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In our paper, we introduce a new method for estimating incidences via representation theory. We

obtain several applications to various sums with multiplicative characters and to Zaremba’s conjecture

from number theory.

1 Introduction

Given two finite sets A and B of an abelian ring, define the sumset, and the product set of A
and B as

A+B = {a+ b : a ∈ A, b ∈ B}, A ·B = {ab : a ∈ A, b ∈ B} . (1)

The sum-product phenomena was introduced by Erdős and Szemerédi in paper [9] where they
proved that for an arbitrary finite subset A of integers one has

max{|A+A|, |A ·A|} ≫ |A|1+c . (2)

Here c > 0 is an absolute constant and Erdős and Szemerédi conjectured that any c < 1 is ad-
missible, at the cost of the implicit constant. As a general heuristic, the conjecture suggests that
either A+A or AA is significantly larger then the original set, unless A is close to a subring. Even
more generally speaking, the sum–product phenomenon predicts that the an arbitrary subset of
a ring cannot have good additive and multiplicative structures simultaneously. The interested
reader may consult [36] for a rather thorough treatment of sumsets and related questions, in-
cluding some prior work on the sum-product problem. The sum-product phenomenon has been
extensively studied in the last few decades, the current records as of writing being [30] for real
numbers, and [22] for sufficiently small sets in finite fields.

In our paper we consider the case of the ring Zq := Z/qZ and we have deal with large sets
A ⊆ Zq (basically, it means that |A| > q1−κ for a certain constant κ > 0). In the case of a
prime q the behaviour of the maximum from (2) is fully known thanks to the beautiful result of
Garaev [13] who used some classical exponential sums bounds in his proof. Another approach
was suggested in [40] and in [27] where some finite geometry considerations were applied. For
example, Vinh [40] proved that for an arbitrary prime q and any two setsA ⊆ Zq×Zq, B ⊆ Zq×Zq

one has∣∣∣∣|{(a1, a2) ∈ A, (b1, b2) ∈ B : a1b1 − a2b2 ≡ 1 (mod q)}| − |A|B|
q

∣∣∣∣ ⩽√q|A||B| . (3)
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In the proof he used the fact that equation (3) can be interpreted as a question about points/lines
incidences. Clearly, the result above has the sum–product flavour and indeed one can use (3)
to derive some lower bounds for the maximum from (2) (in the case of large subsets of Zq, of
course).

In this paper we introduce a new method of estimating sum–product quantities as in (3)
which does not use any exponential sums, as well as any considerations from the incidence geom-
etry. It turns out that representation theory makes it possible to obtain (almost automatically)
asymptotic formulae for the number of solutions to systems of equations that are preserved
by the actions of certain groups. For example, equation (3) can be interpreted as the equation

det

(
a b
c d

)
= 1, where (a1, a2) ∈ A and (b1, b2) ∈ B and hence the equation respects the usual

action of SL2(Zq). The advantage of our approach is its generality and (relative) simplicity. First
of all, having a certain equation, the method makes it possible to obtain an asymptotic formula
for the number of solutions to the equation for composite q due to the fact that representation
theory for composite q is usually not so complicated and can be reduced to the case of prime
powers. We should mention that the question about the sum–product phenomenon for general
Zq and large sets is considered to be difficult and there are few results in this direction, see [37]
and paper [28], where the case of finite valuation rings was considered (also, see [8]). Another
statement of the problem concerning the sum–product results in Zq is contained in [10], [14],
[34]. Let us remark that in [10] Fish also uses the property of equation invariance, but combines
it with classical Fourier analysis. Secondly, due to the obvious observation that representation
theory deals with some facts concerning the acting group but not with sets, in all our results
all the sets involved (as A,B in (3)) are absolutely general and do not require to have a special
structure, for example, to be Cartesian products of some other sets. The last constraint is some-
times crucial for Fourier analysis manipulations, see, e.g., [1], [39], although it usually allows to
obtain better error terms in asymptotic formulae.

To be more specific let us mention just one result here (see Theorem 8 of Section 3 below).
Given positive integers q,n,m, d = n +m, an element λ ∈ Zq and sets A ⊆ (Zd

q)
n, B ⊆ (Zd

q)
m

define by Dλ(A,B) the number of solutions to the equation

det(a1, . . . , an, b1, . . . , bm) ≡ λ (mod q) , (a1, . . . , an) ∈ A, (b1, . . . , bm) ∈ B . (4)

We assume that

Theorem 1 Let q be an odd prime number and λ ̸= 0. Then∣∣∣∣Dλ(A,B)− |A||B|
q − 1

∣∣∣∣≪ qd
2/2−d/4−3/4

√
|A||B| . (5)

In Section 4 we obtain further applications of our approach to some problems of number
theory. Our main observation is that the representation theory of SL2(Zq) makes it easy to
insert multiplicative characters into all formulae with incidences and, therefore, to obtain non–
trivial estimates for the corresponding exponential sums. In the author opinion this is a rather
interesting phenomenon due to the widely–known fact that results with multiplicative characters
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are usually very difficult to obtain. As an example, we formulate the following theorem concerning
summation over a hyperbolic surface. Denote by D ⊂ C the unit disk.

Theorem 2 Let q be a prime number, δ > 0 be a real number, A,B,X, Y ⊆ Zq be sets, let χ
be a non–principal multiplicative character and |X||Y | ⩾ qδ. Also, let cA : A → D, cB : B → D
be some weights. Then there is ε(δ) > 0 such that∑

a∈A, b∈B, x∈X, y∈Y : (a+x)(b+y)=1

cA(a)cB(b)χ(a+ x) ⩽
√
|A||B|(|X||Y |)1−ε(δ) .

