
Regulatory motifs: structural and functional building blocks
of genetic computation
T. M. A. Fink

London Institute for Mathematical Sciences, Royal Institution, 21 Albermarle St, London W1S 4BS, UK

Developing and maintaining life requires a lot of computation.
This is done by gene regulatory networks. But we have little
understanding of how this computation is organized. I show
that there is a direct correspondence between the structural
and functional building blocks of regulatory networks, which I
call regulatory motifs. I derive a simple bound on the range of
function that these motifs can perform, in terms of the local
network structure. I prove that this range is a small fraction of
all possible functions, which severely constrains global network
behavior. Part of this restriction is due to redundancy in the
function that regulatory motifs can achieve—there are many
ways to perform the same task. Regulatory motifs help us un-
derstanding how genetic computation is organized and what it
can achieve.

Introduction
Genetic computation
Genetic computation is the computation done by gene regulatory
networks. It is responsible for the creation of body structures
[1], the determination of cell identity [2] and resilience to fluctu-
ations in the environment. Scientists have investigated genetic
computation for over 50 years [3, 4]. Their work tends to be at
two ends of a spectrum. On the one hand, they have studied the
average behavior of large networks. This work, exemplified by
Boolean networks [5–7], considers the global dynamics of a large
number interacting genes, typically with random connectivities
and update rules. On the other hand, scientists have studied
the specific behavior of small networks. This work, exemplified
by the dynamics of network motifs [8, 9], considers the specific
function of small genetic circuits [10, 11], typically comprising
just a handful of nodes.

Understanding how genetic computation is organized is one of
the top mathematical challenges of our time [12]. However, any
comprehensive theory requires that we know how global behavior
emerges from local function. Biology makes extensive use of
modularity: the repeated use of specific design elements that
can be usefully combined [13]. Modularity is likely to feature
in genetic computation as well: the existence of functional
subroutines that can be combined to create more advanced
functionality. We see this in modern software design, in which
new software is rarely written from scratch. Instead, it tends
to combine existing subroutines, like how programs written in
JavaScript combine a library of existing modular programs [14].

Structure and function
In any system that performs computation, structure and function
are different. Structure dictates which parts of the system can
interact, whereas function relates to the dynamics of the system
as it evolves over time. For example, in electronic computing, the
structure is the circuit architecture; in neural networks, it is the
synapse connectivity; in cellular automata, it is the neighbors
that define the lattice; in gene regulatory networks, it is the
network connectivity of molecules that can bind together. In
contrast to structure, function takes place in dynamical space
[15]. This is much larger than structure space, since the number
of states grows exponentially with the size of the system.

In general, at the most local level, structural and functional
elements must correspond, because computation always takes
place via a physical substrate—a physical dynamical system. In

electronic computing and neural networks, for example, these
elements are the transistor and the neuron. But as we progress to
higher organizational length scales, this correspondence breaks
down. Instead, function gets distributed over different parts of
the structure, like how a computer program is computed by
different parts of a circuit.

Any correspondence between structure and function in gene
regulatory networks is valuable because it provides a window
into how genetic computation is organized. The essence of
this paper is that there is a formal correspondence between
the two that extends beyond individual molecular logics, and
this tells us how genetic computation is built up and constrained.

Genes and transcription factors
One of the distinctive features of gene regulatory networks is
their bipartite nature: genes and transcription factors talk to
each other but not themselves [16–18]. To see why, recall that a
transcription factor is a protein or complex of proteins which are
synthesized from expressed genes. Thus a transcription factor
depends on one or more genes. A gene is a particular segment of
DNA that codes for a protein, flanked by one or more binding
sites for different transcription factors, which together promote
or block the transcription of the gene. Thus a gene depends on
one or more transcription factors. In this way, the expression
levels of genes are determined by those of other genes, but only
indirectly—transcription factors act as middlemen (The same is
true if we swap genes and transcription factors, but I stick to
the gene-centric perspective for simplicity.)

In previous work [18], I showed that a consequence of this bi-
partite nature is that the logical dependencies that one gene can
have on other genes—what I call biological logics—are restricted.
In other words, many of the possible logical dependencies are
forbidden. I was able to enumerate these biological logics, some
of which are given in [18], but I was unable to derive a simple
expression for their number. By casting the problem in terms of
structural and functional building blocks, in this work I derive
a deeper understanding of the restriction on biological logics,
and how they combine to perform more advanced computation.

