
Journal of Number Theory 281 (2026) 110--138

Contents lists available at ScienceDirect

Journal of Number Theory  

journal homepage: www.elsevier.com/locate/jnt

General Section

Some new results on the higher energies

I.D. Shkredov a,b,∗

a Department of Mathematics, Purdue University, 150 N. University Street, West 
Lafayette, IN 47907--2067, USA
b London Institute for Mathematical Sciences, 21 Albermarle St, London W1S 4BS, 
UK

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 12 August 2024
Received in revised form 15 
September 2025
Accepted 17 September 2025
Available online 21 October 2025
Communicated by L. Smajlovic

MSC:
11B30
11B75

Keywords:
Higher energies
Arithmetic progressions
Gowers norms

We obtain a generalization of the recent Kelley–Meka result 
on sets avoiding arithmetic progressions of length three. In our 
proof we develop the theory of the higher energies. Also, we 
discuss the case of longer arithmetic progressions, as well as 
a general family of norms, which includes the higher energies 
norms and Gowers norms.

© 2025 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

The famous Erdős–Turán conjecture [5] asks if it is true that for an arbitrary integer 
k ⩾ 3 any set of positive integers A = {n1 < n2 < · · · < nm < . . . } satisfying
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∞ ∑︂
j=1 

1 
nj

= ∞ (1)

contains an arithmetic progression of length k (we say A has an APk in this case), that 
is the sequence of the form x, x+y, . . . , x+(k−1)y ∈ A? This question has a rich history 
see, e.g., [8], [9] or [23] and is considered as a central one in the area of classical additive 
combinatorics due to its connection with many adjacent fields as combinatorial ergodic 
theory and graphs/hypergraphs theory, we just mention some papers [26], [27], [6], [7], 
[22], [10], [29], [28], [14], [13] etc. If one defines

rk(N) = 1 
N

max{|A| : A ⊆ {1, . . . , N} , A has no APk} ,

then condition (1) means, roughly, that

rk(N) ≪ 1 
logN · (log logN)1+ε

, N → ∞ (2)

for an arbitrary ε > 0.
The case of arithmetic progressions of length three is considered special thanks to 

the Fourier approach of Roth [15], the necessary information and references on this 
topic can be found in [2], [12], as well as in [23]. Bloom and Sisask in [1] proved that 
r3(N) ≪ (logN)−1−c1 for a certain c1 > 0 and hence established conjecture (1) in the 
case of k = 3. Recently, Kelley and Meka [12] made significant progress on this issue and 
proved that

rk(N) ≪ exp(−O((logN)c1)) ,

where c1 > 0 is an absolute constant. One of the ideas of paper [12] was to use the 
higher energy Ek

2 and the notion of the uniformity relatively to Ek
2 (all definitions can be 

found in Sections 2, 3) with a growing parameter k to control the number of arithmetic 
progressions in an arbitrary set. Namely, bound (2) is an immediate consequence of the 
following result (for simplicity we consider the group Fn

p ).

Theorem 1. Let G = Fn
p , A ⊆ G be a set, |A| = δN , and ε > 0 be a parameter. Then 

there is a subspace V ⊆ G and x ∈ G such that A ∩ (V + x) is ε--uniform relatively to 
Ek

2 , μV +x(A) ⩾ δ, and

codimV ≪ ε−14k4ℒ3(δ)ℒ2(εδ) . (3)

The aim of this paper is to generalize the Kelley–Meka results to a wider additive--
combinatorial family of energies Ek

l see, e.g., [25]. In our regime the parameter l is 
l = O(1).
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Theorem 2. Let G = Fn
p , A ⊆ G be a set, |A| = δN , and ε ∈ (0, 1] be a parameter. Then 

there is a subspace V ⊆ G and x ∈ G such that A ∩ (V + x) is ε--uniform relatively to 
Ek
l , μV +x(A) ⩾ δ and

codimV ≪ ε−28ll(8l)28l
l

k4ℒ4l(ε)ℒ5l(δ) . (4)

Theorem 2 is interesting in its own right and can be used to solve more general 
equations and systems than x+ y = 2z (the latter corresponds to the case of AP3). The 
approach develops the strategy of [8], [9], the method of the higher energies (see, e.g., 
[20], [25]) and of course [12]. Also, we extensively use the brilliant exposition [2], where 
the Kelley–Meka results were discussed in detail. As an application of the 2 theorem, 
we consider a well–known two–dimensional generalization of arithmetic progressions of 
length three, namely the question of the density of sets avoiding corners, see, for example, 
[6] or [9].

In the appendix, we discuss the original Erdős–Turán conjecture, i.e. the case of longer 
arithmetic progressions and show that there is a number of difficulties at the conceptual 
and technical levels that make the question of generalizations of the methods from [12] 
rather hard. The author believes that this part is also interesting in its own right, as it 
allows us to understand the limitations of the Kelley–Meka approach. In addition, we 
consider a general family of norms that simultaneously includes the norms Ek

l mentioned 
above, as well as the classical Gowers norms [9].

We thank the reviewers for their valuable comments and useful remarks.

2. Definitions and preliminaries

Let G be a finite abelian group and denote by N the cardinality of G. We use the 
same capital letter to denote a set A ⊆ G and its characteristic function A : G → {0, 1}. 
Let us define μA(x) = A(x)/|A|, and notice that 

∑︁
x∈G μA(x) = 1. Finally, let fA(x) =

A(x)−|A|/N be the balanced function of A. Given two sets A,B ⊂ G, define the sumset 
of A and B as

A + B := {a + b : a ∈ A, b ∈ B} .

In a similar way we define the difference sets and the higher sumsets, e.g., 2A − A is 
A + A−A.

Let f be a function from G to C. We denote the Fourier transform of f by ˆ︁f ,

ˆ︁f(ξ) =
∑︂
x∈G

f(x)χ(x) , (5)

where χ ∈ ˆ︁G is a character of G. We rely on the following basic identities∑︂
x∈G

|f(x)|2 = 1 
N

∑︂
χ∈ˆ︂G

⃓⃓ ˆ︁f(χ)
⃓⃓2
, (6)
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and

f(x) = 1 
N

∑︂
χ∈ˆ︂G

ˆ︁f(χ)χ(x) . (7)

If

(f ∗ g)(x) :=
∑︂
y∈G

f(y)g(x− y) and (f ◦ g)(x) :=
∑︂
y∈G

f(y)g(y + x) ,

then

ˆ︁f ∗ g = ˆ︁fˆ︁g (8)

and similar for f ◦ g. Clearly, (f ∗ g)(x) = (g ∗ f)(x) and (f ◦ g)(x) = (g ◦ f)(−x), x ∈ G. 
The k--fold convolution, k ∈ N we denote by f (k), so f (2) = f ∗ f and f (3) = f ∗ f ∗ f
for example.

We need some formalism concerning higher convolutions see, e.g., [25]. Let l be a 
positive integer. Consider two operators 𝒟l, 𝒫l : G → Gl such that for a variable x ∈ G
one has 𝒟l(x) = (x, . . . , x) ∈ Gl and we formally write 𝒫l(x) = (x1, . . . , xl) ∈ Gl, that 
is 𝒫l(x) ∈ Gl is a vector, which runs over Gl. Notice that 𝒫1(x) = 𝒟1(x) = x. In 
the same way these operators act on functions f : G → C, e.g., 𝒫l(f)(x1, . . . , xl) =
(f(x1), . . . , f(xl)) (more generally, 𝒫l(F )(x1, . . . , xl) = (f1(x1), . . . , fl(xl)) for F =
(f1, . . . , fl)) and 𝒟l(f)(x1, . . . , xl) = f(x1) if x1 = · · · = xl and zero otherwise. Now 
given a function f : G → C and a positive integer l define the generalized convolution

𝒞l(f)(x1, . . . , xl) =
∑︂
z∈G

f(z + x1) . . . f(z + xl) = (𝒟l(G) ◦ 𝒫l(f))(x1, . . . , xl) (9)

:=
∑︂
z∈G

fx1,...,xl
(z) . (10)

In a similar way we can consider 𝒞l(f1, . . . , fl)(x1, . . . , xl) for any functions f1, . . . , fl :
G → C. One has

𝒞l(f)(x1, . . . , xl) = 𝒞l(f)(x1 + w, . . . , xl + w) = 𝒞l(f)((x1, . . . , xl) + 𝒟l(w)) (11)

for any w ∈ G. Let us emphasize that definitions (9), (10) differ slightly from the usual 
one, see, e.g., [25] by a linear change of the variables. Namely, it is a little bit more 
traditional to put

f ′
x1,...,xl

(z) = f0,x1,...,xl
(z) = f(z)f(z + x1) . . . f(z + xl) , (12)

and
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𝒞′
l+1(f)(x1, . . . , xl) =

∑︂
z∈G

f(z)f(z + x1) . . . f(z + xl) = 𝒞l(f)(0, x1, . . . , xl) . (13)