Another application of the approach allows us to generalize [33, Theorem 4] (also, see
Theorem 33 from this paper). Let χ be a non–principal multiplicative character over a finite
field F. Consider the Kloosterman sum twisted by the character χ, namely,

Kχ(n,m) =
∑

x∈F\{0}

χ(x)e(nx+mx−1) ,

where e(·) is an additive character on F. We are interested in bilinear forms of Kloosterman
sums (motivation can be found, say, in [33]) that is, the sums of the form

Sχ(α, β) =
∑
n,m

α(n)β(m)Kχ(n,m) ,

where α : F → C, β : F → C are arbitrary functions.

Theorem 3 Let c > 0 and q be a prime number. Let t1, t2 ∈ Zp, N,M be integers, N,M ⩽ q1−c

and let α, β : Zq → C be functions supported on {1, . . . , N}+t1 and {1, . . . ,M}+t2, respectively.
Then there exists δ(c) > 0 such that

Sχ(α, β) ≲ ∥α∥2∥β∥2q1−δ . (6)

Finally, we obtain an application to Zaremba’s conjecture [42]. Recall the main result of
[24].

Theorem 4 Let q be a positive sufficiently large integer with sufficiently large prime factors.
Then there is a positive integer a, (a, q) = 1 and

M = O(log q/ log log q) (7)

such that

a

q
= [0; c1, . . . , cs] =

1

c1 +
1

c2 +
1

c3 + · · ·+
1

cs

, cj ⩽ M , ∀j ∈ [s] . (8)

Also, if q is a sufficiently large square–free number, then (7), (8) take place.
Finally, if q = pn, p is an arbitrary prime, then (7), (8) hold for sufficiently large n.
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Using an idea from representation theory, one can generalize Theorem 4.

Theorem 5 Let q be a sufficiently large prime number and Γ ⩽ Zq be a multiplicative subgroup,

|Γ| ≫ q

logκ q
, (9)

where κ > 0 is an absolute constant. Then there is a ∈ Γ and

M = O(log q/ log log q) (10)

such that
a

q
= [0; c1, . . . , cs] , cj ⩽ M , ∀j ∈ [s] .

Some results of this type concerning restrictions of the numerators of fractions (8) to mul-
tiplicative subgroups were obtained in [7], [25] and [26].

We thank Nikolai Vavilov for useful discussions and references.

2 Definitions and preliminaries

Let G be a group (commutative or not) and A,B be some subsets of G. The sumset (and the
product set) of A and B was defined in (1). Let us write A ∔ B if for finite sets A, B one has
|A+B| = |A||B|. We use a representation function notation such as rAB(x) or rAB−1(x), which
counts the number of ways x ∈ G can be expressed as the product ab or ab−1 with a ∈ A, b ∈ B,

respectively. For example, |A| = rAA−1(1). Let us write r
(k)
A for rA...A, where the set A is taken

k times. Having real functions f1, . . . , f2k : G → C (let k be an even number for concreteness),
we put

Tk(f1, . . . , f2k) =
∑

a1a
−1
2 ...ak−1a

−1
k =ak+1a

−1
k+2...a2k−1a

−1
2k

f1(a1) . . . f2k(a2k) .

In this paper we use the same letter to denote a set A ⊆ G and its characteristic function
A : G → {0, 1}. Finally, if |G| < ∞, then we consider the balanced function fA of A, namely,
fA(x) := A(x)− |A|/|G|.

In this paper we have deal with the group SL2(Zq) ⩽ GL2(Zq) of matrices

g =

(
a b
c d

)
= (ab|cd) = (a, b|c, d) , a, b, c, d ∈ Zq , det(g) = ad− bc = 1 ,

which acts on the project line (in the case of a prime number q) via the formula gx = ax+b
cx+d and

naturally acting on Zq × Zq for an arbitrary q.
Now we give a simplified version of the special case of [20, Theorem 6] (also, see [17,

Theorem 3]). Let p be a prime number, d be a positive integer, V (Zpd) be a vector space over
Zpd , dimV (Zpd) = n on which a non–degenerate symmetric bilinear form Φ(·, ·) is given. The
group of isometries of V is called the orthogonal group of V (Zpd), On(Zpd) and the subgroup of
isometries with determinant one is called the special orthogonal group of V (Zpd), SOn(Zpd).
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Theorem 6 Let p be a prime number, p ⩾ 5, d be a positive integer, V (Zpd) be a vector space
over Zpd, and Φ(x1, . . . , xn; y1, . . . , yn) = x1y1+ · · ·+xnyn defined on V (Zpd)×V (Zpd). Suppose
that Γ is a normal subgroup of SOn(Zpd), where n ⩾ 3, n ̸= 4. Then Γ is a congruence subgroup
with the quotient isomorphic to SOn(Zpr), r < d.

Indeed, in [20, Theorem 6] it requires to calculate the center of SOn(Zpd), which is trivial
as one can easily check (or consult [17, Lemma 1] for general Φ). Further one needs to find an
isotropic vector x = (x1, . . . , xn) ̸= 0 such that Φ(x, x) = 0 and this is an obvious task to do as
the equation x21 + x22 + x23 ≡ 0 (mod p) has a nonzero solution (and hence a solution modulo pd

by Hensel’s lemma). Finally, notice that in the case n = 4 one can in principle use [17, Remark
2] (in [20, Theorem 6] the author considers the case n = 4 under some additional assumptions
which exclude the case of the sum of two hyperbolic planes).