Logics
I take genes and transcription factors to be either expressed or
not expressed. This means that the expression of a gene is a
Boolean function of the transcription factors that regulate it,
and the expression of a transcription factor is a Boolean function
of the genes that code for its proteins. A Boolean function is
just a logic gate—a lookup table for the state of the output
given the states of the inputs. I refer to a Boolean function
and a logic interchangeably, with a bias towards logic, which is
simpler. (Debate about discrete versus continuous expression
neglects a deeper concern over whether sophisticated continuous
computation is even possible [19].)

There are 22n logics of n inputs. For example, for n = 2, these
are true, false, a, b, a, b ab, ab, ab, ab, a + b, a + b, a + b, a + b,
ab + ab and ab + ab. In this notation, a means not a, ab means
a and b, and a + b means a or b. Notice that two of these 16
logics depend on no inputs, four depend on one input, and 10
depend on two inputs. As we shall see, an important quantity is
the number of logics of n inputs which depend on all n inputs,

2

π
tn

f

g1 g2 gn

π
t2

π
t1

transcription factors

genes

genes

C

A Regulatory motif

π
tn

π
t2

π
t1

genes

genesB f

C

 Projected regulatory motif

Short- Regulatory Lower Biological Uppper Projected All
hand motifs bound logics bound regulatory logics

clower c cupper motifs `

{1} 2 4 4 4

{2} 14 16 16 16

{3} 254 256 256 256

{1, 1} 10 16 40 16

{1, 2} 70 88 160 256

{2, 2} 490 520 640 65, 536

{1, 3} 1,270 1,528 2,560 65, 536

{2, 3} 8,890 9,160 10,240 4.3× 109

{3, 3} 161,290 161,800 163,840 1.8× 1019

{1, 1, 1} 218 256 1,744 256

{1, 1, 2} 1,526 1,696 6,976 65,536

{1, 2, 2} 10,682 11,344 27,904 4.3× 109

{1, 1, 3} 27,686 30,496 111,616 4.3× 109

{2, 2, 2} 74,774 76,288 111,616 1.8× 1019

{1, 2, 3} 193,802 204,304 446,464 1.8× 1019

{2, 2, 3} 1,356,614 1,375,168 1,785,856 3.4× 1038

{1, 3, 3} 3,516,122 3,680,464 7,143,424 1.8× 1019

{2, 3, 3} 24,612,854 24,792,448 28,573,696 1.2× 1077

{3, 3, 3} 446,547,494 447,032,128 457,179,136 1.3× 10154

FIG. 1: Regulatory motifs and their projections, and the number of logics they can support. A In a regulatory motif,
a gene (blue) depends on n transcription factors (red), each of which depends on t1, . . . , tn genes (blue). As a shorthand, we write
{t1, . . . , tn}, which counts the number of genes in the n branches of the tree. B In a projected motif, a gene depends on t1 + . . .+ tn
genes; there are no transcription factor middlemen. C For the 19 simplest regulatory motifs (left), I show the number of biological
logics c, and the lower and upper bounds on c. For their projections (right), I show the number of all possible logics `. This tends to
be much larger than the number of biological logics c.

which we call s(n), shown in eq. (4). The first few s(n) are 2, 2, 10, 218, 64594 (OEIS A000371 [20]), starting at n = 0.

3

In this paper
In this paper I do four things, which correspond to the four
parts of the Results. First, I show that gene regulatory networks
can be uniquely broken into structural building blocks (Fig.
1C left), and that these correspond to the functional building
blocks of the network. Just as the global network structure is
a combination of these regulatory motifs, the global network
function is a combination of the biological logics that these
motifs can carry out. Second, I study the number of different
biological logics that these regulatory motifs can perform. By
bounding it from below and above, I provide a simple estimate
of this number in terms of the local network structure. Third,
I prove that this number is a tiny fraction of the number of
all possible logics of the same number of inputs. This puts
severe constraints on the global behavior of regulatory networks.
Fourth, I prove that part of the restriction on biological logics is
due to their redundancy: different assignments of update rules to
the nodes in a regulatory motif can produce the same biological
logic. I calculate the average redundancy in terms of the local
network structure. I conclude in the Discussion with implications
of these results on the organization of genetic computation.

