
Optimal scales in weighted networks

Diego Garlaschelli 1, Sebastian E. Ahnert 2, Thomas M. A. Fink 3, and Guido
Caldarelli 4,3,5

1 Lorentz Institute of Theoretical Physics, University of Leiden,
Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
2 Cavendish Laboratory, University of Cambridge,

JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
3 London Institute for Mathematical Sciences,

22 South Audley St, W1K 2NY London, United Kingdom
4 IMT Alti Studi Lucca, Piazza S. Ponziano 6, 55100 Lucca, Italy

5 ISC-CNR, Dipartimento di Fisica, Università La Sapienza,
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Abstract. The analysis of networks characterized by links with het-
erogeneous intensity or weight suffers from two long-standing problems
of arbitrariness. On one hand, the definitions of topological properties
introduced for binary graphs can be generalized in non-unique ways to
weighted networks. On the other hand, even when a definition is given,
there is no natural choice of the (optimal) scale of link intensities (e.g.
the money unit in economic networks). Here we show that these two
seemingly independent problems can be regarded as intimately related,
and propose a common solution to both. Using a formalism that we re-
cently proposed in order to map a weighted network to an ensemble of
binary graphs, we introduce an information-theoretic approach leading
to the least biased generalization of binary properties to weighted net-
works, and at the same time fixing the optimal scale of link intensities.
We illustrate our method on various social and economic networks.

Keywords: Weighted Networks, Maximum Entropy Principle, Graph
Theory, Network Science

1 Introduction

A large number of social, economic, biological and information systems can be
conveniently described as networks (or graphs) where N nodes (or vertices) are
connected by L links (or edges). Over the last fifteen years, Network Science has
emerged as a fast-growing discipline crossing the boundaries of many research
fields [1]. The aim of Network Science is that of characterizing and modelling the
structure and dynamics of real-world networks, as opposed to abstract mathe-
matical specifications such as those studied by Graph Theory.

One of the challenges in Network Science is that of extending the relatively
well-developed tools available for binary networks (where links are either present
or absent, with no possible variation in their intensity) to the more general case of
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weigthed networks (where links can have heterogeneous weights) [2,3,4,5,6]. For
instance, in binary social networks a link may represent the existence of a friend-
ship relation between two people, irrespective of the strength of such a relation,
while in weighted social networks a link may be attached a value indicating the
amount of shared time or the degree of intimacy between two friends. While the
analysis of social networks has traditionally focused on binary graphs, the recent
availability of detailed data about the magnitude of interactions in large-scale
social systems offers a new potential for the study of social networks as weighted
graphs. However, in the transition from binary graphs to weighted networks two
main problems of arbitrariness are encountered, and are still largely unsolved.

First, while several definitions of basic topological quantities have been intro-
duced for binary graphs, the corresponding generalizations to weighted networks
are non-unique. An important example is that of the clustering coefficient ci,
defined in binary undirected graphs as the fraction of neighbours of node i that
are also neighbours of each other, or equivalently the fraction of triangles in
which node i participates [1]. In weighted networks, the clustering coefficient
can be generalized in many ways [2,3,4,5,6], and there is no natural criterion
indicating the optimal definition. Another example is the reciprocity, defined in
binary directed graphs as the ratio of reciprocated to total links [7]. In weighted
networks, there are many possible generalizations requiring sophisticated com-
parisons and calculations [8]. In general, on one hand the heterogeneity of link
intensity observed in weighted networks provides important additional informa-
tion that one would like to exploit in order to define generalized quantities that
reduce to the ordinary and well-studied ones in the particular case of binary
graphs, but on the other hand a large degree of arbitrariness makes the problem
not well defined.

Second, even when a definition of a weighted quantity is given, one is left
with the problem of the arbitrary scale of link intensities. The simplest example
is perhaps the total weight W of a network, defined as the sum of all link weights
in the graph. If the links of the network represent e.g. flows of money between the
units of an economic system, or the time spent by two friends in their phone calls,
the quantity W clearly depends on the units chosen (e.g. Euros or thousands of
Euros, minutes or seconds, etc.). Similarly, any other quantity depending on the
edge weights will suffer from the same arbitrariness. This problem can be cir-
cumvented by defining adimensional weights that are invariant under rescaling,
e.g. dividing each edge weight by the average weight over all pairs of vertices.
However, this still does not solve the problem entirely. Consider for instance, as
one of the simplest properties of binary graphs, the link density defined as the
ratio of the number of observed links to the total number of pairs of vertices.
This quantity ranges between zero (empty graph) and one (fully connected net-
work). The corresponding weighted quantity, if defined as the ratio of the total
weight W to the number of pairs of vertices, ranges between zero and infinity
and thus loses the properties of a density. This problem persists irrespective of
the preliminary rescaling of the edge weights. Similar considerations apply to
the global clustering coefficient defined as the fraction of realized triangles: in
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weighted networks, the weighted counterpart of such a ‘fraction’ can actually
range from zero to infinity.