Basic facts of representation theory can be found in [18]. Recall that a representation ρ of
a group G is called faithful if it is injective. We need some number–theoretic functions. Given
a positive integer n we write τ(n) for the number of all divisors of n and by ω(n) denote the
number of all prime divisors. Also, denote by Jk(n) = nk

∏
p|n(1 − p−k) the Jordan totient

function equals the number of k–tuples of positive integers that are less than or equal to n and
that together with n form a coprime set of k + 1 integers. For example, it is easy to see that
|SL2(Zq)| = qJ2(q).

The signs ≪ and ≫ are the usual Vinogradov symbols. When the constants in the signs
depend on a parameter M , we write ≪M and ≫M . If a ≪M b and b ≪M a, then we write
a ∼M b. All logarithms are to base 2. We write Zq = Z/qZ and let Z∗

q be the group of all
invertible elements of Zq. By Fp denote Fp = Z/pZ for a prime p. Finally, let us denote by [n]
the set {1, 2, . . . , n}.

3 Applications to incidence problems

We start with the simplest question about points/hyperplanes incidences (see equation (11)
below). This problem was considered before in [41], [38], where the authors obtained better
asymptotic formulae for the quantity Iλ(A,B) using other approaches. We commence with
equation (11) because it allows us to transparently demonstrate our method, and because we
will use some of the calculations from the proof below. As we will see the proof of Theorem
7 exploits some facts about representation theory of SOn(Zq), which preserves the distance
x21 + · · · + x2n in Zn

q . Thus, our approach is applicable in principle to all distance problems, for
example, to the well–known Erdős–Falconer distance problem see, e.g., [16].

Given positive integers q, n ⩾ 2, an element λ ∈ Zq and sets A ⊆ Zn
q , B ⊆ Zn

q consisting of
tuples all coprime to q, define by Iλ(A,B) the number of solutions to the equation

a1b1 + · · ·+ anbn ≡ λ (mod q) . (11)

Theorem 7 Let q, n ⩾ 2 be positive integers, A ⊆ Zn
q , B ⊆ Zn

q be sets and λ ∈ Z∗
q. Let m be the

least prime divisor of q and suppose that m ⩾ 5. Then∣∣∣∣∣Iλ(A,B)− |A||B|
q
∏

p|q(1− p−n)

∣∣∣∣∣ ⩽ 2qn−1
√

|A||B| · (Θ(n)m−n∗)1/4 , (12)



6

where n∗ = 1 for n = 2, 3 and n∗ = n − 3 for n ⩾ 4 and further, Θ(2) ≪ min{τ(q), logm q},
Θ(3) ≪ min{logω(q), 1 + ω(q)/m} and Θ(n) ≪ 1 for n ⩾ 4.

P r o o f. Let q = pω1
1 . . . pωt

t , where m = p1 < p2 < · · · < pt are primes and ωj are positive
integers. Also, let a = (a1, . . . , an), b = (b1, . . . , bn) and let M(a, b) = 1 iff the pair (a, b) satisfies
our equation (11). Considering the unitary decomposition of the hermitian matrix M(a, b), we
obtain

M(a, b) =

qn∑
j=1

µjuj(a)uj(b) , (13)

where µ1 ⩾ µ2 ⩾ . . . are the eigenvalues and uj are correspondent orthonormal eigenfunctions.
Clearly,

Iλ(A,B) =
∑

a∈A,b∈B
M(a, b) =

qn∑
j=1

µj⟨A, uj⟩⟨B, uj⟩ .

Let N = Jn(q). By the definition of the Jordan totient function the number of vectors a =
(a1, . . . , an) such that a1, . . . , an, q are coprime is exactly N . It is easy to see that µ1 = qn−1 and
u1(x) = N−1/2(1, . . . , 1) ∈ RN . Indeed, we fix b and thanks to the Chinese remainder theorem
we need to we solve linear equation (11) modulo p

ωj

j , j ∈ [t]. Since λ ∈ Z∗
q and hence λ ∈ Z∗

p
ωj
j

for all j ∈ [t], it follows that not all coefficients of (11) are divided by pj and hence there are

p
ωj(n−1)
j solutions modulo p

ωj

j . Hence there are qn−1 solutions in total. Thus we obtain

Iλ(A,B)− qn−1|A||B|
N

=

qn∑
j=2

µj⟨A, uj⟩⟨B, uj⟩ := E . (14)

By the orthonormality of uj and the Hölder inequality, we get

|E| ⩽ |µ2|
√
|A||B| . (15)

Thus it remains to estimate the second eigenvalue µ2 and to do this we calculate the rectangular
norm of the matrix M , that is

qn∑
j=1

|µj |4 =
∑
a,a′

∣∣∣∣∣∑
b

M(a, b)M(a′, b)

∣∣∣∣∣
2

:= σ ,

and then |µ2|. Fixing a pair (a, a′) ∈ Zn
q ×Zn

q , we need to solve the system of two linear equations

a1b1 + · · ·+ anbn ≡ λ (mod q) , a′1b1 + · · ·+ a′nbn ≡ λ (mod q) . (16)

It implies, in particular, that

n∑
j=2

bj(a
′
1aj − a1a

′
j) ≡ λ(a′1 − a1) (mod q) , (17)
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and if a′1 − a1 ∈ Z∗
q , say, then we obtain qn−2 solutions by the previous argument. If not, then

consider all possible determinants of 2 × 2 matrices consisting of the elements of the matrix
(1, a1, . . . , an|1, a′1, . . . , a′n). Further given a tuple (r1, . . . , rn), where 0 ⩽ rj ⩽ ωj we consider
the set A(r1, . . . , rn) of pairs (a, a