Results
Regulatory motifs: structural and functional building blocks
I start by showing there is a direct correspondence between the
structural and functional building blocks of regulatory networks.
Let’s first look at the structure. The primitive structural building
blocks are the connectivities that a gene has with other genes via
transcription factor middlemen. For a gene that depends on n
transcription factors, each of which depends on t1, . . . , tn genes
(Fig. 1A), we use as a shorthand {t1, . . . , tn}. For example, {2, 2}
denotes a gene which depends on two transcription factors, each
of which depends on two genes. We call these pieces regulatory
motifs, the 19 simplest of which are shown in Fig. 1C left. Any
bipartite network can be broken into such pieces in a unique way.
The recipe for doing so is to pick a gene (blue node), find all its
second-nearest neighbors, then break each of these outer genes
in half. (I could have drawn the building blocks in Fig. 1 with
the genes as half-nodes, but I kept them whole for convenience.)

Now let’s consider the functionality of these regulatory motifs.
The top gene in Fig. 1A is a function of its transcription factors,
which in turn are functions of their genes. Ultimately, the state
of the top gene is set by the state of the bottom genes. We can
work out this dependence by composing the logics. Let xi,j be
the state of the jth gene in the ith branch in Fig. 1A. Then we
can compose the logics to get a unique new logic:

h(x1,1, . . . , x1,t1 ; . . . ;xn,1, . . . , xn,tn) =

f
(
g1(x1,1, . . . , x1,t1), . . . , gn(xn,1, . . . , xn,tn)

)
.

(1)

For example, consider the regulatory motif {1, 2}. With the
xi,j denoted a, b, c for convenience, h(a, b, c) = f(g1(a), g2(b, c)).
Setting f = g1 and g2, g1 = a, and g2 = b or c, the composed
logic is h = (a and b) or (a and c). Different choices of the
logics for f and for g1 and g2 can give other composed logics.

Number of functions that a regulatory motif can perform
The number of biological logics c is the number of logical
dependencies that one gene can have on other genes, that
is, the number of different forms that h can take. My main

mathematical result is that c is bounded by

c(t1, . . . , tn) ≥ s(n)

n∏
i=1

(
22ti/2− 1

)
= clower (2)

c(t1, . . . , tn) ≤ s(n)

n∏
i=1

22ti/2 = cupper, (3)

where s(n) is the number of logics of n inputs which depend on
all n inputs,

s(n) =

n∑
i=0

(−1)n−i
(
n

i

)
22i . (4)

These bounds are derived in the Methods. For example, for the

regulatory motif {2, 3}, cupper = s(2) ·222/2 ·223/2 = 10,240, which
is not much higher than the true value, 9,160. Values of c and its
bounds are given in Fig. 1C and plotted as error bars in Fig. 2.

The upper bound on the number of biological logics is also
a good approximation to it. We know this because the ratio of
the lower and upper bounds approaches one as the ti increase.
Dividing eqs. (2) and (3) by (3), the ratio of the bounds is

clower

cupper
=

n∏
i=1

(
1− 2/22ti

)
.

For example, for the regulatory motif {3, 3}, the ratio is

(1− 2/223)2 = 0.984. So each bound is within 1.6% of c itself.

Function is restricted
In the absence of the transcription factor middlemen, we can
simplify the regulatory motifs by projecting them: drawing an
edge between genes connected to the same transcription factor.
The projections are shown in Fig. 1C right.

The top gene in Fig. 1B depends on t1 + . . .+ tn other genes.
Since the number of logics of n inputs is 22n, the number ` of all
logical dependencies that a gene can have in the absence of the
transcription factors is

` = 22t1+...+tn
.

The range of functionality c for the regulatory motifs is much
smaller than the range ` for their projections (see Fig. 1C and
Fig. 2). Our upper bound on c lets us quantify this difference:

c

`
≤ cupper

`
=
s(n)

2n
22t1 . . . 22tn

22t1+...+tn
. (5)

Taking the logarithm gives a better sense of this ratio:

log2

(c
`

)
≤ 2n − n+

n∑
i=1

2ti −
n∏
i=1

2ti ,

where we make use of s(n) ≤ 22n (see Methods).
For example, for the regulatory motif {2, 3}, the number of

biological logics c is 9,160 and the number of possible logics `
is 232. Then log2(c/`) = −18.8, which is less than the bound of
22 − 2 + 22 + 23 − 2223 = −18.

Function is redundant
We know that the number of logical dependencies that one gene
can have on other genes cannot be greater than the number of
assignments of logics to the gene and transcription factors, that
is, the number of choices of f and g1, . . . , gn in Fig. 1A. Since the
number of logics of n inputs is 22n , the number of assignments is

v = 22n22t1 . . . 22tn .

