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We present a quantitative measure of physical complexity, based on the amount of information required to
build a given physical structure through self-assembly. Our procedure can be adapted to any given geometry,
and thus, to any given type of physical structure that can be divided into building blocks. We illustrate our
approach using self-assembling polyominoes, and demonstrate the breadth of its potential applications by
quantifying the physical complexity of molecules and protein complexes. This measure is particularly well
suited for the detection of symmetry and modularity in the underlying structure, and allows for a quantitative
definition of structural modularity. Furthermore we use our approach to show that symmetric and modular
structures are favored in biological self-assembly, for example in protein complexes. Lastly, we also introduce
the notions of joint, mutual and conditional complexity, which provide a useful quantitative measure of the
difference between physical structures.
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I. ALGORITHMIC COMPLEXITY

More than forty years ago, Kolmogorov �1� and Chaitin
�2� laid the foundations of algorithmic information theory, by
introducing the concept of algorithmic information content,
or Kolmogorov complexity, for a given string of information
�3�. This measure of complexity is defined as the length of
the shortest possible program on a universal computer �or
Turing machine� �4� that will output the string in question.
Here, we propose a conceptually analogous measure of the
complexity of any connected physical structure. Instead of a
universal computer which translates a program into a string
of information, we consider a general framework of self-
assembly rules, which act together to create a physical ob-
ject. The “program” now is our set of self-assembly building
blocks and rules, the “computer” is given by the physical
interactions of the self-assembling building blocks, and the
“output” is the final structure. Using this approach we inves-
tigate the physical complexity of shapes in two and three
dimensions, including polyominoes, molecules and protein
complexes. Our work generalizes ideas first explored in
�5,6�, and opens them up to a wide range of applications.
Furthermore, in the context of protein complexes it offers the
kind of biological application of information-theoretic con-
cepts demanded in �7�.

II. SELF-ASSEMBLY KIT

There are many examples of self-assembling structures in
physics, chemistry and biology �8�. These include thin films
�9�, micelles �10�, viruses �11,12�, protein complexes �13�,
and DNA �14–19�. Our aim is to introduce a general frame-
work for the theoretical study of self-assembling structures.

This framework can be used to study the properties of real
self-assembling systems, but, more generally, it can also be
used to measure the physical complexity of any construct
that can be divided into building blocks, regardless of
whether the structure forms through self-assembly in real
life. The exact nature of the self-assembly framework de-
pends on the underlying physical system, but it always con-
tains two basic ingredients: a set of building blocks and a set
of rules. We shall call this combination an assembly kit S.
Each building block i has f i interfaces, which typically are
subject to geometric constraints �depending on the physical
system�. Attached to each interface j of a given building
block i is an integer �ij � �1, . . . ,c�. The c possible values of
these integers denote different interface types, and we will
refer to them as colors, to connect with the language of com-
binatorics. The number of distinct colorings of the building
blocks depends entirely on the geometry of the problem. The
second ingredient of the assembly kit is the set of rules,
which takes the form of an interaction matrix between col-
ors. In the simplest case this matrix is binary, where 1 signi-
fies attraction and 0 signifies no interaction at all. Many more
sophisticated interaction matrices involving repulsion and a
continuous spectrum of energies are easily imaginable, but
here we only consider binary matrices.

For any system of self-assembling particles we need to
also specify a model for the actual assembly process. A con-
venient choice is a model assuming a single nucleus in solu-
tion �5�, which makes the assumption that each disjoint ob-
ject has one fixed nucleus building block which is
surrounded by a solution containing a freely moving popula-
tion containing many copies of each type of building block.
Each time step �i� a fixed building block, �ii� a site adjacent
site to it, �iii� a rotational orientation, and �iv� a building
block from the solution are chosen at random, and the new
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building block becomes fixed to its position if the rules allow
it. Note that some assembly kits always assemble into the
same shape—these we call “deterministic”—while ones
which contain ambiguous rules are “nondeterministic.” See
Fig. 1 for an example of a deterministic and a nondetermin-
istic self-assembly kit.

III. MINIMUM KIT

Every deterministic assembly kit SA, which always as-
sembles into a structure A, requires a certain amount of in-
formation I�SA� to describe it in some given formal language.
Our aim is to minimize this quantity, since we define the

length of the description of the minimum assembly kit S̃A as
the complexity K�A� of structure A:

K�A� = I�S̃A� = min
SA

I�SA� ,

in analogy to the concept of Kolmogorov complexity. Any
symmetry or modularity which the structure A contains is
very likely to decrease the amount of information required to
describe the structure �as the same type of building block can
be reused several times� and will therefore be reflected in its

minimum assembly kit S̃A, and by extension in the value of
K�A�.