In this paper, we show that the two seemingly unrelated problems discussed
above can actually be rephrased as two sides of the same coin. In sec. 2 we
first briefly recall a general method that we proposed in order to generalize the
definition of any topological property valid for binary graphs to one valid for
weighted networks [6]. While powerful, this approach still does not uniquely fix
the scale of edge weights and the functional form of the mapping from binary to
weighted properties. For these reasons, in sec. 3 we show that this approach can
be rephrased within a statistical physics formalism fixing the functional form of
the mapping [9]. Then, in sec. 4 we apply the Maximum Entropy principle to
further fix the scale of edge weights in such a way that the weighted topological
properties induced by the binary ones are defined in the least biased way. As a
result, we obtain an information-theoretic method that fixes the optimal scale
of edge weights in the original network and at the same time induces unique
and least biased definitions of weighted properties from the well-known binary
ones. In sec.5 we finally illustrate our method on various real-world social and
economic networks.

2 Weighted Networks as Ensembles of Binary Graphs

Mathematically, a binary directed network with N vertices is uniquely specified
by a N × N adjacency matrix A with entries aij = 1 if a directed link from
vertex i to vertex j is present, and aij = 0 otherwise. For binary undirected
networks, where links have no orientation, the matrix A is symmetric. Weighted
directed networks are instead characterized by a N ×N weight matrix W where
the (non-negative, for the purposes of this article) entry wij represents the in-
tensity of the directed link connecting vertex i to vertex j (including wij = 0
if the link is absent). Again, in weighted undirected networks the matrix W is
symmetric. In this paper, we will consider directed networks, where it is intended
that undirected networks can be obtained as the special situation where A, W
and other similar quantities are symmetric.

Quite recently [6], we proposed a method to extend any definition of topo-
logical property valid for binary graphs, i.e. any function f (b)(A) of the binary
adjacency matrix A, to a corresponding function f (w)(W) of the weight matrix
W. Our method is based on the idea that the matrix W specifying the original
weighted network can be mapped to an ensemble of binary graphs defined by a
conditional probability P (A|W). The latter represents the occurrence probabil-
ity, given W, of a possible graph A in the ensemble. This mapping from W to
P (A|W) allows one to define the weighted counterpart f (w)(W) of any binary
property f (b)(A) as the expected value of the latter over the ensemble of binary
graphs, i.e.

f (w)(W) ≡ 〈f (b)(A)〉W =
∑
A

P (A|W)f (b)(A) . (1)
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If we require that each edge weight wij only determines the probability pij =
p(wij) of existence of a binary link from vertex i to vertex j (while having no
effect on a different pair of vertices), then P (A|W) simply factorizes over pairs
of vertices, i.e.

P (A|W) =
∏
i,j

[p(wij)]
aij [1− p(wij)]1−aij (2)

where i < j for undirected networks and i 6= j for directed networks with no
self-loops (if self-loops are allowed, then we should set i ≤ j for undirected
networks and no constraint for directed networks). The problem then reduces
to specifying the functional form of the (monotonic) edge-specific probabilities
pij = p(wij) [6]. If these probabilities are regarded as entries of a N ×N matrix
P(W), the factorized form (2) allows to considerably simplify the definition of
any weighted properties given in eq.(1). For instance, for any quantity f (b)(A)
that is polynomial or multilinear in the entries aij of the adjacency matrix, the
corresponding weighted property reduces to [6]

f (w)(W) ≡ 〈f (b)(A)〉W = f (b)[P(W)] . (3)

In our first approaches to the problem [6,10], we chose the linear mapping

p(wij) ≡
wij − wmin
wmax − wmin

(4)

where wmin and wmax represent the minimum and maximum observed weight
in the network, respectively. The above choice ensures that p(wij), as required
in order to be a probability, ranges between 0 and 1. We showed that this ap-
proach can effectively exploit the additional topological information encoded in
the weights, in particular for fully connected networks [6,10]. However, eq.(4)
violates two desirable properties of p(wij), namely p(0) = 0 and p(+∞) = 1,
i.e. the fact that (only) missing links in the original network are associated with
zero connection probability in the binary ensemble, and that (only) infinite con-
nection intensities in the original network are associated with unit connection
probability.

