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Figure 1: Recurrent Memory Transformer retains information across up to 2×106 tokens. By augmenting
a pre-trained BERT model with recurrent memory (Bulatov et al., 2022), we enabled it to store task-specific
information across 7 segments of 512 tokens each. During inference, the model effectively utilized memory
for up to 4,096 segments with a total length of 2,048,000 tokens—significantly exceeding the largest input
size reported for transformer models (64K tokens for CoLT5 (Ainslie et al., 2023), and 32K tokens for GPT-
4 (OpenAI, 2023)). This augmentation maintains the base model’s memory size at 3.6 GB in our experiments.

Abstract

This technical report presents the application of a recurrent memory to extend the
context length of BERT, one of the most effective Transformer-based models in
natural language processing. By leveraging the Recurrent Memory Transformer
architecture, we have successfully increased the model’s effective context length
to an unprecedented two million tokens, while maintaining high memory retrieval
accuracy. Our method allows for the storage and processing of both local and global
information and enables information flow between segments of the input sequence
through the use of recurrence. Our experiments demonstrate the effectiveness of
our approach, which holds significant potential to enhance long-term dependency
handling in natural language understanding and generation tasks as well as enable
large-scale context processing for memory-intensive applications.

1 Introduction

The Transformer model (Vaswani et al., 2017) has been widely adopted and used in various research
areas and industrial applications. The most important issue of the model is quadratic complexity of
attention operation, that makes large models increasingly difficult to apply to longer inputs.



This report we show that by using simple token-based memory mechanism introduced in (Bulatov
et al., 2022) can be combined with pretrained transformer models like BERT (Devlin et al., 2019)
with full attention and full precision operations can be applied to sequences longer than 1 million
tokens using a single Nvidia GTX 1080Ti GPU.

Contributions

1. We enhance BERT by incorporating token-based memory storage and segment-level recurrence
with recurrent memory (RMT).

2. We demonstrate that the memory-augmented BERT can be trained to tackle tasks on sequences
with lengths up to seven times its originally designed input length (512 tokens).

3. We discovered the trained RMT’s capacity to successfully extrapolate to tasks of varying lengths,
including those exceeding 1 million tokens with linear scaling of computations required.

4. Through attention pattern analysis, we found the operations RMT employs with memory, enabling
its success in handling exceptionally long sequences.

2 Recurrent Memory Transformer

Figure 2: Recurrent memory mechanism. Memory
is passed to Transformer along input sequence embed-
dings, and memory output is passed to the next segment.
During training gradients flow from the current segment
through memory to the previous segment.

Starting from the initial Recurrent Memory
Transformer (Bulatov et al., 2022) (RMT), we
adapted it for a plug-and-play approach as a
wrapper for a range of popular Transformers.
This adaptation augments its backbone with
memory, composed of m real-valued trainable
vectors (Figure 2). The lengthy input is di-
vided into segments, and memory vectors are
prepended to the first segment embeddings and
processed alongside the segment tokens. For
encoder-only models like BERT, memory is
added only once at the beginning of the segment,
unlike (Bulatov et al., 2022), where decoder-
only models separate memory into read and
write sections. For the time step τ and segment
H0

τ , the recurrent step is performed as follows:

H̃0
τ = [Hmem

τ ◦H0
τ ], H̄

N
τ = Transformer(H̃0

τ ), [H̄
mem
τ ◦HN

τ ] := H̄N
τ ,

here N is a number of Transformer layers.

After the forward pass, H̄mem
τ contains updated memory tokens for the segment τ .

Segments of the input sequence are processed sequentially. To enable the recurrent connection, we
pass the outputs of the memory tokens from the current segment to the input of the next one:

Hmem
τ+1 := H̄mem

τ , H̃0
τ+1 = [Hmem

τ+1 ◦H0
τ+1].

Both memory and recurrence in the RMT are based only on global memory tokens. This allows the
backbone Transformer to remain unchanged, making the RMT memory augmentation compatible
with any model from the Transformer family.

