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We introduce and study the recursive divisor function, a 
recursive analog of the usual divisor function: κx(n) = nx +∑

d�n κx(d), where the sum is over the proper divisors of n. 
We give a geometrical interpretation of κx(n), which we use 
to derive a relation between κx(n) and κ0(n). For x ≥ 2, 
we observe that κx(n)/nx < 1/(2 − ζ(x)). We show that, for 
n ≥ 2, κ0(n) is twice the number of ordered factorizations, a 
problem much studied in its own right. By computing those 
numbers that are more recursively divisible than all of their 
predecessors, we recover many of the numbers prevalent in 
design and technology, and suggest new ones which have yet 
to be adopted.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

1.1. Recursive divisor function

In this paper we introduce and study the recursive divisor function:
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Table 1
Values of κ0, κ1 and κ2. A Mathematica algorithm for κ0(n) is: n = 1; κ = {}; While[n <= 60, κ = 
Append[κ, nˆ0 + Sum[κ[[m]], {m, Delete[Divisors[n], -1]}]]; n++]; κ.

n κ0 κ1 κ2 n κ0 κ1 κ2 n κ0 κ1 κ2

1 1 1 1 21 6 34 502 41 2 42 1682
2 2 3 5 22 6 38 612 42 26 132 2636
3 2 4 10 23 2 24 530 43 2 44 1850
4 4 8 22 24 40 116 992 44 16 106 2698
5 2 6 26 25 4 32 652 45 16 96 2416
6 6 14 52 26 6 44 852 46 6 74 2652
7 2 8 50 27 8 46 832 47 2 48 2210
8 8 20 92 28 16 74 1114 48 96 304 4088
9 4 14 92 29 2 30 842 49 4 58 2452
10 6 20 132 30 26 104 1388 50 16 112 3316
11 2 12 122 31 2 32 962 51 6 74 2902
12 16 42 234 32 32 112 1520 52 16 122 3754
13 2 14 170 33 6 50 1222 53 2 54 2810
14 6 26 252 34 6 56 1452 54 40 190 4392
15 6 26 262 35 6 50 1302 55 6 74 3174
16 16 48 376 36 52 176 2196 56 40 196 4672
17 2 18 290 37 2 38 1370 57 6 82 3622
18 16 54 484 38 6 62 1812 58 6 92 4212
19 2 20 362 39 6 58 1702 59 2 60 3482
20 16 58 586 40 40 156 2464 60 88 346 6318

Definition 1.

κx(n) = nx +
∑
d�n

κ0(d),

where d�n means d|n and d < n.

It can be thought of as the recursive analogue of the usual divisor function:

σx(n) =
∑
d|n

dx. (1)

The recursive divisor function considers not only the divisors of n, but also the divisors 
of the resultant quotients, and the divisors of those resultant quotients, and so on. For 
example, κ0(10) = 1 +κ0(1) +κ0(2) +κ0(5) = 6, and κ1(10) = 10 +κ1(1) +κ1(2) +κ1(5) =
20. Values of κ0, κ1 and κ2 are given in Table 1.

1.2. Example

Consider one of the earliest references to a number that can be divided into equal 
parts in many ways. Plato writes in his Laws that the ideal population of a city is 5040, 
since this number has more divisors than any number less than it. He observes that 
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5040 is divisible by 60 numbers, including one to 10. A highly divisible population is 
useful for dividing the city into equal-sized sectors for administrative, social and military 
purposes.

This conception of divisibility can be extended. Once the city is divided into equal 
parts, it is often necessary to divide a part into equal subparts. For example, if 5040 is 
divided into 15 parts of 336, each part can in turn be divided into subparts in 20 ways, 
since 336 has 20 divisors. But if 5040 is divided into 16 parts of 315, each part can be 
divided into subparts in only 12 ways, since 315 has 12 divisors. Thus the division of 
the whole into 15 parts offers more optionality for further subdivisions than the division 
into 16 parts. Similar reasoning can be applied to the division of the subparts into sub-
subparts, and so on, in a recursive way.

1.3. Outline of paper

The goal of this paper is to quantify the notion of recursive divisibility and to un-
derstand the properties of numbers which possess it to a large degree. It is organized as 
follows.

