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Reconstructing the three dimensional size and shape distribution of randomly oriented grains
using only images of cross-sections remains an important challenge. Even for ellipsoids, a solution is
only possible when they are solids of revolution, and may still be numerically unstable. Here we show
that crystallographic orientation data, for example from electron back-scatter diffraction (EBSD),
provides enough additional information to obtain moments of the 3d grain distribution, provided
grain shapes can be assumed to align with crystal axes. We show that this moment method can give
an average 3d grain size and shape (with error estimate) which is rigorous for ellipsoids and a good
approximation for cuboidal grains, indicating that it may be a useful technique for polycrystalline
materials in general. High throughput image analysis and EBSD now make the necessary sample
sizes practical. We illustrate by applying the method to a basaltic rock specimen.
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I. INTRODUCTION

An optical- or electron-microscopy image of a polycrys-
talline material typically represents a 2d section through
a complex 3d geometry. Reconstructing statistics of the
3d structure from these 2d data remains a major chal-
lenge since Wicksell [1] first studied the ‘corpuscle’ prob-
lem of deducing the size distribution of randomly placed
spheres from the circles seen in a planar cross-section. Al-
though this simplest of problems is mathematically well-
posed, solving it for the 3d distribution by direct inver-
sion of the Wicksell integral is numerically challenging
[2]. Instead, moment methods, which reconstruct mo-
ments of the 3d structure from moments in 2d [1, 3] are
a more practical method for obtaining useful 3d informa-
tion, such as average grain sizes and the width of the size
distribution.

In metals and ceramics, grains or crystals (which in
this contribution we assume to be equivalent) are rarely
even approximately spherical, being often strongly triax-
ial, with all three axes of different length. It may however
be a reasonable approximation that they are oriented
randomly in space. If all the 3d shapes are known to
be identical, it is possible to fit the distribution of aspect
ratios of the 2d sections to examples of 3d shapes from
a database [4–6]. For the more realistic case of polydis-
perse crystals, even if we approximate their shapes, for
mathematical simplicity, as ellipsoids (Figure 1), we are
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presented with the problem of computing a 3d ellipsoid
size and shape distribution from the elliptical outlines ob-
tained in section. For special cases where certain types
of orientation can be assumed [7], or where the grains
are known to be ellipsoids of revolution [8] (two of the
axes are equal), the inversion is mathematically possible.
However, for randomly oriented tri-axial ellipsoids, this
generalised Wicksell problem is ill-posed: more than one
3d size and shape distribution can yield statistically the
same population of elliptical sections. This is easy to
see from the dimensionality of the data and target; for
let F (A,B,C) δA δB δC be the fraction of the number
of ellipsoids per unit volume with major axes of lengths
A, B and C, where A is in the range A to A + δA, and
similarly for B and C. The function F (A,B,C) depends
on three variables, while the corresponding distribution
of ellipse sizes and shapes depends only on the two el-
lipse axis lengths. Deducing a probability distribution
over three independent variables from one over two is in
general not possible.

So far, we have considered only the shapes and sizes
of grains visible on a section. However, electron back-
scatter diffraction (EBSD) is a method that provides
information about the crystallographic orientation of
grains [9, 10], usually expressed as a set of Euler angles
[11].

In this contribution, we show that if the major axes of
each grain’s shape are aligned with the crystallographic
axes of its lattice (see later for a more detailed dis-
cussion), the extra data available from EBSD provides
enough information to solve most of the Wicksell prob-
lem for tri-axial ellipsoids. We also show (using synthetic
data) that the same analysis works to a good approxima-
tion for triaxial cuboids, so may be useful for grains in
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FIG. 1: (a) A collection of randomly oriented polydisperse ellipsoids. (b) A plane section through the collection produces a set
of ellipses (black) from which we wish to reconstruct statistical information about the 3d structure.

general polycrystalline materials whenever the crysallo-
graphic axes can be assumed to align with the principal
axes of the grain shapes.

Specifically, through Eq. (40), we are able to deduce
many of the moments of the ellipsoid size and shape dis-
tribution from corresponding moments taken from a 2d
section. As a simple example of what this information
captures, we suggest a set of moment ratios which esti-
mate an average 3d grain size and shape.

