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Abstract

For natural numbers n, r ∈ N with n > r , the Kneser graph K (n, r) is the graph on the family
of r -element subsets of {1, . . . , n} in which two sets are adjacent if and only if they are disjoint.
Delete the edges of K (n, r)with some probability, independently of each other: is the independence
number of this random graph equal to the independence number of the Kneser graph itself? We
shall answer this question affirmatively as long as r/n is bounded away from 1/2, even when the
probability of retaining an edge of the Kneser graph is quite small. This gives us a random analogue
of the Erdős–Ko–Rado theorem, since an independent set in the Kneser graph is the same as a
uniform intersecting family. To prove our main result, we give some new estimates for the number
of disjoint pairs in a family in terms of its distance from an intersecting family; these might be of
independent interest.
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1. Introduction

Over the past 20 years, a great deal of work has gone into proving ‘sparse
random’ analogues of classical extremal results in combinatorics. Some of the
early highlights include a version of Mantel’s theorem for random graphs proved
by Babai, Simonovits and Spencer [1], the Ramsey theoretic results of Rödl
and Ruciński [25, 26], and a random analogue of Szemerédi’s theorem due to
Kohayakawa, Łuczak and Rödl [20]. Very general transference theorems have
since been proved by Conlon and Gowers [8], Schacht [29], Balogh, Morris and
Samotij [4], and Saxton and Thomason [28]. The surveys of Łuczak [24] and Rödl
and Schacht [27] provide a detailed account of such results.

In this paper, we shall be interested in proving such a transference result for
a central result in extremal set theory, the Erdős–Ko–Rado theorem. A family
of sets A is said to be intersecting if A ∩ B 6= ∅ for all A, B ∈ A. Writing
X (r) for the family of all r -element subsets of a set X , and [n] for the set {1, 2,
. . . , n}, a classical result of Erdős, Ko and Rado [12] asserts that, if n > 2r and
A ⊂ [n](r) is intersecting, then |A| 6

(n−1
r−1

)
with equality if and only if A is a star.

As is customary, we define the star centred at x ∈ [n] to be the family of all the
r -element subsets of [n] containing x , and we call an intersecting family trivial if
it is contained in a star.

If A ⊂ [n](r) is intersecting and has cardinality comparable to that of a star,
must A necessarily resemble a star? Such questions about the ‘stability’ of the
Erdős–Ko–Rado theorem have received a great deal of attention. Perhaps the
earliest stability result about the Erdős–Ko–Rado theorem was proved by Hilton
and Milner [15], who determined how large a uniform intersecting family can
be if one insists that the family is nontrivial. Furthering this line of research,
Friedgut [13], Dinur and Friedgut [11], and Keevash and Mubayi [18] have
shown that every ‘large’ uniform intersecting family is essentially trivial. Balogh,
Bohman and Mubayi [2], and, more recently, Hamm and Kahn [14], have
obtained results which show that, under certain reasonable conditions, with high
probability, the largest intersecting subfamily of a randomly chosen uniform
family is trivial. Finally, in another recent development, Balogh, Das, Delcourt,
Liu and Sharifzadeh [3] have shown, amongst other things, that almost all r -
uniform intersecting families are trivial when r < (n − 8 log n)/3.

As stated earlier, our aim in this note to prove a transference result for the
Erdős–Ko–Rado theorem. The notion of stability we shall consider here was
introduced by Bollobás, Narayanan and Raigorodskii [7] (see also [5]). To
present this notion of stability, it will be helpful to consider [n](r) in a different
incarnation, as the Kneser graph K (n, r). The Kneser graph K (n, r) is the graph
on [n](r) where two vertices, that is, r -element subsets of [n], are adjacent if and
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Transference for the Erdős–Ko–Rado theorem 3

only if they are disjoint. We shall freely switch between these two incarnations
of [n](r).