Definitions (12), (13) have an advantage that they allow to consider infinite groups G
as well. To this end we use the dual notation ∥f∥klĒk

l

= Ēk
l (f) = N−1Ek

l (f). Now having 
k, l ⩾ 2 and a function f : G → C one can consider

Ek
l (f) =

∑︂
x1,...,xl

𝒞k
l (f)(x1, . . . , xl) =

∑︂
|y|=l

𝒞k
l (f)(y) = El

k(f) (14)

and it was showed in [25, Proposition 30] (or see Corollary 6 below) that for a real 
function f and even k, l the formula (Ek

l (f))1/kl defines a norm of our function f . Here, 
given a vector y = (x1, . . . , xl) ∈ Gl, the fact that y has l coordinates is expressed 
as |y| = l. The property Ek

l (f) = El
k(f) of the energies Ek

l we call duality, and this 
equality was proved in [20] (see also [24] and [25]). If one puts l = 1 in (14), then we 
formally obtain Ek

1(f) = N(
∑︁

z f(x))k and this is not a norm for any k. Nevertheless, it is 
convenient to consider the quantities Ek

1(f) sometimes. Notice that Ek
l (f) ⩾ 0, provided 

at least one of k, l is even but, nevertheless, it cannot be a norm in this case, see [25, 
Sections 4,7] (although it is a norm restricted to the family of non–negative functions). 
A general family of norms, which includes the norms above is considered in the second 
part of the appendix, where, in particular, one can find the discussed properties of the 
energies Ek

l (f). Finally, let us articulate one more formula for the energy Ek
l (f), namely,

Ek
l (f) =

∑︂
x1,...,xl

(f ◦ fx2,...,xl
)k(x1) =

∑︂
y1,...,yk

(f ◦ fy2,...,yk
)l(y1) . (15)

For the convenience of the reader, we recall the Croot–Sisask Lemma, see [4], [17].

Lemma 3. Let G be an abelian group, ε ∈ (0, 1) and K ⩾ 1 be real numbers, q be a 
positive integer, A,B ⊆ G be sets such that |A + B| ⩽ K|A|, and let f ∈ Ll(G) be an 
arbitrary function. Then there exist a b ∈ B and a set T ⊆ B with |T | ⩾ |B|(2K)−O(ε2q)

such that

∥(f ∗A)(x + t) − (f ∗A)(x)∥Lq(G,x) ⩽ εq|A|∥f∥qLq(G)

for all t ∈ T − b.

Also, we recall a special case of Chang’s Lemma, see [3]. Recall that for a set A ⊆ G
and ε ∈ (0, 1] the set

Spec ε(A) = {z ∈ G : | ˆ︁A(z)| ⩾ ε|A|} , (16)

is called the ε--spectrum of A.
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Lemma 4. Let G = Fn
p , A ⊆ G. Then

dim(Spec ε(A)) ≪ ε−2 log(|G|/|A|) .

Finally, we need a result on the functions 𝒞l(f)(x1, . . . , xl), see [25, Lemma 29] and 
[25, Corollary 30].

Lemma 5. Let G be an abelian group, k, l ⩾ 2 be even numbers and φ1, . . . , φk : G → Cl, 
φj = (φ(1)

j , . . . , φ
(l)
j ). Then

⃓⃓⃓⃓
⃓⃓ ∑︂
x∈Gl

(𝒟l(G) ◦ 𝒫l(φ1)) . . . (𝒟l(G)(x) ◦ 𝒫l(φk))(x)

⃓⃓⃓⃓
⃓⃓ ⩽ k∏︂

j=1

l∏︂
i=1

∥φ(i)
j ∥Ek

l
. (17)

Corollary 6. Let G be an abelian group, k, l ⩾ 2 be even numbers. Then for any pair of 
functions f, g : G → C the following holds

∥f + g∥El
k
⩽ ∥f∥El

k
+ ∥g∥El

k
,

and ∥ · ∥El
k

is a norm.

Let ε ∈ (0, 1] be a real number. We write ℒ(ε) for log(2/ε). Let us make a convention 
that if a product is taken over an empty set, then it equals one. The signs ≪ and ≫ are 
the usual Vinogradov symbols. When the constants in the signs depend on a parameter 
M , we write ≪M and ≫M . All logarithms are to base 2. By Fp denote Fp = Z/pZ for a 
prime p. We write V ⩽ Fn

p if V is a subspace of the group Fn
p . Let us denote by [n] the 

set {1, 2, . . . , n}.

3. Some results on E𝒌
𝒍 --norms

In this section, we generalize some the Kelley–Meka results which were obtained for 
the Ek

2--norm to the Ek
l --norm. Also, we discuss some special properties of such norms. 

Our results naturally fall into two cases: uniform and non–uniform.

3.1. Uniform sets in the sense of Ek
l --norm

Let us give the main definition of this subsection.

Definition 7. Let G be a finite abelian group, A ⊆ G be a set, |A| = δN , and ε > 0 be 
a parameter. Then we say that A is ε--uniform relatively to (the energy) Ek

l if

∥fA∥klEk
l
⩽ εklδklNk+l . (18)



116 I.D. Shkredov / Journal of Number Theory 281 (2026) 110--138 

Usually the number ε belongs to (0, 1] but sometimes ε > 1 and hence one can consider 
the quantity ε as the definition of the energy ∥fA∥klEk

l
, that is ∥fA∥klEk

l
:= εklδklNk+l. 

Further by the Hölder inequality, we have

(Ek−1
l (f))k ⩽ (Ek

l (f))k−1N l (19)

and hence if A is ε--uniform relatively to Ek
l , then A is ε--uniform relatively to Ek′

l′ for 
k′ ⩽ k, l′ ⩽ l (we consider just even indices, say). On the other hand, it is easy to see 
that the smaller norm does not control the higher one.

Example 8. Let G = Fn
2 , H < Fn

2 , Λ ⊆ Fn
2 /H be a random set such that |Λ| = δN/|H|. 

Also, suppose that δ2 ≫ |H|/N and thus with high probability Λ − Λ ≈ Fn
2 /H. Let 

A be the direct sum of H and Λ, then |A| = δN . It is easy to see that for a random 
x ∈ A − A ≈ G one has |Ax| ∼ δ2N but for x, y ∈ H one has Ax = A and Ax,y = A. 
Thus for any k ⩾ 2 the following holds

Ek
2(A) ∼ (δ2N)kN + (δN)k|H| ∼ (δ2N)kN ,

provided |H| ≪ δkN but taking an arbitrary k∗, we see that

Ek∗
3 (A) ∼ (δ3N)k∗N2 + (δN)k∗ |H|2 ≫ (δN)k∗ |H|2 ,

provided |H| ≫ δk∗N . It follows that one can choose any k∗ ⩾ k + 1 and construct a set 
A such that A is Ek

2--uniform but not Ek∗
3 --uniform. Of course, one can replace the pair 

(2, 3) by any suitable pair of indices.

Now let us obtain the characteristic property of the energy Ek
l (also, see Remark 4

below).

Lemma 9. Let l, k ⩾ 2 be even numbers, and Aj ⊆ G, j ∈ [l] be sets. Then for any 
function g : G → R one has

∑︂
x 

l∏︂
j=1

(fAj
◦ g)(x) ⩽ ∥g∥l(1−1/k)

1 ∥𝒞l(g)∥1/k
∞ ·

l∏︂
j=1

∥fAj
∥Ek

l
. (20)

If all sets Aj are the same, then for any l and an arbitrary even k bound (20) still takes 
place.

Proof. By the Hölder inequality, [25, Lemma 29] and the duality one has

∑︂
x 

l∏︂
j=1

(fAj
◦ g)(x) = N−1

∑︂
|z|=l

𝒞l(fA1 , . . . , fAl
)(z)𝒞l(g)(z)
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⩽ N−1+1/k
l∏︂

j=1
∥fAj

∥Ek
l
·

⎛⎝∑︂
|z|=l

|𝒞k/(k−1)
l (g)(z)|

⎞⎠1−1/k

⩽
l∏︂

j=1
∥fAj

∥Ek
l
· ∥𝒞l(g)∥1/k

∞ ∥g∥l(1−1/k)
1 .

This completes the proof. □
Corollary 10. Let A,B ⊆ G be sets, |A| = δN , |B| = βN , and l be a positive integer. 
Take k = 2⌈4l log(1/β)⌉ and suppose that A is ε--uniform relatively to the energy Ek

l . 
Then ∑︂

x 
(A ◦B)l(x) ⩽ δl|B|lN · min{1.25(1 + ε)l, (1 + 1.25ε)l} . (21)

Proof. Using the formula A(x) = fA(x) + δ, combining with Lemma 9, we see that the 
left–hand side of (21) is

l∑︂
j=0 

(︃
l

j

)︃
(δ|B|)l−j

∑︂
x 

(fA ◦B)j(x) ⩽
l∑︂

j=0 

(︃
l

j

)︃
(δ|B|)l−j∥fA∥jEk

j

|B|j(1−1/k)+1/k

⩽ δl|B|lN
l∑︂

j=0 

(︃
l

j

)︃
εjβ−(j−1)/k ⩽ 5

4δ
l|B|lN(1 + ε)l

as required. One can obtain the second bound in a similar way. This completes the 
proof. □

Let us remark that, of course, the energy Ek
2 solely allows us to control sums from 

(21) but our task is to obtain the correct power of δ and |B| in the right–hand side of 
this estimate (also, see Remark 4 below).

We need one more result about uniform sets, which is useful for applications.

