
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9939(XX)0000-0

PROPERTIES OF THE RECURSIVE DIVISOR FUNCTION AND

THE NUMBER OF ORDERED FACTORIZATIONS

T. M. A. FINK

Abstract. We recently introduced the recursive divisor function κx(n), a re-

cursive analogue of the usual divisor function. Here we calculate its Dirichlet
series, which is ζ(s− x)/(2 − ζ(s)). We show that κx(n) is related to the or-

dinary divisor function by κx ∗ σy = κy ∗ σx, where * denotes the Dirichlet
convolution. Using this, we derive several identities relating κx and some stan-

dard arithmetic functions. We also clarify the relation between κ0 and the

much-studied number of ordered factorizations K(n), namely, κ0 = 1 ∗K.

Several arithmetic functions, such as the divisor function and the Euler totient
function, play a fundamental role in our understanding of the theory of numbers.
They are explicitly defined, in the sense that values of the function are not defined
in terms of prior values of the function. However, it is possible to write down
meaningful recursive arithmetic functions. We consider two of them in this paper,
and show that they are intimately related to a number of standard arithmetic
functions.

We recently introduced and studied the recursive divisor function [1, 2]:

(1) κx(n) = nx +
∑
dbn

κx(d),

where mbn means m|n and m < n. It is the recursive analogue of the usual divisor
function,

σx(n) =
∑
d|n

dx.

For example, κ0(4) = 1+κ0(1)+κ0(2) = 4 and κ1(6) = 6+κ1(1)+κ1(2)+κ1(3) = 14.
The first 12 values of κ0 (A067824 [3]) and κ1 (A330575 [3]) are shown is Table 1.

While the function κx(n) has received little attention [1, 2], a related but simpler
recursive arithmetic function has been studied for 90 years, namely, the number
K(n) of ordered factorizations into integers greater than 1 [4, 5, 6, 7, 8, 9]. It is
defined as

(2) K(n) = ε(n) +
∑
dbn

K(d),

where ε(n) is 1 for n = 1 but zero otherwise. For example, K(8) = 4 because 8 is
the product of integers greater than one in four ways: 8 = 4 · 2 = 2 · 4 = 2 · 2 · 2.
The first 12 values of K (A074206 [3]) are shown is Table 1.

In what follows, we denote the Dirichlet convolution of two arithmetic functions

f and g as f ∗g, and we denote the Dirichlet series of f as f̃ . The various arithmetic
functions that we use in this paper are summarized in Table 1.
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1. Statement of results

We prove the following three theorems.

Theorem 1. The Dirichlet series κ̃x for the recursive divisor function κx(n) is

κ̃x =

∞∑
n=1

κx(n)

ns
=
ζ(s− x)

2− ζ(s)
,

where ζ is the Riemann zeta function.

Theorem 2. The recursive divisor function κx satisfies the following:

κx ∗ σy = κy ∗ σx κ-σ exchange symmetry(3)

κx = (idx + 1 ∗ κx)/2 Definition of κx(4)

κx =
idx

2
+

1 ∗ idx

22
+

1 ∗ 1 ∗ idx

23
+ . . . Series representation of κx(5)

κx = Jx ∗ κ0 Relation between κx and κ0(6)

κ−1x = J−1x ∗ (2µ− ε) Inverse of κx(7)

σx = κx ∗ (21− d) Relation between κx and σx.(8)

Note the special cases: κ1 = φ ∗ κ0; κ−10 = 2µ− ε; and κ0 = 1
2 + 1∗1

22 + 1∗1∗1
23 + . . ..

Theorem 3. The number of recursive divisors is related to the number of ordered
factorizations by κ0 = 1 ∗K, that is,

κ0(n) =
∑
d|n

K(d).(9)

Furthermore, K satisfies the following:

K = (ε+ 1 ∗K)/2 Definition of K(10)

K =
ε

2
+

1

22
+

1 ∗ 1
23

+ . . . Series representation of K(11)

κx = idx ∗K Relation between K and κx(12)

K−1 = 2 ε− 1 Inverse of K.(13)

2. Proof of Theorem 1

It is convenient to rewrite (1) as

(14) 2κx(n) = nx +
∑
d|n

κx(d).

Dividing by ns and summing over n,

2 κ̃x = 2

∞∑
n=1

κx(n)

ns
=

∞∑
n=1

nx

ns
+

∞∑
n=1

1

ns

∑
d|n

κx(d).

Swapping the order of summation,

2 κ̃x = ζ(s− x) +

∞∑
d=1

κx(d)
∑
n: d|n

1

ns
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= ζ(s− x) +

∞∑
d=1

κx(d)

∞∑
n=1

1

(dn)s

= ζ(s− x) +

∞∑
d=1

κx(d)

ds

∞∑
n=1

1

ns

= ζ(s− x) + κ̃x ζ(s).