Observe that a family A ⊂ [n](r) is intersecting if and only if A induces an
independent set in K (n, r). Writing α(G) for the size of the largest independent
set of a graph G, the Erdős–Ko–Rado theorem asserts that α(K (n, r)) =

(n−1
r−1

)
when n > 2r . Let K p(n, r) denote the random subgraph of K (n, r) obtained by
retaining each edge of K (n, r) independently with probability p. Bollobás et al.
[7] asked the following natural question: is α(K p(n, r)) =

(n−1
r−1

)
? They proved,

when r = r(n) = o(n1/3), that the answer to this question is in the affirmative
even after practically all the edges of the Kneser graph have been deleted. More
precisely, they showed that, in this range, there exists a (very small) critical
probability pc(n, r) with the following property: as n → ∞, if p/pc > 1, then,
with high probability, α(K p(n, r)) =

(n−1
r−1

)
,and the only independent sets of this

size in K p(n, r) are stars, whereas, if p/pc < 1, then α(K p(n, r)) >
(n−1

r−1

)
with

high probability.
Bollobás, Narayanan and Raigorodskii also asked what happens for larger

values of r , and conjectured in particular that, as long as r/n is bounded away
from 1/2, such a random analogue of the Erdős–Ko–Rado theorem should
continue to hold for K p(n, r) for some p bounded away from 1. In this note,
we shall prove this conjecture and a bit more.

THEOREM 1.1. For every ε > 0, there exist constants c = c(ε) > 0 and c′ =
c′(ε) > 0 with c < c′ such that, for all n, r ∈ N with r 6 (1/2− ε)n,

P
(
α(K p(n, r)) =

(
n − 1
r − 1

))
→


1 if p >

(
n − 1
r − 1

)−c

0 if p 6

(
n − 1
r − 1

)−c′

as n→∞. In particular, with high probability, α(K1/2(n, r)) =
(n−1

r−1

)
.

All the work in proving Theorem 1.1 is in showing that c(ε) exists; as we shall
see, the existence of c′(ε) follows from a simple second moment calculation.

Let us briefly describe some of the ideas that go into the proof of Theorem 1.1.
We shall prove two results which, taken together, show that a large family A ⊂
[n](r) without a large intersecting subfamily must necessarily contain many pairs
of disjoint sets, or, in other words, must induce many edges in K (n, r); we do
this in Section 3. We put together the pieces and give the proof of Theorem 1.1
in Section 4. In Section 5, we briefly describe some approaches to improving the
dependence of c(ε) on ε in Theorem 1.1. We conclude with some discussion in
Section 6.
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2. Preliminaries

Henceforth, a ‘family’ will be a uniform family on [n] unless we specify
otherwise. To ease the notational burden, we adopt the following notational
convention: when n and r are clear from the context, we write V =

(n
r

)
, N =

(n−1
r−1

)
,

M =
(n−r−1

r−1

)
, and R =

(2r
r

)
.

We need a few results from extremal set theory, some classical and some more
recent. The first result that we will need, due to Hilton and Milner [15], bounds
the cardinality of a nontrivial uniform intersecting family. Writing Ax for the
subfamily of a family A that consists of those sets containing x , we have the
following.

THEOREM 2.1. Let n, r ∈ N, and suppose that n > 2r . If A ⊂ [n](r) is an
intersecting family with |A| > N − M + 2, then there exists an x ∈ [n] such
that A = Ax .

The next result we shall require, due to Friedgut [13], is a quantitative extension
of the Hilton–Milner theorem which says that any sufficiently large uniform
intersecting family must resemble a star.

THEOREM 2.2. For every ε > 0, there exists a C = C(ε) > 0 such that, for
all n, r ∈ N with εn 6 r 6 (1/2 − ε)n, the following holds: if A ⊂ [n](r) is
an intersecting family and |A| = N − k, then there exists an x ∈ [n] for which
|Ax | > N− Ck.

We will also need the following well-known inequality for cross-intersecting
families due to the second author [6].

THEOREM 2.3. Let (A1, B1), . . . , (Am, Bm) be pairs of disjoint r-element sets
such that Ai ∩ B j 6= ∅ for i, j ∈ [m] whenever i 6= j . Then m 6 R.

Finally, we shall require a theorem of Kruskal [21] and Katona [16]. For a
family A ⊂ [n](r), its shadow in [n](k), denoted ∂ (k)A, is the family of those k-sets
contained in some member of A. For x ∈ R and r ∈ N, we define the generalized
binomial coefficient

(x
r

)
by setting(

x
r

)
=

x(x − 1) . . . (x − r + 1)
r !

.

The following convenient formulation of the Kruskal–Katona theorem is due to
Lovász [23].
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Transference for the Erdős–Ko–Rado theorem 5

THEOREM 2.4. Let n, r, k ∈ N, and suppose that k 6 r 6 n. If the cardinality of
A ⊂ [n](r) is

(x
r

)
for some real number x > r , then |∂ (k)A| >

(x
k

)
.