Lemma 11. Let k, l ⩾ 2 be even numbers, A1, . . . , Al ⊆ G be sets, |Aj | = δjN . Suppose 
that all Aj are ε--uniform relatively to Ek

l and 2lεk ⩽ 1. Then

∑︂
|x|=l

⎛⎝𝒞l(A1, . . . , Al)(x) −N
l∏︂

j=1
δj

⎞⎠k

⩽ 2klεkN l+k

⎛⎝ l∏︂
j=1

δj

⎞⎠k

. (22)

Proof. Put Π =
∏︁l

j=1 δj . Then the left–hand side of (22) is

σ :=
∑︂
|x|=l

⎛⎝ ∑︂
∅̸=S⊆[l]

𝒞l(f1, . . . , fl)(x)

⎞⎠k

=
∑︂
|x|=l

⎛⎝ ∑︂
∅̸=S⊆[l]

FS(x)

⎞⎠k

,
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where for j ∈ S we put fj = fAj
and if j / ∈ S, then fj = δj . Using ε--uniformity of all 

sets Aj and estimate (17) of Lemma 5 with φj = (f1, . . . , fl), we get∑︂
|x|=l

F k
S (x) ⩽ ε|S|kΠkN l+k .

Thus by the Hölder inequality one has

σ ⩽ 2(k−1)l
∑︂

∅̸=S⊆[l]

∑︂
|x|=l

F k
S (x) ⩽ 2(k−1)lΠkNk+l((1 + εk)l − 1) ⩽ 2klεkΠkNk+l

as required. □
Let us consider one more example which shows that it is possible to remove/add a 

tiny subset from a non–uniform set to get a uniform one. This phenomenon has no place 
if we consider the classical uniformity in terms of the Fourier transform or in terms of 
Gowers norms [9], say. The reason is normalization (18), of course.

Example 12. Let G = Fn
2 , H < Fn

2 , |H| = βN , Λ ⊆ G be a random set, |Λ| = δN , 
β ⩽ δ ⩽ 1/2 and put A = H̃⊔Λ, where H̃ = H \ Λ. Then with high probability 
|H̃| ∼ β(1 − δ)N := ε|A|, the set Λ is uniform in all possible senses but A is a non 
η--uniform set with rather large η. Indeed, by the Kelley–Meka method [12] or just see 
Lemma 9, we know that

σ(A,A) :=
∑︂
x 

(A ◦A)(x)H(x) = |H|−1
∑︂
x 

(A ◦A)(x)(H ◦H)(x)

= (δ + (1 − δ)β)2βN2 + θη2δ2βN2

= βδ2(1 + ε)2N2 + θη2δ2βN2 , (23)

where |θ| ⩽ 4, say, is a certain number and A is supposed to be Ek
2--uniform with k ∼

ℒ(β). On the other hand, direct calculation shows that

σ(A,A) = σ(H̃, H̃) + 2σ(H̃,Λ) + σ(Λ,Λ) = |H̃|2 + 2δβ2(1 − δ)N2 + δ2|H|N

= (ε2δ2 + 2δ2βε + δ2β)N2 (24)

plus a negligible error term. Comparing (23) and (24), we obtain

η2δ3ε ≫ ε2δ2(1 − β) ≫ ε2δ2

and thus η2 ≫ ε/δ which is much larger than ε for small δ.
Similarly, one can show that removing a subspace H from a random set Λ, |H| = ε|A|, 

A = Λ \ H, H lives on the first coordinates, say, we obtain a non η--uniform set with 
η ≫ 1 thanks to the equality 

∑︁
x H(x)(A ◦A)(x) = 0.
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Remark 1. Example 12 shows us that Ek
l --norm is a rather delicate object and addi

tion/removal of a small set can change the norm dramatically. Nevertheless, notice that 
if A = ⊔s

j=1 Aj , δ = μG(A), δj = μG(Aj) and all sets Aj are ε--uniform relatively to 
the norm Ek

l , where k, l ⩾ 2 are even numbers, then by the triangle inequality for the 
norm Ek

l the set A is also ε--uniform. If k is an even number and l is an arbitrary positive 
integer, then still the characteristic property (21) of the norm Ek

l takes place. Indeed, by 
the Hölder inequality one has

σ :=
∑︂
x 

(
s ∑︂

j=1 
fAj

◦B)l(x) =
∑︂

i1+···+is=l

(︃
l

i1, . . . , is

)︃∑︂
x 

(fA1 ◦B)i1(x) . . . (fAs
◦B)is(x)

⩽
∑︂

i1+···+is=l

(︃
l

i1, . . . , is

)︃ s ∏︂
j=1

(︄∑︂
x 

|(fAj
◦B)(x)|l

)︄ij/l

.

Now consider σ0 :=
∑︁

x |(fS ◦B)(x)|l for an arbitrary ε--uniform relatively to the norm 
Ek
l set S, ε ⩽ 1/4, say, and let μG(S) = σ. Of course, one has σ0 =

∑︁
x(fS ◦ B)(x)l for 

even l but for odd l, we have a similar bound, namely,

σ0 ⩽
∑︂
x 

(fS ◦B)(x)l−1((fS ◦B)(x)+2δ|B|) =
∑︂
x 

(fS ◦B)(x)l +2σ|B|
∑︂
x 

(fA ◦B)(x)l−1

⩽ 5/4 · (2 + ε)εl−1σl|B|lN ⩽ 3εl−1σl|B|lN

thanks to Lemma 9 (also, see Corollary 10). Here we have assumed that k ≫ lℒ(μG(B)), 
of course. Thus

σ ⩽ 3εl−1|B|lN
∑︂

i1+···+is=l

(︃
l

i1, . . . , is

)︃ s ∏︂
j=1

δ
ij
j = 3εl−1|B|lN

⎛⎝ s ∑︂
j=1 

δj

⎞⎠l

= 3εl−1δl|B|lN

and we see that the difference between two cases is almost absent.

3.2. Non–uniformity and almost periodicity

The aim of this subsection is to obtain Sanders’ almost periodicity result for higher 
convolutions, see Lemma 15 below.

At the beginning we want to transfer a lower bound for the energy Ek
l (fA) to the 

largeness of the energy Ek
l (A). We follow a more simple method from [2] which differs 

from the approach of [12] by some logarithms. The dependence on l in the first multiple 
in (26) is, probably, can be improved significantly (also, see Remark 6 from the appendix) 
but in our regime l = O(1) and thus it is not so critical for us.

Lemma 13. Let A ⊆ G be a set, |A| = δN and ε > 0 be a parameter, ε∗ := min{ε, 1}. 
Suppose that for an odd k ⩾ 5 one has
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Ek
l (fA) = εlkδlkN l+k , (25)

and that for k∗ = O(klε−l
∗ ℒ(ε∗)) the set A is εεl−1

∗
8l --uniform relatively to Ek∗

l−1. Then 
there is an even k1 ⩽ k∗ such that

Ek1
l (A) ⩾

(︃
1 + εεl−1

∗
8l 

)︃lk1

δlk1N l+k1 . (26)

Proof. Write f(x) = fA(x) and put P = {x : 𝒞l(f)(x) ⩾ 0}. Since k is an odd number, 
we have ∑︂

x∈P

𝒞k
l (f)(x) ⩾ εlkδlkN l+k . (27)

Now let us consider the subset of the set P , namely,

Pε := {x : 𝒞l(f)(x) ⩾ 3
4ε

lδlN} .

Then we have

∑︂
x/ ∈Pε

𝒞k
l (f)(x) ⩽

(︃
3
4ε

lδlN

)︃k

N l ⩽ 2−2εlkδlkN l+k . (28)

Combining (27), (28) and using the Hölder inequality, we obtain

|Pε|E2k
l (f) ⩾ 2−4ε2lkδ2lkN2l+2k . (29)

By the norm property of E2k
l (f) for positive functions (see Corollary 6) one has

E2k
l (f) ⩽

(︂
∥A∥E2k

l
+ ∥δ∥E2k

l

)︂2kl
⩽ (2 + ε/8)2klδ2klN l+2k

otherwise there is nothing to prove with k1 = 2k and much larger ε. Thus we derive from 
(29) that |Pε| ⩾ (2ε∗/5)2klN l. Now

𝒞l(A)(x) = 𝒞l(f + δ)(x) = δlN + 𝒞l(f) +
∑︂

S⊆[l] : 1⩽|S|<l

δl−|S|𝒞|S|(f)(xS)

= δlN + 𝒞l(f) + ℰ(x) ,

where for a set S ⊆ [l] the vector xS has coordinates xj , j ∈ S. By the triangle inequality 
for Lk1--norm, we have

(Ek1
l (A))1/k1 = ∥𝒞l(A)∥k1 = ∥𝒞l(f + δ)∥k1 ⩾ ∥δlN + 𝒞l(f)∥k1 − ∥ℰ∥k1 . (30)

Using our bound for the cardinality of the set Pε, we get
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∥δlN + 𝒞l(f)∥k1
k1

⩾
∑︂
x∈Pε

(δlN + 𝒞l(f))k1(x) ⩾ (2ε∗/5)2klN l · (1 + 3εl/4)k1δlk1Nk1

⩾ (1 + εl/2)k1δlk1Nk1+l , (31)

provided k1 ⩾ 20klε−l
∗ ℒ(ε∗). On the other hand, by our assumption the set A is ζ :=

εl

8l --uniform relatively to Ek∗
j for all j < l and k∗ = k1. It follows that

∥ℰ∥k1 ⩽
∑︂

S⊆[l] : 1⩽|S|<l

δl−|S|N
l−|S|
k1 ∥f∥|S|

Ek1
|S|

⩽ δlN
l+k1
k1 ((1 + ζ)l − 1) . (32)

Combining (30), (31) and (32), we obtain

Ek1
l (A) ⩾ δlk1Nk1+l

(︁
2 + εl/2 − (1 + ζ)l

)︁k1 ⩾ δlk1Nk1+l

(︃
1 + εεl−1

∗
8l 

)︃lk1

as required. □
Now we use duality (14) to obtain the appropriate version of multi–dimensional version 

of the Balog–Szemerédi--Gowers theorem as was done in [19] (also, see [24, Theorem 17]). 
Thanks to duality (65) one can show that a similar result takes place for more general 
energies ℰk

s,t, see the appendix. Of course, in this case one needs to replace 𝒞|x|(·)(x) to 
𝒞|x||z|(·)(x⊕ z) or 𝒞|y||z|(·)(y⊕ z) and use symmetries (67) instead of the symmetry (11)
below.