Lastly, we show the analysis applied to a real rock
section imaged using EBSD. Of particular petrological
interest is the distribution of shapes of the mineral pla-
gioclase. Plagioclase forms up to 50 vol.% of rocks of
basaltic bulk composition and is commonly an early-
crystallising phase. Under the conditions of interface-
controlled growth that pertain to most geological en-
vironments, plagioclase forms variably elongate tabular
facetted grains, with elongation commonly along the c-
axis, and tablets flattened parallel to the b-axis. In
basaltic rocks in which the plagioclase is randomly ori-
ented (i.e. those in which the grains have not been
re-arranged by the action of magmatic currents or by
gravitational instability and slumping of a crystal pile)
the average grain size and shape carries key information
about the cooling and crystallization history [12]. Cur-
rently, these data are invariably extracted from 2d sec-
tions through the rock. Relating these robustly to 3d
grain geometries could shed better light on fundamental
processes in rock formation.

II. BACKGROUND: MOMENTS IN 3D AND 2D

A. Calculating moments

Suppose we have a collection of randomly positioned,
randomly oriented ellipsoids in space, with N such grains
per unit volume. Let F (A,B,C) be the probability dis-
tribution, by number, for the polydisperse ellipsoids over
their major axis lengths A, B and C (which we assume to
be tied to particular crystallographic directions). Thus

F is normalized:∫∫∫
O+

F (A,B,C) dA dB dC = 1, (1)

with O+ being the positive octant of (A,B,C)-space;
that is to say 0 ≤ A ≤ ∞, 0 ≤ B ≤ ∞ and 0 ≤ C ≤ ∞.
The function F (A,B,C) carries all the information about
the size and shape of the grains, and any correlation be-
tween size and shape.

We can capture information about F through finding
various moments of the distribution:

Mα,β,γ ≡
∫∫∫

O+

AαBβCγ F (A,B,C) dA dB dC, (2)

where the indices α, β and γ need not be integers. Instead
of using an integral, we can calculate each moment by
sampling: suppose that in some sufficiently large volume
of space there are ν3d grains in total, then we could also
write Eq. (2) more simply as

Mα,β,γ =
1

ν3d

∑
i

Aαi B
β
i C

γ
i , (3)

where the summation is over grains in space, and grain i
has major axes of length Ai, Bi and Ci.

The moments of F capture a great deal of (indeed in
many cases all) the information about the size and shape
of the ellipsoids. For example, ratios of moments can be
used to calculate average diameters (see Ref. [3] for the
case of spheres), or aspect ratios.

Naturally, from a microscopy image, we have no direct
access to F , nor to any of the moments Mα,β,γ . What
we have instead is a collection of elliptical cross-sections
through grains. Suppose that we have an image that
contains a very large number ν2d of grain cross-sections,
and suppose that the area of the cross section with label
j is aj . We can consider this as a vector area aj ≡ ajn̂,
where n̂ is a unit vector perpendicular to the image plane.

In addition to the area, we may also have information
about the crystallographic orientation from EBSD. Sup-
pose that the major axes of the 3d ellipsoid (to which the
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ellipse in question belongs) are aligned respectively in the
directions of the orthonormal (unit) vectors eA, eB and
eC . Let us adopt Bunge’s convention (see Ref. [11], page
52) for the Euler angles (ϕ1,Φ, ϕ2). We therefore also
know the projections of the area aj onto the directions
of each of the major axes of the ellipsoid:

aA,j ≡ aj n̂ · eA = aj sin Φ sinϕ2, (4)

aB,j ≡ aj n̂ · eB = −aj sin Φ cosϕ2, (5)

aC,j ≡ aj n̂ · eC = aj cos Φ. (6)

These data allow us to calculate any of the 2d moments

mα,β,γ =
1

ν2d

∑
j

a4
j |aA,j |α|aB,j |β |aC,j |γ . (7)

In Eq. (7) note that there is an ‘extra’ factor of a4
j , and

also that, once more, the numbers α, β and γ do not need
to be integers.

The key result of this paper (derived below) is that
there is a mathematical relation between the 2d moments
mα,β,γ (which can be calculated from microscopy data),
and different 3d moments Mα′,β′,γ′ . This allows 2d mi-
croscopy data to be used to directly calculate properties
of the 3d ellipsoid distribution. The exact relation is
given in Eq. (40).

B. Which moments are useful?

For spheres, one might typically characterise the dis-
tribution of sizes through the volume-weighted mean di-
ameter D4,3 [3, 13] (which is the ratio of the 4th to the
3rd moment of the diameters), or the surface-weighted
mean diameter D3,2.

