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ON THE RANDOM CHOWLA CONJECTURE

Oleksiy Klurman, Ilya D. Shkredov and Max Wenqiang Xu

Abstract. We show that for a Steinhaus random multiplicative function f : N → D

and any polynomial P (x) ∈ Z[x] of deg P ≥ 2 which is not of the form w(x + c)d

for some w ∈ Z, c ∈ Q, we have

1√
N

∑

n≤N

f(P (n)) d−→ CN (0, 1),

where CN (0, 1) is the standard complex Gaussian distribution with mean 0 and
variance 1. This confirms a conjecture of Najnudel in a strong form. We further
show that there almost surely exist arbitrary large values of x ≥ 1, such that

∣∣∣∣∣∣

∑

n≤x

f(P (n))

∣∣∣∣∣∣
�P

√
x(log log x)1/2,

for any polynomial P (x) ∈ Z[x] with deg P ≥ 2, which is not a product of linear fac-
tors (over Q). This matches the bound predicted by the law of the iterated logarithm.
Both of these results are in contrast with the well-known case of linear polynomial
P (n) = n, where the partial sums are known to behave in a non-Gaussian fashion
and the corresponding sharp fluctuations are speculated to be O(

√
x(log log x)

1
4+ε)

for any ε > 0.

1 Introduction

The main focus of the present paper is to take yet another look at one of the two most
studied models of random multiplicative functions. Let (f(p))p prime be a sequence of
independent uniformly distributed on the unit circle {|z| = 1} random variables. A
Steinhaus random multiplicative function is given by f(n) =

∏
pβ ||n f(p)β . Similarly,

let (f(p))p prime be a sequence of independent random variables taking values ±1
with probability 1/2, then a Rademacher random multiplicative function is given by
f(n) :=

∏
p|n f(p) for all n which are square-free, and f(n) = 0 otherwise. In 1944,

Wintner [Win44] introduced Rademacher random multiplicative functions to model
the behaviour of the Möbius function μ(n), whereas Steinhaus random multiplicative
functions are intended to model randomly selected Dirichlet characters χ(n), and
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Archemidean characters nit (t ∈ R). We refer the reader to [GS01, Section 2] and
the introduction of [Har20, Har21] for a meticulous overview of this subject.

A classical question of interest which attracted a lot of attention is to understand
the distribution and the sizes of the partial sums

∑
n≤x f(n). The fundamental

difficulty stems from the fact that the values f(n) and f(m) are not independent
whenever (m, n) > 1 and thus the corresponding sums cannot be directly treated
using tools for independent random variables.

1.1 Distribution results. It is a natural guiding conjecture that 1√
N

∑
n≤N f

(n) d−→ CN (0, 1) in the Steinhaus case and 1√
N

∑
n≤N f(n) d−→ N (0, 1) in the Radem

acher case, where “ d−→” stands for convergence in distribution and N (0, 1) and
CN (0, 1) stand for standard real and complex Gaussian distribution respectively.
But Chatterjee suggested that this conjecture should not hold. Chatterjee’s con-
jecture (expressed in [Hou11]), was proved by Harper [Har13b], using an intricate
conditioning argument. It is now a direct consequence of a more recent breakthrough
work by Harper [Har20] on Helson’s conjecture that in fact 1√

N

∑
n≤N f(n) d−→ 0 in

both cases. Interestingly, if one restricts to several natural subsums, Chatterjee and
Soundararajan [CS12], Harper [Har13b] and Hough [Hou11] established central limit
theorems. It remains a deep mystery whether appropriately normalized partial sums∑

n≤N f(n) have a limiting distribution as N → ∞.

The problem considered in this note is motivated by the celebrated conjecture
of Chowla [Cho65], which states that for the Liouville (or the Möbius) function λ
and any polynomial P (x) ∈ Z[x], which is not of the form P (x) = cg2(x) for some
g ∈ Z[x],

∑

n≤x

λ(P (n)) = o(x).

The case deg(P ) = 1 corresponds to the prime number theorem but the general
case is widely open for any polynomial with deg P ≥ 2. Some remarkable progress
has been recently made in the case P (x) =

∏n
k=1(akx + bk) and ai, bi ∈ Z (al-

beit with a logarithmic weight) in the case of rather general multiplicative func-
tions (so–called Elliott’s conjecture, see [Ell92, MRT15] and [Tao16]) thanks to the
combination of several works by Tao [Tao16], Matomäki-Radziwi�l�l-Tao [MRT15],
Tao and Teräväinen [TT18], and more recently by Helfgott and Radziwi�l�l[HR21]. A
weaker statement, that λ(P (n)) changes sign infinitely often has been obtained by
Cassaigne-Ferenczi-Mauduit-Rivat-Sárközy [CFM00], Borwein-Choi-Ganguly [BCG13],
and more recently by Teräväinen [Ter20] for a special class of polynomials P (x) ∈
Z[x].