′) ∈ Zn
q × Zn

q such that p
rj
j is the maximal divisor of all these

determinants. If (a, a′) ∈ A(r1, . . . , rn), then aj ≡ a′j (mod p
rj
j ) and hence

|A(r1, . . . , rn)| ⩽
q2n∏t

j=1 p
rjn
j

. (18)

To solve (17) (recall that we consider the case when (a, a′) ∈ A(r1, . . . , rn)) one can use the
Chinese remainder theorem again and we see that there are

t∏
j=1

p
ωj(n−2)+rj
j = qn−2

t∏
j=1

p
rj
j

solutions to equation (17). Combining the last bound with (18), we obtain

σ ⩽ q4n−4
∑

r1⩽ω1,...,rt⩽ωt

t∏
j=1

p
−rj(n−2)
j = q4n−4Θ(n) ,

where Θ(n) = O(1) for n ⩾ 4, Θ(3) = O(log t) and Θ(2) ≪
∏t

j=1(1 + ωj) = τ(q). Let us remark

other bounds for Θ(2) and for Θ(3), namely, from mτ(q) ⩽ q one has Θ(2) ≪ τ(q) ≪ logm q and,
clearly, Θ(3) ≪ 1 + t/m.

It is instructive to consider the case n = 2 separately. Redefining the set A, we need to
solve the equation

a1b1 − a2b2 ≡ λ (mod q) , (a1, a2) ∈ A, (b1, b2) ∈ B , (19)

where a = (a1, a2) and b = (b1, b2). It is clear that our equation (19) has the form det(a|b) ≡ λ
(mod q) and hence we enjoy the following invariance property

M(a, b) = M(ga, gb) , ∀g ∈ SL2(Zq) . (20)

Hence if f is an eigenfunction of M with the eigenvalue µ, then for fg(x) := f(gx) one has∑
a,b

M(a, b)fg(b) =
∑
a,b

M(a, b)f(gb) =
∑
a,b

M(ga, gb)f(gb) = µf(ga) = µfg(a) ,

where we have used (20) and the transitivity of the natural action of SL2(Zq). In other words,
SL2(Zq) preserves the eigenspace Lµ, which corresponds to µ. Now consider an arbitrary eigen-
function uj , j > 1. We know that

∑
x uj(x) = 0 and hence uj is not a constant function. There

are many ways to see that dim(Lµj ) > 1 or, in other words, that ⟨{ugj}g∈SL2(Zq)⟩ ̸= ⟨uj⟩ = Lµj .
For example, one can use the transitivity again. Another approach is to notice that the group
SL2(Zq) has no non–trivial one–dimensional representations but, on the other hand, any one–
dimensional eigenspace would give us a character (the same holds in the general case which will
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be considered below). Thus anyway we conclude that for any j > 1 the multiplicity of each µj

is at least the minimal dimension of non–trivial representations of SL2(Zq).

Now we essentially repeat the argument from [34, Theorem 12]. Another way is to use
the first part of [3, Theorem 1] which says exactly the same. So, let us repeat what is known
about representation theory of the group SL2(Zq), see [5, Sections 7, 8]. First of all, for any
irreducible representation ρq of SL2(Zq) we have ρ = ρq = ρpρ11

⊗ · · · ⊗ ρpρtt
and hence it is

sufficient to understand representation theory for SL2(Zpd), where p is a prime number and d is
a positive integer. Now by [5, Lemma 7.1] we know that for any odd prime the dimension of any
faithful irreducible representation of SL2(Zpd) is at least 2

−1pd−2(p−1)(p+1) (a similar proof for
SLn(Zpd), n ⩾ 2 can be found in [3, Theorem 1]). If d = 1, then the classical result of Frobenius
[11] says that the minimal dimension of any non–trivial representation is at least (p−1)/2. For an
arbitrary positive integer r ⩽ d we can consider the natural projection πr : SL2(Zpd) → SL2(Zpr)
and let Hr = Kerπr. One can show that the set {Hr}r⩽d gives all normal subgroups of SL2(Zpd)
and hence any nonfaithful irreducible representation arises as a faithful irreducible representation
of SL2(Zpr) for a certain r < d. Anyway, we see that the multiplicity (dimension) dρ of any non–
trivial irreducible representation ρ of SL2(Zpd) is at least (m− 1)/2 ⩾ m/3.

Returning to the quantity σ, we get (below n = 2)

|µ2|4m ⩽ 3σ ⩽ 3q4n−4Θ(n)

and hence

|µ2| ⩽
(
3m−1q4n−4Θ(n)

)1/4
= qn−1(3Θ(n)m−1)1/4 (21)

Recalling (14), (15), we obtain the required result for n = 2.