Eq. (40) shows that for triaxial ellipsoids, not all ra-
tios of moments can be calculated. This is because some
of the factorials may diverge, but also because if there
is a negative index in mα,β,γ , then for some grain orien-
tations, values of aA,j , aB,j or aC,j in Eq. (7) may be
close to zero, and so cause numerical problems, even if
the overall power of aj is not problematic. Large mo-
ment indices don’t have this issue with mathematical di-
vergence; however, they are mostly determined by the
largest grains in the sample, so do not capture the prop-
erties of a typical grain, and may furthermore have poor
statistics due to the small numbers involved.

Here we suggest that the simplest practical averages
for the three major axis lengths are the ratios:

A4,3 ≡
M4,3,4M4,4,3

M3,3,3M4,4,4
≈ 1.231

(
m0,1,0m0,0,1

m0,0,0m 1
2 ,

1
2 ,

1
2

)
, (8)

B4,3 ≡
M3,4,4M4,4,3

M3,3,3M4,4,4
≈ 1.231

(
m1,0,0m0,0,1

m0,0,0m 1
2 ,

1
2 ,

1
2

)
, (9)

C4,3 ≡
M3,4,4M4,3,4

M3,3,3M4,4,4
≈ 1.231

(
m1,0,0m0,1,0

m0,0,0m 1
2 ,

1
2 ,

1
2

)
.(10)

These use 3d moments that are as small as possible, with-
out the indices of the corresponding 2d moments being
negative. We have used the subscript ‘4, 3’ to indicate
which 3d moments are involved; however, they are not
equivalent to D4,3 for spheres, but depend upon substan-
tially higher moments of the population. The high mo-
ments mean that these averages depend almost entirely
on the larger grains in the distribution, and also means
that many grains need to be sampled to achieve good
statistics.

We note that with enough grain data, moment ratios
might be taken to characterise other properties, such as
the width of the polydisperse shape distribution.

III. THEORY: RELATION BETWEEN 3D AND
2D MOMENTS

A. Plane sections through spheres

We begin the derivation with a simple case: suppose
that instead of being polydisperse, triaxial ellipsoids, all
of the grains in the 3d sample were identical (monodis-
perse) spheres, all of diameterD0. As before, letN be the
number of grains per unit volume of space. Let us con-
sider sampling this distribution by passing a plane section
through it, perpendicular to a unit vector n̂. Whenever
a plane section passes through a crystal, it produces an
ellipse (in this case always a circle).

The maximum thickness of the sphere in the direction
n̂ is of course D0, so the number of ellipses per unit area
of the section is n, where

n = ND0. (11)

Let the fraction of the ellipses that have areas between
a and a + δa be fa(a)δa (so f is normalized in that∫
fa(a)da = 1). Suppose the section lies at a perpendic-

ular distance r ∈ (0, D0/2) from the centre of a sphere,
then we know that the fraction of ellipses that have r in
the range r to r + δr is simply

fr(r) = 2/D0. (12)

Noting that fa(a)|da| = fr(r)|dr| and from Pythagoras’
theorem πr2 + a = πD2

0/4, we find:

fa(a) =

{
[4a0(a0 − a)]−1/2 if 0 ≤ a ≤ a0

0 otherwise
, (13)

where a0 = πD2
0/4 is the maximum area of a cross sec-

tion.
We now make two observations about this formula:

First, if we are considering plane sections perpendicular
to all possible directions n̂, then we can define a vector
area of each ellipse as a ≡ an̂. Let the fraction of the
ellipses that have vector areas in a small region of a-space
δa around a be f(a)δa, and suppose f to be normalized:∫∫∫

f(a) d3a = 1. (14)
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Then f and fa are related through

fa(a) = 4πa2f(a). (15)

Second, suppose we are once again considering the el-
lipses that lie perpendicular to a specific direction n̂, but
that all the spheres have been deformed into ellipsoids
by stretching or compressing in the two directions per-
pendicular to n̂, so that n̂ is the direction of one of the
principal axes (which remains unchanged by this defor-
mation). We suppose the deformation to be the same for
all ellipsoids, then a0 takes a new value, but the thickness
D0 of the ellipsoid is unchanged. we observe that, despite
this change, both equations (11) and (13) still apply (the
latter with the new value of a0.)

B. Affine transformation of ellipsoids

Consider a general ellipsoid, which in Cartesian coor-
dinates (x, y, z) is represented by the equation

rTA r = 1 (16)

where

r ≡

 x
y
z

 and A ≡

 A11 A12 A13

A12 A22 A23

A13 A23 A33

 . (17)

Suppose that there are N of these ellipsoids per unit
volume of space, all identical, and identically oriented,
but placed randomly without overlapping. Imagine that
we are interested in taking a cross-section through this
distribution perpendicular to the n̂ direction, which we
take for the present to be the Cartesian z-coordinate di-
rection.