In part 2, we introduce divisor trees (Figs. 1 and 2), which give a geometrical inter-
pretation of κx(n). Using this, we find a relation between κx(n) and κ0(n).

In part 3, we show that for x ≥ 2, κx(n) < nx/(2 − ζ(x)). We plot κx(n) for x = 1 to 
x = 6, confirming our prediction.

In part 4, we investigate the number of recursive divisors κ0(n). We show that κ0(n)
is twice the number of ordered factorizations for n ≥ 2, a problem much studied in its 
own right [8,7,3,4,9,5]. We give recursion relations for when n is the product of distinct 
primes, and for when n is the product of primes to a power. The latter can be solved for 
up to three primes.

In part 5, we investigate the sum of recursive divisors κ1(n). We give recursion relations 
for when n is the product of primes to a power. These can be solved using the relation 
between κx(n) and κ0(n) from part 2.

In part 6, we study numbers which are recursively divisible to a high degree. We call 
numbers with a record number of recursive divisors recursively highly composite. These 
have been studied in the context of the number of ordered factorizations [5]. We call 
numbers with a record sum of recursive divisors, normalized by n, recursively super-
abundant. We list both kinds up to a million in Appendix A.

In part 7, we survey applications of highly recursive numbers in design and technology 
and display standards. We conclude with a list of open problems.

2. Divisor trees and the relation between κx and κ0

In this section, we prove the following relation between κx(n) and κ0(n):
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Fig. 1. Divisor trees for 1 to 24. The number of recursive divisors κ0(n) counts the number of squares in each 
tree. The sum of recursive divisors κ1(n) adds up the side length of the squares in each tree. The sum of 
the square of recursive divisors κ2(n) adds up the area in each tree, and so on.

Theorem 1.

κx(n)
nx

= 1
2 + 1

2
∑
d|n

κ0(d)
dx

.

To do so, we introduce the concept of divisor trees. As well as motivating two lemmas 
necessary for our proof, divisor trees provide some intuition for how the recursive divisor 
function behaves.

2.1. Divisor trees

A geometric interpretation of the recursive divisor function can be had by drawing 
the divisor tree for a given value of n. Divisor trees for 1 to 24 are shown in Fig. 1. The 
number of recursive divisors κ0(n) counts the number of squares in each tree, whereas the 
number of divisors d ≡ σ0(n) in (1) counts the number of squares in the main diagonal. 
The sum of recursive divisors κ1(n) adds up the side length of the squares in each tree, 
whereas the sum of divisors σ ≡ σ1(n) in (1) adds up the side length of the squares in 
the main diagonal. This can be extended to κ2(n), which adds up area, and so on.

A divisor tree is constructed as follows. First, draw a square of side length n. Let 
d1, d2, . . . be the proper divisors of n in descending order. Then draw squares of side 
length d1, d2, . . . with each consecutive square situated to the upper right of its prede-
cessor, kitty-corner, as shown in Figs. 1 and 2. This forms the main arm of a divisor tree. 
Now, for each of the squares of side length d1, d2, . . ., repeat the process. Let e1, e2, . . .
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Fig. 2. Divisor trees for 96 and 100. There are κ0(96) = 224 squares in the left tree and κ0(100) = 52 squares in 
the right tree. The sum of the side length of the squares, or one-fourth of the tree perimeter, is κ1(96) = 768
and κ1(100) = 340. The sum of the area of the squares is κ2(96) = 16,608 and κ2(100) = 14,740.

be the proper divisors of d1 in descending order. Then draw squares of side length e1, 
e2, . . ., but with the sub-arm rotated 90◦ counter-clockwise. Do the same for each of the 
remaining squares in the main arm. This forms the branches off of the main arm. Now, 
continue repeating this process, drawing arms off of arms off of arms, and so on, until 
the arms are single squares of size 1.

Note that, for large enough n, a divisor tree can overlap itself. The precise conditions 
as to when is one of the open questions listed at the end.

2.2. Properties of divisor trees

In order to prove Theorem 1, let us consider a more fine-grained description of divisor 
trees, namely, one that counts the number of divisors of a given size.

Definition 2. The number of recursive divisors of n of size j < n is

κ0(n, j) =

⎧⎪⎨
⎪⎩
∑
d�n

κ0(d, j), j�n

0, otherwise,

where κ0(n, n) = 1 and d�n means d|n and d < n.