For a deterministic minimum assembly kit, an interaction
matrix D �with elements dij� between a total of c colors, of
which cs self-interact, can be rewritten as:

dij = �1 − �i mod 2���i�j+1� + �i mod 2��i�j−1�,

for i�c−cs, and dij =�ij otherwise, so that one color always
only interacts with one other color. With this constraint in
mind, consider an assembly kit SA consisting of N blocks and
c colors, of which cs self-interact. If we write f i for the
number of faces of block i, and ci for the number of colors
on block i, we can write the information required to store the
kit as:

I�SA� = log2�cs + 1� + �
i=1

b

�ci log2 c + log2 Fi� . �1�

The first term, log2�cs+1�, is the amount of information
required to specify the number of self-interacting colors, nec-
essary to distinguish these from the non-self-interacting col-
ors which may also be present in the kit. The second term
consists of a sum, over all building blocks, of the informa-
tion required to specify the structure of each block. This is
represented by two terms. The first of these, ci log2 c, mea-
sures the information required to describe which ci colors out
of the total of c colors appear on building block i. The sec-
ond, log2 Fi, measures the information required to represent
the distinct arrangement of colors on block i.

For this last term, the physical structure of the building
blocks must be considered. If the interacting parts of a block
are geometrically constrained to lie in some particular order-
ing, such as, for example, the faces of a square tile, we must
work with labeled faces. If the interacting parts are rear-
rangeable, so that blocks with differently ordered faces are
equivalent, we need to consider unlabelled faces. In this pa-
per we will treat the structure of molecules and proteins at a
level of resolution where the positions of the chemical bonds
are not constrained, thus, leading to unlabelled faces.

For unlabelled faces, it is only necessary to specify the
presence of colors on a block. This can be achieved with the
representation

Fi = �
j=1

ci

kj
�i�, �2�

so that log2 Fi=� j=1
ci log2 kj

i, and where the kj
�i� signify the

number of times color j occurs on block i. Note that this
simplified picture only works under the condition that mul-
tiple connections between the same pair of building blocks
are prohibited, and that connections are short range. For
more complex systems in which these assumptions do not
hold, we have to resort to labeled faces.

In the case of labeled faces, we must also specify the
ordering of these faces, leading to the following general ex-
pression for Fi=F�ci , f i�:

F�ci, f i� = �
k1=1

f i−ci+1

�
k2=1

f i−ci+2−k1

. . . �
kci−1=1

f i−ci+�ci−1�−��
f i!

�
m=1

ci

km!

,

where ��=� j=1
ci−2kj

�i�, and the kj
�i� are defined as above.

IV. APPLICATION TO POLYOMINOES

As a simple example of a self-assembling system with
labeled faces, we will consider self-assembling polyominoes.
A polyomino �also known as a lattice animal� is a set of
connected sites on a �typically square� lattice �20� �see Fig.
1�. These connected sites are our self-assembly building
blocks. Every building block has four sides �so that f i=4 for
all i�, which are painted with one of c colors. These colors
can attract each other or not, as encoded in a c�c binary

FIG. 1. An example of deterministic and nondeterministic self-
assembly kits, using simple 2D lattice structures �polyominoes�. In
both cases, colors A and B attract each other, but C attracts neither
A nor B. No color attracts itself. The kit on the left will always
assemble into the cross shape while that on the right will assemble
into an irregular cluster, as there are several ways in which the two
blocks can attach.
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interaction matrix. Each distinct way of coloring a building
block corresponds to a different building block type. We do
not regard rotated colorings as distinct, since we can rotate
building blocks in the self-assembly process. The geometry
of the two-dimensional �2D� lattice gives rise to a particular
set of building block colorings in the context of self-
assembly. If we have c colors, the total number of such col-
orings is

Nc = �c4 + c2 + 2c�/4.

These particular colorings are also known as necklaces,
which can be defined as equivalence classes of strings under
rotation. Necklaces are discussed in more detail in Appendix
C and �21�. The definition of necklaces used here assumes
that the building blocks have a fixed chirality—in other
words that the necklaces which the colors form on the build-
ing blocks are fixed �33�.

For polyominoes Fi=F�ci�=Nci
� , where Nci

� is the number
of necklaces with exactly ci colors, and is given by

Nci
� = Nci

− �
k=1

ci−1 �ci

k
�Nk�

with N1�=1. It follows that N2�=4, N3�=9, and N4�=6. As be-
fore, the complexity K�A� of polyomino A is the minimum of
I�SA� over all possible assembly kits SA. Note that Wang tiles
�22�, and the tile system described in �6� are similar to our
framework for the case of polyominos, in that they use
square tiles with binary attractive interactions. However,
both only consider self-interacting colors, and treat rotated
tiles as distinct. As a result our encoding, based on necklaces,
has two advantages: First, recording the complexity of
rotation-invariant colorings allows us to measure the amount
of symmetry in the building block. Second, having colors
which are not self-interacting means that a color interacting
with one particular different color can appear on several dif-
ferent building blocks, encoding the multiple use of the same
module without causing nondeterministic assembly.

The general algorithm we use to find the minimum assem-

bly kit S̃, and thus, the complexity K, for polyominoes and
other structures is described in Appendix A. Note that we can
also use this framework to define the joint, conditional and
mutual complexities of two or more structures �see Appendix
B�.

Figure 2 illustrates how the complexity value K reflects
symmetry and modularity present in the structure. Structures
which are the same in size may differ considerably in com-
plexity. Equally, larger structures that are more symmetric or
modular may have similar complexity to smaller structures
that are less symmetric or less modular.