Prior to our work, we are aware of no unconditional results for Chowla’s con-
jecture in the context of random multiplicative functions for any polynomial of
deg P ≥ 2. It has been previously speculated and Najnudel [Naj20] conjectured
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that if P (x) = x(x + 1) (and more generally, if P (x) =
∏k

i=1(x + ai)mi) then the
convergence in distribution

1√
N

∑

n≤N

f(n)f(n + 1) d−→ CN (0, 1),

must hold for f being a Steinhaus random multiplicative function and reformulated
this conjecture in terms of showing that certain family of Diophantine equations
possess only trivial solutions. Such a family naturally arises while computing 2k-th
moment of the left hand side for arbitrarily large values of k ≥ 1. Our first result is an
unconditional version of a central limit theorem which works for general polynomials
P (x) ∈ Z[x]. To keep our notations consistent, we may assume f(−n) := f(n) for
all n ∈ N and f(0) = 0.

Theorem 1.1. Let f be a Steinhaus random multiplicative function. Then for any
polynomial P (x) in Z[x] with deg P ≥ 2 which is not of the form P (x) = w(x + c)d

for some w ∈ Z, c ∈ Q, as N → ∞,

1√
N

∑

n≤N

f(P (n)) d−→ CN (0, 1).

This result is optimal since in the case P (x) = w(x + c)d, for some w ∈ Z, c ∈ Q

we have 1√
N

∑
n≤N f(w(x + c)d) d−→ 0, after noticing that fd is also a Steinhaus

random multiplicative function and appealing to the results in [Har20]. It is worth
mentioning that the same proof allows us to deduce central limit theorems for various
sparse subsums. For example, without much additional effort, one could show that
when n = p are primes,

1√
π(N)

∑

p≤N

f(P (p)) d−→ CN (0, 1). (1.1)

See Remark 2.5 for further discussions on how to establish (1.1).

1.2 Large fluctuations. A classical question in probability is to understand the
largest fluctuations of the sums of independent random variables. If, say, {ξk}∞

k=1 is a
sequence of independent Steinhaus random variables, then according to Khintchine’s
law of the iterated logarithm, we almost surely have

lim sup
x→∞

|
∑

k≤x ξk|√
2x log log x

= 1. (1.2)

An important feature is that (1.2) exhibits the magnitude of the global fluctuations
(that is

√
x log log x) which is substantially larger than the expected size of the

partial sums at any given point x (of the order
√

x).
In the case of random multiplicative functions this subject has a long and rich

history. In a pioneering paper Wintner [Win44] studied random Dirichlet series and
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in the Rademacher case was able to exhibit an almost sure bound
∑

n≤x f(n) =
O(x1/2+ε) and moreover, almost surely

∑
n≤x f(n) = O(x1/2−ε) is false. Erdős (un-

published but stated in [Erd85]) claimed that almost surely one has the bound
O(

√
x(log x)A) and one almost surely does not have O(

√
x(log x)−B) for some con-

stants A, B > 0. In a beautiful and rather influential work, Halász [Hal83] proved an
almost sure bound O(

√
x exp(A

√
log log x log log log x)) and that one almost surely

does not have O(
√

x exp(−B
√

log log x log log log x)) for some positive constants
A, B. Thirty years later, Lau, Tenenbaum and Wu [LTW13] (see also related work
[Bas12]) sharpened the analysis of hypercontractive inequalities in Halász’s argu-
ment, establishing an almost sure upper bound O(

√
x(log log x)2+ε). On the other

hand, Harper [Har13] used Gaussian process machinery to study the suprema of
random Euler products, showing that almost surely O(

√
x/(log log x)5/2+ε) is false.

The latter results may be seen as approximations to the law of the iterated logarithm
however quantitatively substantially weaker. In a recent breakthrough, answering a
question of Halász and proving an old conjecture of Erdős, Harper [Har21] showed
that if f is a Steinhaus (or Rademacher) random multiplicative function, then al-
most surely |

∑
n≤x f(n)| ≥ √

x(log log x)1/4−ε holds for a sequence of arbitrary large
values of x ≥ 1. Remarkably, this furnishes the first bound that grows faster than

√
x

and moreover the exponent 1/4 is speculated to be sharp (see also [Har20, Mas22]).
We establish a lower bound of the size

√
x log log x matching the one predicted

by the Khintchine’s type law of the iterated logarithm.