Now let n > 2. It remains only to find a good lower bound for the multiplicity of µj ,
j > 1 (the fact dim(Lµj ) > 1 is immediate consequence that SOn(Zq) has no non–trivial one–
dimensional representations or thus see paper [28]). In the higher–dimensional case n > 2 our
form Φ(a, b) = a1b1+ · · ·+anbn is preserved by the group of orthogonal transformations On(Zq)
(as well as SOn(Zq)) and hence our task is to find a good lower bound for the dimension of
any non–trivial irreducible representation of SOn(Zpd). Using Theorem 6 and the arguments
as above, we see that it is enough to have deal with faithful representations and this problem
was solved in [2]. The authors prove that the minimal dimension of any faithful representations
coincides (up to constants) with the classical lower bound for minimal dimension of an arbitrary
non–trivial representation for split Chevalley groups over Fpd , see [21], [32]. These results com-
bining with the existence of isomorphisms between low–dimensional classical groups (see [19,
Proposition 2.9.1], for example) give us dρ ⩾ 2−2pn−3 for n ⩾ 4 and dρ ⩾ 2−2p for n = 3. For
n = 4 one cannot apply Theorem 6 but it is easy to see that in this case the multiplicity of
µ2 is at least dρ ⩾ 2−1(p − 1) due to the fact that the group SL2(Zpd) × SL2(Zpd) acts on the
quadruples (a1, . . . , a4) and we can use previous arguments concerning SL2(Zpd) and the case
n = 2. It follows that for any n ⩾ 2 the multiplicity of µ2 is at least Ω(m−n∗). This completes
the proof. 2

Thus, as the reader can see, our method almost automatically gives some asymptotic for-
mulae for the number of solutions to systems of equations that are preserved by the actions of
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certain groups. The only thing we need to calculate is the first eigenfunction of the correspon-
dent operator and its rectangular norm. After that we use quasi–random technique in the spirit
of papers [12], [15] and [31].

Now we are ready to obtain Theorem 1 from the introduction and for simplicity we consider
the case of a prime number q. We assume that the sets A, B consisting of linearly independent
tuples because otherwise there is no solutions to equation (4).

Theorem 8 Let q be an odd prime number and λ ̸= 0. Then

2−3

∣∣∣∣Dλ(A,B)− |A||B|
q

∣∣∣∣ ⩽ qd
2/2−d/4−3/4

√
|A||B|+ |A||B|

q2
. (22)

P r o o f. The case n = m = 1 was considered in Theorem 7, so we assume that min{n,m} ⩾ 2.
Let a = (a1, . . . , an), b = (b1, . . . , bm) and let M(a, b) = 1 iff the pair (a, b) satisfies our equation
(4). Considering the singular decomposition of the matrix M(a, b), we obtain

M(a, b) =

qd∑
j=1

λjuj(a)vj(b) ,

where λ1 ⩾ λ2 ⩾ . . . ⩾ 0 are the singularvalues and uj , vj are correspondent orthonormal
singularfunctions. Let

N = (qd − qm)(qd − qm+1) . . . (qd − qd−1) = qdn
n∏

j=1

(1− q−j) and M = qdm
m∏
j=1

(1− q−j) .

It is easy to calculate λ1 and to show that u1(a) = N−1/2(1, . . . , 1) ∈ RN , as well as v1(b) =
M−1/2(1, . . . , 1) ∈ RM. Indeed, for any fixed a or b we need to solve the equation det(a|b) = λ
in b or a, correspondingly. It is easy to see that the equation det(a|b) = λ, a is fixed, has
qdm−1

∏m
j=2

(
1− q−j

)
= M

q−1 solutions due to the number of independent vectors over Zq. Sim-

ilarly, the second equation has qdn−1
∏n

j=2

(
1− q−j

)
= N

q−1 solutions in a. Thus, these num-

bers do not depend on a and b and hence, indeed we have u1(a) = N−1/2(1, . . . , 1) ∈ RN ,
v1(b) = M−1/2(1, . . . , 1) ∈ RM and

λ1 = ⟨Mu1, v1⟩ =
M

q − 1
· N · (MN )−1/2 =

√
MN
q − 1

.

Thus we get ∣∣∣∣Dλ(A,B)− |A||B|
q − 1

∣∣∣∣ =
∣∣∣∣∣∣
qd∑
j=2

λj⟨A, uj⟩⟨B, vj⟩

∣∣∣∣∣∣ ⩽ λ2

√
|A||B| . (23)

As above we need to estimate the rectangular norm of the matrix M that is

qd∑
j=1

λ4
j =

∑
a,a′

∣∣∣∣∣∑
b

M(a, b)M(a′, b)

∣∣∣∣∣
2

,
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and thus we arrive to the system of equations det(a′|b) = det(a|b) = λ with fixed a and a′.
Fixing vectors b1, . . . , bm−1 we have exactly equation (16) which has at most qmd−2 solutions.
Thus

qd∑
j=1

λ4
j ⩽ q2ndq2md−4 = q2d

2−4 . (24)

Now it is easy to see that

M(ga, gb) = M(ga1, . . . , gan, gb1, . . . , gbm) = M(a, b)

for an arbitrary g ∈ SLd(Zq) and thus any λj , j > 1 has multiplicity equals the minimal
dimension of any non–trivial irreducible representation of SLd(Zq). Thus the multiplicity of λ2

is at most 2−2qd−1 and hence

λ2 ⩽ 2qd
2/2−1q−(d−1)/4 = 2qd

2/2−d/4−3/4 .