Lemma 1. The number of recursive divisors of size j satisfies κ0(j n, j) = κ0(n, 1).
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Proof. By Definition 2, with j → 1,

κ0(n, 1) =
∑
d�n

κ0(d, 1). (2)

Similarly, with n → j n,

κ0(j n, j) =
∑
d�j n

κ0(d, j).

Since κ0(d, j) = 0 if j does not divide d, this can be rewritten as

κ0(j n, j) =
∑
d�n

κ0(j d, j). (3)

We will use this result in a moment.
Let n = pα1

1 pα2
2 . . . p

αj
ω and Ω(n) = α1 + α2 + . . . + αω. We prove the lemma by 

induction on Ω(n). The base case Ω(n) = 0, or n = 1, holds by Definition 2: κ0(j 1, j) =
κ0(1, 1). We now show that if κ0(j n, j) = κ0(n, 1) for all n such that Ω(n) < i, then 
κ0(j n, j) = κ0(n, 1) for all n such that Ω(n) < i + 1. To see why, observe that in (3)
all of the proper divisors d of n must have Ω(d) at most Ω(n) − 1. So by assumption all 
of the κ0(j d, j) in (3) reduce to κ0(d, 1), and the right side of (3) takes the form of the 
right side of (2) and thus equals κ0(n, 1). �
Lemma 2. For n ≥ 2, the number of recursive divisors of size 1 is equal to half the total 
number of recursive divisors, that is, κ0(n, 1) = κ0(n)/2.

Proof. Clearly

κ0(n) =
∑
d|n

κ0(n, d).

By Lemma 1, κ0(n, k) = κ0(n/k, 1) for k|n, so the above becomes

κ0(n) =
∑
d|n

κ0(n/d, 1)

=
∑
d|n

κ0(d, 1)

= κ0(n, 1) +
∑
d�n

κ0(d, 1).

Inserting Definition 2 with j = 1 into the above gives the desired result. �
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2.3. Relation between κx and κ0

Proof of Theorem 1. We can write κx(n) as

κx(n) =
∑
d|n

dx κ0(n, d).

By Lemma 1,

κx(n) =
∑
d|n

dx κ0(n/d, 1).

Recall that Lemma 2 only applies for n ≥ 2, so we pull out the d = n term:

κx(n) = nx +
∑
d�n

dx κ0(n/d, 1).

By Lemma 2,

κx(n) = nx + 1
2
∑
d�n

dx κ0(n/d)

= nx

2 + 1
2
∑
d|n

dxκ0(n/d)

= nx

2 + 1
2
∑
d|n

(n
d

)x

κ0(d).

Dividing by nx, the theorem follows. �
3. Properties of κ2, κ3, and so on

Theorem 2. For x > 1,

κx(n)
nx

<
1

2 − ζ(x) .

This theorem was inspired by an anonymous referee from a previous version of this 
paper. The referee answered one of our then open questions at the end of our paper. We 
generalized the answer, which led to this theorem. We confirm it in Fig. 3, in which we 
plot κx(n)/nx for x = 1 to x = 6.

Proof. We prove the theorem by induction. We know that it is true for n = 1. Assume 
it is true for all numbers less than n. We show it is then true for n. By Definition 1,
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Fig. 3. Plots of κx(n)/nx. We plot κx(n)/nx up to n = 3,000, for x = 0 to x = 5. The large points (which are 
orange in the online version) are the sequence records, which satisfy κx(n)/nx > κx(m)/mx for all m < n. 
For x = 0 and x = 1, the upper bound for the sequence diverges. But for x = 2 and above, it converges to 
1/(2 − γ(x)), where γ is the Riemann zeta function. For x = 0, the large points are the recursively highly 
composite numbers. For x = 1, they are the recursively super-abundant numbers (see Appendix A).