Now, whatever the distribution of elliptical cross-
sections may be for this set of ellipsoids, it must be un-
changed by applying an affine transformation to space
consisting of a simple shear which moves points only per-
pendicular to the z-direction. In other words, we must
obtain the same distribution for ellipse areas (provided
n̂ is fixed) if we make the transformation r 7→ r′, where

r =

 1 0 p
0 1 q
0 0 1

 r′ (18)

for any real numbers p and q, and consider the trans-
formed ellipsoid in r′-space. Choosing the special val-
ues p = (A23A12 − A22A13)/(A11A22 − A2

12) and q =
(A13A12−A11A23)/(A11A22−A2

12) leads to a new equa-
tion for the ellipsoid in the transformed space:

(r′)T

 A11 A12 0
A12 A22 0
0 0 detA/(A11A22 −A2

12)

 r′ = 1. (19)

This describes an ellipsoid which has one of its major
axes aligned in the z′-direction, and we wish to know

two things: First, the length D0 of this major axis, be-
cause for the untransformed ellipsoid, this is the widest
separation of two planes (both perpendicular to n̂) which
intersect the ellipsoid. Second, we wish to know the max-
imum cross sectional area a0 of the transformed ellipsoid
perpendicular to the z′ direction (which is also the max-
imum cross sectional area of the untransformed ellipsoid
perpendicular to the z direction). These quantities can
be read directly from equation (19), but it is useful to
have them in coordinate-independent form. To aid this,
we define a new matrix

B ≡

 A11 A12 0
A12 A22 0
0 0 1

 = n̂n̂T + (I − n̂n̂T )A(I − n̂n̂T ).

(20)
We then see, from equations (19) and (20) that

D0 = 2

(
detB

detA

)1/2

, (21)

a0 =
π

(detB)1/2
, (22)

which can be used in Eqs. (11) and (13).

C. The distribution of ellipse areas

Suppose we have N ellipsoids per unit volume, all iden-
tical, with major axis lengths (A0, B0, C0) and all initially

with the same orientation, so that (with δ̂ being the Kro-
necker delta function)

F (A,B,C) = δ̂(A−A0) δ̂(B −B0) δ̂(C − C0). (23)

If we now choose Cartesian coordinate axes in the direc-
tion of the major axes of the ellipsoids, and choose the
origin at the centre of one of them, then the equation for
this ellipsoid is

4x2

A2
0

+
4y2

B2
0

+
4z2

C2
0

= 1. (24)

Let us take a comprehensive set of plane sections through
space. By comprehensive we mean choosing many ran-
dom orientations n̂ (over the full solid angle of 4π stera-
dians), and for each orientation, densely and uniformly
filling space with parallel plane sections perpendicular to
this direction. Whenever a plane passes through an el-
lipsoid, we note the area a of the ellipse formed, so that
we can define a vector

a ≡ an̂ (25)

specifying both its area and direction. Averaged over all
these plane orientations and positions, we wish to calcu-
late the number n of ellipses per unit area of cross section,
and also the normalized function f , defined such that the
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fraction of the total number of ellipses that have values of
the vector a within a small neighbourhood δa is f(a)δa.

The number of ellipses per unit area in the cross section
with vector areas within a region δa around a specific a
is n f(a) δa. Thus from Eqs. (11), (13) and (15),

4πa2nf(a) =

{
ND0[4a0(a0 − a)]−1/2 if 0 ≤ a ≤ a0

0 otherwise
.

(26)
From equations (24), (21), (22) and (20), we find

D0 =
(
A2

0n
2
x +B2

0n
2
y + C2

0n
2
z

)1/2
(27)

a0 =
πA0B0C0

4
(
A2

0n
2
x +B2

0n
2
y + C2

0n
2
z

)1/2 (28)

so from equations (13), (23), (25) and (26)

nf(a) =
N D

3/2
0 π−3/24−1a−2

(A0B0 C0)1/2 [π A0B0 C0/(4D0)− a]
1/2

(29)

for

4
(
A2

0a
2
x +B2

0a
2
y + C2

0a
2
z

)1/2
πA0B0 C0

< 1 (30)

and zero otherwise. Therefore

nf(a) =

∫∫∫
Ω′A∩O+

N F ABC ∆

32a4(1−∆1/2)1/2
dA dB dC,(31)

where

∆ ≡ 16(A2a2
A +B2a2

B + C2a2
C)

π2A2B2C2
. (32)

In equation (32) we have re-labelled (ax, ay, az) as
(aA, aB , aC), to emphasize that aA (for example) is the
projection of a onto the A-axis of the ellipsoid it be-
longs to. Furthermore, Ω′A is the region of the space
(A,B,C) which, for fixed a, lies outside the sextic sur-
face 16(A2a2

A +B2a2
B + C2a2

C) = π2A2B2C2 (the prime
being used to indicate the complement of the set ΩA

which lies inside the sextic surface). As above, O+ is the
positive octant of the space (A,B,C).

