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Z%:oo (1)

J

j=1
contains an arithmetic progression of length k (we say A has an APk in this case), that
is the sequence of the form z,z+y,...,z+(k—1)y € A? This question has a rich history
see, e.g., [8], [9] or [23] and is considered as a central one in the area of classical additive
combinatorics due to its connection with many adjacent fields as combinatorial ergodic
theory and graphs/hypergraphs theory, we just mention some papers [26], [27], [6], [7],
[22], [10], [29], [28], [14], [13] etc. If one defines

rk(N):%max{\m : AC{1l,...,N}, Ahasno APk},

then condition (1) means, roughly, that

1
< log N - (loglog N)te’

re(N) N — (2)
for an arbitrary € > 0.

The case of arithmetic progressions of length three is considered special thanks to
the Fourier approach of Roth [15], the necessary information and references on this
topic can be found in [2], [12], as well as in [23]. Bloom and Sisask in [1] proved that
r3(N) < (log N)~17¢ for a certain ¢; > 0 and hence established conjecture (1) in the
case of k = 3. Recently, Kelley and Meka [12] made significant progress on this issue and
proved that

rp(N) < exp(—O((log N)°')),

where ¢; > 0 is an absolute constant. One of the ideas of paper [12] was to use the
higher energy E5 and the notion of the uniformity relatively to EX (all definitions can be
found in Sections 2, 3) with a growing parameter k to control the number of arithmetic
progressions in an arbitrary set. Namely, bound (2) is an immediate consequence of the
following result (for simplicity we consider the group F).

Theorem 1. Let G = F), A C G be a set, |A| = 6N, and € > 0 be a parameter. Then
there is a subspace V.C G and x € G such that AN (V + x) is e—uniform relatively to
EIQC’ ,U'V—i-z(A) > 5; and

codimV < e~ 14k4£3(8) L2 (e5) . (3)

The aim of this paper is to generalize the Kelley—-Meka results to a wider additive—
combinatorial family of energies EF see, e.g., [25]. In our regime the parameter [ is

1=0(1).
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Theorem 2. Let G =T, A C G be a set, |A| = 0N, and ¢ € (0,1] be a parameter. Then
there is a subspace V.C G and x € G such that AN (V + x) is e—uniform relatively to
EF, uviz(A) =8 and

codimV < =28 (81)28!' 4 £41 () £5(65) . (4)

Theorem 2 is interesting in its own right and can be used to solve more general
equations and systems than x +y = 2z (the latter corresponds to the case of AP3). The
approach develops the strategy of [8], [9], the method of the higher energies (see, e.g.,
[20], [25]) and of course [12]. Also, we extensively use the brilliant exposition [2], where
the Kelley—-Meka results were discussed in detail. As an application of the 2 theorem,
we consider a well-known two—dimensional generalization of arithmetic progressions of
length three, namely the question of the density of sets avoiding corners, see, for example,
[6] or [9].

In the appendix, we discuss the original Erdés—Turdn conjecture, i.e. the case of longer
arithmetic progressions and show that there is a number of difficulties at the conceptual
and technical levels that make the question of generalizations of the methods from [12]
rather hard. The author believes that this part is also interesting in its own right, as it
allows us to understand the limitations of the Kelley-Meka approach. In addition, we
consider a general family of norms that simultaneously includes the norms E} mentioned
above, as well as the classical Gowers norms [9].

We thank the reviewers for their valuable comments and useful remarks.

2. Definitions and preliminaries

Let G be a finite abelian group and denote by N the cardinality of G. We use the
same capital letter to denote a set A C G and its characteristic function A : G — {0, 1}.
Let us define pa(z) = A(z)/|A], and notice that } . pa(z) = 1. Finally, let fa(z) =
A(x) —|A|/N be the balanced function of A. Given two sets A, B C G, define the sumset
of A and B as

A+B:={a+b : ac A be B}.

In a similar way we define the difference sets and the higher sumsets, e.g., 2A — A is
A+ A- A
Let f be a function from G to C. We denote the Fourier transform of f by f,

7 =" fa)x(@), (5)

zeG

where x € G is a character of G. We rely on the following basic identities

S IF@P =+ 3 Fool (6)
xea

zeG
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and
f@) = 3 Foox(a) 7)
x€G
If
(f*9)(x) == fy)g(x—y) and = fWgly+x)
yeG yeG
then
f+g=1g (8)

and similar for fog. Clearly, (f*g)(z) = (¢ f)(z) and (fog)(x) = (go f)(—x), z € G.
The k-fold convolution, k¥ € N we denote by f*), so f® = f« fand f® = fx fxf
for example.

We need some formalism concerning higher convolutions see, e.g., [25]. Let [ be a
positive integer. Consider two operators D;, P; : G — G! such that for a variable z € G
one has Dy(z) = (z,...,2) € G! and we formally write P;(x) = (21,...,7;) € G, that
is P;(x) € G' is a vector, which runs over G!. Notice that P;(z) = Di(z) = x. In

the same way these operators act on functions f : G — C, e.g., Pi(f)(x1,...,21) =
(f(x1),..., f(x1)) (more generally, Py(F)(z1,...,2;) = (fi(x1),..., fix;)) for F =
(f1,---» /1) and Dy(f)(z1,...,2;) = f(x1) if 21 = --- = x; and zero otherwise. Now

given a function f: G — C and a positive integer | define the generalized convolution

Q). om) =Y flz+m)... flz+m) = (D(G) o Pi(f))(z1,....z)  (9)

z€G
= Z le,m,frl (Z) . (10)

zeG

In a similar way we can consider C;(f1,..., fi)(x1,...,x;) for any functions fi,..., f; :
G — C. One has

C(f) (@1, ) =C(f)(x1 +w,...,z;+w) =C(f)((21,...,2) + Dy(w)) (11)

for any w € G. Let us emphasize that definitions (9), (10) differ slightly from the usual
one, see, e.g., [25] by a linear change of the variables. Namely, it is a little bit more
traditional to put

Fora(2) = Joarm (2) = f(2)f(z + 1) .. fz+ 1), (12)

and
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Croi(f)(z,... 2 Zf fe+z) ... fz+x)=C(f)0,21,...,7) . (13)

zeG

Definitions (12), (13) have an advantage that they allow to consider infinite groups G
as well. To this end we use the dual notation || f] ’éi = EF(f) = N7'EF(f). Now having
k,l > 2 and a function f: G — C one can consider

S CE )@, m) =Y CEY) = EL(f) (14)