To avoid clutter, we omit floors and ceilings when they are not crucial. We use
the standard o(1) notation to denote any function that tends to zero as n tends
to infinity; the variable tending to infinity will always be n unless we explicitly
specify otherwise.

3. The number of disjoint pairs

Given a family A, we write e(A) for the number of disjoint pairs of sets in A;
equivalently, e(A) is the number of edges in the subgraph of the Kneser graph
induced by A. In this section, we give some bounds for e(A).

We denote by A∗ the largest intersecting subfamily of a family A; if this
subfamily is not unique, we take any subfamily of maximum cardinality. We write
`(A) = |A|− |A∗| for the difference between the cardinality of A and the largest
intersecting subfamily of A.

Trivially, we have e(A) > `(A). Our first lemma says that we can do much
better than this trivial bound when `(A) is large.

LEMMA 3.1. Let n, r ∈ N. For any A ⊂ [n](r),

e(A) > `(A)2
2R

.

Proof. To prove this lemma, we need the notion of an induced matching. An
induced matching of size m in a graph G is a set of 2m vertices inducing a
subgraph consisting of m independent edges; equivalently, we refer to these m
edges as an induced matching of size m. The induced-matching number of G (in
notation, m(G)) is the maximal size of an induced matching in G.

PROPOSITION 3.2. Let G = (V, E) be a graph with m(G) = m > 1. Then

|E | >
k2

4m
,

where k = |V | − α(G).

Proof. Let us choose X = {x1, . . . , xm} and Y = {y1, . . . , ym} so that the edges
x1 y1, . . . , xm ym constitute an induced matching. Let Z = Γ (X ∪ Y ) be the set of
neighbours of the vertices in X ∪ Y ; thus X ∪ Y ⊂ Z . Since m(G) = m, the set
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J. Balogh, B. Bollobás and B. P. Narayanan 6

V (G)\Z is independent, and so |Z | > k. Since some vertex in X ∪ Y has at least
|Z |/2m neighbours, we conclude that ∆(G) > |Z |/2m > k/2m, where ∆(G) is
the maximum degree of G.

Now define a sequence of graphs G = G0 ⊃ G1 ⊃ · · · ⊃ Gk and a sequence
of vertices x0, x1, . . . , xk by taking xi to be a vertex of G i of maximal degree and
G i+1 to be the graph obtained from G i by deleting xi . We know from our earlier
arguments that ∆(G i) > (k − i)/2m, and so |E | >

∑k
i=0∆(G i) > k2/4m.

To apply the previous proposition, we need the following corollary of
Theorem 2.3, the proof of which is implicit in [3]; we include the short proof
here for completeness.

PROPOSITION 3.3. For n > 2r , the induced-matching number of K (n, r) is

m(K (n, r)) =
(

2r − 1
r − 1

)
=

R
2
.

Proof. Let A1 B1, . . . , Am Bm be an induced matching in K (n, r). For m + 1 6
i 6 2m, we set Ai = Bi−m and Bi = Ai−m . We apply Theorem 2.3 to the pairs
(A1, B1), . . . , (A2m, B2m) and conclude that 2m 6 R.

The R/2 partitions of [2r ] into disjoint r -sets form an induced matching, so
m(K (n, r)) = R/2, as claimed.

Lemma 3.1 follows by applying Proposition 3.2 to GA, the subgraph of the
Kneser graph K (n, r) induced by A.

Note that Lemma 3.1 is effective only when `(A) > 2R. The next, somewhat
technical, lemma complements Lemma 3.1 by giving a better bound when `(A)
is small, provided the size of A is large.

LEMMA 3.4. For every ε, η > 0, there exist constants δ = δ(ε, η) > 0 and C =
C(ε) > 0 with the following property: for all n, r ∈ N with εn 6 r 6 (1/2− ε)n,
we have

e(A) > `(A)1+δ − C`(A)

for any family A ⊂ [n](r) with |A| = N and `(A) 6 N1−η.

To clarify, the C(ε) in the statement of the lemma above is the same as the C(ε)
guaranteed by Theorem 2.2.

