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Abstract – We study a simple model of competition in which each player has a fixed strength:
randomly selected pairs of players compete, the stronger one wins and the loser is eliminated. We
show that the best indicator of future success is not the number of wins but a player’s wealth: the
accumulated wealth of all defeated players. We calculate the distributions of strength and wealth
for two versions of the problem: in the first, the loser is replaced; in the second, the loser is not. The
probability of attaining a given wealth is shown to be path-independent. We illustrate our model
with the popular game of conkers and discuss an extension to round-robin sports competition.
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Pairwise competition within a population of agents is
found in nearly all branches of science: in biology, between
males for the same female and between species for fixed
resources; in physics, in phase ordering kinetics [1] and
galaxy formation [2]; in economics, between individuals or
companies in a given industry [3,4]; in sociology, in social
stratification [5,6], the minority game [7] and gambling
tournaments [8]; and in all kinds of organised sport [9].
Many of these systems have been modelled using tech-

niques from statistical mechanics, in which simple pairwise
interactions between agents give rise to complex global
behaviour within the population.
In a model of social stratification studied by Redner

and co-workers [5,6], each agent has a positive integer
strength. When two agents interact, the strength of the
stronger increases by one. At the same time, the fitness
of all agents decreases at a fixed rate. The authors find a
phase transition from a homogeneous, single-class society
to a heterogeneous, multi-class society.
In a model of asset exchange [3], when two agents

interact, the wealth of the richer agent increases by one
and the wealth of the poorer decreases by one. In the
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long-time limit, the distribution of wealth approaches a
Fermi-like distribution.
The scaling behaviour of tournament competition in

organized sport was recently studied in [9]. When two
players interact, the winner stays on and the loser is
eliminated, where the stronger player wins with proba-
bility p and the weaker with probability 1− p.
Here we exactly solve deterministic single elimination

competition. Deterministic means the stronger player
always wins; single elimination competition means that
the loser is eliminated. Pairs of players compete one
at a time, as opposed to multiple players competing
simultaneously.

Summary of the paper. – In our model, competition
occurs within a population of M players, each of which is
assigned a fixed, unique strength. Randomly chosen pairs
of players compete sequentially and the stronger player
wins. At any given time, we do not know the players’
strengths, only their history of wins and losses up to that
point. We show that the optimal indicator of strength is
not the number of wins but the wealth: each new player
starts with unit wealth, and when two players compete
the winner inherits the wealth of the loser. A player with
a wealth of n is called an n-er. For example, if a 2-er and
a 3-er compete, the winner becomes a 5-er.
We study two versions of the problem. In the first

version, each time two players compete, the loser is
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replaced with a new player with random strength and
unit wealth. Thus the number of players is always
fixed at M and play continues indefinitely. The system
approaches steady-state behaviour and we calculate the
limiting distribution of strength, p(s), and wealth, q(n).
In the second version, each time two players compete

the loser is not replaced, and after t=M − 1 competi-
tions only the strongest player remains. Because there
is no limiting behaviour, we calculate the distribution of
strength p̃(s, t,M) and wealth q̃(n, t,M) as a function of
time and system size. (The tilde (˜) symbol designates the
diminishing, as opposed to fixed, version of the problem.)
For both versions of the problem, we show that the

wealth of a player—which is equivalent to the number
of players he is demonstrably stronger than—is the most
accurate indicator of the likelihood of future success. We
calculate the probability that a player with wealth i would
beat one with wealth j and show that all strategies for
obtaining a high wealth are equivalent—the probability of
achieving a given wealth is path independent.
We illustrate our model with the popular game of

conkers, in which horse-chestnuts (conkers) are swiped one
at another until the weaker one breaks. A conker’s score
increases by the score of the defeated with each win. We
calculate statistics of a conker with a given score and offer
advice on strategy. We also describe an extension to round-
robin sports competition, in which a group of teams all
play each other once.

Fixed population. – We first consider the version
of the problem in which each defeated player is replaced
with a new player with random strength and unit wealth.
Since the number of players is fixed and play continues
indefinitely, the system approaches steady-state behaviour
and we can calculate its long-term properties.
We first calculate the limiting distribution of strength,
p(s). Each player starts with a strength s drawn from a
uniform distribution over the unit interval. (Note that
it is only the rank of the strengths that matters, and
the uniform distribution could be replaced by any other
continuous distribution.) Then p(s) can be determined as
follows.
At steady state, we know that the distribution of

strength of the lesser of two samples of p(s) must be
uniform because the player that we remove must be drawn
from the same distribution as the player which we add.
Our condition on p(s) is

1 = 2p(s)