In general, the choice of the functional form of p(wij) remains somewhat
arbitrary, and eq.(4) can be viewed as the mathematically simplest possibility.
This translates the arbitrariness of the initial problem, i.e. the non-uniqueness
of the generalization of a binary topological property to a weighted counterpart,
to the arbitrariness of the choice of p(wij). This also implies that the second
problem of arbitrariness, i.e. the fact that any weighted topological property
f (w)(W) has in general an undesired dependence on the choice of the units of
W in the orginal network, is still unsolved. While the linear choice in eq.(4) is
invariant under changes of units (i.e. it is scale-invariant), this will not be the
case for more general non-linear choices of p(wij).
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3 Statistical Physics of Network Ensembles

We now show that the above approach can be rephrased within a statistical
physics formalism in such a way that the first arbitrariness, i.e. the choice of the
functional form of p(wij), can be fixed.

Very recently [9], we introduced a general ensemble of binary graphs that, as
in statistical physics, is defined (here in slightly simplified form) by the occur-
rence probability

P (A) =
1

Z
exp

[
−E(A)

T

]
. (5)

In the above equation, E(A) is the energy of the particular graph A (a function
of one or more topological properties of A, representing the ‘cost’ of realizing that
graph), T is the temperature (representing the degree of topological optimiza-
tion, with lower T corresponding to a probability concentrated on energetically
‘cheaper’ configurations) and

Z ≡
∑
A

exp

[
−E(A)

T

]
(6)

is the normalizing constant, or grand partition function of the ensemble. Graph
ensembles like the one defined above are extensively used in the statistical physics
literature [8,9,11,12,13] as well as in social science [14,15], where they are known
as p∗ models or Exponential Random Graphs.

Since E(A) represents the cost of realizing the particular graph A, we can
regard the ensemble of binary graphs discussed in sec. 2 and defined by the
probability P (A|W) as a particular case of the ensemble defined by eq.(5) where
the energy is a function E(A,W) of the weight matrix W [9]. In particular, the
requirements for P (A|W) leading to the factorized form (2) translate into the
requirement of the additivity of E(A,W), i.e.

E(A,W) ≡
∑
i,j

εijaij =
∑
i,j

ε(wij)aij (7)

where, again, i 6= j for directed networks and i < j for undirected networks.
In the above expression, εij = ε(wij) must be interpreted as an edge-specific
energy, i.e. the energetic cost contributed by the existence of a link from vertex
i to vertex j (aij = 1). In this way, the choice of the functional form of p(wij)
translates to the choice of the functional form of ε(wij). Indeed, it is easy to
show that inserting eq.(7) into eq.(5) leads precisely to eq.(2) where

p(wij) =
e−ε(wij)/T

1 + e−ε(wij)/T
. (8)

The above expression is particularly useful in order to select the appropriate
form of ε(wij). Specifically, we see that a linear dependence of the type ε(wij) ∝
wij is not suitable, since it would assign a probability p(0) = 1/2 (rather than



6 Diego Garlaschelli et al.

p(0) = 0) to the pairs of vertices connected by no link (wij = 0) in the original
weighted network. We also see that the linear choice (4) is not natural, since it
would correspond to a very complicated, and difficult to justify, form of ε(wij).
On the other hand, as we recently noted [9], the simplest satisfactory choice
involves a proportionality between e−ε(wij)/T and wij , i.e. e−ε(wij)/T = zwij or
in other words

p(wij , z) ≡
zwij

1 + zwij
. (9)

This means that the dependence of the binary link energy on the observed edge
weight is given by

ε(wij , z) = −T ln(zwij) , (10)

i.e. wij has a logarithmic effect on ε(wij , z). In real networks with a power-law
weight distribution of the form ρ(w) ∝ w−α, the above relation can be used to
measure the empirical temperature as T = α−1 [9]. Typical observed values are
0.5 . T . 2.5.