Proof of Lemma 3.4. First, let us note that, since we always have e(A) > `(A),
it suffices to prove the lemma under the assumption that n is sufficiently large.
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Transference for the Erdős–Ko–Rado theorem 7

Let ` = `(A). We start by observing that most of A must be contained in a
star. Indeed, as before, let A∗ denote the largest intersecting subfamily of A; by
definition, |A∗| = N − `. Since we have assumed that εn 6 r 6 (1/2 − ε)n,
we may assume, by Theorem 2.2, that |A∗n| > N − C`, where C = C(ε) is as
guaranteed by Theorem 2.2. Hence, |An| > |A∗n| > N− C`.

We also know that |An| 6 |A∗| 6 N − `; let B be a subset of A\An of
cardinality exactly `. We shall bound e(A) by counting the number of edges
between B and An in K (n, r).

Let us define
A′ = {A\{n} : A ∈ An} ⊂ [n − 1](r−1)

and
B′ = {[n − 1]\B : B ∈ B} ⊂ [n − 1](n−r−1).

Clearly, to count the number of edges between An and B in K (n, r), it suffices
to count the number of pairs (A′, B ′) in A′ × B′ with A′ ⊂ B ′. This quantity is
obviously bounded below by the number of sets A′ ∈ A′ contained in at least one
B ′ ∈ B′.

Since A′ ⊂ [n−1](r−1) and |A′|> N−C`, the number of sets A′ ∈A′ contained
in some B ′ ∈ B′ is at least |∂ (r−1)B′| − C`. Consequently,

e(A) > |∂ (r−1)B′| − C`.

We shall show that there exists a δ = δ(ε, η) > 0 such that, under the conditions
of the lemma, |∂ (r−1)B′| > `1+δ for all sufficiently large n ∈ N. We deduce the
existence of such a δ from Theorem 2.4, the Kruskal–Katona theorem. We may
assume that

` = |B′| =
(

x
n − r − 1

)
for some real number x > n − r − 1. It follows from Theorem 2.4 that

|∂ (r−1)B′| >
(

x
r − 1

)
.

Let us put r = (1/2 − β)n and x = ϑn. We now calculate, ignoring error terms
that are o(1), what values β and ϑ can take. We know that ε 6 β 6 1/2−ε. Since
x > n − r − 1, we also know that ϑ > 1/2+ β. On the other hand, since(

ϑn
(1/2+ β)n

)
= ` 6 N1−η

=

(
n − 1
r − 1

)1−η

6

(
n
r

)1−η

=

(
n

(1/2− β)n

)1−η

,

it follows from Stirling’s approximation for the factorial function that there exists
some δ′(ε, η) > 0 such that ϑ 6 1− δ′.
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J. Balogh, B. Bollobás and B. P. Narayanan 8

Hence it suffices to check that there exists a δ = δ(ε, η) > 0 for which the
inequality (

ϑn
(1/2− β)n

)
>

(
ϑn

(1/2+ β)n

)1+δ

holds for all β ∈ [ε, 1/2− ε] and ϑ ∈ [1/2+β, 1− δ′] as long as n is sufficiently
large. This is easily checked using Stirling’s formula.

4. Proof of the main result

Armed with Lemmas 3.1 and 3.4, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us fix ε > 0 and assume that r 6 (1/2− ε)n. Clearly,
it is enough to prove Theorem 1.1 for all sufficiently small ε; it will be convenient
to assume that ε < 1/10. As mentioned earlier, Bollobás et al. [7] have proved
Theorem 1.1 in a much stronger form when r = o(n1/3). So, to avoid having to
distinguish too many cases, we shall assume that r grows with n; for concreteness,
let us suppose that r > n1/4. A consequence of these assumptions is that, in this
range, V, N and M all grow much faster than any polynomial in n.

First, let Y denote the (random) number of independent sets A ⊂ [n](r) in
K p(n, r) with |A| = N + 1 and `(A) = 1, in other words, independent sets
of size N+ 1 which contain an entire star. We begin by showing that there exists
a c′ = c′(ε) such that, if p 6 N−c′ , then Y > 0 with high probability. Clearly,

E[Y ] =
(

n
1

)(
V− N

1

)
(1− p)M.

Note that, if r 6 (1/2− ε)n, then we may choose a suitably small c′ = c′(ε) such
that M > Nc′ . It follows that, if c′ is sufficiently small, then

E[Y ] > n(V− N) exp(−(p + p2)M) > (e + o(1))n(V− N),

and so E[Y ] → ∞ when p 6 N−c′ .
Therefore, to show that Y > 0 with high probability, it suffices to show that

Var[Y ] = o(E[Y ]2), or, equivalently, that E[(Y )2] = (1 + o(1))E[Y ]2, where
E[(Y )2] = E[Y (Y − 1)] is the second factorial moment of Y .