4

5 10 15

100.5

102

108

1032

10128

Regulatory motifs and their projections

Lo
gi
cs

FIG. 2: Plot of the number of logics for regulatory motifs and their projections. Each row in Fig. 1C is plotted along the
y-axis, in the same order that the rows appear in Fig. 1C. The bounds for the number of biological logics c are shown as points with
error bars. The number of all possible logics ` are shown as points.

Let’s compare v to the number of biological logics c:

v

c
≥ v

cupper
= 2n

22n

s(n)
≥ 2n, (6)

where we make use of s(n) ≤ 22n . So the average redundancy
is at least 2n—though it can be considerably larger than this.
Values of the average redundancy are shown for the 19 simplest
regulatory motifs in Fig. 3. One instance of redundancy is that
there is another way to compose the logic h = (a and b) or (a
and c) mentioned above. It also results from setting f = g1 and
g2, g1 = a, and g2 = b and c.

For example, consider the regulatory motif {2, 2}. The number

of assignments v = 222222222 = 4,096 and the number of
biological logics c is 520. So the average redundancy is 7.9, which

is indeed greater than v/cupper, which is 22222/10 = 6.4

Discussion
Correspondence of structure and function
In general, for any network that performs computation—genetic
or otherwise—functional subroutines do not correspond to
network substructures. Rather, function tends to be distributed
over different parts of the structure. However, for gene regulatory
networks, structure and function do correspond at the length
scale of regulatory motifs. The functional subroutines—what
I call biological logics—are precisely those that run on these
network substructures. Just as global network structure is
built from the regulatory motifs in Fig. 1C left, global network
function is built from the logics that run on them.

The reason for this correspondence is because the network is
bipartite: genes and transcription factors talk to each other but
not themselves [16–18]. In the building blocks in Fig. 1C, all of
the downstream transcription factors (red nodes) are surrounded
by genes (blue nodes). This allows us to effectively integrate out
the transcription factor logics, generating a restricted range of
logical dependencies that the top gene can have on the bottom
genes. Incidentally, bipartite networks are not the only kind of
networks for which structure and function correspond. Tripartite
networks and more complex network architectures also have this
feature.

Function is restricted
The extent to which biological logics are restricted is bounded by
eq. (5). For n = 1, or for all of the ti = 1, there is no restriction;
the number of biological and possible logics are the same, and
c/` = 1. But the restriction quickly becomes severe for other
regulatory motifs. The highest values that c/` can take after 1
are 11/32 for the motif {1, 2} and 0.026 for {1, 1, 2}. The ratio
drops off for other regulatory motifs, reaching 10−14 for {2, 2, 2}
and 10−145 for {3, 3, 3}. When all of the ti = t, the logarithm of
c/` is less than 2n + n(2t − 1)− 2nt.

For most of the regulatory motifs in Fig. 1C, the restriction
on function c/` is astronomical. This puts severe constraints on
the global function of gene regulatory networks, because the
global function is a composition of the local function performed
by each of the regulatory motifs. As the number of motifs that
are combined increases, the restriction on global behavior grows
exponentially.

5

Short- Regulatory Logic Biological Average
hand motifs assignments logics redundancy

v c v/c

{1} 24 4 4

{2} 26 16 4

{3} 210 256 4

{1, 1} 28 16 16

{1, 2} 210 88 11.6

{2, 2} 212 520 7.9

{1, 3} 214 1,528 10.7

{2, 3} 216 9,160 7.2

{3, 3} 220 161,800 6.5

{1, 1, 1} 214 256 64

{1, 1, 2} 216 1,696 38.6

{1, 2, 2} 218 11,344 23.1

{1, 1, 3} 220 30,496 34.4

{2, 2, 2} 220 76,288 13.7

{1, 2, 3} 222 204,304 20.5

{2, 2, 3} 224 1,375,168 12.2

{1, 3, 3} 226 3,680,464 18.2

{2, 3, 3} 228 24,792,448 10.8

{3, 3, 3} 232 447,032,128 9.6

FIG. 3: The average redundancy for regulatory motifs. For
each of the 19 simplest regulatory motifs, I show: the number of
ways v of assigning logics to the gene and transcription factors (f
and the gi in Fig. 1A); the number of distinct logics c that these
compose to (what I call biological logics); and their ratio, which
is the average redundancy of this many-to-one map. The average
redundancy is at least 2n, where n is the number of branches, but
it can be considerably higher than this.