Equation (9) fixes the functional form of p(wij , z) in a very reasonable man-
ner. With such a choice, we recover, for all values of z, the desired properties
p(0, z) = 0 and p(+∞, z) = 1. Note that if z = [wmax − wmin]−1 and zwij � 1
then we have p(wij , z) ≈ wij/[wmax −wmin], which is approximately equivalent
to the choice in eq.(4). This corresponds to a ‘sparse graph’ limit for the binary
ensemble induced by the weighted network. However, in general the value of z
in eq.(9) is arbitrary. This leads us to the main point of this paper, which is
discussed in the next section.

4 Maximum-Entropy Scale of Edge Weights

We can regard the arbitrariness of z in eq.(9) as equivalent to the arbitrariness
of the unit of edge weights in the original network. Indeed, changing the scale
of wij to λwij , where λ is any positive constant, is mathematically equivalent to
changing z to λz. In particular, from eqs.(9) and (10) it is clear that

p(λwij , z) = p(wij , λz) and ε(λwij , z) = ε(wij , λz) . (11)

This shows that the scale λ can be completely reabsorbed in a redefinition of the
parameter z, i.e. z → λz. Therefore, without loss of generality, we can regard
z in eq.(9) as the parameter specifying the scale of weights. If we introduce a
unique way to fix z, we have automatically eliminated the second and last source
of arbitrariness discussed in the Introduction, i.e. the units of edge weights in
the original network.

In what follows, we propose the Maximum Entropy principle as a rigorous
criterion to fix the value of z, and further show that this value is unique. Our
main idea is that, in line with other uses of the Maximum Entropy principle
[11,16], the least biased choice of a quantity should correspond, in absence of
any other indication, to the one that maximizes Shannon’s entropy (given the
available information). Given a real-world weighted network specified by the
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matrix W and the corresponding binary ensemble specified by the conditional
probability P (A|W) as given by eqs.(2) and (9), Shannon’s entropy reads

S(z) ≡ −K
∑
A

P (A|W) lnP (A|W) (12)

where K is an arbitrary constant, that we fix later for convenience. Now, due to
the factorization of P (A|W) as in eq.(2), and since the entropy of a factorized
process is additive, we can simply write

S(z) = K
∑
i,j

sij(z) (13)

(with the usual convention on i, j for directed and undirected graphs) where
sij(z) is the edge-specific entropy

sij(z) = −p(wij , z) ln p(wij , z)− [1− p(wij , z)] ln[1− p(wij , z)] (14)

Note that both missing links (wij = 0) and very large weights (wij → +∞)
generate a zero entropy sij(z) = 0, and therefore have no effect on the choice
of the optimal scale. This is consistent with the fact that both zero and infinite
weights are independent of any chosen scale λ. Inserting eq.(14) into eq.(13), we
find that the entropy of the ensemble is

S(z) = −K ln
∏
i,j

[p(wij , z)]
p(wij ,z)[1− p(wij , z)]1−p(wij ,z) (15)

If we want S(z) to be normalized between 0 and 1 (although this has no effect
on the following results), we can set

K ≡ 1

M ln 2
(16)

where M is the number of possible pairs of vertices, i.e. M = N(N − 1) for
a directed network with no self-loops and M = N(N − 1)/2 for an undirected
network with no self-loops. If self-loops are allowed, then the above values of M
must be increased by N .

We can now look for the value of z that maximizes S(z) as given by eq.(15).
To this end, we write the first derivative of S(z) as

S′(z) = K
∑
i,j

∂p(wij , z)

∂z
ln

1− p(wij , z)
p(wij , z)

= K
∑
i,j

wij
(1 + zwij)2

ln
1

zwij
(17)

and the second derivative as

S′′(z) = K
∑
i,j

wij
(1 + zwij)2

[
− 2wij

1 + zwij
ln

1

zwij
− 1

z

]
(18)

Now let wmax denote the maximum weight and wmin the minimum non-zero
weight in the original network. As z increases from 0 to +∞, we find that there
are five regimes, listed below.
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4.1 z = 0

This gives a deterministic ensemble with p(wij , 0) = 0 ∀i, j. Therefore the en-
tropy has the minimum value S(0) = 0, and we are sure that this is not the
maximum we are looking for.