V. APPLICATION TO MOLECULES

The self-assembly approach can be used to calculate com-
plexity values for any physical structure. In order to demon-
strate the broad range of potential applications we determine
the complexity of �a� molecules and �b� protein complexes.

The problem of molecular complexity has been studied
extensively over the past seventy years, starting with work

by Pólya �23� and Rashevsky among others �24,25�, and cul-
minating in a seminal paper by Bertz �26�. These approaches
are based on Shannon entropy rather than algorithmic infor-
mation theory and focus on symmetries rather than the more
general concept of modularity. In molecules, we take atoms
to be the building blocks and chemical bonds to be their
interfaces. Simple molecules, such as those in Fig. 3, for
which we are only interested in the bond connectivity, are an
example of a structure in which none of the interfaces be-
tween building blocks can be regarded as redundant. This is
because, unlike for polyominoes, we are not assuming any
inherent geometry for the building blocks. If two atoms play
the same self-assembly role but represent atoms of different
atomic species, they must be differentiated. This also goes
for atoms connected by different bond types. For example, in
glutamine �see Fig. 3�, the oxygen atom connected with a
double bond is a leaf of the self-assembly tree just like any of
the �implicit� hydrogen atoms, but it requires a separate
building block. The two molecules in our example of Fig. 3
are the amino acid glutamine and the explosive nitroglycer-
ine, which both consist of 20 atoms. Nitroglycerine however
exhibits a much higher degree of modularity, with its three
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FIG. 2. The complexity values of these four polyomino shapes
illustrate why the self-assembly approach is an effective way of
measuring symmetry and modularity without requiring prior as-
sumptions. If two shapes are of equal size, the one with more sym-
metry and modularity has a lower complexity value—compare A
with B, and C with D. If on the other hand, two shapes are of
similar complexity, but of different size, the larger one will be more
symmetric or modular �compare B and C�.

SELF-ASSEMBLY, MODULARITY, AND PHYSICAL… PHYSICAL REVIEW E 82, 026117 �2010�

026117-3



NO3 groups, and therefore has a much lower complexity of
K=55.3 bits than the glutamine, for which the value is K
=94.7 bits. Note that nitroglycerine does not exhibit simple
threefold symmetry, but a more subtle, hierarchical modular-
ity, in which the subset of a module reappears in another
place. Such structural features would be harder to identify
using traditional approaches to the measurement of molecu-
lar complexity �24–26�, which rely on Shannon entropy, be-
cause these approaches do not take into account the relative
complexity of different building blocks �cf. Figures 1�o� and
1�p� in �26�� and conversely can treat components of the
same self-assembly module as inequivalent points �see dis-
cussion of Fig. 1�h� in �24��, thereby missing the underlying
modularity.

VI. APPLICATION TO PROTEIN COMPLEXES

Protein complexes are an important class of biochemical
structures, consisting of several individually formed and
folded protein subunits bound together to produce functional
cellular machinery. These subunits may include different
types of protein and several copies of the same protein. The
physical structure of protein complexes, as with protein
themselves, is important in determining the functionality of
the complex. The manner in which the subunits bond to form
the final complex is known as the quaternary structure of the
complex. The 3DComplex database �27� contains a descrip-
tion of the quaternary structures of thousands of protein com-
plexes, in terms of subunit type and intersubunit bonding. If

we have two proteins which play the same role in the self-
assembling structure but are different proteins, we can
choose to count them as two different building blocks �analo-
gous to the aforementioned distinction between atomic spe-
cies in molecules�. Here, however, we are only interested in
the connectivity of proteins �equivalent to the QS Topology
level in the 3DComplex database�, and therefore do not dis-
tinguish between different proteins.

As an illustration of our approach, we compare the com-
plexity values of two protein complexes in Fig. 4. These are
a chaperonin complex �E. coli chaperonin GroEL; PDB iden-
tifier: 1oel� and an allergen complex �P. pratense allergen
PHL P 6; PDB identifier: 1nlx�. Both consist of 14 proteins,
but the chaperonin complex has a lower complexity value of
K=31.5 bits, reflecting the fact that it has a higher symmetry
than the allergen complex for which K=50.2 bits.