Writing Sx for the star centred at x , we note that

E[(Y )2] =
∑

a,b,A,B

P(Sa ∪ {A} and Sb ∪ {B} are independent),
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Transference for the Erdős–Ko–Rado theorem 9

the sum being over ordered 4-tuples (a, b, A, B) with a, b ∈ [n], A ∈ [n](r)\Sa

and B ∈ [n](r)\Sb such that (a, A) 6= (b, B). Now, observe that∑
a 6=b

P(Sa ∪ {A} and Sb ∪ {B} are independent) 6 (n2)(V− N)2(1− p)(2−o(1))M

= (1+ o(1))E[Y ]2,

and ∑
a=b,A 6=B

P(Sa ∪ {A} and Sb ∪ {B} are independent) 6 n(V− N)2(1− p)2M

= o(E[Y ]2).

By Chebyshev’s inequality, we conclude that Y > 0 with high probability, and
so the independence number of K p(n, r) is at least N+ 1 with high probability if
p 6 N−c′ .

Next, for each ` > 1, let X` denote the (random) number of independent sets
A ⊂ [n](r) in K p(n, r) with |A| = N and `(A) = `. To complete the proof
of Theorem 1.1, it clearly suffices to show that, for some c = c(ε) > 0, all of
the X` are zero with high probability provided p > N−c. We shall prove this by
distinguishing three cases depending on which of Theorem 2.1, Lemmas 3.1, and
3.4 is to be used.

Let C = C(ε) be as in Theorem 2.2. Note that, since r 6 (1/2− ε)n, it is easy
to check using Stirling’s approximation that we can choose positive constants
cm = cm(ε) and cr = cr (ε) such that M > Ncm and R 6 N1−cr .

We now set Lm = Ncm/2 and Lr = N1−cr /4, and distinguish the following three
cases.

Case 1. ` 6 Lm . Let A ⊂ [n](r) be a family of cardinality N with `(A) = `. Since

` 6 Lm = Ncm/2 6 M− 2,

we see that A∗, the largest intersecting subfamily of A, satisfies

|A∗| = N− ` > N−M+ 2.

It follows from Theorem 2.1 that there is an x ∈ [n] for which A∗ is contained
in the star centred at x . Consider the ` sets in A\A∗. Any such set is disjoint
from exactly M members of the star centred at x and hence from at least M − `
members of A∗. This tells us that e(A) > `(M − `). Since ` 6 M/2, it follows
that
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J. Balogh, B. Bollobás and B. P. Narayanan 10

E[X`] 6 n
(

N
`

)(
V
`

)
(1− p)`(M−`)

6 n
(

2n

`

)2

exp(−p`M/2)

6 exp(2n`− p`M/2).

Hence, if c 6 cm/2 so that p > N−cm/2, it is clear that

Lm∑
`=1

E[X`] 6
Lm∑
`=1

exp
(

2n`−
`Ncm/2

2

)
= o(1).

So, with high probability, for each 1 6 ` 6 Lm , the random variable X` is zero.

Case 2. ` > Lr . Again, let A ⊂ [n](r) be a family of cardinality N with `(A) = `.
We know from Lemma 3.1 that

e(A) > `2

2R
>

N2−cr /2

2N1−cr
=

N1+cr /2

2
.

So it follows that∑
l>Lr

E[X`] 6

(
V
N

)
exp

(
−p

N1+cr /2

2

)
6 exp

(
nN− p

N1+cr /2

2

)
.

Hence, if c 6 cr/4 so that p > N−cr /4, we have

∑
l>Lr

E[X`] 6 exp
(

nN−
N1+cr /4

2

)
= o(1).

So once again, with high probability, the sum
∑

`>Lr
X` is zero.

Before we proceed further, let us first show that we may now assume without
loss of generality that r > εn. This is because one can check that the arguments in
Cases 1 and 2 together prove Theorem 1.1 when r 6 εn for all sufficiently small
ε. It is easy to check using Stirling’s formula that, if ε is sufficiently small, indeed
if ε < 1/10 for example, then it is possible to choose positive constants c′m(ε) and
c′r (ε) so that, for all r 6 εn, we have M > Nc′m , R 6 N1−c′r and Nc′m/2 > N1−c′r /4.
So the arguments above yield a proof of Theorem 1.1 when r 6 εn. Therefore, in
the following, we assume that r > εn.