4.2 0 < z < 1/wmax

Consider first the case z � 1/wmax. In this regime, zwij � 1 ∀i, j, therefore
p(wij , z) ≈ zwij . So S(z) increases as z increases and no (local) maxima or
minima are encountered. Also in the less strict situation z < 1/wmax, we have
z < 1/wij ∀i, j which implies ln(1/zwij) > 0 ∀i, j. Looking at eq.(17), this means
that S′(z) > 0, so S(z) increases in the entire range 0 < z < 1/wmax.

4.3 1/wmax < z < 1/wmin

This is the nontrivial range. It can be shown that if a maximum of S(z) exists,
it must be within this range. As we showed above, when z < 1/wmax we have
S′(z) > 0. Similarly, below we will show that when z > 1/wmin one has S′(z) <
0. Taken together, these results imply that, since S′(z) is a continuous function,
there must exist a value z∗ in the range 1/wmax < z∗ < 1/wmin such that
S′(z∗) = 0. As we show later, this corresponds to a maximum of the entropy.

4.4 z > 1/wmin

When z > 1/wmin, we have z > 1/wij ∀i, j which implies ln(1/zwij) < 0 ∀i, j.
Looking at eq.(17), this means that S′(z) < 0, so S(z) decreases in the entire
range z > 1/wmin. Note that in the extreme case z � 1/wmin we have zwij � 1
∀i, j and p(wij , z) ≈ 1− 1/zwij .

4.5 z → +∞

Now p(wij ,+∞) = Θ(wij), and the entropy tends again to the minimum value
S(+∞) = 0. Interestingly, this limit corresponds to the situation when the orig-
inal weighted network is regarded as a binary graph by simply setting each
non-zero weight to one, and leaving the other values equal to zero. Within our
formalism, we find that this oversimplification corresponds to the minimum en-
tropy, i.e. it is maximally biased.

5 Real-World Social and Economic Networks

We finally illustrate an application of our method to various real-world social and
economic networks. We consider snapshots of the World Trade Web (WTW), the
network of world countries connected by import/export relationships [17,18], the
RyanAir (RA) airport network [19], the European Union (EU) aviation network
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Fig. 1. Log-linear plot of the ensemble entropy S(z) of the World Trade Web (year
2000) as a function of z in the range 1/wmax < z < 1/wmin. The number of nodes is
187. The maximum is placed at z∗WTW = 0.34.

[20] and the Cond-Mat (CM) scientific collaboration network [21]. The WTW is
a directed network with no self-loops (hence the number of pairs of vertices is
M = N(N −1)), the RA and the CM are undirected networks with no self-loops
(M = N(N − 1)/2), and finally the EU is a directed network with self-loops
(M = N(N − 1) +N).

For each of these networks, we consider the weight matrix W as given in
the original dataset, and use it to calculate the ensemble probabilities defined in
eq.(9) and consequently the entropy S(z) as defined in eq.(15). So the weight wij
is expressed in the (necessarily arbitrary) units used in the original dataset. We
then look for the optimal value z∗ that maximizes S(z). Clearly, z∗ corresponds
to the optimal weight scale w∗ ≡ 1/z∗, so that the quantity z∗wij appearing in
eqs.(9) and (10) can be rewritten as

xij = z∗wij =
wij
w∗

(19)

The above expression gives us the optimally rescaled weights xij of the network,
i.e. the weights expressed in terms of the non-arbitrary unit w∗. Note that the
rescaled weights xij are independent of the units used in the data, and hence of
the original scale of wij .

The curves of S(z), plotted in the nontrivial range 1/wmax < z < 1/wmin
where the entropy has a maximum, are shown in fig.1 for the WTW, in fig.2 for
the RA network, in fig.3 for the EU network, and in fig.4 for the CM dataset.
As expected, all curves displays a clear maximum for the value z∗ such that
S′(z∗) = 0. The values of z∗ are:

z∗WTW = 0.34
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Fig. 2. Log-linear plot of the ensemble entropy S(z) of the RyanAir network (year
2005) as a function of z in the range 1/wmax < z < 1/wmin. The number of nodes is
109. The maximum is placed at z∗RA = 0.47.

z∗RA = 0.47

z∗EU = 6.69 · 10−6

z∗CM = 3.034

The above values give the following optimal units w∗ required in order to rescale
the original arbitrary matrix W for each network:

w∗WTW = 2.92

w∗RA = 2.09

w∗EU = 149355

w∗CM = 0.33

Although an analysis of the topological properties of the four networks con-
sidered is beyond the scope of this paper, we briefly note that our procedure
yields a unique final weight matrix X expressed in non-arbitrary units, and a
corresponding probability matrix P(X) with entries given by

pij = p(wij , z
∗) = p(xij , 1) =

xij
1 + xij

. (20)