κx(n)
nx

= 1 + 1
nx

∑
d�n

κx(d)

= 1 +
∑
d�n

κx(d)
dx

dx

nx

< 1 + 1
2 − ζ(x)

∑
d�n

dx

nx

< 1 + 1
2 − ζ(x)

(
− 1 +

∑
d|n

dx

nx

)
,

where γ(x) is the Riemann zeta function. Since, for x > 1,

∑
d|n

dx

nx
=

∑
d|n

1
dx

< ζ(x), (4)

we have

κx(n)
x

< 1 + 1 (ζ(x) − 1)

n 2 − ζ(x)
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<
1

2 − ζ(x) . �
4. Number of recursive divisors

4.1. Relation to ordered factorizations

Some of the properties of κ0(n) can be deduced from properties of a related function, 
the number K(n) of ordered factorizations into integers greater than one. It satisfies 
K(1) = 1 and

K(n) =
∑
d�n

K(d).

For example, 12 is the product of integers greater than one in eight ways: 12 = 6 · 2 =
2 · 6 = 4 · 3 = 3 · 4 = 3 · 2 · 2 = 2 · 3 · 2 = 2 · 2 · 3. So K(12) = 8. Kalmar [8] was the first 
to consider K(n)—hence the name K—and it was later studied more systematically by 
Hille [7]. Over the last 20 years several authors have extended Hille’s results [4,9,5], some 
of which we will mention later.

Notice that the definition of K(n) is identical to Definition 2 for j = 1, that is, to 
κ0(n, 1). Since K(1) = κ0(1, 1) = 1, then by Lemma 2 we arrive at

Proposition 1. For n ≥ 2, κ0(n) = 2K(n), where K(n) is the number of ordered factor-
izations into integers greater than one.

4.2. Distinct primes

Let n = p1p2 . . . pω be the product of ω distinct primes.

Proposition 2. The exponential generating function of κ0(p1 . . . pω) is

EG(κ0(p1 . . . pω), x) = ex

2 − ex
.

Proof. Since κ0 depends only on the prime signature of n, which in this case is all 1s, 
we can immediately write down

2κ0(p1 . . . pω) = 1 +
ω∑

i=0

(
ω

i

)
κ0(p1 . . . pi).

Then

2
∞∑ xw

w! κ0(p1, . . . , pω) =
∞∑ xω

ω!

(
1 +

ω∑(
ω

i

)
κ0(p1 . . . pi)

)

ω=0 ω=0 i=0
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= ex +
∞∑

ω=0

ω∑
i=0

xi

i!
xω−i

(ω − i)!κ0(p1 . . . pi).

Summing this along the diagonals ω = i, ω = i + 1, and so on,

2
∞∑

ω=0

xw

w! κ0(p1, . . . , pω)=ex+ x0

0!

∞∑
ω=0

xw

w! κ0(p1, . . . , pω)+ x1

1!

∞∑
ω=0

xw

w! κ0(p1, . . . , pω)+. . .

= ex + ex
∞∑

ω=0

xw

w! κ0(p1, . . . , pω).

From this it follows that

EG(κ0(p1 . . . pω), x) = ex

2 − ex
. �

4.3. Primes to a power

When n is the product of primes to powers, κ0(n) satisfies recursion relations relating 
it to values of κ0(n) for primes to lower powers. The first few of these can be solved 
explicitly.

Theorem 3. Let p, q and r be prime. Then

κ0(pc) = 2κ0
(
pc

p

)
= 2c

κ0(pcqd) = 2
(
κ0

(
pcqd

p

)
+ κ0

(
pcqd

q

)
− κ0

(
pcqd

pq

))

= 2c
d∑

i=0

(
d
i

)(
c+i
i

)
,

κ0(pcqdre) = 2
(
κ0

(
pcqdre

p

)
+ κ0

(
pcqdre

q

)
+ κ0

(
pcqdre

r

)
− κ0

(
pcqdre

pq

)
− κ0

(
pcqdre

pr

)
− κ0

(
pcqdre

qr

)
+ κ0

(
pcqdre

pqr

))

=
d∑

j=0
(−1)j

(
d
j

)(
c+d−j

d

)
κ0(pc+d−jre).

Analogous recursion relations apply for the product of more primes to powers.

Proof. For the recursion relations, the approach is similar to, but somewhat simpler 
than, that used to prove the recursion relations in Theorem 4. But we can deduce these 
relations from previous work using Proposition 1. Hille [7] and Chor et al. [4] proved 
that identical recursion relations govern K(n), the number of ordered factorizations. 
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Since κ0(n) = 2K(n) for n ≥ 2, the same recursion relations apply to κ0(n). For the 
explicit forms of κ0, Chor et al. [4] give analogous results for K(n), which when multiplied 
by 2 apply to κ0(n). �
Corollary 1. Let α∗ be the maximum exponent in the prime factorization of n. Then 2α∗

divides κ0(n).