More complex protein structures require more unique in-
tersubunit bond types, compared to less complex structures
which can reuse bonds and be constructed through simple
repetition of subunits. As an increase in bond types corre-
sponds biologically to the presence of more unique bonding
sites on subunit proteins, more complex protein structures
can be thought of as requiring more evolutionary innovation
to produce, and would therefore perhaps be expected to oc-
cur less frequently in biological organisms �13,28�. This hy-
pothesis is confirmed by Fig. 5, which shows a histogram of
complexity values—normalized by the size of the protein
complex, to avoid size effects—for the 15733 protein com-
plexes in the 3DComplex database �27�. We note that this
distribution closely �R2=0.93� follows a power-law decay.
However, given the complex evolutionary pressures acting
on the different protein complexes, and the fact that the pro-
tein data bank �PDB� database may itself contain biases be-
cause some complexes are easier to crystallize than others,
we feel it might be too early to speculate what the exact
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modular structure of nitroglycerine with its three NO3 groups means
that its complexity value K, at 52.2 bits, is little more than half that
of glutamine �K=91.0 bits�. Note that nitroglycerine does not have
simple threefold symmetry, but a more subtle modular structure,
which the self-assembly approach fully reveals. Note that we do not
consider neutral colors in this structure.
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FIG. 4. We measure the complexity of two homomeric protein
complexes, with PDB identifiers 1oel �a chaperonin, top� and 1nlx
�an allergen, bottom�, which have 14 proteins each. The symmetry
of the chaperonin complex means that it has a significantly lower
complexity value of K=31.5 bits, compared to K=50.2 bits for the
allergen complex. Note that we do not consider neutral colors, and
in the case of the chaperonin complex we have three self-interacting
colors �cs=3�.
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origin of this observed power-law behavior might be.
In both of these cases—molecules and protein

complexes—we use unlabelled faces, so that Fi=� j
cikj

�i� �see
the discussion in the Minimum Kit section above�. While the
chemical bonds of atoms and the interfaces of proteins are in
fact usually constrained, this information is not part of the
structural formula of the molecule or the network of contacts
between adjacent proteins in the protein complex. If this ad-
ditional level of resolution is required, a more realistic self-
assembly model can be constructed, based on the exact three-
dimensional characteristics of the atoms or proteins, and
using the F�ci , f i� term specified above.

VII. MODULARITY

The self-assembly perspective provides an intuitive defi-
nition of the modularity of a structure: If part of the structure
appears several times, it still only needs to be encoded once.
This is why modularity and symmetry lead to more efficient
self-assembly kits and a lower value of the complexity mea-
sure K. Formally we can define the modularity m of a struc-
ture of size z as the average number of times one of the b
different building block types in the minimum assembly kit
is used in the structure, which is simply

m =
z

b
.

We can furthermore define a module formally as a connected
set of building blocks which appears more than once in a
given structure. Note that modules can overlap: A subset of a
module could form another module, appearing a different
number of times than the whole module. The molecule in
Fig. 3�a� and the protein complex in Fig. 4 illustrate such
cases. The majority of protein complexes in the 3DComplex

database show modularity values of two or greater �Fig. 6�
with a distinct trend observable along the m=2 line, indicat-
ing many proteins consist of structures involving two copies
of all constituent subunits.

To further illustrate how the complexity K and the modu-
larity m measure the physical complexity of protein com-
plexes, we consider two of the outliers in the complexity and
modularity histograms, the high-complexity 1ohh �Fig. 5�
and high-modularity 1b5s �Fig. 6�. 1ohh consists of two cop-
ies of bovine F1-ATPase �itself a protein complex� in com-
plex with its regulatory protein IF1 �29�. The regulatory pro-
tein binds simultaneously to both copies of the main
complex, but slightly asymmetrically, leading to asymmetric
interactions being recorded in the 3DComplex database. This
asymmetry results in extra information being required to de-
scribe the combined quaternary structure, and the observed
high-complexity value. 1b5s is a multienzyme complex con-
sisting of multiple copies of dihydrolipoyl acetyletransferase
�E2p� �30�. The E2p protein has the potential to occupy
quasiequivalent positions, as also seen in virus structures
�31�, and is also observed to form cubic complexes. The
highly modular, dodecahedral structure exhibited in 1b5s is
an efficient way of grouping many copies of an active pro-
tein in a geometry that facilitates enzymatic activity: the
large windows in the structure allow passage of the substrate
and product into the inner cavity. The structure of the protein
subunits allows this structure to be realized with just one
building block type, resulting in high modularity.

VIII. DISCUSSION

Here we discuss several subtleties and extensions of the
self-assembly framework, and its relationship to the formal
theory of algorithmic complexity.
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A. Steric effects

For structures that contain loop structures formed by re-
peating units, it is possible to exploit steric effects in order to
reduce the size of the assembly kit below the minimum size
of the algorithm described in Appendix A �which explicitly
excludes such effects in its definition�. An example of a
steric effect would be a polyomino that is self-limiting in a
deterministic way, purely because of the geometric con-
straints of the building blocks. As long as each distinct type
of loop structure is formed by building blocks of a distinct
species �or set of species�, the amount of information re-
quired to describe this structure can be taken to be the same
as that required to describe an infinite chain consisting of the
same elements. A simple example is given in Fig. 7. The
crucial assumption which has to hold for this simplification
to work is that the geometry of the loop is specified by the
species �and, by extension, the geometry� of the building
block. For proteins as building blocks of protein complexes,
this is a very reasonable assumption. In the case of molecules
it would furthermore be possible to simplify the self-
assembly kit by introducing building blocks representing
common small loop structures, such as carbon rings.

B. Multiple nuclei

In principle one could consider beginning the self-
assembly with multiple nuclei in place. Multiple nuclei may,
through steric hindrance or modular repetition, be used to
achieve certain structures in a more efficient way, using
fewer building blocks than a single nucleus would require.
This reduction in complexity may however be countered in
practical applications by the difficulty of achieving the re-
quired precise relative displacements of nucleus particles. It
is because of these reasons that we have concentrated on a
single nucleus model, as the positioning of multiple nuclei
makes it much more difficult to construct a general measure
of complexity.