Corollary 1.2. Let f be a Steinhaus random multiplicative function. Then for
any polynomial P (x) in Z[x] with deg P ≥ 2 which is not a product of linear factors
(over Q), there almost surely exists arbitrarily large x such that

∣∣∣∣∣∣

∑

n≤x

f(P (n))

∣∣∣∣∣∣
�deg P

√
x log log x. (1.3)

In fact, we prove a more general local version and then apply the standard Borel–
Cantelli type argument to deduce Corollary 1.2.

Theorem 1.3. Let f be a Steinhaus random multiplicative function and let P (x)
be a polynomial in Z[x] with d = deg P ≥ 2 which is not a product of linear factors
(over Q). Then uniformly for all large X,

max
X≤x≤X(log X)2

1√
x

∣∣∣∣∣∣

∑

n≤x

f(P (n))

∣∣∣∣∣∣
≥ cd

√
log log X (1.4)

with probability 1 − O( 1
(log log X)0.02 ) for some fixed cd > 0 depending on d.

We conclude this section by mentioning that in the deterministic case, a well-
known conjecture of Gonek [Ng04] predicts the sharp upper bound
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∑
n≤x μ(n) = O(

√
x(log log log x)5/4). In view of Theorem 1.1 and Corollary 1.2

it seems reasonable to expect that the largest fluctuations of the Chowla type
sums

∑
n≤x μ(P (n)) are of the order

√
x log log x for any admissible polynomial

P (x) ∈ Z[x] of deg P ≥ 2.

1.3 Outline of the proofs. A standard point of departure in establishing cen-
tral limit theorems is a computation of higher (integral) moments:

E

∣∣∣∣∣∣

∑

n≤N

f(P (n))

∣∣∣∣∣∣

2k

=
∑

1≤ni,mi≤N

1P (n1)P (n2)...P (nk)=P (m1)P (m2)...P (mk).

The latter naturally leads to a consideration of the higher multiplicative energies
of the polynomial images, which is interesting on its own right (see Section 2 for
the discussion). This seems to be a difficult problem as far as general polynomials
P ∈ Z[x] are concerned for any k ≥ 3. 1

To overcome this obstacle and prove Theorem 1.1, we take advantage of the
crucial feature that the partial sums

∑
n≤N f(P (n)) exhibit the structure of a mar-

tingale difference sequence. Such an observation has been previously utilized by sev-
eral authors including Harper [Har13b] and Lau, Tenenbaum and Wu [LTW13] in
the context of studying non-Gaussian behaviour of

∑
n≤N f(n). After applying a

complex-valued version of McLeish’s martingale central limit theorem (which we
will state in Section 2), fortunately, the case k = 2 suffices to accomplish our modest
task. To this end for subsets A ⊆ R, we introduce a multiplicative energy [TV06] of
the set E×(A) := #{(a1, a2, a3, a4) ∈ A : a1a2 = a3a4 	= 0} and prove the following.
Let [N ] = {1, 2, . . . , N}, where N ∈ Z, N > 0.

Proposition 1.4. Let N ≥ 1 be a positive integer and P (x) ∈ Z[x] be a polynomial
with degree d ≥ 2 and P (x) 	= w(x + c)d for any w ∈ Z, c ∈ Q. Then, for d > 2 we
have the bounds

E×(P ([N ])) = 2N2 + Od(N
2− 1

2(2d−1)
+od(1))

and for d = 2

E×(P ([N ])) = 2N2 + O(N5/3+o(1)).

Proposition 1.4 will be immediately deduced from a more general Theorem 3.2,
with the key input in the proof coming from the use of a celebrated result of
Bombieri–Pila [BP89] bounding the number of integral points on curves.

The proof of Theorem 1.3 heavily relies on several probabilistic results (in the
form established in [Har21]). Roughly speaking, in the linear case P (n) = n, Harper
establishes a multivariate Gaussian approximation for the sums

∑
X<p≤x f(p)

∑
n≤x/p

f(n) conditional on all the values (f(p))p≤X , sampled at a well spaced sequence of
(
 log X) points X8/7 ≤ x ≤ X4/3, thus making the inner sums fixed. Normal