L1, ly|=l

and it was showed in [25, Proposition 30] (or see Corollary 6 below) that for a real
function f and even k,[ the formula (Ef(f))'/* defines a norm of our function f. Here,
given a vector y = (x1,...,7;) € G, the fact that y has | coordinates is expressed
as |y| = I. The property EF(f) = EL(f) of the energies E} we call duality, and this
equality was proved in [20] (see also [24] and [25]). If one puts [ = 1 in (14), then we
formally obtain Ef(f) = N(3°, f())* and this is not a norm for any k. Nevertheless, it is
convenient to consider the quantities E¥(f) sometimes. Notice that EF(f) > 0, provided
at least one of k,[ is even but, nevertheless, it cannot be a norm in this case, see [25,
Sections 4,7] (although it is a norm restricted to the family of non—negative functions).
A general family of norms, which includes the norms above is considered in the second
part of the appendix, where, in particular, one can find the discussed properties of the
energies EF(f). Finally, let us articulate one more formula for the energy EF(f), namely,

EF(f) = Y (Fofuma) @)= D (Fofpmw) ). (15)

T1,e., @] Y1y Yk

For the convenience of the reader, we recall the Croot—Sisask Lemma, see [4], [17].
Lemma 3. Let G be an abelian group, € € (0,1) and K > 1 be real numbers, q be a
positive integer, A, B C G be sets such that |A+ B| < K|A|, and let f € Li(G) be an

arbitrary function. Then there exist a b € B and a set T C B with |T| > \B|(2K)*O(€2q)
such that

I1(f * A)(@ + 1) = (f * @)l @ < AN (@)
forallt €T —b.

Also, we recall a special case of Chang’s Lemma, see [3]. Recall that for a set A C G
and ¢ € (0, 1] the set

Spec.(4) = {z € G : |A(z)| = ¢|Al}, (16)

is called the e-spectrum of A.
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Lemma 4. Let G = ]F;}, A C G. Then
dim(Spec .(A4)) < e ?log(|G|/|A]) .

Finally, we need a result on the functions C;(f)(x1,...,;), see [25, Lemma 29] and
[25, Corollary 30].

Lemma 5. Let G be an abelian group, k,1 > 2 be even numbers and @1, ..., ¢ : G — C,
1 1
p; = ((pE ),...,gag-)). Then

k !
ST (DIG) o Pulr)) . (DG (@) o Pulon)) (@) < [T Tl ller - (1)
z€G! j=1li=1

Corollary 6. Let G be an abelian group, k,l > 2 be even numbers. Then for any pair of
functions f,g: G — C the following holds

I1f +glley, < Iflle + llgller
and || - |[g; 4s a norm.

Let € € (0,1] be a real number. We write L(g) for log(2/¢). Let us make a convention
that if a product is taken over an empty set, then it equals one. The signs < and > are
the usual Vinogradov symbols. When the constants in the signs depend on a parameter
M, we write < s and 7. All logarithms are to base 2. By F,, denote F, = Z/pZ for a
prime p. We write V' < )" if V' is a subspace of the group F;'. Let us denote by [n] the
set {1,2,...,n}.

3. Some results on E;Lnorms

In this section, we generalize some the Kelley—Meka results which were obtained for
the E5-norm to the Effnorm. Also, we discuss some special properties of such norms.
Our results naturally fall into two cases: uniform and non—uniform.

3.1. Uniform sets in the sense of Effnorm

Let us give the main definition of this subsection.

Definition 7. Let G be a finite abelian group, A C G be a set, |[A] = dN, and € > 0 be
a parameter. Then we say that A is e—uniform relatively to (the energy) Ef if

£l < <M+t (18)
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Usually the number € belongs to (0, 1] but sometimes € > 1 and hence one can consider

the quantity ¢ as the definition of the energy ||fall%! E that is ||fal ’Ei = ghlghl NF+L,
1
Further by the Holder inequality, we have
€1 < (BE ()N (19)

and hence if A is e—uniform relatively to Ef, then A is e—uniform relatively to Ef,l for
k' < k, I <1 (we consider just even indices, say). On the other hand, it is easy to see
that the smaller norm does not control the higher one.

Example 8. Let G =F), H <F}, A CF}/H be a random set such that |A| = 0N/|H|.
Also, suppose that 62 > |H|/N and thus with high probability A — A ~ F3/H. Let
A be the direct sum of H and A, then |A| = dN. It is easy to see that for a random
r € A— A~ G one has |A;| ~ 6°N but for z,y € H one has A, = A and A,, = A.
Thus for any k > 2 the following holds

E5(A) ~ (0°N)FN + (6N)*|H| ~ (8*N)* N,
provided |H| < % N but taking an arbitrary k., we see that
EE+(A) ~ (8°N)FN?% 4 (GN)k-

H|? > (SN)*|H|?,

provided |H| > 5%« N. Tt follows that one can choose any k. > k+ 1 and construct a set
A such that A is E5—uniform but not El?f*funiform. Of course, one can replace the pair
(2,3) by any suitable pair of indices.

Now let us obtain the characteristic property of the energy Ef (also, see Remark 4
below).

Lemma 9. Let I,k > 2 be even numbers, and A; C G, j € [l] be sets. Then for any
function g : G — R one has

1
ST, 0 9)@) < gl (g1 H £l - (20)
T j=1

If all sets A; are the same, then for any | and an arbitrary even k bound (20) still takes
place.

Proof. By the Holder inequality, [25, Lemma 29] and the duality one has

ZH fA Og -1 ch fAlv""fAz)(Z)cl(g)(Z)

xz g=1 |z|=l
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1-1/k

l
SN ANl - | D2 167V (o))

j=1 |2|=t
l
I(1-1/k
< TTfa e - Ci(o) IR lgl "
j=1

This completes the proof. O

Corollary 10. Let A, B C G be sets, |A| = N, |B| = N, and | be a positive integer.
Take k = 2[4llog(1/8)] and suppose that A is e—uniform relatively to the energy EF.
Then

> (Ao B)!(x) < 6'[B|'N - min{1.25(1 + ), (1 + 1.25¢)'} . (21)

x

Proof. Using the formula A(x) = fa(z) + J, combining with Lemma 9, we see that the
left—-hand side of (21) is

l l

Z<])(5B|l JZ (faoB)’ Z( ) (5| B))— ijAHJ |B|J (1-1/k)+1/k

=0 =0

<6l|B|NZ< )w G=D/k < 51\B| N( +¢)

as required. One can obtain the second bound in a similar way. This completes the
proof. O

Let us remark that, of course, the energy E5 solely allows us to control sums from
(21) but our task is to obtain the correct power of § and |B| in the right-hand side of
this estimate (also, see Remark 4 below).

We need one more result about uniform sets, which is useful for applications.