Function is redundant
We know from eq. (6) that biological logics are on average
redundant. If we think of the assignment of logics to the genes
and transcription factors as the genotype (instructions), and the
composed gene-gene logic as the phenotype (behavior), then the
ratio of the number of genotypes to the number of phenotypes
is at least 2n22n/s(n), which is itself at least 2n. The mapping
of many genotypes to fewer phenotypes is highly prevalent in
biological systems, ranging from RNA secondary structure to
protein folding to biological clocks. This gives rise to neutral
networks and can confer robustness to errors [21].

Intriguingly, computational evidence suggests that some
biological logics are much more redundant than others. These
phenotypes are more likely to be observed simply because there
are more ways to design them. For example, for the regulatory
motif {2, 3}, 216 = 65,536 assignments map to 9,160 biological

logics. But of the 216 assignments, 18% map to true and false,
11% map to 14 simple logics such as a, b, and a or b, 17% map
to 254 more complex logics, such as c or d or e, and the rest
map to 8,890 more complex logics still. If this trend holds for
regulatory motifs in general, it would imply that biological logics
are not only restricted, but also tend to be simple. This is an
open theoretical question with important consequences, and I
hope that others will try to answer it.

More generally, the composition of logics is an archetypal
system for understanding input-output maps. Across a broad
range of systems in nature and mathematics, input-output maps
tend to be highly biased towards simple outputs [25, 26]. A
theory for the distribution of redundancies mentioned above
could help provide an explanation of this empirical trend.

Methods
Logics that depend on all of their inputs
By the principle of inclusion and exclusion, the number of logics
of n inputs which depend on all n inputs is

s(n) =

n∑
i=0

(−1)n−i
(
n

i

)
22i , (7)

which is the inverse binomial transform of 22n (OEIS A000371
[20]). It is bounded from below and above by

22n − n 22n−1

≤ s(n) ≤ 22n . (8)

The right side follows from the definition of s(n). The left side
can be deduced by showing that the magnitude of the (i − 1)th
term in (7) is less than half that of the ith term, that is,(

n

i− 1

)
22i−1

≤ 1

2

(
n

i

)
22i .

This implies that 2i ≤ (n − i + 1)22i−1

. Since n − i + 1 is at

least 1, we need only that 2i ≤ 22i−1

. It is indeed for all i ≥ 1,
establishing the lower bound in (8). It implies that s(n) rapidly

approaches 22n .

Proof of upper bound on biological logics
The upper bound in eq. (3) is not at all obvious. It is also
delicate, in that it is an equality for n = 1. My first proof of the
bound, not given here, was cumbersome. But, like a climber who
on reaching the summit sees a superior path of ascent, as soon
as I proved it I found a much simpler proof the next day. I thank
my colleague Yang-Hui He for prompting one of the steps.

Here is the simpler proof. My starting point is a result from
a recent paper [18], in which I derived an exact—but difficult to
apply—expression for the number of biological logics. It is

c(t1, . . . , tn) =

n∑
m=0

s(m)
∑

σ1...σm

ασ1 . . . ασn , (9)

where
αi = 22i/2− 1,

and the second sum adds up the product of all m-tuples of the
αi. A few examples illustrate what this means:

c(i) = 2 + 2αi,

c(i, j) = 2 + 2(αi + αj) + 10αiαj ,

c(i, j, k) = 2 + 2(αi + αj + αk)

+ 10
(
αiαj + αjαk + αiαk

)
+ 218αiαjαk.

6

Let’s start by rewriting (9) as

c(t1, . . . , tn) =

n∑
m=0

s(m)Am,

where Am is the sum over the product of all m-tuples of the αi:

A0 = 1 (by definition),

A1 = α1 + α2 + . . .+ αn,

A2 = α1α2 + . . .+ α1αn + . . . αnα1 + . . .+ αnαn−1,

...

An = α1 . . . αn.

We need to show that

n∑
m=0

s(m)Am ≤ s(n)

n∏
i=1

(αi + 1). (10)

To do so, consider the product

n∏
i=1

(x+ αi) = A0x
n +A1x

n−1 + . . .+Anx
0.

Setting x = 1, this gives

n∏
i=1

(αi + 1) = A0 +A1 + . . .+An.

Substituting this into eq. (10) gives

n∑
m=0

s(m)Am ≤ s(n)

n∑
m=0

Am.

Since s(m) is a non-decreasing function of m, s(m) ≤ s(n), and
the above is true by inspection. Therefore

c(t1, . . . , tn) ≤ s(n)

n∏
i=1

22ti/2 = cupper,

proving eq. (3).