We make a final observation before completing the cal-
culation: Since the number of ellipses per unit area of
plane section and the number of ellipsoids per unit vol-
ume both combine in a simple, additive manner when dis-
tributions are combined, then provided we always project
a onto the local directions of the major axes of each ellip-
soid, equation (31) applies equally to a fully polydisperse
distribution of ellipsoids with random orientations. The
necessity to project a onto the major axis direction of
its ellipsoid is the reason we need the crystallographic
orientation data from EBSD.

D. Moments of ellipsoids from moments of ellipses

To obtain the relation between the 2d moments mα,β,γ

of Eq. (7) and the 3d moments Mα,β,γ of Eq. (3), we
simply integrate moments of Eq. (31) over all a-space,
which needs to be done in several steps. Remembering
that n is the number of elliptical sections per unit area,
we find from Eq. (7) and then (31):

nmα,β,γ ≡
∫∫∫

a4 |aA|α|aB |β |aC |γ n f(a) d3a

=

∫∫∫ {∫∫∫
Ω′A∩O+

[
|aA|α|aB |β |aC |γ

× N F ABC ∆

32
√

1−∆1/2

]
dAdB dC

}
d3a.(33)

The next step is to reverse the order of integration, giv-
ing:

nmα,β,γ =

∫∫∫
O+

{∫∫∫
Ωa

[
|aA|α|aB |β |aC |γ

× N F ABC ∆

32
√

1−∆1/2

]
d3a

}
dAdB dC.(34)

Note that in Eq. (34), we have introduced a new integra-
tion region Ωa, which for fixed A, B and C is the region
of a-space that lies inside the ellipsoid 16(A2a2

A+B2a2
B+

C2a2
C) = π2A2B2C2.

Next, we introduce a change of variables from a to

x ≡ (x, y, z) =

(
4aA
πBC

,
4aB
πAC

,
4aC
πAB

)
, (35)

to give:

n mα,β,γ =

∫∫∫
O+

{∫∫∫
|x|<1

[
|x|α|y|β |z|γ

×
(π

4

)α+β+γ+3 N F A3+β+γB3+α+γC3+α+β

32
√

1− |x|

]

× |x|2 d3x

}
dAdB dC. (36)

We can then use the definition of the 3d moments in
Eq. (3) to perform the integral in (A,B,C)-space:

nmα,β,γ =
N

32

(π
4

)α+β+γ+3

Mβ+γ+3,α+γ+3,α+β+3

×
∫∫∫

|x|<1

|x|α|y|β |z|γ |x|2√
1− |x|

d3x. (37)

The integral over x-space can be performed by a
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change of variables to spherical polars (r, θ, φ):

nmα,β,γ =
N

32

(π
4

)α+β+γ+3

Mβ+γ+3,α+γ+3,α+β+3

×
∫ 1

r=0

rα+β+γ+4

√
1− r

dr

×
∫ π

θ=0

| sin θ|α+β+1| cos θ|γ dθ

×
∫ 2π

φ=0

| cosφ|α| sinφ|β dφ (38)

=
N
√
π

16

(π
4

)α+β+γ+3

Mβ+γ+3,α+γ+3,α+β+3

×
(α+ β + γ + 4)!

(
α−1

2

)
!
(
β−1

2

)
!
(
γ−1

2

)
!(

α+ β + γ + 9
2

)
!
(
α+β+γ+1

2

)
!

.(39)

Lastly, since we are interested in obtaining values of
3d moments from calculated 2d moments, we can switch
round Eq. (39) to read:

Mα,β,γ =

(
16n

N
√
π

)(
4

π

)α+β+γ−3
2

×m(−3−α+β+γ
2 ),(−3+α−β+γ

2 ),(−3+α+β−γ
2 )

×

(
α+β+γ

2

)
!(

α+β+γ−1
2

)
!
(
−5−α+β+γ

4

)
!