Lemma 11. Let k,l > 2 be even numbers, Ay,..., A1 C G be sets, |A;| = §;N. Suppose
that all A; are e—uniform relatively to EF and 2le® < 1. Then

k k
l l

dolatar, . A)@) - N6 | <2MENTE(T]6 | - (22)

Jo|=t j=1 =1

Proof. Put II = H;Zl d;. Then the left-hand side of (22) is

k k

oi=> | D Gl )@ | => | > Fs@] ,

lz|=1 \0£SC[1] lzl=1 \0#£SC[1]
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where for j € S we put f; = fa, and if j ¢ S, then f; = ¢;. Using e—uniformity of all
sets A; and estimate (17) of Lemma 5 with ¢; = (f1,..., f1), we get

Z Fk < €\S|k:HkNl+k
|z|=l

Thus by the Holder inequality one has

o g 2(k 1 Z Z FS < 2 k l)lHka-‘rl((l + Ek)l _ 1) < 2k‘l€kaNk+l
0£SCH [o=t

as required. O

Let us consider one more example which shows that it is possible to remove/add a
tiny subset from a non—uniform set to get a uniform one. This phenomenon has no place
if we consider the classical uniformity in terms of the Fourier transform or in terms of
Gowers norms [9], say. The reason is normalization (18), of course.

Example 12. Let G = FI', H < F?, |H| = SN, A C G be a random set, |A| = JN,
B <6 <1/2 and put A = H| |A, where H = H \ A. Then with high probability
|H| ~ B(1 — §)N := ¢|A|, the set A is uniform in all possible senses but A is a non
n—uniform set with rather large 1. Indeed, by the Kelley-Meka method [12] or just see
Lemma 9, we know that

o(A,A) = (Ao A)(x)H(x) = |H|"'> (Ao A)(x)(H o H)(x)

=(0+(1—=06)B)?BN? 4 On*6*BN?
= B62(1 +€)2N? + 00?62 BN? (23)

where || < 4, say, is a certain number and A is supposed to be E5—uniform with & ~
L(B). On the other hand, direct calculation shows that

0(A,A) =o(H,H) +20(H,A) +0(AA) = |H* +203%(1 — §)N? + 62|H|N
= (£20% 4 20?3 + 6*B)N? (24)

plus a negligible error term. Comparing (23) and (24), we obtain
263 > 26%(1 — B) > 262

and thus n? > ¢/ which is much larger than ¢ for small §.

Similarly, one can show that removing a subspace H from a random set A, |H| = ¢| 4],
A = A\ H, H lives on the first coordinates, say, we obtain a non n—uniform set with
n > 1 thanks to the equality Y H(z)(Ao A)(z) =
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Remark 1. Example 12 shows us that Eétnorm is a rather delicate object and addi-
tion/removal of a small set can change the norm dramatically. Nevertheless, notice that
if A=L1;_14;, 6§ =pc(A), §; = na(A;) and all sets A; are e—uniform relatively to
the norm Ef, where k, [ > 2 are even numbers, then by the triangle inequality for the
norm Ef the set A is also e—uniform. If k£ is an even number and [ is an arbitrary positive
integer, then still the characteristic property (21) of the norm Ef takes place. Indeed, by
the Holder inequality one has

0=3 Q0 faoB@= ), ( l Z-)Z(fAloB)"l(x)...(fAsoB)is(x)
j=1 seeesls

T i1t tis=l ’ s T

I s i/
< X <¢17...,is>H(ZKfAjoB)(w)l) .

14 Fis=l x

Now consider o :=Y_, |(fs o B)(z)|" for an arbitrary e—uniform relatively to the norm
EF set S, e < 1/4, say, and let ug(S) = o. Of course, one has oo = >__(fs o B)(z)" for
even [ but for odd [, we have a similar bound, namely,

00 <Y (fsoB)(2)' M ((fsoB)(w) +28|B) = Y (fsoB)(z)' +20|B| Y (facB)(z)'"

x x

<5/4-(24¢)e 1! BI'N < 3¢ oY BI'N

thanks to Lemma 9 (also, see Corollary 10). Here we have assumed that k > I£L(ug(B)),
of course. Thus

l

l K] . s
o<3 BN Y <Z . ) [I67 =3 BI'N | Y 6 | =371 |BI'N
ibeig=t S TS G j=1

and we see that the difference between two cases is almost absent.
3.2. Non—uniformity and almost periodicity

The aim of this subsection is to obtain Sanders’ almost periodicity result for higher
convolutions, see Lemma 15 below.

At the beginning we want to transfer a lower bound for the energy EF(f4) to the
largeness of the energy EF(A). We follow a more simple method from [2] which differs
from the approach of [12] by some logarithms. The dependence on [ in the first multiple
in (26) is, probably, can be improved significantly (also, see Remark 6 from the appendix)
but in our regime ! = O(1) and thus it is not so critical for us.

Lemma 13. Let A C G be a set, |A] = N and € > 0 be a parameter, €, := min{e, 1}.
Suppose that for an odd k > 5 one has



120 I1.D. Shkredov / Journal of Number Theory 281 (2026) 110—-138

EF(f4) = el*glk NItk (25)

-1

and that for k. = O(kle;'L(c.)) the set A is =z——uniform relatively to Efjl. Then

there is an even k1 < ks such that

eel=1\ "
Ef%A)}(l—%#) Stk NtRL (26)

Proof. Write f(z) = fa(x) and put P = {z : C;(f)(z) > 0}. Since k is an odd number,
we have

S CH(f) () > eRGENTE (27)

zEP

Now let us consider the subset of the set P, namely,
3 i
P.:={z : C(f)(x) > ZE 0'N}.

Then we have

k
3
Z Cr(f)(z) < (ZelélN) Nt g 27 2lkgtk NItk (28)
I¢PE
Combining (27), (28) and using the Holder inequality, we obtain

|P8|El2k (f) > 2—4€2lk52lkN2l+2k ] (29)

By the norm property of ElzlC (f) for positive functions (see Corollary 6) one has

2kl
EP(f) < (1 Allgpe + 0llepe ) < (24 2/8)2Ho2NTH2E

otherwise there is nothing to prove with £y = 2k and much larger €. Thus we derive from
(29) that |P.| > (2e./5)?*!'N'. Now

QA @) =C(f+d) @) =dN+a)+ > & 5leg(f)(s)

sci - 1<8|<!

=8N +C(f) +E(x),

where for a set S C [I] the vector xg has coordinates z;, j € S. By the triangle inequality
for Li,—norm, we have

(E7 ()M = G (Al = IC(f + Oy = 16'N + Col )iy = IENIks - (30)

Using our bound for the cardinality of the set P., we get
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16N + G5t = D ("N +Cul(f)* (@) = (2e./5)MN' - (14 3¢ /4y N
€ P.