Using the last estimate, and returning to formula (23), we obtain

2−3

∣∣∣∣Dλ(A,B)− |A||B|
q

∣∣∣∣ ⩽ qd
2/2−d/4−3/4

√
|A||B|+ |A||B|

q2

as required. 2

Finally, we consider an example with the cross–ratio [a, b, c, d] := (a−c)(b−d)
(a−d)(b−c) . As one can

see, representation theory almost immediately gives asymptotic formula (26) with an acceptable
error term. Let q be a prime number, λ ∈ Zq and A ⊆ Zq × Zq, B ⊆ Zq × Zq be sets. Define

Cλ(A,B) := |{(a1, a2) ∈ A, (b1, b2) ∈ B : [a1, a2, b1, b2] ≡ λ (mod q)}| . (25)

Theorem 9 Let q be a prime number, λ ∈ Zq, λ ̸= 0, 1 and A ⊆ Zq × Zq, B ⊆ Zq × Zq be sets.
Then ∣∣∣∣Cλ(A,B)− |A||B|

q

∣∣∣∣ ⩽ 4q3/4
√

|A||B| . (26)

P r o o f. As usual let a = (a1, a2), b = (b1, b2) and let M(a, b) = 1 iff the pair (a, b) satisfies our
equation (25). It is well–known that SL2(Zq) preserves the cross–ratio in the sense

M(ga, gb) = M(ga1, ga2, gb1, gb2) = M(a, b) . (27)

Considering the unitary decomposition of the hermitian matrix M(a, b) as in (13) we see that
the property u1(a) = q−1(1, . . . , 1) ∈ Rq2 automatically follows from (27) and 2–transitivity of
SL2(Zq) on the projective line. It remains to calculate the rectangular norm of the matrix M ,
that is to solve the system [x, y, c, d] = [x, y, c′, d′] = λ. It follows that

xy(1− λ) + (λc− d)x+ (λd− c)y + dc(1− λ) = 0 , (28)
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and
xy(1− λ) + (λc′ − d′)x+ (λd′ − c′)y + d′c′(1− λ) = 0 . (29)

Subtracting (29) from (28) we arrive to the equation

x(λ(c− c′) + d′ − d) + y(λ(d− d′) + c′ − c) + (1− λ)(dc− d′c′) = 0 (30)

and this is a non–trivial equation excluding two cases: c = c′, d = d′ and λ = −1, c = d′, d = c′.
If equation (30) is non–trivial, then we substitute, say, x into (28) and obtain at most 4 solutions
in x, y (one can check that we obtain a non–trivial equation thanks to our condition λ ̸= 0, 1). In
the exceptional cases we have just one equation, say, (28), and it is easy to see that our equation
has at most 2q solutions. Thus

q2∑
j=1

µ4
j =

∑
a,a′

∣∣∣∣∣∑
b

M(a, b)M(a′, b)

∣∣∣∣∣
2

⩽ 16q4 + 2q2(2q)2 = 24q4 .

It remains to use the Frobenius Theorem [11] about minimal representations of SL2(Zq). This
result gives us the bound µ2 ⩽ 4q3/4 and we can apply the arguments as in the proofs of
Theorems 7, 8. This completes the proof. 2

4 On sums with multiplicative characters over some manifolds
and other applications

In this section we want to extend representation theory methods to some sums with multiplica-
tive characters. Below p is a prime number and F is a finite field of characteristic p. Let us
consider a basic example. We know that SL2(F) acts on the projective line and it gives us an
irreducible representation of this group but from [18], say, it is well–known that there are other
irreducible representations of SL2(F) and a half of them are connected with “projective lines”
equipped with multiplicative characters χ. More precisely, it means that we consider the family
of functions f : F× F → C such that

f(λx, λy) = χ(λ)f(x, y) , ∀λ ∈ F∗ and ∀(x, y) ∈ (F× F) \ {0} , (31)

and now SL2(F) acts on this family, as well as on F×F in a natural way. In our results below we
do not need to use the knowledge of concrete irreducible representations of SL2(F) (and other
groups) but we will use only definition (31) somehow.

Let us start with the following auxiliary proposition concerning summation over a hyper-
bolic surface (twisted by a multiplicative character) in the spirit of paper [35], say.

Proposition 10 Let A,B ⊆ Fp and G ⊆ GL2(Fp) be sets and χ be a non–trivial multiplicative
character. Also, let cA : A → D, cB : B → D be some weights. Then for any integer k ⩾ 2 the
following holds

2−2

∣∣∣∣∣∣
∑
a,b

cA(a)cB(b)
∑

g∈G : ga=b

χ(γa+ δ)

∣∣∣∣∣∣
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⩽
√
|A||B||G| · T1/8k

2k (fG) +
√

|A||B||G| · (max{|A|, |B|})−1/2k . (32)

P r o o f. Consider the functions A(λa, λ) = cA(a)χ(λ) = A(x), B(µb, µ) = cB(b)χ(µ) = B(y),
where a ∈ A, b ∈ B, x = (x1, x2), y = (y1, y2) and µ, λ run over F∗

p. It is easy to see that we
always have

∑
a,λA(λa, λ) = 0, as well as

∑
b,µ B(µb, µ) = 0 since χ is a non–trivial character.

Notice that

σ :=
∑
x,y

A(x)B(y)
∑

g∈G : gx=y

1 = (p− 1)
∑
a,b

cA(a)cB(b)
∑

g∈G : ga=b

χ(γa+ δ) (33)

for any trivial/non–trivial multiplicative character χ. We can interpret the left–hand side of (33)
as the number of some points on a hyperbolic surface counting with weights A(x), B(y). The
Hölder inequality (see [33, Lemma 13]) gives us

σ2k ⩽ ∥A∥2k2 ∥B∥2k−2
2

∑
h

f
(k)
GG−1(h)

∑
x

B(x)B(hx) .