×

(
α+β+γ−7

4

)
!(

−5+α−β+γ
4

)
!
(
−5+α+β−γ

4

)
!
. (40)

Eq. (40) is the main result of this paper. We note that
although we do not know N , this is no impediment to
calculating averages of the crystal sizes and shapes in 3d,
since these depend on ratios of moments rather than the
moments themselves. so the factor of N cancels out.

IV. SYNTHETIC DATA: HOW MANY GRAINS
ARE NEEDED?

A. Synthetic distribution of ellipsoids

As with any moment method, the results above are
exact in the limit of infinite sample size. However, it
is useful to have some indication as to how many grain
cross-sections should be measured in order to obtain a
required level of accuracy for the estimates of average 3d
grain sizes and shapes.

In order to do this, and also test the results above, we
generated randomly oriented monodisperse ellipsoids in
space (Figure 2), and accumulated statistics for the var-
ious moments mα,β,γ . We note that in order to generate
a random orientation for the orthonormal vectors eA, eB
and eC specifying the directions of the ellipsoid’s princi-
pal axes, one needs to choose ϕ1 and ϕ2 to be uniformly

FIG. 2: Top: Random distribution of randomly oriented
monodisperse ellipsoids in space. Each ellipsoid has major
axes of length (A0, B0, C0) = (9, 3, 1). Bottom: The same
distribution cut by a plane, showing (in black) the elliptical
cross sections produced.

distributed on the interval (0, 2π), but cos Φ needs to be
uniformly distributed on the interval (−1, 1). Figure 3
shows results where we have chosen the major axes of
every ellipsoid to have the values (A,B,C) = (9, 3, 1).

We see that the fractional error in the major axis
lengths, which we have estimated using (A4,3, B4,3, C4,3)

from Eqs. (8) to (10), falls roughly as 5ν
−1/2
2d , where ν2d

is the number of elliptical grain cross-sections used in the
estimate.

B. Synthetic distribution of cuboids

Grains in real samples are unlikely to be ellipsoids,
so it is interesting to ask whether the moment method
developed here can be applied to other grain shapes, and
if so, in what sense we should interpret the results?

To this end, we consider synthetic data for cuboids,
which are again monodisperse, and placed with random
positions and orientations in space (see Figure 4). We
consider a cuboid to be ‘equivalent’ to an ellipsoid if they
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TABLE I: Some of the individual grain data for anorthite from a basaltic rock sample. Note that the four rightmost columns
are calculated from data in the other columns, using Eqs. (4) to (6). The data for ϕ1 are not needed for these calculations.

grain no. area/µm2 ϕ1 Φ ϕ2 a4j/m
8 |aA,j |/m2 |aB,j |/m2 |aC,j |/m2

1 8099 157.72◦ 136.23◦ 295.91◦ 4.303× 10−33 5.040× 10−9 2.448× 10−9 5.849× 10−9

2 20250 292.65◦ 130.12◦ 284.24◦ 1.681× 10−31 1.501× 10−8 3.809× 10−9 1.305× 10−8

...
...

...
...

...
...

...
...

...
3299 4950 35.99◦ 65.84◦ 145.48◦ 6.004× 10−34 2.559× 10−9 3.721× 10−9 2.026× 10−9
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FIG. 3: Reconstructed major axis lengths for monodisperse
ellipsoids with major axes (A0, B0, C0) = (9, 3, 1). The verti-
cal bars in the left panel show the range (mean plus or minus
one standard deviation) for ten repeats. Right hand panel
shows the fractional error in the reconstructed axis lengths,
in the sense of the greatest distance of the standard deviation
bar from the true value, divided by the true value. We see
that the standard deviation of predictions falls as the number
of ellipses ν2d increases. Futhermore, the predictions become
more and more accurate in the same limit, with a fractinoal

error falling roughly as 5ν
−1/2
2d .

have the same volume, and if the ratios of edge lengths of
the cuboid are the same as the ratios of major axis lengths
of the ellipsoid. We therefore choose the edge lengths of
the cuboids in the new synthetic data set to be 9(π/6)1/3,
3(π/6)1/3 and (π/6)1/3, so that the equivalent cuboid
has (A,B,C) = (9, 3, 1). We will consider the moment
method applied to the cuboids a success, if the calculated
estimates (A4,3, B4,3, C4,3) are close to the values for the
equivalent ellipsoid, namely (9, 3, 1).

Figure 5 shows that the fractional error in the equiv-
alent major axis lengths, which we have estimated using

Eqs. (8) to (10), falls roughly as 7ν
−1/2
2d , where ν2d is

the number of elliptical grain cross-sections used in the
estimate. For very large values of ν2d, we expect this
correlation to break down, and the errors to stop decay-
ing, since there is likely to be a residual, systematic error
when naively applying a result for ellipsoids to cuboids.

