations, we examine sufficiently
large qubit arrays, with N reaching state-of-the-art levels of
100 [12]. Our results suggest that the transfer time scales
linearly with the length N, which agrees with the intuitive
picture of a wave packet propagating at the maximal possi-
ble speed while retaining its spatial profile. The dependence
of the transfer time on N is well approximated by

τðNÞ ¼ ð1.13045N − 0.6677Þ=J0: ð15Þ

This asymptotic formula is valid for the sufficiently large N
and slightly underestimates the transfer time having an
absolute error of 0.0003 for N ¼ 10.
We compare these results with the two alternative

approaches summarized above. Stepwise switching of the
couplings [Eq. (13)] also provides a linear scaling, but the
time of the transfer in the limit N → ∞ is 39% higher than
for our solution. Even poorer results are obtained for time-
independent couplings (the “perfect transfer” scenario),
where the transfer time Eq. (14) scales as N3=2. This
comparison highlights the potential of optimal control for
large-scale quantum systems, providing an optimization of
standard tasks such as quantum state transfer.
However, finding the optimal control for large quantum

systems is not always straightforward. In our case, a clue to
the efficient numerical solution is provided by the behavior
of λ1;1þpð0Þ coefficients (2 ≤ p ≤ N − 1), whose depend-
ence on the length of the array rapidly saturates as N
exceeds 10, reflecting the localized nature of the solution.
At the same time, the dependence on p is relatively weak
[Fig. 3(b)]. Hence, having a solution for the array of N
qubits, we can construct an initial guess for a longer array
improving it by the gradient optimization.
Inspecting the robustness of the derived protocol to the

random disorder in the couplings, we observe that it is
significantly more robust than the perfect transfer strategy
and features comparable robustness as the stepwise switch-
ing scenario [36].
To conclude, our work derives an example of time-

optimal control for a large-scale array of nearest-neighbor-
coupled qubits. Despite its conceptual simplicity, our
model embodies the features of present-day superconduct-
ing quantum processors and demonstrates ways to signifi-
cantly enhance their performance through the use of
optimal control strategies. As we prove, the quantum
brachistochrone technique combined with suitable numeri-
cal algorithms provides a significant speed-up of quantum
state transfer compared to more traditional approaches and
allows us to derive the quantum speed limit in a lattice with
time-varying couplings.
We believe that this study will stimulate further advances

in quantum communication, as well as in a broader realm of
quantum physics, e.g., in connection to time-optimal

(a)

(b)

(c)

FIG. 2. Numerical results for time-optimal transfer in a 15-qubit
array. (a) Histogram showing the instantaneous probability
distribution jψnðtÞj2 at several representative moments of time.
The wave packet remains tightly bound. (b) The dependence of
probabilities jψnðtÞj2 on time in several selected sites of the
lattice. (c) Evolution of the probability distribution in the array
during the whole process of the transfer 0 ≤ t ≤ τ. Lines show the
expectation value of the wave packet position for time-optimal
control (red), stepwise switching of the couplings (white), and
perfect transfer scenario (green line).
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generation of high harmonics or nonclassical states of
light [38,39].
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