2 (1 + 5l/2)k15lk1 Nk:1+l , (31)

provided k; > 20kle;'L(e.). On the other hand, by our assumption the set A is ¢ :=
1
e

g7 —uniform relatively to E§ for all j <l and k. = k. It follows that

15| Ltk
lEl < Y STEINTEAIE <INTE(+Q' -1, (32)
sc : 1<|8)<! 151

Combining (30), (31) and (32), we obtain

-1\ k1
Efl (A) > 5lk1Nk1+l (2 + El/Q o (1 + C)l)kl > 5lk1Nk1+l (1 + Esgl >

as required. O

Now we use duality (14) to obtain the appropriate version of multi—dimensional version
of the Balog—Szemerédi—-Gowers theorem as was done in [19] (also, see [24, Theorem 17]).
Thanks to duality (65) one can show that a similar result takes place for more general
energies 5;“7“ see the appendix. Of course, in this case one needs to replace Cjy(-)(x) to
Cla|2| () (x @ 2) or Cpyjz(-)(y @ z) and use symmetries (67) instead of the symmetry (11)
below.

Lemma 14. Let A C G be a set, |A| = 6N ande > 0, n € (0,1/2) be parameters. Suppose
that for some integers k,1 > 2 with kl > 4e;1L(n) one has

EF(A) = (14 ¢)FFNITF (33)
Define the set
S={lz|=1": CA)(z) > (1+¢e/4)'¢'N}. (34)
Then there is a set B such that

N7'Y " S@)C(B)(z) = (1-2n)|Bl', (35)

|z|=l
and |B| = 270D (1 4 g)ks*N.

Proof. For any set S C G! with the property S(z + D;(t)) = S(x), t € G, x € G!, we
get

> S@)Cf(A)(x) = > S(x) Y A¥(z+ Di(21)) ... A¥(z + Di(m))

|z|=1 |z|=l |z|=k
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=D D S@A(ar) . Au(m) =NTH YT YT S@)G(A) (@), (36)
|z|=k |z|=l |z|=Fk |z|=I

where we have made the change of the variables x; — x; +t in the last formula. Clearly,
we have from identity (11) and definition (34) that S(x + D;(t)) = S(z) for t € G and
2 € G! and thus the argument above can be applied for the set S as well. Thus using
the definition of the set S, as well as conditions (33) and kl > 4e;1L(n), we get

> ociA (1 + /4R NI <272 (1 + o) koI NFFL C 2720ER(A) . (37)
¢S

Now let us define the set
- {|z| —k A =27V 4 e)kékN} .
By the definition of the set €2, we have

DAL < (ma | ADTHAN <271 (14 ) FOENTE <27UE (). (39)
z¢Q

In view of bounds (37), (38) one has

Ny (Z CiA) () =" CZ(AZ)(:U)> >27" Y AL - 27Ef(A) = 0. (39)

z€Q \z€S z¢S |z|=k

Hence there is z € Q such that inequality (35) holds for B = A, and |B| > 2=1/(=1)(1 4
£)¥6* N as required. O

Now we need an analogue of the almost periodicity result [4] (also, see [16], [17],
[18] and, especially, [21, Theorem 3.2]) for the higher convolutions. This theme is rather
well-known and thus we give just a scheme of the proof, emphasizing the necessary
distinctions we need to make. For the convolution Cj,.|(z @ 2) a similar result takes
place, see Lemma 21 from the appendix.

Lemma 15. Let G = F', | be an integer and € € (0,1] be a real parameter. Also, let
B C G be a set, |B| = N, and f : G — [~1,1] be a function. Then there is a subspace
V < G with

codimV < e 21L%(B) L% (eB") (40)

and such that

> f@)(B o DB py))(z) = Y f(z)(B' o Di(B))(z)| < €|B[TT. (41)

|z[=1 |z|=1
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Proof. We begin with a rather general argument that takes place in any abelian group G.
Let k£ > 2 be an integer parameter and ¢ > 2 be a real parameter. Applying the Croot—
Sisask Lemma 3 with ¢ = ¢/(4k), A = Dy(B), B = D;(G) (clearly, one has |D;(B) +
Di(G)| < B7HDY(B)]), we find a set T C G, |T| > |B|exp(—O0(e2gk?log(1/3))) and
such that for any ¢ € kT the following holds

q

S o niB) @+ D) - Y (fomuB)E)| < (5) IrlBi < (5)" BN,

|z|=l lz]=l
(42)
Fixing ¢t € kT and using the Holder inequality, combining with estimate (42), we get

6 p—
S F@)(B o DB+ Di0) — Y f)(B' o Dy(B))(w)| < §IBINVA| B0/
||=t || =1
€ gt/ g+l < € Bl+1
FTVBIT < 1Bl (43)

where we have taken ¢ = Cllog(1/8) for a sufficiently large constant C' > 0. It follows
that

ST f@) (B o DB+ pi))(2) = Y f(a)(B o Di(B))(w)| < 27N B[FL. (44)

|z|=1 |z|=1

Let us analyze the sum o := | Y|, _; f(2)(B' o Dy(B # ) (x)| from (44). Clearly, one
has fip, 7y (r1,...,71) = |T| " T(r1 + - - - + ) and thus

o< Tﬁ]lvl Zkf(z)\k Z |J?(T1,...,Tl)||§(7“1)\...|§(rl)|, (45)

rite+ri=z

As usual let us estimate the last sum over z € Spec ,(T"), where ¢ € (0,1] is a parameter
and over z ¢ Spec.(T), see formula (16). By the definition of the set Spec . (T'), the
Holder inequality and the Parseval identity, we have

i X @ S (eIl Bl

z¢Spec .(T) ritetr=z

ck'|B| ~ ~ ~ ~
< A Z |B(r2)\...\B(rl)|Z|f(z—r2+~-~+rl,...,rl)||B(z—r2+~--+m)|

. R N R 1/2
< C]VT Z |B(T‘2)|...|B(Tz)| <Z|fa(7‘27...,7‘l)|2> s
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where f,(za,...,2;) = f(a,za,...,2;). Using the Holder inequality and the Parseval
formula one more time, we derive

ck|B|H2)/2 )2 v k| R|(+2)/2 Arl/2 1|+l
o1 < NODZ Z Z|fa To,...,77)] < F|B|HAZNYZ L 97| B

Here we have taken ¢ = 1/2 and k = [2£(ef3")], say. For the sum over z € Spec .(T) we
use Chang’s Lemma 4 with the parameters ¢ = ¢ and A = T, and find a subspace V
such that (41) takes place and

codimV < log(N/|T|) < e 2IL*(B)k? < e 2L (B) L% (),
see details in [4], [17], [18] or in [24, Section 5]. This completes the proof. O
4. Some generalizations of the Kelley—-Meka results

Using the density increment, Kelley-Meka [12] (or just repeat the calculations of the
previous section, combining forthcoming Proposition 18 in the case | = 2) obtained the
following result.