Applying identity (33), it is easy to see that the contribution of the terms with
∑

x B(x)B(hx) ⩽
32p, say, corresponds to the second term from (32). Now using [33, Lemma 12] (we notice that,
say, 4 different points uniquely determine the transformation from GL2(Fp)), combining with
the Hölder inequality again, we derive

σ2k ⩽ (|A|(p− 1))k(|B|(p− 1))k−1

(∑
h

|f (k)
GG−1(h)|4/3

)3/4
∑

h

(∑
x

B(x)B(hx)

)4
1/4

⩽ (|A|(p−1))k(|B|(p−1))k−1

(∑
h

(f
(k)
GG−1(h))

2

)1/4(∑
h

|f (k)
GG−1(h)|

)1/2
∑

h

(∑
x

B(x)B(hx)

)4
1/4

⩽ 4k(|A|(p− 1))k(|B|(p− 1))k−1T
1/4
2k (fG)|G|k · |B|(p− 1) . (34)

Recalling (33), we see that estimate (34) is equivalent to the required bound (32). This completes
the proof. 2

Now we obtain some concrete applications of Proposition 10, which correspond to Theorems
2, 3 of the introduction. Let A,B,X, Y ⊆ Fp be sets. Consider the equation

(a+ x)(b+ y) ≡ 1 (mod p) (35)

or, in other words, y = −b+1/(a+x) = ga,bx, where det(ga,b) = −1. The energy T2k(fG) of the
correspondent family of transformations G = {ga,b}a∈A,b∈B was estimated many times see, e.g.,
paper [33]. Applying Proposition 10 to this particular case of equation (35), we obtain
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Corollary 11 Let δ > 0 be a real number, A,B,X, Y ⊆ Fp be sets, let χ be a non–principal
multiplicative character and |X||Y | ⩾ pδ. Also, let cA : A → D, cB : B → D be some weights.
Then there is ε(δ) > 0 such that∑

a,b,x,y : (a+x)(b+y)=1

cA(a)cB(b)X(x)Y (y)χ(a+ x) ⩽
√
|A||B|(|X||Y |)1−ε(δ) .

The above corollary immediately implies Theorem 3 from the introduction (compare with
[33, Theorems 4, 33]) which we recall here for the reader’s convenience. Other results of paper
[33] can be obtained in a similar way for bilinear sums Sχ(α, β) with non–trivial characters χ.

Corollary 12 Let c > 0 and p be a prime number. Let t1, t2 ∈ Fp, N,M be integers, N,M ⩽
p1−c and let α, β : Fp → C be functions supported on {1, . . . , N} + t1 and {1, . . . ,M} + t2,
respectively. Then there exists δ(c) > 0 such that

Sχ(α, β) ≲ ∥α∥2∥β∥2p1−δ . (36)

Now consider the case when our set A is a collection of disjoint intervals. It is an important
family of sets, including discrete fractal sets see, e.g., papers [4], [7], [23]—[26] and [42].

Theorem 13 Let Λ ⊂ Fp, I = [N ], A = I ∔ Λ, |A| > p1−ϵ, and χ be a non–principal multi-
plicative character. Then there is an absolute constant c∗ > 0 such that

|
∑

x∈A∩A−1

χ(x)| ⩽ |A ∩A−1| ·N−c∗ ≪ |A|2

p
·N−c∗ , (37)

provided N ⩾ pϵ/c∗.

P r o o f. We combine an appropriate version of Corollary 11 and the well–known Bourgain–
Gamburd machine [6] applied to equation (35) see, e.g., [23]. Indeed, for any x ∈ A ∩ A−1, we
have x = i+ λ such that 1 = (i+ λ)(i′ + λ′), where i, i′ ∈ I and λ, λ′ ∈ Λ. Thus we in very deed
arrive to equation (35). Now I(i) ⩽ N−1(I ∗ I)(i), where I = [−N,N ] and hence the number of
solutions to the equation 1 = (i+ λ)(i′ + λ′) can be bounded above as 1 = (j + a)(j′ + a′) with
a, a′ ∈ A and j, j′ ∈ I (times N−2, of course). In particular (see [23] or just Proposition 10 and
Corollary 11 above), we get for an absolute constant c ∈ (0, 1] that

|A ∩A−1| ⩽ |A|2|I|2

N2p
+O(N−2|A| ·N2−c) ≪ |A|2

p
(38)

and hence the second estimate of (37) follows from the first one. Here we have used the conditions
that |A| > p1−ϵ and N ⩾ pϵ/c, which is satisfied if we put c∗ = c/4, say.

Similarly, let h ∈ [N ] be an integer parameter and write I(i) = h−1(H ∗ I)(i) + ε(i),
where H = [h] and ∥ε∥∞ = 1, |supp(ε)| ⩽ 2h. In particular, we have ∥ε∥22 ⩽ 2h and one can
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threat ε as a sum of two functions ε1, ε2 with supports on some shifts of the interval H. Put
ε̃ = ε1 + ε2 : H → [−1, 1]. As always let us write∑

x∈A∩A−1

χ(x) =
∑

1=(i+λ)(i′+λ′)

χ(λ+ i)Λ(λ)Λ(λ′)I(i)I(i′)

=
∑

1=(i+λ)(i′+λ′)

χ(λ+ i)Λ(λ)Λ(λ′)(h−1(H ∗ I)(i) + ε(i))(h−1(H ∗ I)(i′) + ε(i′))