Proof. All of the recursion relations in Theorem 3 have a factor of 2 on the right side. 
The corollary is implied by iterating the recursion relation α∗ times. Each time, the 
exponents on the right are reduced by at most 1. Iterating until the smallest exponent is 
reduced to 0, the exponent disappears since, for example, κ0(pcq0) = κ0(pc). Continuing 
this process ultimately gives a total of α∗ factors of 2. The κ0(n) are expressed as a 
product of an integer and 2α∗ in Appendix A. �
5. Sum of recursive divisors

We now turn to the sum of recursive divisors κ1(n). This quantity is more intricate 
than κ0(n), because it depends on the primes as well as their exponents in the prime 
factorization of n.

5.1. Primes to a power

When n is equal to the product of primes to powers, κ1(n) satisfies recursion relations 
similar to those for κ0(n), but more complex.

Theorem 4. Let p, q and r be prime. Then

κ1(pc) = 2κ1
(
pc

p

)
+ p−1

p pc

=
{

2c c+2
2 p = 2

pc p−1−(2/p)c
p−2 p odd

κ1(pcqd) = 2
(
κ1

(
pcqd

p

)
+ κ1

(
pcqd

q

)
− κ1

(
pcqd

pq

))
+ p−1

p
q−1
q pcqd

= pcqd
(

1
2 + 1

2

c∑
i=0

2i

pi

d∑
j=0

1
qj

j∑
k=0

(
i+k
k

)(
j
k

))

κ1(pcqdre) = 2
(
κ1

(
pcqdre

p

)
+ κ1

(
pcqdre

q

)
+ κ1

(
pcqdre

r

)
− κ1

(
pcqdre

pq

)
− κ1

(
pcqdre

pr

)
− κ1

(
pcqdre

qr

)
+ κ1

(
pcqdre

pqr

))
+ p−1 q−1 r−1pcqdre.
p q r
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Proof. We start with the recursion relations. For n = pc, from Definition 1,

κ1(pc) = pc +
c−1∑
i=0

κ1(pi). (5)

Adding κ1(pc) to both sides and with c → c − 1,

c−1∑
i=0

κ1(pi) = 2κ1(pc−1) − pc−1,

which, when inserted into (5), gives the desired recurrence relation.
For n = pcqd, from Definition 1,

κ1(pcqd) = pcqd +
c−1∑
i=0

d∑
j=0

κ1(piqj) +
d−1∑
j=0

κ1(pcqj). (6)

Adding κ1(pcqd) to both sides,

2κ1(pcqd) = pcqd +
c−1∑
i=0

d∑
j=0

κ1(piqj) +
d∑

j=0
κ1(pcqj), (7)

which we can equally write

2κ1(pcqd) = pcqd +
c∑

i=0

d∑
j=0

κ1(piqj). (8)

With d → d − 1 in (7), we find

d−1∑
j=0

κ1(pcqj) = 2κ1(pcqd−1) − pcqd−1 −
c−1∑
j=0

d−1∑
i=0

κ1(piqj). (9)

With c → c − 1 and d → d − 1 in (8), and inserting the result into (9), yields

d−1∑
j=0

κ1(pcqj) = 2κ1(pcqd−1) − 2κ1(pc−1qd−1) + (1 − p)pc−1qd−1. (10)

With c → c − 1 in (8), we find

c−1∑
i=0

d∑
j=0

κ1(piqj) = 2κ1(pc−1qd) − pc−1qd. (11)

Inserting (10) and (11) into (6) gives the desired recursion relation.
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For n = pcqdre, the proof is similar to the one above and is omitted here.
For the explicit forms of κ1(n), we appeal to Theorem 1, which tells us

2κ1(n)
n

= 1 +
∑
d|n

κ0(d)
d

. (12)

For n = pc, from (12) we have

2κ1(pc)
pc

= 1 +
c∑

i=0

κ0(pi)
pi

.

Inserting Theorem 3 into the above gives the desired result. For n = pcqd, from (12) we 
have

2κ1(pcqd)
pcqd

= 1 +
c∑

i=0

d∑
j=0

κ0(piqj)
piqj

.