2.1 Computational efficiency

We can estimate the required FLOPs for RMT and Transformer models of different sizes and sequence
lengths. We took configurations (vocabulary size, number of layers, hidden size, intermediate hidden
size, and number of attention heads) for the OPT model family (Zhang et al., 2022) and computed the
number of FLOPs for the forward pass following (Hoffmann et al., 2022). We also modified FLOP
estimates to account for the effect of RMT recurrence.

Figure 3 shows that RMT scales linearly for any model size if the segment length is fixed. We achieve
linear scaling by dividing an input sequence into segments and computing the full attention matrix
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Figure 3: RMT inference scales linearly with respect to the input sequence length. We estimate the required
FLOP increase for the forward pass compared to running models on sequences with 512 tokens. a: lengths
from 512 to 32,000 tokens. b: lengths from 32,000 to 2,048,000 tokens. The RMT segment length is fixed
at 512 tokens. While larger models (OPT-30B, OPT-175B) tend to exhibit near-linear scaling on relatively
short sequences up to 32,000, they reach quadratic scaling on longer sequences. Smaller models (OPT-125M,
OPT-1.3B) demonstrate quadratic scaling even on shorter sequences. On sequences with 2,048,000 tokens,
RMT can run OPT-175B with ×29 fewer FLOPs and with ×295 fewer FLOPs than OPT-135M.

only within segment boundaries. Larger Transformer models tend to exhibit slower quadratic scaling
with respect to sequence length because of compute-heavy FFN layers (which scale quadratically
with respect to hidden size). However, on extremely long sequences > 32,000, they fall back to
quadratic scaling. RMT requires fewer FLOPs than non-recurrent models for sequences with more
than one segment (> 512 in this study) and can reduce the number of FLOPs by up to ×295 times.
RMT provides a larger relative reduction in FLOPs for smaller models, but in absolute numbers, a
×29 times reduction for OPT-175B models is highly significant.

3 Memorization Tasks

To test memorization abilities, we constructed synthetic datasets that require memorization of simple
facts and basic reasoning. The task input consists of one or several facts and a question that can be
answered only by using all of these facts. To increase the task difficulty, we added natural language
text unrelated to the questions or answers. This text acts as noise, so the model’s task is to separate
facts from irrelevant text and use them to answer the questions. The task is formulated as a 6-class
classification, with each class representing a separate answer option.

Facts are generated using the bAbI dataset (Weston et al., 2016), while the background text is sourced
from questions in the QuALITY (Pang et al., 2022) long QA dataset.

Background text: ... He was a big man, broad-shouldered and still thin-waisted.
Eddie found it easy to believe the stories he had heard about his father ...

3.1 Fact Memorization

The first task tests the ability of RMT to write and store information in memory for an extended time
(Figure 4, top). In the simplest case, the fact is always located at the beginning of the input, and
the question is always at the end. The amount of irrelevant text between the question and answer is
gradually increased, so that the entire input does not fit into a single model input.

Fact: Daniel went back to the hallway.
Question: Where is Daniel?
Answer: hallway
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Figure 4: Memory-intensive synthetic tasks. Synthetic tasks and the required RMT operations to solve them
are presented. In the Memorize task, a fact statement is placed at the start of the sequence. In the Detect and
Memorize task, a fact is randomly placed within a text sequence, making its detection more challenging. In
the Reasoning task, two facts required to provide an answer are randomly placed within the text. For all tasks,
the question is at the end of the sequence. ’mem’ denotes memory tokens, ’Q’ represents the question, and ’A’
signifies the answer.

3.2 Fact Detection & Memorization

Fact detection increases the task difficulty by moving the fact to a random position in the input
(Figure 4, middle). This requires the model to first distinguish the fact from irrelevant text, write it to
memory, and later use it to answer the question located at the end.