Theorem 16. Let G = F), A C G be a set, |A| = 6N, and ¢ > 0 be a parameter. Then
there is a subspace V.C G and x € G such that AN (V + x) is e—uniform relatively to
E, v 4a(A) > 0, and

codimV < e Mk L3(6) L% (0) - L (e). (46)

Remark 2. Actually, we formulate Theorem 16 in the form of Bloom—Sisask [2]. Kelley—
Meka [12] obtained this result without £%(¢) in (46).

We generalize Theorem 16 for the higher energies Ef .

Theorem 17. Let G = F), A C G be a set, |A| = 6N, and € € (0,1] be a parameter.
Then there is a subspace V. .C G and x € G such that AN (V +x) is e—uniform relatively
to EF, pvia(A) =6 and

odimV <« e~ ‘(8 l € .
codimV 281 l 28l k’4£4l £5l ) 47

Remark 3. Using the second part of Example 12 one can easily see that the quantity k
is necessary in estimates (46), (47). Indeed, just delete from F3' a subspace H of density
27%. Then the obtained set is not E5—uniform and to find a uniform piece we need k

dimensions.



I.D. Shkredov / Journal of Number Theory 281 (2026) 110—-138 125

Now we are ready to obtain our driving result about the density increment. As always
we will apply Proposition 18 in an iterative way and we see that estimate (50) allows us
to do it in at most O(e~1L(6)) times.

Proposition 18. Let G =F), A C G, |A] = 6N, € > 0 be a real number and k,1 > 2 be
positive integers, kl > e~ 1L(g). Suppose that

EF(A) > (14 ¢)klskNEH (48)

and that A is €/5-uniform relatively to Efjl for an even k. = O(klL(5)). Then there is
a subspace V. C G such that

codimV < e 213k L%(8) L% (e6) (49)
and for a certain x € G one has
[AN(V +z)| = (1+¢/8)0|V]. (50)

Proof. Applying Lemma 14 for the energy Ef(A) with the parameters e = ¢, n = £/30,
we construct the set

S={lz|=1: C(A)(z) > (1 +e/4)5'N}

and such that for a certain set B C G, |B| > 2~ /(=1(1 4 £)k6* N := BN the following
holds

NS S@)e(B)(@) > (1—29)|BI (51)

|z|=l

We have kl > 4e71£(n) and thus Lemma 14 can be applied indeed. Using formulae (11)
and making the required change of the variables (in (9) we put, consequently, z — z—x1)
one can see that (51) is equivalent to

Y. S@)(B"oDimi(B))(x) = (1 —2n)(Bl", (52)

|z|=1—1

where S C G!~! is a certain set which is constructed via the set S, see formulae (11),
(13). Now we apply Lemma 15 with f = S, B = B, ¢ = 0, and [ = [ — 1. By this
result and inequality (52) we find a subspace V' C G such that the co-dimension of V' is
controlled by estimate (40) and

Y. S@)(B e Dii(Bxpy))(x) = (1-3n)|Bl". (53)
|z|=1-1
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By the definition of the set S (and hence S), we have C;(A)(x) = (1 +¢/4)!'6'N for any
z € S and hence inequality (53) gives us

(L=3n)(1+¢e/4)'0"[BIN < Y (A7 o Diy(A)(@)(B'! o Dima(B * uy)) (2)
|z|=1-1

=D (AsBrpy)(e) > ATN@)BT @4 D (@) = Y (AxBrpy)(e)(40B)' " a)

|z|=l-1 o

<IBllA* pvlloo Y (A0 B) o). (54)

[e3

Now by our assumption A is £/5—uniform relatively to Efjl and a certain even k, =
O(KLL(0)). Using Corollary 10, we derive

A % py oo = (1 —3n)(1+¢/4) = 0(1 +¢/8).
Finally, thanks to (40), we get
codimV < e~ 21L2(B) L% (') < e 2Pk L2(8) L2 (6) . (55)
This completes the proof. 0O

Remark 4. Formula (52) of Proposition 18 shows that Corollary 10 is a criterium and
we can say, roughly, that for sufficiently large even k (depending on ! and on |N|/|B|)
one has

I allgh = o(8* N*+) iff  Vme[l], VB : Y (faoB)™(x)=o(d"|B|"N). (56)

Alternatively, one can see this criterium in a slightly more direct way, namely, from the
second formula of (15). Let us emphasize one more time that crucial point of the second
formula in (56) is the correct dependence on |B| and on 0.

Now we can prove our new Theorem 17.

As always the proof follows the density increment scheme and our aim is to construct
a shift of a subspace V. (I, k) where the set A is e—uniform relatively to EF. Also, to obtain
Theorem 17 we use induction on parameter [ > 2 and the first step of the induction for
Il =2 and an arbitrary k£ one can use either Kelley—Meka Theorem 16 or the arguments
of Section 3 (one can check that we do not need any uniformity conditions in this case),
combining with Proposition 18. Now let [ > 3 and suppose that the set A is not e—uniform
relatively to Ef for a certain k£ because otherwise there is nothing to prove. Of course
(see, e.g., inequality (19)), one can take k to be a sufficiently large number and we
choose k such that k > le7!L(g). Put g = g—;. We can freely assume that our set A
is £;/5-uniform relatively to EF*, with k. = k.(l) = O(kl?c~'L(¢)£(d)) in a shift of a
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subspace V,, /5(I — 1, k.(l)) thanks to Theorem 16 in the case [ = 3 or by the induction
assumption for larger I. Now we apply Lemma 13 and find k; = O(kle~'£L(¢)) such that

E;ﬁ (A) > (1 + El)lkl 6lk1 Nl-‘rkl .

After that we use Proposition 18 with ¢ = &,. One can check that kl > &, '£(;) and
that A is sufficiently uniform set (to apply our proposition) relatively to Efjl thanks to
our choice of k.. Estimate (50) implies that the procedure must stop after O(g; ' £(5))
number of steps and thus the final co-dimension is

codimV. (1, k) < g; "L (8)codimV, /5(1 — 1, k(1))
< le7'L(8)codimVy, j5(1 — 1, k1% L(£)L(6)) .