Within the single nucleus category, we further distinguish
between structure with a specified nucleus block and those
with general nucleus blocks. The former case encompasses
those assembly kits which are guaranteed to produce a given

output structure if and only if a specified block is used as the
nucleus �in other words, this block is placed on the substrate
before other blocks are introduced to the system�. General-
nucleus assembly kits by contrast will form the same output
structure regardless of which block is placed first. See Fig. 8
for an illustration how specifying a nucleus can reduce the
complexity of a assembly kit.

Which of these classes to employ in a study depends on
the motivating context of the self-assembling system under
consideration. If modeling assembly in a diffusion-
dominated environment, for example, the order in which in-
teracting particles meet cannot be specified, so the general-
nucleus model is more appropriate. In a controlled
environment where a nucleus can be placed to initiate assem-
bly, the single-nucleus model is applicable. The two cases
correspond to different “languages” being used to measure
complexity, and so care must be taken in comparative studies
to only compare numerical complexity values from within
one class.

C. Kolmogorov complexity

Our approach to measuring physical complexity is moti-
vated by the concept of Kolmogorov complexity. It is how-
ever important to note that while Kolmogorov complexity
itself is uncomputable due to the halting problem �3�, our
minimum is not. This is because the runtime of a finite com-
puter program with finite output can be infinite, while the
assembly time of a finite shape is always finite �5�. It is
possible to define the actual Kolmogorov complexity of a
shape �6�, but this is uncomputable. Our computable com-
plexity measure K�A� forms a bound on this unattainable
quantity, and is dependent on the way in which we encode
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FIG. 7. A simple example of a steric effect. The two blocks 1
and 2 have colors A and B on their interfaces. These colors attract
each other. All other faces are neutral. Certain arrangements of col-
ors will lead to self-delimiting structures purely because of the ge-
ometry of the building blocks. The complexity of such structures
can be taken to be the same as that of an infinite chain consisting of
the same sequence of blocks, but only if each loop structure inside
a bigger structure has a distinct �set of� species of building blocks.
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FIG. 8. Illustration of nuclei placement. �Top:� If we specify
either of the two starred blocks as nuclei, deterministic bonding will
result. However, if any other block is used as the nucleus, bonding
will be non-deterministic, as both the 	1,0,0,4
 and 	1,0,5,0
 blocks
can join the open ‘2’ faces that will form. This self-assembly kit has
a complexity of K=42.4 bits. �Bottom:� A general nucleus system
to produce the same structure, illustrating the required increase in
complexity �K=98.1 bits�.
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the description of the assembly kit. It therefore is useful for
the analysis, classification and comparison of physical struc-
tures, as long as we use a consistent encoding.

IX. CONCLUSION

We present a general approach for measuring the physical
complexity of any connected structure, using the language of
self-assembly. This approach is capable of detecting symme-
try and modularity in a given structure, because these fea-
tures significantly decrease the size of the required self-
assembly instruction set. It therefore provides a powerful
tool for automated classification and categorization of physi-
cal structures, and could be applied to large-scale databases
of molecules and crystal structures. In addition, the connec-
tion between self-assembly and complexity is an argument
for the ubiquity of modular and symmetric features in bio-
logical systems: Since many such systems self-assemble,
evolving sets of self-assembly instructions are likely to yield
symmetric and modular structures, as the instructions for
these are more efficient to evolve.

ACKNOWLEDGMENTS

S.E.A. was supported by The Royal Society, U.K. I.G.J.
and A. A. L. were supported by te EPRSC. T.M.A.F. was
supported by the Defense Advanced Research Projects
Agency �DARPA�, Grant No. HR0011–09–1-0055.

APPENDIX A: GENERAL ALGORITHM FOR MINIMIZING
THE ASSEMBLY KIT

Below we describe a general algorithm for minimizing the
assembly kit size for a connected physical structure without

relying on steric effects. Taking these into account can mini-
mize the assembly kit even further, but their computation is
highly dependent on the geometry of the system and in most
cases nontrivial �see Discussion�. Note also that in some
structures, such as polyominoes, some edges of the contact
graph �meaning the graph connecting neighboring building
blocks of the structure� can be redundant in the context of the
assembly process. Whether contact graph edges in general
can be redundant or not depends on the nature of the struc-
ture and the assumptions connected to the self-assembly of
that structure �see Discussion�. Similarly, when interfaces are
defined by geometry, as for the four sides of a polyomino
building block, it makes sense to introduce a neutral color
��=1 below�. In systems with a varying number of interfaces
on the building blocks, neutral colors are usually not re-
quired ��=0�.

To minimize the assembly kit we take the following steps:
�1� Divide the structure into building blocks �usually a

natural division�. The number of building blocks is the size
of the structure, denoted z.

�2� Determine the equivalence of these units in terms of
any additional criteria �e.g., types of atoms, proteins�. This
categorization is the species of building block.