Lemma 14. Let A ⊆ G be a set, |A| = δN and ε > 0, η ∈ (0, 1/2) be parameters. Suppose 
that for some integers k, l ⩾ 2 with kl ⩾ 4ε−1

∗ ℒ(η) one has

Ek
l (A) ⩾ (1 + ε)lkδlkN l+k . (33)

Define the set

S = {|x| = l : 𝒞l(A)(x) ⩾ (1 + ε/4)lδlN} . (34)

Then there is a set B such that

N−1
∑︂
|x|=l

S(x)𝒞l(B)(x) ⩾ (1 − 2η)|B|l , (35)

and |B| ⩾ 2−1/(l−1)(1 + ε)kδkN .

Proof. For any set S ⊆ Gl with the property S(x + 𝒟l(t)) = S(x), t ∈ G, x ∈ Gl, we 
get ∑︂

|x|=l

S(x)𝒞k
l (A)(x) =

∑︂
|x|=l

S(x)
∑︂
|z|=k

Ak(z + 𝒟k(x1)) . . . Ak(z + 𝒟k(xl))
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=
∑︂
|z|=k

∑︂
|x|=l

S(x)Az(x1) . . . Az(xl) = N−1
∑︂
|z|=k

∑︂
|x|=l

S(x)𝒞l(Az)(x) , (36)

where we have made the change of the variables xj → xj + t in the last formula. Clearly, 
we have from identity (11) and definition (34) that S(x + 𝒟l(t)) = S(x) for t ∈ G and 
x ∈ Gl and thus the argument above can be applied for the set S as well. Thus using 
the definition of the set S, as well as conditions (33) and kl ⩾ 4ε−1

∗ ℒ(η), we get∑︂
x/ ∈S

𝒞k
l (A)(x) ⩽ (1 + ε/4)lkδlkNk+l ⩽ 2−2η(1 + ε)lkδlkNk+l ⩽ 2−2ηEk

l (A) . (37)

Now let us define the set

Ω =
{︂
|z| = k : |Az| ⩾ 2−1/(l−1)(1 + ε)kδkN

}︂
.

By the definition of the set Ω, we have∑︂
z/ ∈Ω

|Az|l ⩽ (max
z/ ∈Ω 

|Az|)l−1|A|kN ⩽ 2−1(1 + ε)lkδlkN l+k ⩽ 2−1Ek
l (A) . (38)

In view of bounds (37), (38) one has

N−1
∑︂
z∈Ω

(︄∑︂
x∈S

𝒞l(Az)(x) − η−1
∑︂
x/ ∈S

𝒞l(Az)(x)
)︄

⩾ 2−1
∑︂
|z|=k

|Az|l − 2−1Ek
l (A) = 0 . (39)

Hence there is z ∈ Ω such that inequality (35) holds for B = Az and |B| ⩾ 2−1/(l−1)(1+
ε)kδkN as required. □

Now we need an analogue of the almost periodicity result [4] (also, see [16], [17], 
[18] and, especially, [21, Theorem 3.2]) for the higher convolutions. This theme is rather 
well–known and thus we give just a scheme of the proof, emphasizing the necessary 
distinctions we need to make. For the convolution 𝒞|x||z|(x ⊕ z) a similar result takes 
place, see Lemma 21 from the appendix.

Lemma 15. Let G = Fn
p , l be an integer and ϵ ∈ (0, 1] be a real parameter. Also, let 

B ⊆ G be a set, |B| = βN , and f : Gl → [−1, 1] be a function. Then there is a subspace 
V ⩽ G with

codimV ≪ ϵ−2lℒ2(β)ℒ2(ϵβl) (40)

and such that⃓⃓⃓⃓
⃓⃓∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B ∗ μV ))(x) −
∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B))(x)

⃓⃓⃓⃓
⃓⃓ ⩽ ϵ|B|l+1 . (41)
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Proof. We begin with a rather general argument that takes place in any abelian group G. 
Let k ⩾ 2 be an integer parameter and q ⩾ 2 be a real parameter. Applying the Croot--
Sisask Lemma 3 with ε = ε/(4k), A = 𝒟l(B), B = 𝒟l(G) (clearly, one has |𝒟l(B) +
𝒟l(G)| ⩽ β−1|𝒟l(B)|), we find a set T ⊆ G, |T | ⩾ |B| exp(−O(ϵ−2qk2 log(1/β))) and 
such that for any t ∈ kT the following holds

∑︂
|x|=l

⃓⃓⃓⃓
⃓⃓(f ◦ 𝒟l(B))(x + 𝒟l(t)) −

∑︂
|x|=l

(f ◦ 𝒟l(B))(x)

⃓⃓⃓⃓
⃓⃓
q

⩽
(︂ ϵ 

4

)︂q

∥f∥qq|B|q ⩽
(︂ ϵ 

4

)︂q

|B|qN l .

(42)
Fixing t ∈ kT and using the Hölder inequality, combining with estimate (42), we get⃓⃓⃓⃓
⃓⃓∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B))(x + 𝒟l(t)) −
∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B))(x)

⃓⃓⃓⃓
⃓⃓ ⩽ ϵ 

4 |B|N l/q|B|l(1−1/q)

= ϵ 
4β

−l/q|B|l+1 ⩽ ϵ 
2 |B|l+1 , (43)

where we have taken q = Cl log(1/β) for a sufficiently large constant C > 0. It follows 
that ⃓⃓⃓⃓

⃓⃓∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B ∗ μ(k)
T ))(x) −

∑︂
|x|=l

f(x)(Bl ◦ 𝒟l(B))(x)

⃓⃓⃓⃓
⃓⃓ ⩽ 2−1ϵ|B|l+1 . (44)

Let us analyze the sum σ := |
∑︁

|x|=l f(x)(Bl ◦ 𝒟l(B ∗ μ(k)
T ))(x)| from (44). Clearly, one 

has ˆ︁μ𝒟l(T )(r1, . . . , rl) = |T |−1 ˆ︁T (r1 + · · · + rl) and thus

σ ⩽ |B| 
|T |kN l

∑︂
z

|ˆ︁T (z)|k
∑︂

r1+···+rl=z

| ˆ︁f(r1, . . . , rl)|| ˆ︁B(r1)| . . . | ˆ︁B(rl)| . (45)

As usual let us estimate the last sum over z ∈ Spec c(T ), where c ∈ (0, 1] is a parameter 
and over z / ∈ Spec c(T ), see formula (16). By the definition of the set Spec c(T ), the 
Hölder inequality and the Parseval identity, we have

σ1 := |B| 
|T |kN l

∑︂
z/ ∈Spec c(T )

|ˆ︁T (z)|k
∑︂

r1+···+rl=z

| ˆ︁f(r1, . . . , rl)|| ˆ︁B(r1)| . . . | ˆ︁B(rl)|

⩽ ck|B|
N l

∑︂
r2,...,rl

| ˆ︁B(r2)| . . . | ˆ︁B(rl)|
∑︂
z

| ˆ︁f(z − r2 + · · · + rl, . . . , rl)|| ˆ︁B(z − r2 + · · · + rl)|

⩽ ck|B|3/2
N l−1

∑︂
r2,...,rl

| ˆ︁B(r2)| . . . | ˆ︁B(rl)|
(︄∑︂

a 
| ˆ︁fa(r2, . . . , rl)|2)︄1/2

,
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where fa(x2, . . . , xl) = f(a, x2, . . . , xl). Using the Hölder inequality and the Parseval 
formula one more time, we derive

σ1 ⩽ ck|B|(l+2)/2

N (l−1)/2

(︄ ∑︂
r2,...,rl

∑︂
a 

| ˆ︁fa(r2, . . . , rl)|2)︄1/2

⩽ ck|B|(l+2)/2N l/2 ⩽ 2−1ϵ|B|l+1 .