Using eq.(1) or (3), P(X) can be finally used in order to compute the least biased
weighted generalization f (w)(X) of any binary property f (b)(A). For instance,
for polynomial or multilinear properties

f (w)(X) = f (b)[P(X)] . (21)
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Fig. 3. Log-linear plot of the ensemble entropy S(z) of the EU aviation network (year
2005) as a function of z in the range 1/wmax < z < 1/wmin. The number of nodes is
28. The maximum is placed at z∗EU = 6.69 · 10−6.

The above formula can be used to compute the otherwise problematic weighted
counterparts of many topological properties, e.g. the weighted density and the
weighted clustering coefficient mentioned in the Introduction. For instance, let
us consider the ordinary definition of the density d(b)(A) of a binary network A:

d(b)(A) ≡ L(A)

M
= M−1

∑
i,j

aij (22)

where L(A) =
∑
i,j aij is the total number of links in A (our usual conventions

for i, j in the sum and for the number M of pairs of nodes hold). Using eq.(21),
the weighted density of a network with (optimally rescaled) weights X can be
defined as

d(w)(X) = d(b)[P(X)] = M−1
∑
i,j

pij = M−1
∑
i,j

xij
1 + xij

. (23)

By construction, the above definition takes values between 0 and 1, as any proper
density measure. This desirable property nicely overcomes the limitations of
other naive generalizations of the binary density, illustrating the usefulness of
the above approach.

For the four networks in our analysis, the values of the weighted density are:

d
(w)
WTW = 0.31

d
(w)
RA = 0.022

d
(w)
EU = 0.39

d
(w)
CM = 1.75 · 10−4
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Fig. 4. Log-linear plot of the ensemble entropy S(z) of the Cond-Mat collaboration
network (year 2001) as a function of z in the range 1/wmax < z < 1/wmin. The
number of nodes is 16726. The maximum is placed at z∗CM = 3.034.

We stress again that the above values are independent of any (necessarily ar-
bitrary) choice of the unit of weight in the orginal data. It is interesting to
compare the above values of the weighted density d(w) with the corresponding
values of the ordinary binary density d(b), as measured on the adjacency matrix
characterizing the bare topology of the original network:

d
(b)
WTW = 0.58

d
(b)
RA = 0.044

d
(b)
EU = 0.86

d
(b)
CM = 3.42 · 10−4

We find that the values of d(b) for all networks are approximately twice the
corresponding values of d(w). This big numerical difference shows the entity of
the information loss encountered when a weighted network is regarded as a binary
one (corresponding to the maximally biased limit z →∞ as discussed in sec. 4).
Our approach instead makes use of all the available information encapsulated
in the weights, and ensures that the bias is minimized (corresponding to the
maximum-entropy point z∗). For the four networks in our analysis, exploiting
the additional knowledge of the weights has a significant ‘sparsifying’ effect,
approximately halving the purely binary density.

6 Conclusions

In this paper we have addressed two problems of abitrariness that are system-
atically encountered in the analysis of weighted networks: the non-uniqueness
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of the generalization of binary topological properties to their weighted counter-
parts and that of the scale of edge weights. While in principle independent, we
have shown that, when a weighted network is mapped to an ensemble of bi-
nary graphs, these two problems turn out to be intimately related. In particular,
the ensemble formalism (especially when rewritten within a statistical-physics
framework) provides a straightforward weighted generalization of any binary
property, and at the same time allows us to find the optimal weight scale via a
Maximum Entropy criterion. It is remarkable that such a criterion cannot be in-
voked directly on the original system by maximizing the entropy of the weighted
network, because the entropy is only defined for ensembles of graphs and not for
a single instance (unless the original weighted network is trivially regarded as the
only possible outcome of a deterministic ensemble with zero entropy). Therefore
the transition from a single network to an ensemble of graphs is necessary in
order to find the least biased scale of weights via a maximization of the entropy.
Using examples of real-world socio-economic networks, we have illustrated our
approach and computed the optimal scale for such networks. We have shown
that this scale can be used to define the least biased generalization of any binary
property to the weighted case, confirming that the problem of selecting an op-
timal scale and that of defining unique generalizations of binary properties are
tightly interrelated within our ensemble formalism.
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