3.3 Reasoning with Memorized Facts

Another important operation with memory is reasoning using memorized facts and current context. To
evaluate this function, we use a more complicated task, where two facts are generated and positioned
randomly within the input sequence (Figure 4, bottom). The question posed at the end of the sequence
is formulated in a way that any of the facts must be used to answer the question correctly (i.e., the
Two Argument Relation bAbI task).

Fact1: The hallway is east of the bathroom.
Fact2: The bedroom is west of the bathroom.
Question: What is the bathroom east of?
Answer: bedroom

4 Experiments

We use the pretrained bert-base-cased model from HuggingFace Transformers (Wolf et al., 2020)
as the backbone for RMT in all experiments. All models are augmented with a memory size of 10
and trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with linear learning rate
scheduling and warmup. Full training parameters will be available in the training scripts in the
GitHub repository 1.

We train and evaluate our models using 4-8 Nvidia 1080ti GPUs. For longer sequences, we speed up
evaluation by switching to a single 40GB Nvidia A100.

4.1 Curriculum Learning

We observe that using a training schedule greatly improves solution accuracy and stability. Initially,
RMT is trained on shorter versions of the task, and upon training convergence, the task length is
increased by adding one more segment. The curriculum learning process continues until the desired
input length is reached.

1https://github.com/booydar/t5-experiments/tree/scaling-report
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Figure 5: Generalization of memory retrieval. Evaluation of checkpoints trained on 1-7 segment tasks on
varying input lengths. a: Memorization task, b: Detection & memorization, c: Reasoning. Models trained on
more than 5 segments generalize well on longer tasks.

In our experiments, we begin with sequences that fit in a single segment. The practical segment size
is 499, as 3 special tokens of BERT and 10 placeholders for memory are reserved from the model
input, sized 512. We notice that after training on shorter tasks, it is easier for RMT to solve longer
versions as it converges to the perfect solution using fewer training steps.

4.2 Extrapolation Abilities

How well does RMT generalize to different sequence lengths? To answer this question, we evaluate
models trained on a varying number of segments to solve tasks of larger lengths (Figure 5). We
observe that models tend to perform well on shorter tasks. The only exception is the single-segment
reasoning task, which becomes hard to solve once the model is trained on longer sequences. One
possible explanation is that since the task size exceeds one segment, the model stops expecting the
question in the first segment, leading to quality degradation.

Interestingly, the ability of RMT to generalize to longer sequences also emerges with a growing
number of training segments. After being trained on 5 or more segments, RMT can generalize nearly
perfectly for tasks twice as long.

To test the limits of generalization, we increase the validation task size up to 4096 segments or
2,043,904 tokens (Figure 1). RMT holds up surprisingly well on such long sequences, with Detect &
memorize being the easiest and Reasoning task the most complex.
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Figure 6: Attention maps for operations with memory. These heatmaps show operations performed during
specific moments of a 4-segment reasoning task. The darkness of each pixel depends on the attention value
between the corresponding key and value. From left to right: RMT detects the first fact and writes its content
to memory ([mem] tokens); the second segment contains no information, so the memory keeps the content
unchanged; RMT detects the second fact in reasoning tasks and appends it to memory; CLS reads information
from the memory to answer the question.

5 Attention Patterns of Memory Operations

By examining the RMT attention on specific segments, as shown in Figure 6, we observe that
memory operations correspond to particular patterns in attention. Furthermore, the high extrapolation
performance on extremely long sequences, as presented in Section 5.2, demonstrates the effectiveness
of learned memory operations, even when used thousands of times. This is particularly impressive,
considering that these operations were not explicitly motivated by the task loss.