Case 3. Lm 6 ` 6 Lr . As before, consider any family A ⊂ [n](r) of cardinality N
with `(A) = `. First note that, since εn 6 r 6 (1/2− εn) and ` 6 Lr = N1−cr /4,
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where cr is a constant depending only on ε, by Lemma 3.4, there exists a δ = δ(ε)
such that

e(A) > `1+δ
− C`.

Since ` > Lm = Ncm/2, it follows that

e(A) > `1+δ
− C` > `1+δ/2

for all sufficiently large n.
Next, consider A∗, the largest intersecting subfamily of A, which has

cardinality N − `. We know from Theorem 2.2 that there exists an x ∈ [n]
such that |A∗x | > N− C`, and so |Ax | > N− C`. It is then easy to see that

E[X`] 6 n
(

N
C`

)(
V

C`

)
(1− p)`

1+δ/2

6 exp(`(2Cn − p`δ/2)).

Hence, if c 6 cmδ/4 so that p > N−cmδ/4, it follows that

Lr∑
`=Lm

E[X`] 6
Lr∑

`=Lm

exp(`(2Cn − Ncmδ/4/2)) = o(1),

and so, with high probability, for each Lm 6 ` 6 Lr , the random variable X` is
zero.

Putting the different parts of our argument together, we find that, if 0 < ε <

1/10,

c = c(ε) = min
(

cm(ε)

2
,

c′m(ε)
2

,
cr (ε)

4
,

c′r (ε)
4
,

cm(ε)δ(ε)

2

)
,

and p > N−c, then, for all r = r(n) 6 (1/2− ε)n, we have

P
(
α(K p(n, r)) =

(
n − 1
r − 1

))
→ 1

as n→∞. This completes the proof of Theorem 1.1.

5. Avenues for improvement

We briefly discuss how one might tighten up the arguments in Theorem 1.1 so
as to improve the dependence of c(ε) on ε in the result. However, since it seems
unlikely to us that these methods will be sufficient to determine the precise critical
threshold at which Theorem 1.1 ceases to hold, we shall keep the discussion in
this section largely informal.
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5.1. Containers for sparse sets in the Kneser graph. The first approach we
sketch involves using ideas from the theory of ‘graph containers’ to count large
sparse sets in the Kneser graph more efficiently.

The theory of graph containers was originally developed to efficiently count the
number of independent sets in a graph satisfying some kind of ‘supersaturation’
condition. The basic principle used to construct containers for graphs can be
traced back to the work of Kleitman and Winston [19]. A great deal of work has
since gone into refining and generalizing their ideas, culminating in the results of
Balogh et al. [4] and Saxton and Thomason [28]; these papers also give a detailed
account of the history behind these ideas, and we refer the interested reader there
for details about how the general methodology was developed. Here we shall
content ourselves with a brief discussion of how these ideas might be used to
improve the dependence of c(ε) on ε in Theorem 1.1.

Let us write Ym = Ym(n, r) for the number of families A ⊂ [n](r) with |A| = N
and e(A) = m. Clearly, to show that α(K p(n, r)) = N with high probability, it
suffices to show that

∑
m>1 Ym(1− p)m = o(1). Hence, it would be useful to have

good estimates for Ym . We shall derive some bounds for Ym ; see Theorem 5.2
below. These bounds are not strong enough (especially for small values of m) to
prove Theorem 1.1. However, note that, in our proof of Theorem 1.1, we use the
somewhat cavalier bound of

(V
N

)
for the number of families A of size N for which

`(A) is equal to some prescribed value (in Case 2 of the proof); we can instead
use Theorem 5.2 to count more efficiently.

To prove an effective container theorem, one needs to first establish a suitable
supersaturation property. Lovász [22] determined the second largest eigenvalue of
the Kneser graph; by combining Lovász’s result with the expander mixing lemma,
Balogh et al. [3] proved the following supersaturation theorem for the Kneser
graph.

PROPOSITION 5.1. Let n, r, k ∈ N, and suppose that n > 2r and k 6 V − N. If
A ⊂ [n](r) has cardinality N+ k, then e(A) > kM/2.

Using Proposition 5.1, we prove the following container theorem for the Kneser
graph.