�3� Establish a contact graph for the units �in some cases,
such as molecules, this may require setting a distance cutoff�.
The contact graph can be represented as a z�z adjacency
matrix aij, which is 1 if units i and j are in contact, and 0
otherwise.

�4� If edges can be redundant: Consider the space of all
spanning subgraphs of this graph.

�5� For the contact graph �in the case of no redundant
edges� or each subgraph �if redundant edges exist�:
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FIG. 9. An illustration of the crucial steps 5b to 5j of the algorithm for minimizing the assembly kit size, in this case for a polyomino.
In every iteration of category 1 labelings �left�, all unlabelled nodes with exactly one unlabelled neighbor are given labels which distinguish
them according to their topologically distinct neighborhoods of unlabelled and labeled tiles. This procedure is repeated until no more blocks
can be labeled in this way. The remaining blocks are given category 2 labelings �right� which are applied simultaneously, with each label
distinguishing the topological neighborhoods of the tiles in the previous iteration. Note that in the last iteration the labelings have stabilized,
and only the interfaces of the building block types are updated. For structures in which edges can be redundant, this operation can be
performed for all spanning subgraphs of the structure’s connectivity graph, which further reduces the complexity. �In polyominoes, edges can
be redundant, but there are no spanning subgraphs in the above example.�

SELF-ASSEMBLY, MODULARITY, AND PHYSICAL… PHYSICAL REVIEW E 82, 026117 �2010�

026117-7



�a� Classify the nodes of the �sub�graph according to the
number of connections and �depending on the geometry� the
arrangement of connections.

�b� Label all nodes which are not yet labeled and which
have exactly one unlabelled node among their neighbors.
The new labels distinguish nodes according to their species
as well as the topologically distinct label distributions among
their neighbors.

�c� Repeat step 5b until all nodes are labeled or no more
nodes can be labeled.

�d� All labeled nodes we define as category 1 nodes and
any remaining unlabelled nodes �i.e., nodes with at least two
unlabelled neighbors� are defined as category 2 nodes.

�e� Label all category 2 nodes simultaneously according
to their neighborhoods.

�f� Repeat step 5e, using the previous labelings to distin-
guish neighborhoods, until labelings are stable.

�g� These final labels, for nodes in both categories, denote
the building block types. The number of final labels, or types,
is b. These can be subdivided in to b1 category 1 building
block types and b2 category 2 building block types. The cat-
egory 2 type of block i is denoted ti.

�h� The degree of each building block type i in the contact
graph �or subgraph� is the number of its interfaces f i.

�i� For unlabelled faces, the total number of colors, in-
cluding �� 	0,1
 neutral colors, is c=2�b1−1+�0b1

�+�

+�i,j=1
b2 	1−�k,l=1

z �1− �akl�itk
� jtl

��
. The sum expression gives
the number of different types of interfaces which occur be-
tween category 2 building block types. Heterogeneous inter-
faces are double counted as, unlike homogeneous interfaces,
they require two colors. The number of colors ci on building
block i is equal to the number of building block types in its
contact graph neighbor set. For labeled faces the sum runs
over all labeled faces of the category 2 building blocks, in-
stead of just running over b2, and the product runs over all
pairs of faces in the structure. The adjacency matrix akl be-
comes a matrix between the faces and the �itk

and � jtl
become

indicators whether e.g., face k is an example of the labeled
face i. And the number of colors ci on building block i is now
equal to the number of distinct pairs of labeled face types in
the face contact graph neighbor set.

�j� Using b, c, 	f i
 and 	ci
 in Eq. �1�, calculate the infor-
mation I required to specify this assembly kit, and thus the
complexity K of the structure.

6. If edges can be redundant: Minimize this quantity over
all spanning subgraphs.

Figure 9 illustrates the crucial steps 5b to 5j for a polyo-
mino.

APPENDIX B: JOINT, CONDITIONAL, AND MUTUAL
COMPLEXITY

If we have two structures A and B with minimum assem-

bly kits S̃A and S̃B, then the joint minimum assembly kit S̃A,B
is the minimum kit which can assemble both structures if an
appropriate subset of building blocks is chosen. The amount
of information required to describe this kit is the joint com-
plexity K�A ,B� of A and B. This definition can easily be
generalized to more than two structures.

Let us define S̃A� as the subset of S̃A,B which forms struc-

ture A, and S̃B� as the subset of S̃A,B which forms structure B

�note that e.g., S̃A is not necessarily equal to S̃A� due to the

color minimization�, so that S̃A,B= S̃A� � S̃B� . Furthermore, let

us define the conditional minimum assembly kit S̃A�B as the

set of building blocks we need in addition to S̃B� in order to
form structure A. Then we can write:

S̃A�B = S̃A,B \ S̃B� ,

where \ denotes the set theoretic difference operation. The

definition of S̃B�A follows accordingly. Hence we can also

O

OH

NH2

O

H2N

O

OH

NH2

O

H2N

Amino acids

5 4

4

3 2 1

3

2

1

6 2 1

2

4

3 2 1

1

Polyominoes

A)

B)

C)

D)