∫ ∞
s

p(s) ds, (1)

which gives rise to the differential equation

dp(s)

ds
= 2p3(s), (2)

which has solution

p(s) =
1

2
(1− s)− 12 . (3)
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Fig. 1: The steady-state distribution of strength p(s) (dotted
line) and wealth q(n) (dashed line) for a fixed population,
on a logarithmic scale. (In a fixed population, every time
a player is defeated, a new one is added with random
strength and unit wealth.) strength (top and right axes): our
theoretical prediction (3) closely matches the result of simu-
lation (×) for M = 105 players after 106 competitions. The
distribution is independent of system size, and unbounded as
strength approaches 1. wealth (bottom and left axes): our
prediction (5) again matches the result of simulation (+). The
distribution is also independent of system size; the fraction of
players with wealth 1, 2, 3, . . . , is 1/2, 1/8, 5/128, . . . .

This is plotted in fig. 1 and matches the distribution of
strength from a simulated population of 105 players after
106 competitions (right-hand curve).
Now we calculate the limiting distribution of wealth
q(n)≡ qn, which can be determined without reference
to strength. The problem is equivalent to calculating
the distribution of mass in a collection of randomly
aggregating particles all initially of mass 1, where each
collision event yields a new mass-1 particle: i+ j→ k+1,
where k= i+ j. Let qn be the fraction of players with
wealth n. Since every collison yields a 1-er and a non-1-er,
after a long time q1 =

1
2 . The only way of producing

a 2-er is from two 1-ers: q2 =
1
2 (q1q1) =

1
8 . Likewise,

q3 =
1
2 (q1q2+ q2q1) =

1
16 and, in general,

qn+1 =
1

2

n−1∑
i=0

qi qn−i. (4)

The solution to this difference equation is the steady state
distribution of player wealth, namely

qn+1 =
Cn

2(2n+1)
, (5)

where Cn =
1
n+1

(
2n
n

)
is the n-th Catalan number. The

values of qn are plotted in fig. 1 and match the distribution
of wealth from a simulated population (left-hand curve).
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By Stirling’s approximation, the distribution of wealth n
scales as

qn ∼ 1√
π
n−3/2. (6)

Note that (5) becomes more and more valid in the tail
(high wealth n) as time increases. New wealth is added to
the population in the form of 1-ers, which then flows to the
right, and for this reason the average wealth

∑∞
n=1 nqn =

(M + t)/M diverges, even though half the players are of
unit wealth (the median is finite).

Diminishing population. – Here we consider compe-
tition between a fixed number of players without replace-
ment. Unlike the previous version of the problem, this one
has no limiting behaviour. We solve it exactly as a function
of time t and number of players M .
There is a finite number of competition histories (who

plays whom when) that M labelled players can realize.
The number of histories grows with M as

H =
1

2M−1
M ! (M − 1)!. (7)

It is convenient to visualize the histories as trees on M
labelled nodes, in which two branches merge when two
players compete. No two branches can merge simultane-
ously; the merger events are ordered. Statistical properties
of the system of players can be determined by averaging
over all relevant trees.
We first calculate the analogue to (3), the distribution

of strength p̃(s, t,M). For convenience, we first relabel the
M strengths by their rank order, that is, 1, 2, . . . ,M . The
quantity p̃ is the probability that a player with strength
rank s will end up in the last M − t players. It is given by
p̃(s, t,M) =

1

M − t
∑

b∈Bt−1
C̄(s, t,m, 1)

×
t−1∏
k=1

C(s,k,M,2)bk
(
C̄(s,k,M,1)−C(s,k,M,2))1−bk ,

(8)
where

C(s, k,M, z) =


M − s−

k−1∑
l

bl

z




(
M − k+1
2

) (9)

and C̄ = 1−C and b is a (t− 1)-dimensional binary vector
that in the sum runs over all possible binary vectors B.
Let q̃(n, t,M) be the distribution of wealth for a

diminishing population, analogous to qn in (5) for a fixed
population. At time t= 0, the distribution is entirely
peaked at 1; at t=M − 2, the distribution is uniform over
all n. The exact form of q̃ is

q̃(n, t,M) =

(
M −n− 1
t−n+1

)
(
M − 1
t

) , (10)
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Fig. 2: The distributions of strength p̃(s, t,M) (solid line) and
wealth q̃(n, t,M) (dotted line) for a diminishing population.
(In a diminishing population, every time a player is defeated
it is not replaced.) strength (solid lines): we show our
prediction (8) for M = 20, at various times t. wealth (dotted
lines): we show our prediction (10) for M = 20 and various t.
For M � 7, exact enumeration perfectly matches our results.

which can alternatively be written

q̃(n, t,M) =
M(M − t− 1)

(M −n)(t−n+1)
n−1∏
i=0

t− i
M − i , (11)

keeping in mind that t�M − 1 and n� t+1.
Equations (8) and (10) are plotted in fig. 2 for M = 20.