THEOREM 5.2. For every ε > 0, there exists a Ĉ = Ĉ(ε) > 0 such that, for every
β > 0 and all n, r,m ∈ N with εn 6 r 6 (1/2− ε)n, the following holds: writing

k1 = Ĉ
(

N
βM
+

(
mN
βM

)1/2)
and

k2 = k1 + ĈβN,
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there exist, for 1 6 i 6
∑k1

j=0

(V
j

)
, families Bi ⊂ [n](r) each of cardinality at most

N+ k2 with the property that each A ⊂ [n](r) with e(A) 6 m is contained in one
of these families.

The advantage of this formulation of Theorem 5.2 in terms of k1, k2, and β
is that we can apply the theorem with a value of β > 0 suitably chosen for the
application at hand.

It is easy to check from Theorem 5.2 that Ym = Ym(n, r), the number of families
A ⊂ [n](r) with |A| = N and e(A) = m, satisfies

Ym(n, r) 6
( k1∑

j=0

(
V
j

))(
N+ k2

N

)
= 2

(
V
k1

)(
N+ k2

k2

)
6 2

(
V
k1

)(
V
k2

)

6 2 exp
(

Ĉn
(
βN+

2N
βM
+

(
4mN
βM

)1/2))
for all β > 0 such that k1 < V/3. We can then optimize this bound by choosing
β depending on how large m is in comparison to M and N. For example, when
m > N/M1/2, we can take β = (m/NM)1/3 and easily check that Ym(n, r) 6
exp(10Ĉn(mN2/M)1/3). The reader may check that this estimate for Ym when
combined with the Hilton–Milner theorem is sufficient to prove Theorem 1.1
when r/n is bounded above by and away from ϑ ≈ 0.362, where ϑ is, writing
H(x) = −x log x − (1− x) log(1− x), the unique real solution to the equation

3(1− ϑ)H
(

ϑ

1− ϑ

)
= 2H(ϑ)

in the interval (0, 1).

Proof of Theorem 5.2. We start by proving a lemma whose proof is loosely based
on the methods of Saxton and Thomason [28]. Before we state the lemma, let us
have some notation. Given a graph G = (V, E) and U ⊂ V (G), we write

µ(U ) =
|E(G[U ])|
|V |

;

in other words, µ(U ) is the number of edges induced by U divided by the number
of vertices of G. Also, we write P(X) for the collection of all subsets of a set X .

LEMMA 5.3. Let G = (V, E) be a graph with average degree d and maximum
degree ∆. For every a > 0 and b > 0, there is a map C : P(V ) → P(V ) with
the following property: for every U ⊂ V with µ(U ) 6 a, there is a subset T ⊂ V
such that the following hold.
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(1) T ⊂ U ⊂ C (T ).

(2) |T | 6 2|V |(a/bd)1/2 + |V |/bd.

(3) µ(C (T )) 6 2∆(a/bd)1/2 +∆/bd + bd.

Proof. We shall describe an algorithm that constructs T given U . The algorithm
will also construct C (T ) in parallel; it will be clear from the algorithm that C (T )
is entirely determined by T and in no way depends on U .

Fix a linear ordering of the vertex set V of G. If u and v are adjacent and u
precedes v in our ordering, we call v a forward neighbour of u and u a backward
neighbour of v. For a vertex v ∈ V , we write F(v) for the set of its forward
neighbours.

We begin by setting T = ∅ and A = V . We shall iterate through V in the
order we have fixed, and add vertices to T and remove vertices from A as we go
along; at any stage, we write Γ (T ) to denote the set of those vertices which, at
that stage, have k or more backward neighbours in T , where k is the least integer
strictly greater than (abd)1/2.

As we iterate through the vertices of V in order, we do the following when
considering a vertex v.

(1) If v ∈ Γ (T ), we remove v from A; if it is also the case that v ∈ U , then we
add v to T .

(2) If v /∈ Γ (T ), we consider the size of S = F(v)\Γ (T ).

(a) If |S| > bd, we remove v from A; if it is also the case that v ∈ U , then
we add v to T .

(b) If |S| < bd , we do nothing.

The algorithm outputs T and A when it terminates; we then set C (T ) = A∪T .
It is clear from the algorithm that C (T ) is uniquely determined by T , and that
T ⊂ U ⊂ C (T ).