Here we have taken c = 1/2 and k = ⌈2ℒ(ϵβl)⌉, say. For the sum over z ∈ Spec c(T ) we 
use Chang’s Lemma 4 with the parameters ε = c and A = T , and find a subspace V
such that (41) takes place and

codimV ≪ log(N/|T |) ≪ ϵ−2lℒ2(β)k2 ≪ ϵ−2lℒ2(β)ℒ2(ϵβl) ,

see details in [4], [17], [18] or in [24, Section 5]. This completes the proof. □
4. Some generalizations of the Kelley–Meka results

Using the density increment, Kelley–Meka [12] (or just repeat the calculations of the 
previous section, combining forthcoming Proposition 18 in the case l = 2) obtained the 
following result.

Theorem 16. Let G = Fn
p , A ⊆ G be a set, |A| = δN , and ε > 0 be a parameter. Then 

there is a subspace V ⊆ G and x ∈ G such that A ∩ (V + x) is ε--uniform relatively to 
Ek

2 , μV +x(A) ⩾ δ, and

codimV ≪ ε−14k4ℒ3(δ)ℒ2(εδ) · ℒ4(ε) . (46)

Remark 2. Actually, we formulate Theorem 16 in the form of Bloom–Sisask [2]. Kelley--
Meka [12] obtained this result without ℒ4(ε) in (46).

We generalize Theorem 16 for the higher energies Ek
l .

Theorem 17. Let G = Fn
p , A ⊆ G be a set, |A| = δN , and ε ∈ (0, 1] be a parameter. 

Then there is a subspace V ⊆ G and x ∈ G such that A∩ (V +x) is ε--uniform relatively 
to Ek

l , μV +x(A) ⩾ δ and

codimV ≪ ε−28ll(8l)28l
l

k4ℒ4l(ε)ℒ5l(δ) . (47)

Remark 3. Using the second part of Example 12 one can easily see that the quantity k
is necessary in estimates (46), (47). Indeed, just delete from Fn

2 a subspace H of density 
2−k. Then the obtained set is not Ek

2--uniform and to find a uniform piece we need k
dimensions.
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Now we are ready to obtain our driving result about the density increment. As always 
we will apply Proposition 18 in an iterative way and we see that estimate (50) allows us 
to do it in at most O(ε−1ℒ(δ)) times.

Proposition 18. Let G = Fn
p , A ⊆ G, |A| = δN , ε > 0 be a real number and k, l ⩾ 2 be 

positive integers, kl ≫ ε−1ℒ(ε). Suppose that

Ek
l (A) ⩾ (1 + ε)klδklNk+l , (48)

and that A is ε/5--uniform relatively to Ek∗
l−1 for an even k∗ = O(klℒ(δ)). Then there is 

a subspace V ⊆ G such that

codimV ≪ ε−2l3k4ℒ2(δ)ℒ2(εδ) , (49)

and for a certain x ∈ G one has

|A ∩ (V + x)| ⩾ (1 + ε/8)δ|V | . (50)

Proof. Applying Lemma 14 for the energy Ek
l (A) with the parameters ϵ = ε, η = ε/30, 

we construct the set

S = {|x| = l : 𝒞l(A)(x) ⩾ (1 + ε/4)lδlN}

and such that for a certain set B ⊆ G, |B| > 2−1/(l−1)(1 + ε)kδkN := βN the following 
holds

N−1
∑︂
|x|=l

S(x)𝒞l(B)(x) ⩾ (1 − 2η)|B|l . (51)

We have kl ⩾ 4ε−1ℒ(η) and thus Lemma 14 can be applied indeed. Using formulae (11)
and making the required change of the variables (in (9) we put, consequently, z → z−x1) 
one can see that (51) is equivalent to∑︂

|x|=l−1

S̄(x)(Bl−1 ◦ 𝒟l−1(B))(x) ⩾ (1 − 2η)|B|l , (52)

where S̄ ⊆ Gl−1 is a certain set which is constructed via the set S, see formulae (11), 
(13). Now we apply Lemma 15 with f = S̄, B = B, ϵ = η, and l = l − 1. By this 
result and inequality (52) we find a subspace V ⊆ G such that the co–dimension of V is 
controlled by estimate (40) and∑︂

|x|=l−1

S̄(x)(Bl−1 ◦ 𝒟l−1(B ∗ μV ))(x) ⩾ (1 − 3η)|B|l . (53)
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By the definition of the set S (and hence S̄), we have 𝒞l(A)(x) ⩾ (1 + ε/4)lδlN for any 
x ∈ S̄ and hence inequality (53) gives us

(1 − 3η)(1 + ε/4)lδl|B|lN ⩽
∑︂

|x|=l−1

(Al−1 ◦ 𝒟l−1(A))(x)(Bl−1 ◦ 𝒟l−1(B ∗ μV ))(x)

=
∑︂
α 

(A∗B∗μV )(α)
∑︂

|x|=l−1

Al−1(x)Bl−1(x+𝒟l−1(α)) =
∑︂
α 

(A∗B∗μV )(α)(A◦B)l−1(α)

⩽ |B|∥A ∗ μV ∥∞
∑︂
α 

(A ◦B)l−1(α) . (54)

Now by our assumption A is ε/5--uniform relatively to Ek∗
l−1 and a certain even k∗ =

O(klℒ(δ)). Using Corollary 10, we derive

∥A ∗ μV ∥∞ ⩾ δ(1 − 3η)(1 + ε/4) ⩾ δ(1 + ε/8) .

Finally, thanks to (40), we get

codimV ≪ ε−2lℒ2(β)ℒ2(εβl) ≪ ε−2l3k4ℒ2(δ)ℒ2(εδ) . (55)

This completes the proof. □
Remark 4. Formula (52) of Proposition 18 shows that Corollary 10 is a criterium and 
we can say, roughly, that for sufficiently large even k (depending on l and on |N |/|B|) 
one has

∥fA∥klEk
l

= o(δklNk+l) iff ∀m ∈ [l],  ∀B :  
∑︂
x 

(fA◦B)m(x) = o(δm|B|mN) . (56)

Alternatively, one can see this criterium in a slightly more direct way, namely, from the 
second formula of (15). Let us emphasize one more time that crucial point of the second 
formula in (56) is the correct dependence on |B| and on δ.

Now we can prove our new Theorem 17.
As always the proof follows the density increment scheme and our aim is to construct 

a shift of a subspace Vε(l, k) where the set A is ε--uniform relatively to Ek
l . Also, to obtain 

Theorem 17 we use induction on parameter l ⩾ 2 and the first step of the induction for 
l = 2 and an arbitrary k one can use either Kelley–Meka Theorem 16 or the arguments 
of Section 3 (one can check that we do not need any uniformity conditions in this case), 
combining with Proposition 18. Now let l ⩾ 3 and suppose that the set A is not ε--uniform 
relatively to Ek

l for a certain k because otherwise there is nothing to prove. Of course 
(see, e.g., inequality (19)), one can take k to be a sufficiently large number and we 
choose k such that k ≫ lε−lℒ(ε). Put εl = εl

8l . We can freely assume that our set A
is εl/5--uniform relatively to Ek∗

l−1 with k∗ = k∗(l) = O(kl2ε−lℒ(ε)ℒ(δ)) in a shift of a 
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subspace Vεl/5(l − 1, k∗(l)) thanks to Theorem 16 in the case l = 3 or by the induction 
assumption for larger l. Now we apply Lemma 13 and find k1 = O(klε−lℒ(ε)) such that

Ek1
l (A) ⩾ (1 + εl)lk1 δlk1N l+k1 .

After that we use Proposition 18 with ε = εl. One can check that kl ≫ ε−1
l ℒ(εl) and 

that A is sufficiently uniform set (to apply our proposition) relatively to Ek∗
l−1 thanks to 

our choice of k∗. Estimate (50) implies that the procedure must stop after O(ε−1
l ℒ(δ))

number of steps and thus the final co–dimension is

codimVε(l, k) ≪ ε−1
l ℒ(δ)codimVεl/5(l − 1, k∗(l))

≪ lε−lℒ(δ)codimVεl/5(l − 1, kl2ε−lℒ(ε)ℒ(δ)) .

Put L = l!. Solving the functional inequality above and using (46), we get

codimVε(l, k) ≪ Lε−l(l−1)/2ℒl−2(δ)codimV(ε/8l)2L(2, k(l!)2ε−l(l−1)/2(ℒ(ε)ℒ(δ))l−2)

≪ ε−28ll(8l)28l
l

k4ℒ4l(ε)ℒ5l(δ) (57)

as required. Actually, one can see that the number of steps of our algorithm is at most 
O(ε−1

l ℒ(δ)) (due to every time we increase the density δ to δ(1 + εl/8) and hence we do 
not need the first multiple in (57)). Nevertheless, it gives us a bound of the same sort. 
This concludes the proof of the theorem. □
5. An application to two–dimensional corners

In this section we consider the simplest two–dimensional generalization of arithmetic 
progressions of length three. Namely, let G be an abelian group. Any triple of the form

{(x, y), (x + d, y), (x, y + d)} ∈ (G × G)3

is called a corner, see [6], [9]. If d ̸= 0, then we say that our corner is a non–trivial one. 
Using projection, one can see that if a two–dimensional set contains a corner, then its 
projection contains an AP3 (see [6] or [23]). Thus, this problem does indeed generalize 
the question of the upper bound of r3(N).