= h−2
∑

a,a′,h,h′ : (a+h)(a′+h′)=1

A(a)A(a′)H(h)H(h′)χ(a+ h) + E = σ + E ,

where the error term E can be estimated as (there are better bounds as the set A is I–invariant
and not just H–invariant)

|E| ⩽ 2h−1
∑

a,a′,h,h′ : (a+h)(a′+h′)=1

Λ(a)A(a′)|ε̃(h)|H(h′)+
∑

a,a′,h,h′ : (a+h)(a′+h′)=1

Λ(a)Λ(a′)|ε̃(h)ε̃(h′)|

≪ |A|2

p

(
h

N
+

h2

N2

)
+ |A| ·

(
h1−c

√
N

+
h2−c

N

)
≪ |A|2h

pN
+

|A|h1−c

√
N

. (39)

Here we have assumed that h ⩽
√
N and applied the well–known Bourgain–Gamburd machine

[6], [23]. Recall that this result replaces Corollary 11 in the case when X, Y are intervals and
χ ≡ 1 (that is why we need two additional main terms in (39)). It remains to estimate the sum
σ and to do this we can use the Bourgain–Gamburd machine one more time, namely, we apply
our Corollary 11 and get σ ≪ |A|h−c. Finally, combining the estimate for σ and bound (39) for
the error term E , choosing the parameter h = [

√
N ], we obtain∑

x∈A∩A−1

χ(x) ≪ |A|h−c +
|A|2h
pN

+
|A|h1−c

√
N

≪ |A|h−c ≪ |A|N−c/2 ≪ |A|2

p
·N−c/4

thanks to our assumptions |A| > p1−ϵ and N ⩾ p4ϵ/c. The same calculations show that there
is an asymptotic formula for |A ∩ A−1| and, in particular, the inverse inequality to (38) takes
place. It gives us the first inequality in (37). This completes the proof. 2

It is well–known and it is easy to see that the multiplicative equation (35) is almost coincides
(up to some transformation) with the additive equation

1

x+ a
− 1

y + b
≡ 1 (mod p) ,

where a ∈ A, b ∈ B, x ∈ X, y ∈ Y . Thus we obtain an analogue of Theorem 13.

Theorem 14 Let Λ ⊂ Fp, I = [N ], A = I ∔ Λ, |A| > p1−ϵ, and χ be a non–principal multi-
plicative character. Then there is an absolute constant c∗ > 0 such that

|
∑

x∈A−1∩(A−1+1)

χ(x)| ⩽ |A−1 ∩ (A−1 + 1)| ·N−c∗ ≪ |A|2

p
·N−c∗ , (40)

provided N ⩾ pϵ/c∗.
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Now we are ready to prove Theorem 5 from the introduction.

P r o o f. We follow the scheme and the notation of the proof from paper [24, Pages 3–7]. It was
shown that the set of a ∈ A satisfying (8) contains a set of the form ZM ∩ Z−1

M , |A| ∼ |ZM |2/p,
|ZM | ∼ pwM+2ε(1−wM ) and the set ZM is a disjoint union of some shifts of an interval of length
N ∼ p2ε, where ε ≫ 1/M is a parameter and Hausdorff dimension wM enjoys the asymptotic
formula wM = 1−O(1/M), M → ∞. Thus we can apply Theorem 13 and write

|A ∩ Γ| = (p− 1)−1
∑
χ

(∑
x∈A

χ(x)

)(∑
x∈Γ

χ(x)

)
⩾

|A||Γ|
p− 1

− C|A|N−c∗ > 0 ,

where C, c∗ > 0 are some absolute constants. Here we have used conditions (9), (10), the fact
that M ∼ log p

log log p and ε ≫ 1/M . It remains to check that N ⩾ pϵ/c∗ or, in other words, that

ε ≫ ϵ. Since |ZM | ∼ pwM+2ε(1−wM ) = p1−ϵ, it follows that ϵ = (1 − wM )(1 − 2ε) ≪ 1/M and
thus the required condition takes place. This completes the proof. 2

Let us make a final remark. Loosely, Theorem 5 gives us a non–trivial bound for the mul-
tiplicative energy of the set ZM , see formula (42) below. Nevertheless, the last fact follows from
the circumstance that ZM is an Ahlfors–David set, [4], that is for an arbitrary z ∈ ZM one has

|ZM ∩ (D + z)| ∼M |D|wMN1−wM (41)

for any interval D, |D| ⩾ N with the center at the origin. Recall that in [4] a non–trivial upper
bound was obtained for the additive energy of any Ahlfors–David set. Let us briefly prove an
upper estimate for the multiplicative energy of an arbitrary Ahlfors–David set ZM , having large
Hausdorff dimension wM . The advantage of bound (43) below that our power saving can be
expressed in terms of |ZM | but not just N .

Namely, write Z = ZM , w = wM and then |Z| ∼M pwN1−w. Also, put δ ∼M ∆wN1−w,
where ∆ is a parameter. By the points/planes incidences in Fp (see [29]) and property (41) one
has

E×(Z) := |{(z1, z2, z3, z4) ∈ Z4 : z1z2 = z3z4}| (42)

≪ δ−2|{(z1, z2, z′1, z′2, d, d′) ∈ Z4 × [∆]2 : z1(z2 + d) ≡ z′1(z
′
2 + d′)}|

≪ δ−2

(
|Z|4∆2

p
+ |Z|3∆3/2

)
≪ δ−2p3 ,

where the optimal choice for ∆ is ∆ = (p/|Z|)2. Thus

E×(Z) ≪M |Z|3(p/|Z|)3−4wN−2(1−w) ∼M |Z|3 · |Z|−
(4w−3)(1−w)

w N
−(1−w)(3−2w)

w < |Z|3 (43)

for w > 3/4. Thus, we have a power saving in terms of |Z| for the multiplicative energy of any
Ahlfors–David set.

5 Data availability

No data was used for the research described in the article.
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