6 Related work

Our work revolves around the concept of memory in neural architectures. Memory has been a
recurrent theme in neural network research, dating back to early works (McCulloch and Pitts, 1943;
Stephen, 1956) and significantly advancing in the 1990s with the introduction of the Backpropagation
Through Time learning algorithm (Werbos, 1990) and Long-Short Term Memory (LSTM) neural
architecture (Hochreiter and Schmidhuber, 1997). Contemporary memory-augmented neural net-
works (MANNs) typically utilize some form of recurrent external memory separate from the model’s
parameters. Neural Turing Machines (NTMs) (Graves et al., 2014) and Memory Networks (Weston
et al., 2015) are equipped with storage for vector representations accessible through an attention
mechanism. Memory Networks (Weston et al., 2015; Sukhbaatar et al., 2015) were designed to
enable reasoning through sequential attention over memory content.

NTMs, followed by Differentiable Neural Computer (DNC) (Graves et al., 2016) and Sparse DNC
(Rae et al., 2016), are implemented as recurrent neural networks capable of writing to memory
storage over time. All these models are differentiable and trainable via backpropagation through
time (BPTT). Parallel research lines extend recurrent neural networks, such as LSTM, with data
structures like stacks, lists, or queues (Joulin and Mikolov, 2015; Grefenstette et al., 2015). MANN
architectures with more advanced addressing mechanisms, such as address-content separation and
multi-step addressing, have been proposed in (Gulcehre et al., 2016, 2017; Meng and Rumshisky,
2018). The Global Context Layer model (Meng and Rumshisky, 2018) employs address-content
separation to address the challenge of training content-based addressing in canonical NTMs.

Memory is often combined with Transformers in a recurrent approach. Long inputs are divided into
smaller segments, processed sequentially with memory to access information from past segments.
Transformer-XL (Dai et al., 2019) preserves previous hidden states for reuse in subsequent segments,
while Compressive Transformer (Rae et al., 2020) adds new compressed memory. Ernie-Doc (Ding
et al., 2021) enhances contextual information flow by employing same-layer recurrence instead of
attending to previous layer outputs of preceding segments. Memformer (Wu et al., 2022a) introduces
a dedicated memory module to store previous hidden states in summarized representations. Using a
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similar approach to Memformer, MART (Lei et al., 2020) adopts memory update rules analogous to
LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014). FeedBack Transformer (Fan
et al., 2020) implements full recurrence beyond the segment level.

A drawback of most existing recurrent methods is the need for architectural modifications that
complicate their application to various pre-trained models. In contrast, the Recurrent Memory
Transformer can be built upon any model that uses a common supported interface.

Some approaches redesign the self-attention mechanism to reduce computational complexity while
minimizing input coverage loss. Star-Transformer (Guo et al., 2019), Longformer (Beltagy et al.,
2020), GMAT (Gupta and Berant, 2020), Extended Transformer Construction (ETC) (Ainslie et al.,
2020), and Big Bird (Zaheer et al., 2020) limit attention distance and employ techniques such as
global representations to preserve long-range dependencies. Memory Transformer (Burtsev et al.,
2020) introduces memory by extending the unchanged model input with special memory tokens.

A common constraint of these methods is that memory requirements grow with input size during
both training and inference, inevitably limiting input scaling due to hardware constraints. The longest
Longformer, Big Bird, and Long T5 (Guo et al., 2022) models reported in their respective papers
have a maximum length of less than 33,000 tokens. CoLT5 (Ainslie et al., 2023) can handle up
to 64,000 tokens before running out of memory, and Memorizing Transformers (Wu et al., 2022b)
further extend memory through k-NN lookup.

7 Discussion

The problem of long inputs in Transformers has been extensively researched since the popularization
of this architecture. In this work, we demonstrate that applying Transformers to long texts does not
necessarily require large amounts of memory. By employing a recurrent approach and memory, the
quadratic complexity can be reduced to linear. Furthermore, models trained on sufficiently large
inputs can extrapolate their abilities to texts orders of magnitude longer.

Synthetic tasks explored in this study serve as the first milestone for enabling RMT to generalize to
tasks with unseen properties, including language modelling. In our future work, we aim to tailor
the recurrent memory approach to the most commonly used Transformers to improve their effective
context size.
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