Proof of lower bound on biological logics
In addition to the upper bound, we can write a lower bound of
a similar form. To do so, we just take the last (m = n) term in
eq. (9) and substitute in αi. This gives

clower = s(n)
n∏
i=1

(
22ti/2− 1

)
≤ c(t1, . . . , tn),

proving eq. (2).

Acknowledgements

Funding: This research was supported by a grant from bit.bio. Competing interests:

The author declares that he has no competing interests.

[1] C. Gomez et al., Control of segment number in vertebrate embryos,
Nature 454, 335 (2008).

[2] M. Pawlowski et al., Inducible and deterministic forward programming
of human pluripotent stem cells into neurons, skeletal myocytes, and
oligodendrocytes, Stem Cell Reports 8, 803 (2017).

[3] S. A. Kauffman, Metabolic stability and epigenesis in randomly con-
structed genetic nets, J Theor Biol 22, 437 (1969).

[4] S. Huang, G. Eichler, Y. Bar-Yam, and D. E. Ingber, Cell fates as high-
dimensional attractor states of a complex gene regulatory network,
Phys Rev Lett 94, 128701 (2005).

[5] J. E. Socolar and S. A. Kauffman, Scaling in ordered and critical
random Boolean networks, Phys Rev Lett 90, 068702 (2003).

[6] B. Samuelsson and C. Troein, Superpolynomial growth in the number
of attractors in Kauffman networks, Phys Rev Lett 90, 098701 (2003).

[7] I. Shmulevich and S. A. Kauffman, Activities and sensitivities in
Boolean network models, Phys Rev Lett 93, 048701 (2004).

[8] R. Milo et al., Network motifs: Simple building blocks of complex
networks, Science 298, 824 (2002).

[9] R. Milo et al., Superfamilies of evolved and designed networks, Science
303, 1538 (2004).

[10] S. Mangan and U. Alon, Structure and function of the feed-forward
loop network motif, P Natl Acad Sci USA 100, 980 (2003).

[11] S. E. Ahnert and T. M. A. Fink, Form and function in gene regulatory
networks J. R. Soc. Interface 13, 20160179 (2016).

[12] T. Whipple, ”23 Mathematical Challenges”, The Times, June 2021.
[13] G. P. Wagner, M. Pavlicev, J. M. Cheverud, The road to modularity,

Nat Rev Genet 8, 921 (2007).
[14] A. Decan, T. Mens and E. Constantinou, On the evolution of technical

lag in the npm package dependency network,” IEEE ICSME, p. 404
(2018).

[15] S. Wolfram, A New Kind of Science (Wolfram Media, 2002), p. 637.
[16] R. Hannam, R. Kuhn, and A. Annibale, Percolation in bipartite

Boolean networks and its role in sustaining life, J Phys A 52, 334002
(2019).

[17] R. Hannam, Cell states, fates and reprogramming, Ph.D. thesis, King’s
College London (2019).

[18] T. M. A. Fink and R. Hannam, Biological logics are restricted, sub-
mitted to Science Advances (2021).

[19] S. Wolfram, A New Kind of Science (Wolfram Media, 2002), pp. 729,
1128.

[20] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Se-
quences, published electronically at https://oeis.org, 2021.

[21] A. Wagner, Robustness and evolvability: a paradox resolved, P R Soc
B, 275 91 (2008).

[22] C. Buccitelli and M. Selbach, mRNAs, proteins and the emerging prin-
ciples of gene expression control, Nat. Rev. Genet 21, 630 (2020).

[23] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs
with arbitrary degree distributions and their applications, Phys Rev
E 64, 026118 (2001).

[24] J. L. Payne and A. Wagner, Mechanisms of mutational robustness in
transcriptional regulation, Front Genet 6, 322 (2015).

[25] K. Dingle, C. Q. Camargo, and A. A. Louis, Input-output maps are
strongly biased towards simple outputs, Nat. Commun. 9 (2018).

[26] I. G. Johnston et al., Symmetry and simplicity spontaneously emerge
from the algorithmic nature of evolution, P Natl Acad Sci USA 119,
e2113883119 (2022).

[27] K. Raman and A. Wagner, The evolvability of programmable hard-
ware, J. R. Soc. Interface 8, 269 (2011).

[28] S. Bilke and F. Sjunnesson, Stability of the Kauffman model, Phys
Rev E 65, 016129 (2001).

[29] M. Reed, Why is mathematical biology so hard?, Not Am Math Soc
51, 338 (2004).

[30] M. Reed, Mathematical biology is good for mathematics, Not Am

Math Soc 62, 1172 (2015).