Inserting Theorem 3 into the above gives the desired result. For p = 2, the result simplifies 
to contain just two sums. �
6. Numbers that are recursively divisible to a high degree

6.1. Recursively highly composite numbers

A number n is highly composite [11] if it has more divisors than any of its predecessors, 
that is, σ0(n) > σ0(m) for all m < n. These are shown in the right side of Table 3 in 
Appendix A.

By analogy with highly composite numbers, a number n is recursively highly composite 
if it has more recursive divisors than any of its predecessors.

Definition 3. n is recursively highly composite if κ0(n) > κ0(m) for all m < n.

These numbers are shown in the left side of Table 3 in Appendix A. From the third 
term, they correspond to the indices of sequence records of K(n), the K-champion num-
bers [5]. Because κ0(n) depends only on the exponents in the prime factorization of n, 
the exponents in recursively highly composite numbers must be non-increasing.

6.2. Recursively super-abundant numbers

A number n is super-abundant [2] if the sum of its divisors, normalized by n, is greater 
than that of any of its predecessors, that is, σ(n)/n > σ(m)/m for all m < n. These 
are the starred numbers in the right side of Table 3 in Appendix A. For small n, super-
abundant numbers are also highly composite, but later this ceases to be the case. The 



50 T.M.A. Fink / Journal of Number Theory 256 (2024) 37–54
first super-abundant number that is not highly composite is 1,163,962,800 (A166735 [1]), 
and in fact only 449 numbers have both properties (A166981 [1]).

By analogy with super-abundant numbers, a number n is recursively super-abundant 
if the sum of its recursive divisors, normalized by n, is greater than that of any of its 
predecessors.

Definition 4. n is recursively super-abundant if κ1(n)/n > κ1(m)/m for all m < n.

These numbers are starred in the left side of Table 3 in Appendix A. Early on, recur-
sively super-abundant numbers are recursively highly composite. The first exception is 
181,440.

6.3. Applications

In graphic and digital design, the layout of graphics and text is often constrained to 
lie on an underlying rectangular grid [10]. The grid elements are the primitive building 
blocks from which bigger columns or rows can be formed. For example, grids of 24 and 96 
columns are often used for books and websites, respectively [10]. Using a grid reduces the 
space of possible designs, making it easier to navigate. And the design elements become 
more interoperable, like how Lego bricks snap into place with one another, making it 
faster to build new designs.

What are the best grid sizes? The challenge is committing to a grid size now that 
provides the greatest optionality for an unknown future. Imagine, for example, that we 
have to cut a pie into slices, to be divided up later for an unknown number of colleagues. 
How many slices should we choose? The answer in this case is straightforward: the best 
grids are the ones with the most divisors, such as the highly composite or super-abundant 
numbers [11,2].

But the story gets more complicated when we need to consider steps into the future. 
For instance, imagine now that each colleague takes his share of pie home to further 
divide it amongst his family—but they cannot make any additional cuts. In this case, 
not only does the whole need to be highly divisible, but the parts need to be highly 
divisible, too. This process can be extended in a recursive way.

Recursive modularity, in which there are multiple levels of organization, has long been 
a feature of graphic and digital design. For example, newspapers are divided into columns 
for different stories, and columns into sub-columns of text. But with the rise of digital 
technologies, recursive modularity is becoming the rule. Different pages of a website are 
divided into different numbers of columns, each of which can be broken down into smaller 
design elements. Often one column from the website fills the full screen of a phone.

Specific applications of recursively highly composite numbers are shown in Table 2. 
In design and technology, these numbers are used for the screen resolutions of watches, 
phones, cameras and computers. They appear in typesetting, websites, and experimental 
equipment, such as test tube microplates. In display standards, many resolutions use 
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Table 2
Applications. Numbers that are recursively divisible to a large degree predict the numbers that frequently 
show up in design and technology and display standards. All of the numbers n are recursively highly 
composite; those that are starred are also recursively super-abundant.