From this, we arrive at Theorem 1:

κ̃x =
ζ(s− x)

2− ζ(s)
. �

3. Proof of Theorem 2

In what follows, we use the standard identities 1∗µ = ε, 1∗Jx = idx and 1∗idx = σx.
Since σ̃x/κ̃x = ζ(s)(2 − ζ(s)) is independent of x, κ̃x σ̃y = κ̃y σ̃x. The Dirichlet

convolutions of κx and σx must follow the analogous relation, so we arrive at (3):

κx ∗ σy = κy ∗ σx. �

We can immediately rewrite (14) in the form of (4),

κx = (idx + 1 ∗ κx)/2. �

Dirichlet
series Values from n = 1 to n = 12

ε Identity b1/nc 1 1 0 0 0 0 0 0 0 0 0 0 0

µ Möbius function 1/ζ(s) 1 -1 -1 0 -1 1 -1 0 0 1 -1 0

1 Constant function 1 ≡ id0 ζ(s) 1 1 1 1 1 1 1 1 1 1 1 1

id1 1st power function n ζ(s− 1) 1 2 3 4 5 6 7 8 9 10 11 12

φ Euler totient function ≡ J1
ζ(s− 1)

ζ(s)
1 1 2 2 4 2 6 4 6 4 10 4

d No. of divisors ≡ σ0 ζ2(s) 1 2 2 3 2 4 2 4 3 4 2 6

σ Sum of divisors ≡ σ1 ζ(s)ζ(s− 1) 1 3 4 7 6 12 8 15 13 18 12 28

κ0 No. of recursive divisors
ζ(s)

2− ζ(s) 1 2 2 4 2 6 2 8 4 6 2 16

κ1 Sum of recursive divisors
ζ(s− 1)

2− ζ(s) 1 3 4 8 6 14 8 20 14 20 12 42

κ−1
0 Inverse of κ0

2− ζ(s)
ζ(s)

1 -2 -2 0 -2 2 -2 0 0 2 -2 0

K No. of ordered factorizations 1/(2− ζ(s)) 1 1 1 2 1 3 1 4 2 3 1 8

K−1 Inverse of K 2− ζ(s) 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

σx Sum of xth power of divisors ζ(s)ζ(s− x) 1, 2x + 1, 3x + 1, 4x + 2x + 1, . . .

idx xth power function nx ζ(s− x) 1, 2x, 3x, 4x, . . .

Jx Jordan’s totient function
ζ(s− x)

ζ(s)
1, 2x − 1, 3x − 1, 4x − 2x, . . .

κx Sum of xth power of
ζ(s− x)

2− ζ(s) 1, 2x + 1, 3x + 1, 4x + 2x + 2, . . .
recursive divisors

Table 1. For each of the arithmetic functions used in this paper, we give its Dirichlet
series and the first 12 terms of its sequence (four terms when x is not specified).
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Iterating this recursive definition gives

κx =
idx

2
+

1 ∗ idx

4
+

1 ∗ 1 ∗ κx
4

,

and so on, leading to the infinite series (5):

κx =
idx

2
+

1 ∗ idx

22
+

1 ∗ 1 ∗ idx

23
+ . . . . �

Since σx = 1 ∗ 1 ∗ Jx, from (3) we have κx ∗ Jy = κy ∗ Jx. Setting y = 0, and since
J0 = ε, we have (6),

κx = Jx ∗ κ0. �

Convolving of (4) by κ−1x and solving for κ−1x , we have κ−1x = id−1x ∗ (2ε− 1). Since
idx = 1 ∗ Jx, we have id−1x = µ ∗ J−1x , and we arrive at (7),

κ−1x = J−1x ∗ (2µ− ε). �

From (7), Jx = κx ∗ (2µ− ε). Convolving with 1 ∗ 1, we find (8),

σx = κx ∗ (21− d). �

4. Proof of Theorem 3

Rewriting (2) as

2K(n) = ε(n) +
∑
d|n

K(d),

we immediately arrive at (10),

K = (ε+ 1 ∗K)/2. �

Convolving (4) with 1 yields 1 ∗K = (1 + 1 ∗ 1 ∗K)/2. Replacing 1 ∗K with κ0,
we recover the definition of κ0: κ0 = (1 + 1 ∗ κ0)/2. Thus we have established (9),

κ0 = 1 ∗K. �

Setting x = 0 in (5), and convolving with µ, we have (11),

K =
ε

2
+

1

22
+

1 ∗ 1
23

+ . . . . �

Substituting κ0 = 1 ∗K into (6), we have (12),

κx = idx ∗K. �

Inverting K = µ ∗ κ0 gives K−1 = 1 ∗ κ−10 . Inserting into this κ−10 = 2µ − ε from
(7) gives (13),

K−1 = 2ε− 1. �
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