Put L =1!. Solving the functional inequality above and using (46), we get

codimV; (1, k) < Le ' 1/2 L2 () codimV, gpyec (2, k(1) 2~ D/2(L(e)£(5))2)
< 6728ll (81)28llk_4£4l(6)£5l(5) (57)

as required. Actually, one can see that the number of steps of our algorithm is at most
O(g; 1 £(8)) (due to every time we increase the density d to (1 4 £;/8) and hence we do
not need the first multiple in (57)). Nevertheless, it gives us a bound of the same sort.
This concludes the proof of the theorem. O

5. An application to two—dimensional corners

In this section we consider the simplest two—dimensional generalization of arithmetic
progressions of length three. Namely, let G be an abelian group. Any triple of the form

{(z,y), (x + d,y), (z,y +d)} € (G x G)®

is called a corner, see [6], [9]. If d # 0, then we say that our corner is a non—trivial one.
Using projection, one can see that if a two—dimensional set contains a corner, then its
projection contains an AP3 (see [6] or [23]). Thus, this problem does indeed generalize
the question of the upper bound of r3(N).

Further let A C 51 x Sy C G X G, |A| = 0|51]]S2|, |S1| = 01N, |S2| = 02 N. We say
that A is e—uniform relatively to the rectangular norm if

2
< 16491215, ? .

Ifalld =

z,y

Z fA(wvy)fA(xlay)

Let us obtain a counting result on the number of corners in uniform sets, see [11], [23].
Namely, we show that Ef-norm controls the number of corners in any uniform set A.
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Theorem 19. Let G = F} and A C 51 x Se C G x G, |A| = §|51]|S2], |S1] = 01N,
|Sa| = 0aN. Suppose that A is n—uniform relatively to the rectangular norm, n < §%/% /4,
and S1, Sy are e-uniform relatively to E§ with e = 2712062 and k = O(L(d0102)). Then
A contains at least 271630303 N3 corners. In particular, if N > 26207 oy ", then A
has a non-trivial corner.

Proof. Let f1, fo, f3 be three arbitrary functions on G x G := P. Consider the functional

T (f1, f2, f3) = Y Jil@,y) fa(y + 2,9) fa(w, 2 + 2).

T,Y,z

It is clear that T is linear in each of the arguments. Moreover, the value T'(A, A, A) is
equal to the number of triples {(z,y), (x +d,y), (z,y +d)} in A (here and below we use
the fact that our group is F1'). We have T(A, A, A) = 6T (P, A, A) + T(fa, A, A) and
[ fallt < nd%c?o3NL. Below we write f = fa for brevity.

Let g(z) =Y, A(z,x+2). Then T(P, A, A) = >"_ g(2)®. We have Y _g(z) = do10N?
and thus by the Holder inequality,

T(A, A, A) > 6°0i0sN® +T(f, A, A). (58)

Let us estimate the second term on the right-hand side of (58). Using once again the
Holder inequality, we see that

T(f,AA) = ZAy—i—zyZSH y+2)f(z,y)Ax,z + 2)
1/2 1/2
< (Z Ay + z,y>> | S Suly+ A+ AW+ 2) ) [ y)
Y,z z,x’ Y2
(59)
We have 3°, Ay +z,y) = do109N?. Further,
Z S1(y + 2)A(x, o+ 2)A (2, 2" + 2) f(z,y) f (2, y)
z,x’ Y,z
= Y A,z +2)A @ +2) Y Si(y+2)Sa(z +2)8: (' +2) f(w,9)f (', y)
z,x’' 2z Yy

Let
w(@,a',y,y) =Y Si(y+2)S1 (v +2) Sa(w + 2)5 (2 + 2)
= C4(SQ7 527 Sla Sl)(xa mla y7y,) .

A third use of the Hoélder inequality gives us
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1/2

o< Z S1(z 2') So(z + 2)S2 (2" + 2)

xxz

1/2
< | Y w@auy) flay)f @) f@y) |y
z,x’ Y,y
Applying Corollary 10 with [ =2, A =51, B = So, we get
D S1(x)S1 (2') Sa(x + 2)S2 (¢ + 2) = D _(S1052)(2) < 20703 N?

ZDIZ z

due to k> L(02) and £ < 1/4. Further applying the obtained inequalities, we derive

T(f, A, A <20%01osNT Y w(w, 2’y ¢) f (@, 9) (@, y) fa,y) F(@ o)

= 2520102]\78||f||4

+28%010sNT > (w(z, 2’ y,y) — o1os N) f (2, 9) f (2, ) F .0 £ (2,

’ ’
z,x°,Y,Y

< 278680803 N2 + 26%0103 NS, . (60)

Here we have used the assumption that the set A is n—uniform relatively to the rectan-
gular norm. To estimate the sum S, we apply Lemma 11 with [ = 4, combining with the
Holder inequality to obtain

8. < 2126(03 0B N4 (462203 N4 L-U/E < 2152520404 NS

due to k = CL(do102), where C' > 1 is a sufficiently large absolute constant. Returning
to (60) and recalling that ¢ = 2721%§2, we get

T(f, A, A)* < 2650808 N12 4 21546808 N2 < 16710060 S N2,
The last bound and (58) give us
T(A, A, A) > 0202N3 (6% — 210°%/2) > 271630202 N3

as required. O
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6. Appendix
6.1. Possible generalizations of the Kelley—Meka method for longer progressions

In this section we will show why the Kelly-Meka method does not provide anything
new for arithmetic progressions of length four and longer. To have deal with arithmetic
progressions of length more than three we need a generalization of norms (14). Having
vectors = (r1,...,75) € G* and y = (y1,...,y:) € G' (recall that we code this fact as
|z| = s and |y| = t) define its “Minkowski” sum as = @ y € G**, where the components
of z @y are x; +y;, i € [s], j € [t| (and similarly for higher sums). Given a function
f:G— C put

gskt(f) = Z Z Cft(f)(x@y) = Z Z Z Ps(flxy @ 2). (61)

|z|=s |y|=t lz|=s |y|=t |z|=k

In these terms

= Z Z Pr(f)(z®y). (62)

lz|=l ly|=Fk

For even k,s,t and a real function f one has Eslit(f) > EF(f),EF(f),E3(f) = 0 and
the triangle inequality for 55,1& can be obtained exactly as in [25, Appendix| or just see
Subsection 6.2 (of course one needs an additional application of the Holder inequality
due to we have the longer sum in (61) than in (62)). Thus (F,(f))!/*** defines a norm
of f: G — R in the case of even k, s,t. Notice that similar to Ef(f) the quantity £¥,(f)
is non—negative, provided at least one of the numbers k, s,t is even but, nevertheless, it
is not always a norm in this case, see [25, Section 4]. By some symmetricity reasons (see,
e.g., formulae (67) below) we make a normalization and put

= (IG| 722, () = (EL, ()™

for f: G — R. Clearly, one has

= 0 Y )@ =Y Y s (63)

lz|=s |z|=k lz|=s |z|=k

and

=Y arw=> > chHyez). (64)

lyl=t |z|=k lyl=t |z|=k

Thus we have the duality relation similar to formula (14)

EF(f) = EL(f) = E0,(f) = E24(F). (65)