FIG. 10. POLYOMINOES �left�: The two polyominoes �shown
in �a� and �b�� share many building block types, with the only two
unique ones being blocks 5 and 6 �marked in gray�. Hence, the joint

set is S̃A,B= 	1,2 ,3 ,4 ,5 ,6
, the mutual set is S̃A:B= 	1,2 ,3 ,4
 and

the conditional sets are: S̃A�B= 	5
 and S̃B�A= 	6
. Building block 5
contributes K�A �B�=2 log2 9+2=8.4 bits to the complexity K��A�
of the A shape, while block 6 contributes K�B �A�=4 log2 9
=12.7 bits to K��B�. It follows therefore that the joint complexity is
K�A ,B�=67.4 bits and the mutual complexity is K�A :B�
=46.4 bits, compared to the standalone values of K�A�=K��A�
=54.7 bits and K�B�=K��B�=59.1 bits �see Fig. 2�. AMINO AC-
IDS �right�: The two amino acid molecules asparagine �top, C� and
glutamine �bottom, D� share the amino �NH2� and carboxyl �CO2H�
groups common to all amino acids, as well as the carboxamide
group �CONH2�. In a self-assembly framework these two structures
have complexities of K�Asn�=74.3 bits and K�Gln�=91 bits.
While K��Gln�=K�Gln�, we have K��Asn�=78.0 bits. Because the
two molecules share three groups, their joint complexity is not
much larger than their individual complexities, at K�Asn ,Gln�
=104.0 bits, and their mutual complexity is not much smaller, at
K�Asn :Gln�=65 bits, than the complexities of the individual mol-
ecules. Their conditional complexities are correspondingly low, at
K�Asn �Gln�=13 bits and K�Gln �Asn�=26 bits. The conditional
complexities give the amount of information required to describe
the building blocks �atoms� which are unique �in their self-assembly
role� to the given amino acid. These atoms are marked with gray
circles.
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define a conditional complexity K�A �B�, which is the amount

of information needed to describe the building blocks in S̃A�B.
Because the way we describe the assembly kit is additive in
the number of building blocks, we can write

K�A�B� = K�A,B� − K��B� ,

since K��B� is the information required to describe the build-

ing blocks in S̃B� . The relationship between K�B� and K��B� is
given by

K��B� = K�B� + �
i

ci log2
cA,B

cB
,

where cA,B is the total number of colors in S̃A,B and cB is the

total number of colors in S̃B. Because of the minimization of
colors, cA,B=max�cA ,cB�. Hence, if cB�cA, then K��B�
=K�B�.

Similarly, we can define a mutual minimum assembly kit

S̃A:B, which corresponds to the intersection

S̃A:B = S̃A� � S̃B� = S̃A� \ S̃A�B = S̃B� \ S̃B�A.

From this follows the mutual complexity

K�A:B� = K��A� − K�A�B� = K��B� − K�B�A� = K��A� + K��B�

− K�A,B� . �3�

In order to account for the relative sizes of the structures we
compare using these measures, we can define relative ver-

sions of the above quantities. These are relative conditional
complexity:

Krel�A�B� =
K�A�B�
K��B�

and the relative mutual complexity

Krel�A:B� =
K�A:B�
K�A,B�

.

Note that the latter measure resembles the Jaccard index
�32�. For an illustration of joint, mutual and conditional com-
plexity, see Fig. 10.

APPENDIX C: NECKLACES

An a-ary necklace of length n is a string of n characters
taken from an alphabet of a possible characters. Cyclic rota-
tion of the string is ignored, so that, for example, 1234
�4123 �31�. A fixed-bond building block i, with f i faces and
ci colors, can then be represented by a ci-ary necklace of
length f i. The number of a-ary necklaces of length n is

N�n,a� =
1

n
�
i=1

v�n�

	�di�an/di �4�

where v�n� is the number of divisors of n, and di are these
divisors listed in order, from d1=1 to dv�n�=n. 	�n� is the
Euler totient function, returning the number of positive inte-
gers less than or equal to n that do not contain any factor in
common with n �the number of n’s relative primes�. For
n=4 and a=c we get the expression for Nc in the main text.

�1� A. N. Kolmogorov, Probl. Inf. Transm. 1, 3 �1965�.
�2� G. J. Chaitin, J. ACM 13, 547 �1966�.
�3� T. M. Cover and J. A. Thomas, Elements of Information

Theory �Wiley-Interscience, New York, 1991�.
�4� A. M. Turing, Proc. London Math. Soc. s2-42, 230 �1937�.
�5� P. W. K. Rothemund and E. Winfree, STOC ’00: Proceedings

of the 32nd Annual ACM Symposium on Theory of Computing
�ACM, New York, 2000�, pp. 459–468.

�6� D. Soloveichik and E. Winfree, SIAM J. Comput. 36, 1544
�2007�.

�7� C. Adami, Phys. Life. Rev. 1, 3 �2004�.
�8� G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci.

U.S.A. 99, 4769 �2002�.
�9� G. Krausch and R. Magerle, Adv. Mater. 14, 1579 �2002�.