Further let A ⊆ S1 × S2 ⊆ G × G, |A| = δ|S1||S2|, |S1| = σ1N , |S2| = σ2N . We say 
that A is ε--uniform relatively to the rectangular norm if

∥fA∥4□ :=
∑︂
x,y 

⃓⃓⃓⃓
⃓∑︂

y

fA(x, y)fA(x′, y)

⃓⃓⃓⃓
⃓
2

⩽ ε4δ4|S1|2|S2|2 .

Let us obtain a counting result on the number of corners in uniform sets, see [11], [23]. 
Namely, we show that Ek

4--norm controls the number of corners in any uniform set A.
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Theorem 19. Let G = Fn
2 and A ⊆ S1 × S2 ⊆ G × G, |A| = δ|S1||S2|, |S1| = σ1N , 

|S2| = σ2N . Suppose that A is η--uniform relatively to the rectangular norm, η ⩽ δ3/2/4, 
and S1, S2 are ε--uniform relatively to Ek

4 with ε = 2−12η4δ2 and k = O(ℒ(δσ1σ2)). Then 
A contains at least 2−1δ3σ2

1σ
2
2N

3 corners. In particular, if N > 2δ−2σ−1
1 σ−1

2 , then A
has a non–trivial corner.

Proof. Let f1, f2, f3 be three arbitrary functions on G×G := 𝒫. Consider the functional

T (f1, f2, f3) =
∑︂
x,y,z

f1(x, y)f2(y + z, y)f3(x, x + z) .

It is clear that T is linear in each of the arguments. Moreover, the value T (A,A,A) is 
equal to the number of triples {(x, y), (x+ d, y), (x, y + d)} in A (here and below we use 
the fact that our group is Fn

2 ). We have T (A,A,A) = δT (𝒫, A,A) + T (fA, A,A) and 
∥fA∥4□ ⩽ η4δ4σ2

1σ
2
2N

4. Below we write f = fA for brevity.
Let g(z) =

∑︁
x A(x, x+z). Then T (𝒫, A,A) =

∑︁
z g(z)2. We have 

∑︁
z g(z) = δσ1σ2N

2

and thus by the Hölder inequality,

T (A,A,A) ⩾ δ3σ2
1σ

2
2N

3 + T (f,A,A) . (58)

Let us estimate the second term on the right-hand side of (58). Using once again the 
Hölder inequality, we see that

T (f,A,A) =
∑︂
y,z 

A(y + z, y)
∑︂
x 

S1(y + z)f(x, y)A(x, x + z)

⩽
(︄∑︂

y,z 
A(y + z, y)

)︄1/2

×

⎛⎝ ∑︂
x,x′,y,z

S1(y + z)A(x, x + z)A(x′, x′ + z)f(x, y)f(x′, y)

⎞⎠1/2

.

(59)
We have 

∑︁
y,z A(y + z, y) = δσ1σ2N

2. Further,

σ :=
∑︂

x,x′,y,z

S1(y + z)A(x, x + z)A (x′, x′ + z) f(x, y)f (x′, y)

=
∑︂
x,x′,z

A(x, x + z)A (x′, x′ + z)
∑︂
y

S1(y + z)S2(x + z)S2 (x′ + z) f(x, y)f (x′, y)

Let

ω (x, x′, y, y′) =
∑︂
z

S1(y + z)S1 (y′ + z)S2(x + z)S2 (x′ + z)

= 𝒞4(S2, S2, S1, S1)(x, x′, y, y′) .

A third use of the Hölder inequality gives us
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σ ⩽

⎛⎝ ∑︂
x,x′,z

S1(x)S1 (x′)S2(x + z)S2 (x′ + z)

⎞⎠1/2

×

⎛⎝ ∑︂
x,x′,y,y′

ω (x, x′, y, y′) f(x, y)f (x′, y) f (x, y′) f (x′, y′)

⎞⎠1/2

.

Applying Corollary 10 with l = 2, A = S1, B = S2, we get

∑︂
x,x′,z

S1(x)S1 (x′)S2(x + z)S2 (x′ + z) =
∑︂
z

(S1 ◦ S2)2(z) ⩽ 2σ2
1σ

2
2N

3

due to k ≫ ℒ(σ2) and ε ⩽ 1/4. Further applying the obtained inequalities, we derive

T (f,A,A)4 ⩽ 2δ2σ4
1σ

4
2N

7
∑︂

x,x′,y,y′

ω(x, x′, y, y′)f(x, y)f(x′, y)f(x, y′)f(x′, y′)

= 2δ2σ6
1σ

6
2N

8∥f∥4□
+ 2δ2σ4

1σ
4
2N

7
∑︂

x,x′,y,y′

(ω(x, x′, y, y′) − σ2
1σ

2
2N)f(x, y)f(x′, y)f(x, y′)f(x′, y′)

⩽ 2η4δ6σ8
1σ

8
2N

12 + 2δ2σ4
1σ

4
2N

7S∗ . (60)

Here we have used the assumption that the set A is η--uniform relatively to the rectan
gular norm. To estimate the sum S∗ we apply Lemma 11 with l = 4, combining with the 
Hölder inequality to obtain

S∗ ⩽ 212ε(σ2k
1 σ2k

2 N4+k)1/k(4δ2σ2
1σ

2
2N

4)1−1/k ⩽ 215εδ2σ4
1σ

4
2N

5

due to k = Cℒ(δσ1σ2), where C > 1 is a sufficiently large absolute constant. Returning 
to (60) and recalling that ε = 2−12η4δ2, we get

T (f,A,A)4 ⩽ 2η4δ6σ8
1σ

8
2N

12 + 215εδ4σ8
1σ

8
2N

12 ⩽ 16η4δ6σ8
1σ

8
2N

12 .

The last bound and (58) give us

T (A,A,A) ⩾ σ2
1σ

2
2N

3(δ3 − 2ηδ3/2) ⩾ 2−1δ3σ2
1σ

2
2N

3

as required. □
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6. Appendix

6.1. Possible generalizations of the Kelley–Meka method for longer progressions

In this section we will show why the Kelly-Meka method does not provide anything 
new for arithmetic progressions of length four and longer. To have deal with arithmetic 
progressions of length more than three we need a generalization of norms (14). Having 
vectors x = (x1, . . . , xs) ∈ Gs and y = (y1, . . . , yt) ∈ Gt (recall that we code this fact as 
|x| = s and |y| = t) define its ``Minkowski'' sum as x⊕ y ∈ Gst, where the components 
of x ⊕ y are xi + yj , i ∈ [s], j ∈ [t] (and similarly for higher sums). Given a function 
f : G → C put

ℰk
s,t(f) =

∑︂
|x|=s

∑︂
|y|=t

𝒞k
st(f)(x⊕ y) =

∑︂
|x|=s

∑︂
|y|=t

∑︂
|z|=k

𝒫stk(f)(x⊕ y ⊕ z) . (61)

In these terms

Ek
l (f) =

∑︂
|x|=l

∑︂
|y|=k

𝒫kl(f)(x⊕ y) . (62)

For even k, s, t and a real function f one has ℰk
s,t(f) ⩾ Ek

s(f),Ek
t (f),Es

t (f) ⩾ 0 and 
the triangle inequality for ℰk

s,t can be obtained exactly as in [25, Appendix] or just see 
Subsection 6.2 (of course one needs an additional application of the Hölder inequality 
due to we have the longer sum in (61) than in (62)). Thus (ℰk

s,t(f))1/kst defines a norm 
of f : G → R in the case of even k, s, t. Notice that similar to Ek

l (f) the quantity ℰk
s,t(f)

is non–negative, provided at least one of the numbers k, s, t is even but, nevertheless, it 
is not always a norm in this case, see [25, Section 4]. By some symmetricity reasons (see, 
e.g., formulae (67) below) we make a normalization and put

∥f∥ℰk
s,t

:= (|G|−2ℰk
s,t(f))1/kst := (ℰ̄k

s,t(f))1/kst

for f : G → R. Clearly, one has

ℰk
s,t(f) =

∑︂
|x|=s

∑︂
|z|=k

𝒞t
s(fz)(x) =

∑︂
|x|=s

∑︂
|z|=k

𝒞t
sk(f)(x⊕ z) , (63)

and

ℰk
s,t(f) =

∑︂
|y|=t

∑︂
|z|=k

𝒞s
t (fz)(y) =

∑︂
|y|=t

∑︂
|z|=k

𝒞s
tk(f)(y ⊕ z) . (64)

Thus we have the duality relation similar to formula (14)

ℰk
t,s(f) = ℰk

s,t(f) = ℰt
s,k(f) = ℰs

t,k(f) . (65)
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Also, let us remark that the expectations over x ⊕ y of the generalized convolution of 
any real function f : G → R is connected with the higher energies∑︂

|x|=s

∑︂
|y|=t

𝒞st(f)(x⊕ y) = NEt
s(f) . (66)

In particular, the expectation above is always non–negative if s or t is an even number 
and we see immediately that the duality (14) takes place. Formula (66) can be proved 
directly or it follows from (63), (64) and the fact that ℰk

t,1(f) = NEk
t (f). Finally, notice 

that in contrast to 𝒞l(x) the function 𝒞st(x⊕ y) enjoys even two symmetries, namely,

𝒞st(f)(x⊕ y) = 𝒞st(f)((x + 𝒟s(w1)) ⊕ y) = 𝒞st(f)(x⊕ (y + 𝒟t(w2))) (67)

for any w1, w2 ∈ G. It gives, in particular,

𝒞st(f)(x⊕ y) = 𝒞st(f)((x−𝒟s(x1)) ⊕ (y −𝒟t(y1))) = N2𝒞′
st(f)(w) , (68)

where |w| = st− 1 and, more concretely, wij = (xi − x1) + (yj − y1), i ∈ [s], j ∈ [t] and 
(i, j) ̸= (1, 1).