n Design and technology Display standards

*24 24 × 16 Biotech 384-well assay
*48 128 × 48 TRS 80
72 72 points/in Adobe typography point
96 96 × 65 Nokia 1100 phone
*120 120 × 160 Nokia 100 phone 160 × 120 QQVGA
144 144 × 168 Pebble Time watch
*240 240 × 64 Atari Portfolio 320 × 240 Quarter VGA
288 352 × 288 Video CD 352 × 288 CIF
*360 360 × 360 LG Watch Style 640 × 360 nHD
480 320 × 480 iPhone 1–3 640 × 480 VGA
576 576 lines PAL analog television 1024 × 576 WSVGA
*720 720 × 364 Macintosh XL, Hercules 1280 × 720 HD
864 1152 × 864 XGA+
960 Facebook website
*1152 1152 × 2048 QWXGA
*1440 3.5" disk block size 2560 × 1440 Quad HD
1920 1920 × 1080 Full HD
*2160 2160 × 1440 Microsoft Surface Pro 3 4096 × 2160 4K Ultra HD
2304 2304 × 1440 MacBook Retina
*2880 2880 × 1800 15" MacBook Pro Retina 5120 × 2880 5K
3456 Canon EOS 1100D
*4320 7680 × 4320 8K Ultra HD
*8640 15360 × 8640 16K Ultra HD

these numbers in the height or width, measured in pixels. Because these standards tend 
to preserve certain aspect ratios, such as 16:9, usually just one of the two dimensions is 
highly recursively divisible.

6.4. Open questions

There are many open questions about the recursive divisor function and numbers that 
are recursively divisible to a high degree. Here are six.
1. Let n be a number such that σ1(n) > 3n. The first such numbers are 180, 240, 360, 
. . . (A068403 [1]). Then the divisor tree for 4n overlaps itself (see lims.ac.uk/recursively-
divisible-numbers). But there are other numbers that cause overlaps. What are they?
2. For what values of n do divisor trees have an (approximate) fractal dimension?
3. What is the value of κ1(n) when n is the product of the first k distinct primes?
4. How frequently do recursively highly composite numbers appear? How about recur-
sively super-abundant numbers?
5. Recursively perfect numbers satisfy κ0(n) = n [6]. How frequently do they appear?
6. Recursively abundant numbers satisfy κ0(n) > n [6]. Are any odd and, if so, what is 
the smallest?

I acknowledge Andriy Fedosyeyev for creating the divisor tree generator, lims.ac.uk/
recursively-divisible-numbers.
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Data availability
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Appendix A

Table 3
Numbers that are recursively divisible to a high degree. The left side shows the re-
cursively highly composite numbers and the recursively super-abundant numbers 
(starred) up to a million. All of the recursively super-abundant numbers shown are 
also recursively highly composite, apart from one, 181,440. The right side shows 
the highly composite numbers and the super-abundant numbers (starred) up to a 
million. All of the super-abundant numbers shown are also highly composite.

n . κ0(n) n σ0(n)
∗1 = 1 1 ∗1 = 1 1
∗2 = 2 1 · 2 ∗2 = 2 2
∗4 = 22 1 · 22 ∗4 = 22 3
∗6 = 2 · 3 3 · 2 ∗6 = 2 · 3 4
8 = 23 1 · 23

∗12 = 22 · 3 4 · 22 ∗12 = 22 · 3 6
∗24 = 23 · 3 5 · 23 ∗24 = 23 · 3 8
∗36 = 22 · 32 13 · 22 ∗36 = 22 · 32 9
∗48 = 24 · 3 6 · 24 ∗48 = 24 · 3 10