)
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Also, let us remark that the expectations over x @ y of the generalized convolution of
any real function f: G — R is connected with the higher energies

> D Calf = NE(f). (66)

lz|=s |y|=t

In particular, the expectation above is always non—negative if s or ¢ is an even number
and we see immediately that the duality (14) takes place. Formula (66) can be proved
directly or it follows from (63), (64) and the fact that f(f) = NE(f). Finally, notice
that in contrast to C;(z) the function Cs(x @ y) enjoys even two symmetries, namely,

Ca(f)(z @ y) = Ca(f)((z + Ds(wr)) & y) = Cau(f)(z & (y + Di(w2))) (67)

for any wy,ws € G. It gives, in particular,

Cot(f) (@ @ y) = Cat(f) (& = Ds(21)) @ (y — De(1))) = N2CLi(f)(w), (68)

where |w| = st — 1 and, more concretely, w;; = (z; —x1) + (y; —v1), ¢ € [s], j € [t] and

(i,4) # (1,1).

Now we are ready to obtain our counting lemma. Let us write L(z, y) = ax+ By -+ for
a non—trivial linear form. We say that two forms are non—proportional if their coefficients

are not proportional. Given a real number ¢ > 1 put ¢* = -%-.

qg—1

Theorem 20. Let N be a prime number and k = 4, l1,ls > 2 be positive integers. Also,
let fi,...,fx : Z/NZ — R be functions and Ly, ..., Ly be non—proportional linear forms
such that Lo, ..., Ly depend on both variables. Then

AL y) - fe(Le(@y)| < |

f2[

X ez fallez o (69)

Proof. Let o be the left-hand side of (69). Without loss of generality one can assume that
Li(z,y) = ajz+p,y, j € [k]. Consider the nonzero form L, and suppose for concreteness
that aq # 0. Changing the variables a1 x + 81y — x, we obtain

o= Zﬁ Vfo(La(2,9)) .. frlEnla,y)) . (70)

where here and below we write L, j(@,y) = Lj(x,y) = ajo + By and the coefficients @,
B; may change from line to line. Anyway one can check that all new forms Lo,...,Ly
in (70) are nonzero and non—proportional. Moreover, by assumption the initial forms
Lo,..., L depend on both variables and we see that the new forms in (70) depend on
both variables as well. Now we use the Holder inequality and get
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(/1 f2lli;

Z <Z f2(La(z,y)) fk(Lk(xay))>

=P (f2)La(Dy, (), Pi, (1)) - - Po, (i) (Le(Dr, (), Pr, (1)) -

z,y

Notice that we have decreased the number of our linear forms (but increased the number
of variables). Now let us make the changing of the variables similar to above, namely,
a1 Dy, (x) + f1Pi, (y) — Pi, (y) and again one can easily check that we preserve all con-
ditions on our linear forms Ls, ..., L;. Thus one has

(/I fallip)™
27’11 (f2)(Pu(y 27’11 (f3)(Ls(Duy (), Piy (y))) - - - Puy (i) (L (D, (), Py ()

and using the Holder inequality one more time, as well as the obvious identity

(ZP (f2) (P ( ))) = [If2lliz" (71)

we derive recalling that k =4

" )lll2

@/ f1lliz Il f2
<D Puis(£3)(Ls(PuDi, (), Diy Pry () Praty (f4) (La (P Dy, (2), Di, Pry (9))) - (72)

z,Y

Now let us analyze the right-hand side of formula (72). First of all, it is easy to see
that there are [y different variables x; and [y different variables y; in (72). Secondly,
take the form Lj_; (for Ly the argument is the same) and notice that it depends on
ap—1%; + Br—1Y;, ¢ € [l2], j € [l1] and that every such expression appears exactly once.
Now introducing two more variables z,w such that ; — x; + z, y; — y; + w and then
replacing z,w to other variables Z, W, where Z = aj_12 4 Sr—1w, W = apz + Srw (this
change of the variables is allowable because the forms Ly_1, Ly are not proportional),
we arrive to the quantities Cp,1, (fr—1), Ci1, (fx) in (72). Writing z = (z1,...,21,), y =
(y1,-..,41,), we have finally

@/l

f2

1) SN2 CL, (Feo1) (k1 - 2 @ Bro1 - ¥)Cr, (f) (o - 2 @ Br - y) -

z,¥

i

Using the Holder inequality the last time, as well as the fact that a1, ak, Bx—1, Bx # 0,
we obtain

1/2

(/I filliglfolls) = < | NT20 Y0 Gy (fr-1)(@ @)

|z|=l2, ly|=l1
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1/2

(N2 L@y | = eald I

|z|=l2, ly|=l1

as required. O

Remark 5. One can check that for any Iy, one has

Lol oy

i3 l* ll lo
and hence the right—hand side of bound (69) has the correct order in N. Similarly, taking
fi(x) = fa(x), j € [4] as the balanced function of a set A and I} ~ I ~ L(J) we see that
the dependence on § is also correct.

Remark 6. As we have said in the previous remark the optimal dependence on the pa-
rameters l1,ly in Theorem 20 is l; ~ Iy ~ £(d). Suppose that the dependence on ¢ in
Lemma 13 and in all statements below is almost optimal, say, ce for a constant ¢ € (0,1).
Thanks to the induction scheme of the proof, it gives us the multiple ¢“(®) = §=¢ for
a certain C' > 0 in codimension of the subspace V, where our set A is uniform. But
6~¢ is more or less that usual Gowers’ method gives to us and hence we have no special
gain. Thus, even at a technical level, the extension of the Kelley-Meka method to more
complex objects than arithmetic progressions of length three is fraught with significant
difficulties.

We conclude this part of the appendix showing that the convolutions Cg(f)(z &

y), || = s, |y| = t enjoy the almost periodicity properties similar to the ordinary
convolutions Cs(f)(x). Given a vector x = (z1,...,z,) let us write for convenience z =
(Oal'l,' . ,ZL'T)~

Lemma 21. Let € € (0,1] be a real number, s,t,q > 2 be positive integers, | := st — 1,
B C G, |Bl = BN and F : G! — R. Then there is a set T C G, |T|
|Blexp(—O(c~2qlog(1/B))) and such that for any t € T one has

Yo N (FoD(B+1)(E@y) — (FoDy(B))(zey)

lz|=s—1 |y|=t—1

<eUBIT Y0 GUEIY T ) - CUBLIFI, [ FI) () - (73)

ly|l=t—1

Proof. We choose k = O(¢72¢) random points by,...,b; € B uniformly and indepen-
dently and let Z; ((z®y) = F((z®y)+Di(b;)) — (FoDi(up))(Z®y). Clearly, the random
variables Z; are independent, have zero expectation and their variances do not exceed
(|F|? o Dy(15))(Z & y). By the Khintchine inequality for sums of independent random
variables,
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k