�10� J. Israelachvili, Langmuir 10, 3774 �1994�.
�11� H. Fraenkel-Conrat and R. C. Williams, Proc. Natl. Acad. Sci.

U.S.A. 41, 690 �1955�.
�12� A. Zlotnick, J. Mol. Biol. 241, 59 �1994�.
�13� G. Villar, A. W. Wilber, A. J. Williamson, P. Thiara, J. P. K.

Doye, A. A. Louis, M. N. Jochum, A. C. F. Lewis, and E. D.
Levy, Phys. Rev. Lett. 102, 118106 �2009�.

�14� E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Nature
�London� 394, 539 �1998�.

�15� C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Nature

�London� 407, 493 �2000�.
�16� A. Chworos, I. Severcan, A. Y. Koyfman, P. Weinkam, E.

Oroudyev, H. G. Hansma, and L. Jaeger, Science 306, 2068
�2004�.

�17� R. P. Goodman et al., Science 310, 1661 �2005�.
�18� P. W. K. Rothemund, Nature �London� 440, 297 �2006�.
�19� K. Fujibayashi, R. Hariadi, S. H. Park, E. Winfree, and S.

Murata, Nano Lett. 8, 1791 �2008�.
�20� E. W. Weisstein, “Polyomino,” from MathWorld—A Wolfram

Web Resource. http://mathworld.wolfram.com/
Polyomino.html.

�21� E. W. Weisstein, “Necklace,” from MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/Necklace.html.

�22� H. Wang, Bell Syst. Tech. J. 40, 1 �1961�.
�23� G. Pólya, Acta Math. 68, 145 �1937�.
�24� N. Rashevsky, Bull. Math. Biophys. 17, 229 �1955�.
�25� E. Trucco, Bull. Math. Biophys. 18, 129 �1956�.
�26� S. H. Bertz, J. Am. Chem. Soc. 103, 3599 �1981�.
�27� E. D. Levy, J. B. Pereira-Leal, C. Chotia, and S. A. Teichmann,

PLOS Comput. Biol. 2, e155 �2006�.
�28� E. D. Levy, E. B. Erba, C. V. Robinson, and S. A. Teichmann,

Nature �London� 453, 1262 �2008�.
�29� E. Cabezón, M. G. Montgomery, A. G. W. Leslie, and J. E.

Walker, Nat. Struct. Mol. Biol. 10, 744 �2003�.

SELF-ASSEMBLY, MODULARITY, AND PHYSICAL… PHYSICAL REVIEW E 82, 026117 �2010�

026117-9

http://dx.doi.org/10.1145/321356.321363
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1137/S0097539704446712
http://dx.doi.org/10.1137/S0097539704446712
http://dx.doi.org/10.1016/j.plrev.2004.01.002
http://dx.doi.org/10.1073/pnas.082065899
http://dx.doi.org/10.1073/pnas.082065899
http://dx.doi.org/10.1002/1521-4095(20021104)14:21<1579::AID-ADMA1579>3.0.CO;2-6
http://dx.doi.org/10.1021/la00022a062
http://dx.doi.org/10.1073/pnas.41.10.690
http://dx.doi.org/10.1073/pnas.41.10.690
http://dx.doi.org/10.1006/jmbi.1994.1473
http://dx.doi.org/10.1103/PhysRevLett.102.118106
http://dx.doi.org/10.1038/28998
http://dx.doi.org/10.1038/28998
http://dx.doi.org/10.1038/35035038
http://dx.doi.org/10.1038/35035038
http://dx.doi.org/10.1126/science.1104686
http://dx.doi.org/10.1126/science.1104686
http://dx.doi.org/10.1126/science.1120367
http://dx.doi.org/10.1038/nature04586
http://dx.doi.org/10.1021/nl0722830
http://mathworld.wolfram.com/Polyomino.html
http://mathworld.wolfram.com/Polyomino.html
http://mathworld.wolfram.com/Necklace.html
http://dx.doi.org/10.1007/BF02546665
http://dx.doi.org/10.1007/BF02477860
http://dx.doi.org/10.1007/BF02477836
http://dx.doi.org/10.1021/ja00402a071
http://dx.doi.org/10.1371/journal.pcbi.0020155
http://dx.doi.org/10.1038/nature06942
http://dx.doi.org/10.1038/nsb966


�30� T. Izard, A. Ævarsson, M. D. Allen, A. H. Westphal, R. N.
Perham, A. de Kok, and W. G. J. Hol, Proc. Natl. Acad. Sci.
U.S.A. 96, 1240 �1999�.

�31� D. Caspar and A. Klug, Cold Spring Harb Symp. Quant Biol.
27, 1 �1962�.

�32� P. Jaccard, Bull. Soc. Vaud. Sci. Nat. 37, 547 �1901�.
�33� For free necklaces, which represent building blocks with no

fixed chirality there are Mc= �c4+2c3+3c2+2c� /8 necklaces
�21�. In general we will assume fixed chirality.

AHNERT et al. PHYSICAL REVIEW E 82, 026117 �2010�

026117-10

http://dx.doi.org/10.1073/pnas.96.4.1240
http://dx.doi.org/10.1073/pnas.96.4.1240