Now we are ready to obtain our counting lemma. Let us write L(x, y) = αx+βy+γ for 
a non–trivial linear form. We say that two forms are non–proportional if their coefficients 
are not proportional. Given a real number q > 1 put q∗ = q

q−1 .

Theorem 20. Let N be a prime number and k = 4, l1, l2 ⩾ 2 be positive integers. Also, 
let f1, . . . , fk : Z/NZ → R be functions and L1, . . . , Lk be non–proportional linear forms 
such that L2, . . . , Lk depend on both variables. Then⃓⃓⃓⃓

⃓∑︂
x,y 

f1(L1(x, y)) . . . fk(Lk(x, y))

⃓⃓⃓⃓
⃓ ⩽ ∥f1∥l∗1∥f2∥l∗2∥f3∥ℰ2

l1,l2
∥f4∥ℰ2

l1,l2
. (69)

Proof. Let σ be the left–hand side of (69). Without loss of generality one can assume that 
Lj(x, y) = αjx+βjy, j ∈ [k]. Consider the nonzero form L1 and suppose for concreteness 
that α1 ̸= 0. Changing the variables α1x + β1y → x, we obtain

σ =
∑︂
x,y 

f1(x)f2(L̃2(x, y)) . . . fk(L̃k(x, y)) , (70)

where here and below we write L̃j(x, y) = Lj(x, y) = αjx + βjy and the coefficients αj , 
βj may change from line to line. Anyway one can check that all new forms L̃2, . . . , L̃k

in (70) are nonzero and non–proportional. Moreover, by assumption the initial forms 
L2, . . . , Lk depend on both variables and we see that the new forms in (70) depend on 
both variables as well. Now we use the Hölder inequality and get
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(σ/∥f1∥l∗1 )
l1 ⩽

∑︂
x 

(︄∑︂
y

f2(L2(x, y)) . . . fk(Lk(x, y))
)︄l1

=
∑︂
x,y 

𝒫l1(f2)(L2(𝒟l1(x),𝒫l1(y))) . . .𝒫l1(fk)(Lk(𝒟l1(x),𝒫l1(y))) .

Notice that we have decreased the number of our linear forms (but increased the number 
of variables). Now let us make the changing of the variables similar to above, namely, 
α1𝒟l1(x) + β1𝒫l1(y) → 𝒫l1(y) and again one can easily check that we preserve all con
ditions on our linear forms L3, . . . , Lk. Thus one has

(σ/∥f1∥l∗1 )
l1

⩽
∑︂
y

𝒫l1(f2)(𝒫l1(y))
∑︂
x 

𝒫l1(f3)(L3(𝒟l1(x),𝒫l1(y))) . . .𝒫l1(fk)(Lk(𝒟l1(x),𝒫l1(y)))

and using the Hölder inequality one more time, as well as the obvious identity(︄∑︂
y

𝒫 l∗2
l1

(f2)(𝒫l1(y))
)︄l2−1

= ∥f2∥l1l2l∗2
, (71)

we derive recalling that k = 4

(σ/∥f1∥l∗1∥f2∥l∗2 )
l1l2

⩽
∑︂
x,y 

𝒫l1l2(f3)(L3(𝒫l2𝒟l1(x),𝒟l2𝒫l1(y)))𝒫l1l2(f4)(L4(𝒫l2𝒟l1(x),𝒟l2𝒫l1(y))) . (72)

Now let us analyze the right–hand side of formula (72). First of all, it is easy to see 
that there are l2 different variables xi and l1 different variables yj in (72). Secondly, 
take the form Lk−1 (for Lk the argument is the same) and notice that it depends on 
αk−1xi + βk−1yj , i ∈ [l2], j ∈ [l1] and that every such expression appears exactly once. 
Now introducing two more variables z, w such that xi → xi + z, yj → yj + w and then 
replacing z, w to other variables Z,W , where Z = αk−1z+βk−1w, W = αkz+βkw (this 
change of the variables is allowable because the forms Lk−1, Lk are not proportional), 
we arrive to the quantities 𝒞l1l2(fk−1), 𝒞l1l2(fk) in (72). Writing x = (x1, . . . , xl2), y =
(y1, . . . , yl1), we have finally

(σ/∥f1∥l∗1∥f2∥l∗2 )
l1l2 ⩽ N−2

∑︂
x⃗,y⃗

𝒞l1l2(fk−1)(αk−1 · x⊕ βk−1 · y)𝒞l1l2(fk)(αk · x⊕ βk · y) .

Using the Hölder inequality the last time, as well as the fact that αk−1, αk, βk−1, βk ̸= 0, 
we obtain

(σ/∥f1∥l∗1∥f2∥l∗2 )
l1l2 ⩽

⎛⎝N−2
∑︂

|x|=l2, |y|=l1

𝒞2
l1l2(fk−1)(x⊕ y)

⎞⎠1/2
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×

⎛⎝N−2
∑︂

|x|=l2, |y|=l1

𝒞2
l1l2(fk)(x⊕ y)

⎞⎠1/2

= ∥fk−1∥l1l2ℰ2
l1,l2

· ∥fk∥l1l2ℰ2
l1,l2

as required. □
Remark 5. One can check that for any l1, l2 one has

1 
l∗1

+ 1 
l∗2

+ 1 
l1

+ 1 
l2

= 2

and hence the right–hand side of bound (69) has the correct order in N . Similarly, taking 
fj(x) = fA(x), j ∈ [4] as the balanced function of a set A and l1 ∼ l2 ∼ ℒ(δ) we see that 
the dependence on δ is also correct.

Remark 6. As we have said in the previous remark the optimal dependence on the pa
rameters l1, l2 in Theorem 20 is l1 ∼ l2 ∼ ℒ(δ). Suppose that the dependence on ε in 
Lemma 13 and in all statements below is almost optimal, say, cε for a constant c ∈ (0, 1). 
Thanks to the induction scheme of the proof, it gives us the multiple cℒ(δ) = δ−C for 
a certain C > 0 in codimension of the subspace V , where our set A is uniform. But 
δ−C is more or less that usual Gowers’ method gives to us and hence we have no special 
gain. Thus, even at a technical level, the extension of the Kelley-Meka method to more 
complex objects than arithmetic progressions of length three is fraught with significant 
difficulties.

We conclude this part of the appendix showing that the convolutions 𝒞st(f)(x ⊕
y), |x| = s, |y| = t enjoy the almost periodicity properties similar to the ordinary 
convolutions 𝒞s(f)(x). Given a vector x = (x1, . . . , xr) let us write for convenience x̄ =
(0, x1, . . . , xr).

Lemma 21. Let ε ∈ (0, 1] be a real number, s, t, q ⩾ 2 be positive integers, l := st − 1, 
B ⊆ G, |B| = βN and F : Gl → R. Then there is a set T ⊆ G, |T | ⩾
|B| exp(−O(ε−2q log(1/β))) and such that for any t ∈ T one has∑︂

|x|=s−1

∑︂
|y|=t−1

|(F ◦ 𝒟l(B + t))(x̄⊕ ȳ) − (F ◦ 𝒟l(B))(x̄⊕ ȳ)|q

⩽ εq|B|q−1
∑︂

|y|=t−1

𝒞′
t(|F |q)s−1(y) · 𝒞′

t(B, |F |q, . . . , |F |q)(y) . (73)

Proof. We choose k = O(ε−2q) random points b1, . . . , bk ∈ B uniformly and indepen
dently and let Zj((x̄⊕ ȳ) = F ((x̄⊕ ȳ)+𝒟l(bj))−(F ◦𝒟l(μB))(x̄⊕ ȳ). Clearly, the random 
variables Zj are independent, have zero expectation and their variances do not exceed 
(|F |2 ◦ 𝒟l(μB))(x̄ ⊕ ȳ). By the Khintchine inequality for sums of independent random 
variables,
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∥
k∑︂

j=1 
Zj(x̄⊕ ȳ)∥Lp(μk

B) ≪ (|F |2 ◦ 𝒟l(μB))(x̄⊕ ȳ)1/2 .