FIG. 4: Top: Random distribution of randomly oriented
monodisperse cuboids in space. The equivalent major axes
(in the sense defined in the text) are (A0, B0, C0) = (9, 3, 1).
Bottom: The same distribution cut by a plane, showing (in
black) the polygonal [4] cross sections produced.

Nevertheless, we propose that 7ν
−1/2
2d provides a reason-

able first estimate of the relative error when applying the
moment method here to real samples.
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FIG. 5: Reconstructed major axis lengths for monodisperse
cuboids with ‘equivalent’ major axes (A0, B0, C0) = (9, 3, 1).
The vertical bars in the left panel show the range (mean
plus or minus one standard deviation) for ten repeats. Right
hand panel shows the fractional error in the reconstructed
axis lengths, in the sense of the greatest distance of the stan-
dard deviation bar from the true value, divided by the true
value. We see that the standard deviation of predictions falls
as the number of ellipses ν2d increases. Futhermore, the pre-
dictions become more and more accurate in the same limit,

with a fractinoal error falling roughly as 7ν
−1/2
2d . We expect

that for very large ν2d the errors would eventually cease to
fall further.

V. MATERIALS AND METHODS

A. Definitions for real samples

For real-world rock samples, we need to address some
definitions, in order for our results to be meaningful. The
method here is concerned with the statistics of grains,
where each grain is a single crystal, with an atomic lattice
whose orientation can be identified with EBSD.

Each grain is considered to be ‘equivalent’ to a par-
ticular ellipsoid, in a sense which we have described so
far only for cuboids. For more general grain shapes, we
adopt the following definition: Let a grain occupy a set
G of points r in 3d space. Define a symmetric positive-
definite tensor

gij ≡
∫
G

(ri − 〈ri〉)(rj − 〈rj〉)d3r. (41)

The equivalent ellipsoid which corresponds to this grain
has the same volume as the grain, has principal axes
aligned with the eigenvectors of gij , and has major axis
lengths proportional to the square roots of the corre-
sponding eigenvalues of gij .

A critical assumption is that the major axes of the
ellipsoid are aligned with the crystallographic axes of
the lattice. This assumption is, strictly speaking, only
meaningful for orthorhombic, tetragonal or cubic symme-

try groups, which have three orthogonal crystallographic
axes. For the hexagonal group, if the grains adhere to the
symmetry of the crystal, the ellipsoids will be ellipsoids
of revolution, and it will be sufficient for the crystallo-
graphic c-axis to align with the axis of rotation of the
ellipsoid.

In the case of the rock sample studied here, the two
minerals analysed are triclinic (plagioclase; which is a
solid solution between anorthite and albite, and in our
case, close to the anorthite end of the series) and mon-
oclinic (the pyroxene augite, which is close to the diop-
side end-member of a complex solution series). For such
crystal systems, care must be exercised in defining an ini-
tial orientation to be operated on by the Euler rotations
[14]. In this case however, both minerals have crystal-
lographic axes that are not far from being mutually or-
thogonal: for anorthitic plagioclase, the unit cell angles
are [15]: α = 93.13◦, β = 115.89◦ and γ = 91.24◦; while
for diopside [16]: α = 90◦, β = 105.63◦ and γ = 90◦.
Within the uncertainties stated here, we therefore be-
lieve that alignment of ellipsoids to crystallographic axes
is sufficiently well-defined; but we must also ask whether
is is likely to be true? For anorthitic plagioclase, which
crystallises first and thus directly from abundant liquid,
this alignment assumption is believed to be commonly
the case. However, it will be more questionable for late-
crystallizing minerals which are forced to accommodate
their shapes to interstices between existing grains.

B. Rock sample

The sample we examine is from the Lupchinga dolerite
dyke, which belongs to a NNE-trending swarm about 10
km wide and 60 km long, and is exposed on the south-
ern coast of Lupchinga Island in Pääjärvi Lake, Karelia,
NW Russia, where it is 22.4 m wide (it is inaccurately
described as 21 m wide in Ref. [17]: R. Latypov, pers.
commun., 2016). We examined a sample collected 6.05
m from the eastern margin. The bulk geochemical com-
position of this sample is reported in Ref. [17] (their sam-
ple number 1/36). The composition of the dyke is gen-
erally uniform (with MgO concentration approximately
5.5 wt.%) with a compositionally distinct chilled mar-
gin (only the eastern margin is accessible as the west-
ern margin is covered by the sea) with MgO increasing
to 5.8 wt.%. No phenocrysts (crystals carried by the
magma from its source, identifiable by their abnormally
large size) are present in the dyke.