1Y 2@ © 95, ) < (FI> o Di(up)) (@@ g)'/>.
j=1

Raising the last inequality to the power ¢, dividing by k9, summing over z @y, and using
the Hélder inequality, which gives (|F|? o Dy(up))(z ®1)4? < (|[F|90Di(up))(Z DY), we
get that

q

> > [k ZF (2 63) + Dilby) ~ (Fo Dilpp))(z & 9)| du(er,.... o)

le|=s—1 |y|=t—1
TN (IF1 o Dips)) (@ 9)
lz]=s—1 |y|=t—1
= (gk™)"2BI™" Y CUIFI) () - CU(B, IFI% ., [F|9)(y) -

ly|=t—1

After that we repeat the argument from [4], [17], [18] and [24, Theorem 15]. This com-
pletes the proof. O

6.2. On a family of norms

In this section we define a very general family of norms, which includes the norms Ek
& kt above, as well as the classical Gowers norms [9]. As the reader can see we do not use
the Fourier transform in our proofs below.

Let G be an abelian group, r, k1, ..., k. > 2 be integers and f : G — R be an arbitrary
function. Let K = [[;_, kj, B = [k1]x- - - x [k,] and write 1 = @M, e =

(xgl), ce, xSkT)). Also, for w € B we write w = (w1, ...,w,). Define

AR, o= D > PP,

|z1|=k1 |z | =k
Z Z H f($§w1)+~~~+9:$‘”r)). (74)
|z1|=k1 |z, |=k, wEB

The case r = 2 corresponds to Effnorm, r = 3 is just Ef’tfnorms and for ky = --- =
k. = 2, we obtain Gowers’ U* norms (up to some normalizations). If we choose f in (74)
as the characteristic function of a set A C G, then [|Al|f;, ., equals the number of
complete subgraphs K,
z,y € Giff  +y € A), in the case r = 2 we obtain the ordinary Cayley graph. In a
similar way one can define the multi-scalar product for the quantity [ - ||z, ,, as was

done in [9], namely, having any functions (f%),cp, we write

PV By = O o > ] @)+l (75)

‘11‘ k1 ‘Irl k, weB
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It is easy to see that if K is an even number, then

K
||f||Ek1 _____ ko 2 0. (76)
Indeed, let, say, k. be an even number, then we can write z, as x, = («}., /), where
|zl.| = |=)| = k,/2 and whence
2
||f||§,c1kr = Z Z Z Prpp(f)x1® - @z @) | >0.
|z1]=Fk1 |zr—1|=kr—1 \|z,.|=kr/2

Also, let us remark the inductive property of the norm Ejy, 1 . For concreteness, we
take the rth coordinate and obtain from definition (74) that

K/k,
D D FA i (77)

IAIE,, o= D Ifls,”
[2|=k

,,,,,

Let us make a simple remark concerning Fj, .., —nhorm.

Lemma 22. Let f : G — R be a function. Suppose that there is j € [r] such that k; is
=04f f=0.
kr

even and K /k; is also even. Then | f| &,,

Proof. Without loosing of the generality assume that j = r. Write

Ky
||f||§k1 ,,,,, A Z Z (ZPK/k,,(f)(%69"'69557«—1@2)) =0.

|z1]|=Fk1 |Zr—1|=kr-1

Since k, is an even number, it follows that, in particular, ), fE/Er(2) = 0 (we have
taken x; = -+ = x,_1; = 0 in the last formula) and hence f = 0. This completes the
proof. O

Now let us show that the multi-scalar product is controlled via Ej, . . —norm.

Lemma 23. Let r > 2 be a positive integer, k1, ..., k. > 2 be even integers and f« : G —
R, w € B be any functions. Then

|<fw>Ek1 k7‘| < H ”fw”Ekl by * (78)

weB

Proof. We write

% = > > Y T eEE + el 2

|z |=F1 |Zr—1|=kr_1 2 weB,wr=1
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A I EE o) e

wq(jn) wWEB, w,=k,

After that apply the Holder inequality (here we have used the fact that k, is an even
number) and we arrive to the new k, families of functions. Take any of them, say, (f*),
w € B and notice that

f"w :]?w/ :fw

for all w = (w1,...,wy), W = (Wi,...,w)) with (w1,...,w,—1) = (W},...,w._;1). In
particular, the family (f“), w € B has K/k, different functions. Now we use the same
argument for all remaining variables x1,...,z,_1 subsequently changing the families
(f¥), w € B. One can easily see that after all these r steps we arrive to K families
consisting of single functions f“, w € B (just thanks to the fact that any two points of
our box B can be reached by a path in the directions of the coordinate axes). This is
equivalent to inequality (78) and we complete the proof. O

Finally, we are ready to obtain the main result of this section. Let us write
(k1,...,kr) < (my,...,my) if the first vector is lexigraphically smaller than the sec-
ond one (i.e., r <t and k; < mj, j € [r]). Also, put

I, = NG (79)
Thus for any f : G — [—1, 1] one has 1z, . <L
Theorem 24. Let r > 2 be a positive integer, ki,..., k. = 2 be even integers and f :

G — R be a function. Then formula (74) defines a norm of f. Further if (k1,..., k) <
(ma,...,my), then

1150, <Ifl5, (80)

Proof. Take two functions f,g: G — R. In view of Lemma 23, we have

k

K . o

I ol =4 b < () U1, IOl
1

AAAAAAAAAAA ook
J:

W)

= (£l s,

..........

and we have obtained the triangle inequality for Ey, .. By estimate (76) we know that

.....

our quantity || f||z,  is non-negative. Also, Lemma 22 guaranties that || f||g,, ., =
0 iff f =0. Thus indeed formula (74) defines a norm of f.
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It remains to obtain (80). Let M = H§:1 mj, B = [ma] x - x [my], S =370 kj
and S’ = Z;Zl m;. Consider the family of functions (¢*).eps such that for w € B one
has g% = f“ and let ¢ = 1 otherwise. It is easy to see that

_ !
IS NS =IFIS, L =N g,

Using the last formula, definition (79), as well as Lemma 23, we obtain

NS < NS (NS TMYM K < SR ST | g6
m mi

ey Mg

= NFIE,

,,,,, ko

111,

LMy

as required. O

Remark 7. Inspecting the proofs of Lemma 23 and Theorem 24 one can check that
formula (74) defines a norm of f for any numbers r > 2, ky,..., k. > 2, provided f is
taken from the family of non—negative functions. In the case r = 2 it was obtained before
in [25, Propositions 16, 30].

Data availability
No data was used for the research described in the article.
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