For smaller, enumerable values of M (M � 7), we find
that (8) and (10) perfectly match exact enumeration.

Strategy. – Assume all players compete randomly
apart from one, which is free to choose which players it
plays. What is the optimal strategy in order to maximise
the probability of achieving some score? For example,
what is the best way for a 2-er to become a 6-er: play 1
4-er, or 2 2-ers, or 4 1-ers?
Our plan for answering this is as follows. We first

calculate the distribution of strength for a player with
wealth n (an n-er). From this we can write down the
probability that an i-er beats a j-er, for arbitrary i and j.
We then show that the form of this quantity ensures path
independence of wealth attainment.
After a competition between players with wealths i and
j, the strength of the survivor, with wealth k= i+ j, has
density distribution

fk(s) = fi(s)

∫ s
−∞
fj(s) ds+ fj(s)

∫ s
−∞
fi(s) ds. (12)

The solution is

fk(s) = ∂s(Fi(s)Fj(s)), (13)

where Fi(s) is the cumulative density distribution

Fi(s) =

∫ s
−∞
fi(s) ds. (14)
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Since a 2-er can only be produced by a collision between
two 1-ers, we have f2(s) = ∂s(F

2
1 (s)) and, by induction,

fk(s) = ∂s(F
k
1 (s)). (15)

If we take f1(s) to be uniform, then (15) becomes

fk(s) = ks
k−1. (16)

With the density distribution for strength in terms of
wealth, we can find the probability of an i-er beating a
j-er. It is

P (si>sj) =

∫ ∞
si=−∞

∫ si
sj=−∞

fi(si)fj(sj) dsi dsj . (17)

Substituting (15) into (17), we find

P (si>sj) =
i

i+ j
. (18)

We now see that the probability of a 2-er becoming a
6-er is 13 for all three strategies above:

2
6 =

2
4
4
6 =

2
3
3
4
4
5
5
6 .

In general, for a< b< c,

P (a→ c) = P (a→ b)P (b→ c) = a
c
, (19)

and we see that the probability of gaining some score is
path independent—all strategies are equivalent.

Discussion. – Why is wealth the correct predicter of a
player’s strength, and why is the probability of attaining
a high wealth path independent? The key reason for both
is the absence of loops in the competition histories—no
two players can have defeated the same player twice.
This means that the wealth of a player is equivalent to
the number of players that he is demonstrably better
than and, crucially, the sets of inferior players for each
extant winner are disjoint. Both the fixed and diminishing
population versions of the problem ensure that there
are no loops present in the dynamics, and therefore
eqs. (12)–(19) are valid for both versions.
We can calculate two other properties of players applica-

ble to both versions of the problem: the typical strength
in terms of wealth, and the typical wealth at time of death
in terms of present wealth (life expectancy).
We first calculate strength s in terms of wealth n.

Because the distribution of s for a given n is highly
skewed for moderate n, we consider the median instead
of the mean. The median strength smedn also has a natural
interpretation: it is the probability of beating a new player
with random strength. By definition, the median strength

satisfies
∫ smedn

−∞ fn(s) ds= 1/2, and thus by (16)

smedn = n

√
1
2 . (20)

Table 1: Statistics for an n-er (a player with wealth n). From
left: wealth; fraction of players with a given wealth (in the fixed
population model); median strength; wealth at time of death.

Fraction Med. strength Life expect.
Wealth (Score) qn smedn nexp

1-er 50% 0.500 2-er
2-er 12.5% 0.707 4-er
3-er 6.25% 0.794 6-er
4-er 3.906% 0.841 8-er
5-er 2.734% 0.871 10-er
6-er 2.051% 0.891 12-er
7-er 1.611% 0.906 14-er
8-er 1.309% 0.917 16-er
9-er 1.091% 0.926 18-er
10-er 0.927% 0.933 20-er
20-er 0.321% 0.966 40-er
30-er 0.173% 0.977 60-er
40-er 0.113% 0.983 80-er
50-er 0.080% 0.986 100-er

Second, we calculate the life expectancy nexp: the
expected wealth before defeat. The mean life expectancy
is n+

∑∞
i=1

i n
i+n , which is infinite. The median life

expectancy, on the other hand, follows from (18):

nmedexp = 2n. (21)

The probability of an n-er attaining wealth 2n is precisely
1/2, independent of strategy. Values of the median
strength and life expectancy are listed in table 1.