C. Electron backscatter diffraction imaging

After standard mechanical polishing using diamond
paste down to 1/4 micron grit size, a 30µm thick sec-
tion of rock was polished for 1 hour with 0.06µm col-
loidal silica (SiO2 particle dispersion in an alkaline so-
lution) at Cambridge University, UK. The sample was
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FIG. 6: Image of basaltic rock sample, segmented by mineral type. We apply the analysis here separately to the plagioclase
and clinopyroxene grains.

analysed on a FEI sFEG XL30 SEM at the Department
of Physics, University of Cambridge. All crystallographic
datasets were collected, indexed and analysed using Ox-
ford Instruments AZtec acquisition software, set to detect
7 bands, 60 Hough transform, 75 reflectors, at 4x4 bin-
ning and 2.7 s time per frame. Whole thin section EBSD
was carried out using 15 µm step size, over an area of ap-
proximately 20 × 15 mm. Acquisition of the data for the
EBSD map took 150 minutes and the data was processed
by Oxford Instrument Channel 5 software.

Channel 5 software permits the construction of maps
of mineral phases, shape of grain intersections, and tex-
tural component maps. The phase map is determined
using the crystallographic matching units of each consti-
tutive phase (for plagioclase we used the matching unit
from Angel et al.[15], while for clinopyroxene we used the
AZtec Dioside.cry reference file [16]).

VI. RESULTS: ANALYSIS OF ROCK SECTION

Figure 6 shows an image of the rock sample, segmented
into grains of diopside and anorthite. We perform a mo-
ment analysis of the two highlighted mineral types. Ta-
ble I shows data and calculations applied to a few of the
anorthite grains, to illustrate the calculation, and Ta-
ble II shows the relevant calculated moments for the two

grain populations.
The grains of anorthitic plagioclase are seen to have

a mean shape which is elongated in the C-axis direction
and somewhat flattened in the B-axis direction. This or-
dering B < A < C of major axis lengths is expected
for interface-controlled growth of plagioclase, and the
method presented here has allowed a quantitative, 3d
measurement of this anisotropy to be obtained. The
shapes of clinopyroxene grains have been less studied in
the literature, and we believe these data represent the
first statistical analysis of their 3d geometry in a rock
sample.

VII. CONCLUSIONS

Automated EBSD mapping of material samples has be-
come a fast and powerful method in recent years, generat-
ing large volumes of data. Image analysis can be brought
to bear to segment the orientation maps so obtained, and
these data sets are ideally suited to the application of
moment-based methods for structure characterization.

We believe that the method presented here gives
unique structural insight into the 3d nature of polycrys-
talline samples, provided it can be assumed that the
structure is statistically isotropic. Although we have de-
rived the equations for the mathematically ideal case of
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TABLE II: Grain numbers and 2d moments for mineral pop-
ulations, and calculated values of average major axis lengths,
using Eqs. (8) to (10). Relative errors for A4,3, B4,3 and C4,3

are estimated from 7ν
−1/2
2d .

anorthite diopside

ν2d 3299 4303
m0,0,0/m

8 4.41× 10−29 1.17× 10−29

m 1
2
, 1
2
, 1
2
/m11 3.66× 10−39 3.29× 10−40

m1,0,0/m
10 7.81× 10−36 1.52× 10−36

m0,1,0/m
10 1.51× 10−35 1.22× 10−36

m0,0,1/m
10 5.12× 10−36 8.73× 10−37

A4,3/µm 590± 70 340± 40
B4,3/µm 300± 40 420± 50
C4,3/µm 900± 110 590± 60

ellipsoids, the fact that the method also gives accurate
results for synthetic data generated for cuboids suggests
that it may be generally applicable to the less ideal grain
shapes encountered in real samples, provided the results
are interpreted as describing ‘equivalent’ ellipsoids. Here

‘equivalent’ means having the same volume and ratios of
major axis lengths.

Lastly, the estimated accuracy of the results is no-
table: because we are constrained to moderately large
moments, the method gives information mostly about
the bigger grains in a polydisperse population. Because
of the scarcity of big grains, the method needs a rela-
tively large sample size: to obtain an average shape for
the 3d grains to an accuracy of better than 10% requires
on the order of 5000 grain sections to be analysed. This is
now within the capabilities of modern EBSD implemen-
tations, so we believe the new moment method described
here is a timely addition to the analysis tools available
for electron microscopy.
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