We first show that |T | 6 2|V |(a/bd)1/2 + |V |/bd . Consider the partition T =
T1 ∪ T2, where T1 consists of those vertices which were added to T on account of
condition (1) and T2 of those vertices which were added to T when considering
condition (2a). The upper bound for |T | follows from the following two claims.

CLAIM 5.4. |T1| 6 |E(G[U ])|/k.

Proof. Clearly, each vertex of T1 has at least k backward neighbours in T ⊂ U .
Hence, k|T1| 6 |E(G[U ])|.
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CLAIM 5.5. |T2| 6 k|V |/bd.

Proof. Let us mark all the edges from v to F(v)\Γ (T )when a vertex v gets added
to T on account of condition (2a). The number of marked edges is clearly at least
bd|T2|. On the other hand, by the definition of Γ (T ), each vertex is joined to at
most k of its backward neighbours by a marked edge. Hence, bd|T2| 6 k|V |.

Consequently, since (abd)1/2 < k 6 (abd)1/2 + 1, we have

|T | = |T1| + |T2| 6
a|V |

k
+

k|V |
bd

6
a|V |

(abd)1/2
+
((abd)1/2 + 1)|V |

bd
6 2|V |

(
a

bd

)1/2

+
|V |
bd
.

It remains to show that µ(C ) 6 2∆(a/bd)1/2 + ∆/bd + bd . To see this, recall
that C (T ) = A ∪ T , and notice that

|E(G[C (T )])| 6 ∆|T | + |E(G[A])| 6 ∆|T | + bd|V |.

To see the last inequality, that is, |E(G[A])| 6 bd|V |, note that a vertex v is
removed from A by our algorithm unless we have |F(v)\Γ (T )| < bd at the stage
where we consider v. Since each member of Γ (T ) is (eventually) removed from
A, we see that each vertex of A has at most bd forward neighbours in A, and the
inequality follows. The claimed bound for µ(C ) then follows from our previously
established upper bound for |T |.

To prove Theorem 5.2, we now combine Lemma 5.3 with Proposition 5.1. First
note that the Kneser graph K (n, r) has V = nN/r vertices and is (n − r)M/r
regular.

Let us take Ĉ(ε) = 20/ε2. It is easy to check that, given β > 0 and a family
A ⊂ [n](r) with e(A) 6 m, we can apply Lemma 5.3 with a = m/V and b = β to
get families T ⊂ [n](r) and C (T ) ⊂ [n](r) such that T ⊂ A ⊂ C (T ), |T | 6 k1,
and e(C (T )) 6 k2M/2. Hence, by Proposition 5.1, we see that |C (T )| 6 N+k2.
The theorem then follows by taking the families C (T ) for every T ⊂ [n](r) with
|T | 6 k1.

5.2. Stability for the Kruskal–Katona theorem. An important ingredient in
our proof of Theorem 1.1 is Lemma 3.4, which gives a uniform lower bound,
using Theorem 2.2 and the Kruskal–Katona theorem, for e(A) in terms of `(A)
when the size of A is large.

However, there is a price to be paid for proving such a uniform bound: the
bound is quite poor for most families to which the lemma can be applied. Indeed,
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the families which are extremal for the argument in the proof of Lemma 3.4 must
possess a great deal of structure. Instead of the Kruskal–Katona theorem, one
should be able to use a stability version of the Kruskal–Katona theorem, as proved
by Keevash [17] for example, to prove a more general result that accounts for the
structure of the family under consideration.

6. Concluding remarks

Several problems related to the question considered here remain. First of all,
it would be good to determine the largest possible value of c(ε) with which
Theorem 1.1 holds. It is likely that one needs new ideas to resolve this problem.

Second, one would also like to know what happens when r is very close to n/2.
Perhaps most interesting is the case when n = 2r +1; one would like to know the
values of p for which we have α(K p(2r + 1, r)) =

( 2r
r−1

)
with high probability. A

simple calculation shows that p = 3/4 is the threshold at which we are likely to
find a star and an r -set not in the star, all the edges between which are missing in
K p(2r + 1, r), which suggests that the critical threshold should be 3/4. However,
it would even be interesting to show that α(K p(2r + 1, r)) =

( 2r
r−1

)
with high

probability for, say, all p > 0.999.
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Note added in proof

After this paper was made available online, Das and Tran [9], and later, Devlin
and Kahn [10], using methods different from the ones in this paper, have managed
to improve the results proved here.
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