Conkers. – One popular example of competition in
which wealth is known but strength is not is conkers
[10,11], a game played with the nuts of the common horse-
chestnut tree (Aesculus hippocastanum). A hole is drilled
through the centre of the nut and a string or shoelace is
threaded through the hole with a stopping knot tied at one
end to retain the nut. Pairs of players take turns swiping
each other’s conker with their own until one conker is
sufficiently damaged to fall off the string. Each conker is
assigned a score as follows. All new conkers start with a
score of 1. Each time a conker beats another conker, it
adds to its score the score of the defeated1. We assume
that the stronger conker wins.
Apart from closed tournaments, ordinary competition

between conkers on the playground is best modelled by
our fixed population model, since a defeated conker is
likely to be replaced by a newly fallen nut. Then the
distribution of strength and score (wealth) are given by
the curves in fig. 1. Regardless of the number of conkers
in play, typically 1/2 of all conkers will be 1-ers, 1/8 will be
2-ers, 5/128 3-ers, and so on.

1The most popular way of scoring conkers is defined differently:
all conkers start with a score of 0, and when one conker beats
another, it adds to its score the score of the defeated plus one for
winning. This scoring system can be translated to the one described
in the text by adding 1 to each score.
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The scoring method used in conkers turns out to be
extremely well chosen. No other scoring system better
reflects a conker’s strength and likelihood of future
success. Moreover, there is no optimal strategy for
maximising a conker’s score—playing a few high-score
conkers is just as sensible as playing many low-score ones.
However, not all strategies for getting a high score are
equally fast. If you have a number of conkers, the quickest
way to achieve a high score is to play high score conkers.
Chances are high that the conker will lose —the probabil-
ity an i-er beats a j-er is i

i+j— in which case you simply
try again with another conker. For large n, the typical
number of 1-ers necessary to beat an n-er is n ln 2.
If all conkers’ strength is uniformly distributed between

0 and 1, the median strength of an n-er is n

√
1
2 . Unlike in

nature, where an organism’s expected remaining lifespan
decreases (or at best remains constant [12]) with age, a
conker’s life expectancy (typical score at time of death)
increases linearly with score. In table 1 we list some
statistics for conkers with a score of n.

Round-robin competition. – The concept of wealth
can be extended to round-robin competition in organized
sport [13]. In round-robin competition, each of M teams
plays all the other teams, making

(
M
2

)
games in total.

Sports events which are wholly or party organized in this
way include: the FIFA World Cup (football, called soccer
in the US); the UEFA Cup (football); some American
football college conferences; the Cricket World Cup; and
the Super 14 (rugby union). Typically, the

(
M
2

)
games are

divided into M − 1 different stages, where in each stage
the M teams play M/2 games.
Again, we assume that each team has a fixed strength

and when any two teams play the stronger one wins. This
time, however, the loser is not eliminated. As we showed
earlier, the wealth of a team is the optimal indicator of
its likelihood of future success in the absence of loops.
However, it is also a good approximation when loops are
allowed, and is exactly valid as t approaches tmax, where
time t∈ [0, (M2 )] is the number of games that have been
played.
As a round-robin competition proceeds, construct the

following directed graph. Let M labelled nodes represent
the M teams, and every time some team A beats another
team B, draw a directed edge from B to A. In round-robin
competition, we define the wealth of a team A to be the
basin of attraction of node A, that is, the number of points
which eventually flow to A. This is the number of teams
that A is demonstrably stronger than.
At any time t, we can infer the relative strength of the
M teams by ordering them (or partially ordering them
if there are ties) by their wealth. At time t=

(
M
2

)
, the

wealth perfectly corresponds to the relative strength of
the teams. Our investigations show that, at time t <

(
M
2

)
,

the wealth of a team remains a good indicator of strength,
significantly better than the number of wins.

Conclusion. – We have studied one of the simplest
and most common forms of competition, in which pairs
of players compete sequentially and the stronger player
wins. We showed that the best indicator of future success
is not the number of past wins but rather the player’s
wealth: one plus the wealths of all defeated players, where
all new players begin with wealth one. We calculated the
distributions of wealth and strength when the loser is
replaced and when the loser is not replaced, and showed
that the probability of attaining a high wealth is path
independent. This is likely to modify the way we order
players in real-world competition.
Apart from competition, our model may also be used

to describe systems of random aggregation. In this case
the notion of strength is abandoned, there is no winner or
loser, and we are only interested in the distribution and
attainment of wealth. Examples of this are family inher-
itances, which aggregate through marriage, and corpo-
rate assets which are combined through mergers and
aquisitions.
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