Raising the last inequality to the power q, dividing by kq, summing over x̄⊕ ȳ, and using 
the Hölder inequality, which gives (|F |2 ◦𝒟l(μB))(x̄⊕ ȳ)q/2 ⩽ (|F |q ◦𝒟l(μB))(x̄⊕ ȳ), we 
get that

∑︂
|x|=s−1

∑︂
|y|=t−1

∫︂ ⃓⃓⃓⃓
⃓⃓1 
k

k∑︂
j=1 

F ((x̄⊕ ȳ) + 𝒟l(bj)) − (F ◦ 𝒟l(μB))(x̄⊕ ȳ)

⃓⃓⃓⃓
⃓⃓
q

dμk
B(x1, . . . , xk)

≪ (qk−1)q/2
∑︂

|x|=s−1

∑︂
|y|=t−1

(|F |q ◦ 𝒟l(μB))(x̄⊕ ȳ)

= (qk−1)q/2|B|−1
∑︂

|y|=t−1

𝒞′
t(|F |q)s−1(y) · 𝒞′

t(B, |F |q, . . . , |F |q)(y) .

After that we repeat the argument from [4], [17], [18] and [24, Theorem 15]. This com
pletes the proof. □
6.2. On a family of norms

In this section we define a very general family of norms, which includes the norms Ek
l , 

ℰk
s,t above, as well as the classical Gowers norms [9]. As the reader can see we do not use 

the Fourier transform in our proofs below.
Let G be an abelian group, r, k1, . . . , kr ⩾ 2 be integers and f : G → R be an arbitrary 

function. Let K =
∏︁r

j=1 kj , B = [k1]×· · ·×[kr] and write x1 = (x(1)
1 , . . . , x

(k1)
1 ), . . . , xr =

(x(1)
r , . . . , x

(kr)
r ). Also, for ω ∈ B we write ω = (ω1, . . . , ωr). Define

∥f∥KEk1,...,kr
=

∑︂
|x1|=k1

· · ·
∑︂

|xr|=kr

𝒫K(f)(x1 ⊕ · · · ⊕ xr)

=
∑︂

|x1|=k1

· · ·
∑︂

|xr|=kr

∏︂
ω∈B

f(x(ω1)
1 + · · · + x(ωr)

r ) . (74)

The case r = 2 corresponds to Ek
l --norm, r = 3 is just ℰk

s,t--norms and for k1 = · · · =
kr = 2, we obtain Gowers’ Uk norms (up to some normalizations). If we choose f in (74)
as the characteristic function of a set A ⊆ G, then ∥A∥KEk1,...,kr

equals the number of 
complete subgraphs 𝒦k1,...,kr

in addition Cayley graphs (i.e., one has an edge between 
x, y ∈ G iff x + y ∈ A), in the case r = 2 we obtain the ordinary Cayley graph. In a 
similar way one can define the multi–scalar product for the quantity ∥ · ∥Ek1,...,kr

as was 
done in [9], namely, having any functions (fω)ω∈B , we write

⟨fω⟩Ek1,...,kr
=

∑︂
|x1|=k1

· · ·
∑︂

|xr|=kr

∏︂
ω∈B

fω(x(ω1)
1 + · · · + x(ωr)

r ) . (75)
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It is easy to see that if K is an even number, then

∥f∥KEk1,...,kr
⩾ 0 . (76)

Indeed, let, say, kr be an even number, then we can write xr as xr = (x′
r, x

′′
r ), where 

|x′
r| = |x′′

r | = kr/2 and whence

∥f∥KEk1,...,kr
=

∑︂
|x1|=k1

· · ·
∑︂

|xr−1|=kr−1

⎛⎝ ∑︂
|x′

r|=kr/2

𝒫K/2(f)(x1 ⊕ · · · ⊕ xr−1 ⊕ x′
r)

⎞⎠2

⩾ 0 .

Also, let us remark the inductive property of the norm Ek1,...,kr
. For concreteness, we 

take the rth coordinate and obtain from definition (74) that

∥f∥KEk1,...,kr
=

∑︂
|z|=kr

∥fz∥K/kr

Ek1,...,kr−1
. (77)

Let us make a simple remark concerning Ek1,...,kr
--norm.

Lemma 22. Let f : G → R be a function. Suppose that there is j ∈ [r] such that kj is 
even and K/kj is also even. Then ∥f∥Ek1,...,kr

= 0 iff f ≡ 0.

Proof. Without loosing of the generality assume that j = r. Write

∥f∥KEk1,...,kr
=

∑︂
|x1|=k1

· · ·
∑︂

|xr−1|=kr−1

(︄∑︂
z

𝒫K/kr
(f)(x1 ⊕ · · · ⊕ xr−1 ⊕ z)

)︄kr

= 0 .

Since kr is an even number, it follows that, in particular, 
∑︁

z f
K/kr (z) = 0 (we have 

taken x1 = · · · = xr−1 = 0 in the last formula) and hence f ≡ 0. This completes the 
proof. □

Now let us show that the multi–scalar product is controlled via Ek1,...,kr
--norm.

Lemma 23. Let r ⩾ 2 be a positive integer, k1, . . . , kr ⩾ 2 be even integers and fω : G →
R, ω ∈ B be any functions. Then

|⟨fω⟩Ek1,...,kr
| ⩽

∏︂
ω∈B

∥fω∥Ek1,...,kr
. (78)

Proof. We write

⟨fω⟩Ek1,...,kr
=

∑︂
|x1|=k1

· · ·
∑︂

|xr−1|=kr−1

⎛⎝∑︂
x
(1)
r

∏︂
ω∈B, ωr=1

fω(x(ω1)
1 + · · · + x

(ωr−1)
r−1 + x(1)

r )

⎞⎠
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. . .

⎛⎝∑︂
x
(k1)
r

∏︂
ω∈B, ωr=kr

fω(x(ω1)
1 + · · · + x

(ωr−1)
r−1 + x(kr)

r )

⎞⎠ .

After that apply the Hölder inequality (here we have used the fact that kr is an even 
number) and we arrive to the new kr families of functions. Take any of them, say, (f̃ω), 
ω ∈ B and notice that

f̃ω = f̃ω′
= fω

for all ω = (ω1, . . . , ωr), ω′ = (ω′
1, . . . , ω

′
r) with (ω1, . . . , ωr−1) = (ω′

1, . . . , ω
′
r−1). In 

particular, the family (f̃ω), ω ∈ B has K/kr different functions. Now we use the same 
argument for all remaining variables x1, . . . , xr−1 subsequently changing the families 
(fω), ω ∈ B. One can easily see that after all these r steps we arrive to K families 
consisting of single functions fω, ω ∈ B (just thanks to the fact that any two points of 
our box B can be reached by a path in the directions of the coordinate axes). This is 
equivalent to inequality (78) and we complete the proof. □

Finally, we are ready to obtain the main result of this section. Let us write 
(k1, . . . , kr) ⩽ (m1, . . . ,mt) if the first vector is lexigraphically smaller than the sec
ond one (i.e., r ⩽ t and kj ⩽ mj , j ∈ [r]). Also, put

∥f∥K
Ēk1,...,kr

= N−(k1+···+kr)∥f∥KEk1,...,kr
. (79)

Thus for any f : G → [−1, 1] one has ∥f∥Ēk1,...,kr
⩽ 1.

Theorem 24. Let r ⩾ 2 be a positive integer, k1, . . . , kr ⩾ 2 be even integers and f :
G → R be a function. Then formula (74) defines a norm of f . Further if (k1, . . . , kr) ⩽
(m1, . . . ,mt), then

∥f∥Ēk1,...,kr
⩽ ∥f∥Ēm1,...,mt

. (80)

Proof. Take two functions f, g : G → R. In view of Lemma 23, we have

∥f + g∥KEk1,...,kr
= ⟨f + g⟩Ek1,...,kr

⩽
k∑︂

j=1 

(︃
K

j

)︃
∥f∥jEk1,...,kr

∥g∥K−j
Ek1,...,kr

= (∥f∥Ek1,...,kr
+ ∥g∥Ek1,...,kr

)K

and we have obtained the triangle inequality for Ek1,...,kr
. By estimate (76) we know that 

our quantity ∥f∥Ēk1,...,kr
is non–negative. Also, Lemma 22 guaranties that ∥f∥Ek1,...,kr

=
0 iff f ≡ 0. Thus indeed formula (74) defines a norm of f .



I.D. Shkredov / Journal of Number Theory 281 (2026) 110--138 137

It remains to obtain (80). Let M =
∏︁t

j=1 mj , B′ = [m1] × · · · × [mt], S =
∑︁r

j=1 kj

and S′ =
∑︁t

j=1 mj . Consider the family of functions (gω)ω∈B′ such that for ω ∈ B one 
has gω = fω and let gω ≡ 1 otherwise. It is easy to see that

∥f∥K
Ēk1,...,kr

NS = ∥f∥KEk1,...,kr
= NS−S′ · ⟨gω⟩Em1,...,mt

Using the last formula, definition (79), as well as Lemma 23, we obtain

∥f∥K
Ēk1,...,kr

NS ⩽ NS−S′∥f∥KEm1,...,mt
(NS′/M )M−K = NS−S′K/M ·NS′K/M∥f∥K

Ēm1,...,mt

= NS∥f∥K
Ēm1,...,mt

as required. □
Remark 7. Inspecting the proofs of Lemma 23 and Theorem 24 one can check that 
formula (74) defines a norm of f for any numbers r ⩾ 2, k1, . . . , kr ⩾ 2, provided f is 
taken from the family of non–negative functions. In the case r = 2 it was obtained before 
in [25, Propositions 16, 30].
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