∗60 = 22 · 3 · 5 12
72 = 23 · 32 19 · 23

96 = 25 · 3 7 · 25

∗120 = 23 · 3 · 5 33 · 23 ∗120 = 23 · 3 · 5 16
144 = 24 · 32 26 · 24

∗180 = 22 · 32 · 5 18
192 = 26 · 3 8 · 26

∗240 = 24 · 3 · 5 46 · 24 ∗240 = 24 · 3 · 5 20
288 = 25 · 32 34 · 25

∗360 = 23 · 32 · 5 151 · 23 ∗360 = 23 · 32 · 5 24
432 = 24 · 33 96 · 24

480 = 25 · 3 · 5 61 · 25

576 = 26 · 32 43 · 26

∗720 = 24 · 32 · 5 236 · 24 ∗720 = 24 · 32 · 5 30
∗840 = 23 · 3 · 5 · 7 32

864 = 25 · 33 138 · 25

960 = 26 · 3 · 5 78 · 26

∗1152 = 27 · 32 53 · 27

∗1260 = 22 · 32 · 5 · 7 36
∗1440 = 25 · 32 · 5 346 · 25

∗1680 = 24 · 3 · 5 · 7 40
1728 = 26 · 33 190 · 26

1920 = 27 · 3 · 5 97 · 27

∗2160 = 24 · 33 · 5 996 · 24

2304 = 28 · 32 64 · 28

∗2520 = 23 · 32 · 5 · 7 48
∗2880 = 26 · 32 · 5 484 · 26

3456 = 27 · 33 253 · 27

∗4320 = 25 · 33 · 5 1590 · 25

∗5040 = 24 · 32 · 5 · 7 60
∗5760 = 27 · 32 · 5 653 · 27

6912 = 28 · 33 328 · 28

7560 = 23 · 33 · 5 · 7 64
∗8640 = 26 · 33 · 5 2402 · 26

∗10080 = 25 · 32 · 5 · 7 72
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Table 3 (continued)

n κ0(n) n σ0(n)
∗11520 = 28 · 32 · 5 856 · 28

∗15120 = 24 · 33 · 5 · 7 80
∗17280 = 27 · 33 · 5 3477 · 27

20160 = 26 · 32 · 5 · 7 84
23040 = 29 · 32 · 5 1096 · 29

∗25200 = 24 · 32 · 52 · 7 90
∗25920 = 26 · 34 · 5 10368 · 26

∗27720 = 23 · 32 · 5 · 7 · 11 96
∗30240 = 25 · 33 · 5 · 7 20874 · 25

∗34560 = 28 · 33 · 5 4864 · 28

45360 = 24 · 34 · 5 · 7 100
46080 = 210 · 32 · 5 1376 · 210

50400 = 25 · 32 · 52 · 7 108
∗51840 = 27 · 34 · 5 15979 · 27

∗55440 = 24 · 32 · 5 · 7 · 11 120
∗60480 = 26 · 33 · 5 · 7 34266 · 26

∗69120 = 29 · 33 · 5 6616 · 29

83160 = 23 · 33 · 5 · 7 · 11 128
86400 = 27 · 33 · 52 28481 · 27

∗103680 = 28 · 34 · 5 23692 · 28

∗110880 = 25 · 32 · 5 · 7 · 11 144
∗120960 = 27 · 33 · 5 · 7 53485 · 27

138240 = 210 · 33 · 5 8790 · 210

161280 = 29 · 32 · 5 · 7 17656 · 29

∗166320 = 24 · 33 · 5 · 7 · 11 160
∗172800 = 28 · 33 · 52 42520 · 28

∗207360 = 29 · 34 · 5 34026 · 29

221760 = 26 · 32 · 5 · 7 · 11 168
∗241920 = 28 · 33 · 5 · 7 80176 · 28

276480 = 211 · 33 · 5 11447 · 211

∗277200 = 24 · 32 · 52 · 7 · 11 180
311040 = 28 · 35 · 5 103540 · 28

∗332640 = 25 · 33 · 5 · 7 · 11 192
∗345600 = 29 · 33 · 52 61436 · 29

∗362880 = 27 · 34 · 5 · 7 267219 · 27

∗414720 = 210 · 34 · 5 47576 · 210

∗483840 = 29 · 33 · 5 · 7 116256 · 29

498960 = 24 · 34 · 5 · 7 · 11 200
552960 = 212 · 33 · 5 14652 · 212

∗554400 = 25 · 32 · 52 · 7 · 11 216
604800 = 27 · 33 · 52 · 7 480953 · 27

622080 = 29 · 35 · 5 156278 · 29

∗665280 = 26 · 33 · 5 · 7 · 11 224
691200 = 210 · 33 · 52 86362 · 210

∗720720 = 24 · 32 · 5 · 7 · 11 · 13 240
∗725760 = 28 · 34 · 5 · 7 422932 · 28

829440 = 211 · 34 · 5 65018 · 211

∗967680 = 210 · 33 · 5 · 7 163934 · 210

Recursively super-abundant but
not recursively highly composite

∗181440 = 26 · 34 · 5 · 7
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