1 In a recent preprint [WX22], the authors have made progress towards this question.
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approximation and normal comparison results (Lemmas 4.3 and 4.4 respectively)
are then used to produce large fluctuations. The main bulk of the work goes into
analyzing the sizes of conditional variances and covariances using techniques from
multiplicative chaos. In our case, we first use a conditioning argument but the set of
primes to condition on is chosen more judiciously (in the spirit of a greedy algorithm).
The key consequence of such a conditioning argument together with Proposition 1.4
is that the “essential” parts of the random sums at different scales become indepen-
dent with the conditional variance being roughly of size x with very high probability.
Such independence here simplifies analysis of the covariance structure and makes the
normal comparison Lemma 4.4 easy to apply. The fact that “typical” conditional
variance is of size 
 x might explain why our bounds match those predicted by (1.2).
These two features are both different from the linear case studied in [Har21]. The
main arithmetic input we use to construct such a set of primes to condition on is
that for any polynomial P ∈ Z[x], which is not a product of linear factors, the set
of n ≤ X with the largest prime factor P+(P (n)) �d n log n, has positive density
(see Lemma 4.2 due to Maynard and Rudnick [MR21]). Such “very large” primes
are clearly not available in the linear case.
1.4 Organization of the paper and future work. We prove Theorem 1.1
in Section 2 with the crucial energy bounds deferred to be proved in Section 3. In
Section 4, we prove Theorem 1.3 and Corollary 1.2. The situation with Rademacher
random multiplicative functions is more delicate. With additional effort, the methods
of the present paper also work in that case for P belonging to a wide class of
polynomials. However for the case of P with deg P ≥ 3 even the existence of a
positive proportion of square-free values of P (n) is only known under the assumption
of the ABC conjecture thanks to the work of Granville [Gra98]. We have decided
to keep the presentation here relatively simple focusing on the main ideas rather
than the generality of the results. In future work, we shall return to the study of the
Rademacher case (both unconditionally and conditional on the ABC conjecture).

2 Proof of Theorem 1.1

We begin with the following preparatory observations. Given a polynomial P (x) ∈
Z[x] (as in Theorems 1.1 and 1.3) with a positive leading coefficient, there exists a
constant N0 := N0(P ) such that for all n ≥ N0, the values

P (n + 1) > P (n) > P (N0) > 0. (2.1)

Similar monotonicity property clearly holds when P (x) has a negative leading coef-
ficient.
We now note that the limiting distribution of the partial sums

∑
n≤N

1√
N

f(P (n))

is the same as of
∑

N0≤n≤N
1√
N

f(P (n)), since we have a pointwise bound
∑

n≤N0

1√
N

f(P (n)) ≤ N0√
N

= oN→+∞(1). (2.2)
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Therefore, changing P (x) to P (x + N0) if necessary, we may assume throughout
the paper that (2.1) holds for all n ≥ 1. Inspired by the work of Harper [Har13b],
our key observation here is that the partial sums of random multiplicative function
possess the structure of a martingale difference sequence.

Definition 2.1 (Martingale difference sequence). Let Z1, Z2, . . . , ZN be a sequence
of complex-valued random variables. Suppose E[Z1] = 0 and for all 1 ≤ i ≤ N − 1,

E[Zi+1|Z1, . . . , Zi] = 0.

Then (Zi)i≤N form a Martingale difference sequence.

We next introduce the following complex-valued version of a classical result due
to McLeish [McL74], recently developed in [SX22, Theorem 2.4]. This is particularly
suitable for proving central limit theorems in the Steinhaus setting.

Lemma 2.2 (Complex-valued version of McLeish’s theorem). Let Z1, . . ., ZN be a
martingale difference sequence of complex-valued random variables, and put SN =∑N

n=1 Zn. Assume that E[|Zn|4] exists for each n. Then for any fixed real numbers
t1 and t2 we have, with t2 = (t21 + t22)/2,

E[eit1Re(SN )+it2Im(SN )] = e−t2/2 +O
(
et2
( N∑

n=1

E[|Zn|4]
) 1

4
)
+O
(
et2
(
E

[( N∑

n=1

|Zn|2 − 1
)2]) 1

2
)

+O
(
et2 max

φ∈[0,2π]

(
E

[( N∑

n=1

(e−iφZ2
n + eiφZn

2
)
)2]) 1

2
)
.

In order to apply Lemma 2.2 to our setting, we let P+(m) be the largest prime
factor of a positive integer m and consider

Mp = Mp(N) :=
1√
N

∑

n≤N
P+(P (n))=p

f(P (n)). (2.3)

By our initial reduction, we have that (2.1) holds for all n ≥ 1, and consequently,
for any pair 1 ≤ m, n ≤ N , we have the orthogonality relation

E[f(P (m))f(P (n))] = 1P (m)=P (n) = 1n=m. (2.4)

It follows that

E[Mp|f(q) : q < p] = 0,

yielding that (Mp)p form a martingale difference sequence. Lemma 2.2, in turn,
readily implies the following result.

Lemma 2.3. Let f be a Steinhaus random multiplicative function, and let

A = A(N) = {P (n) : 1 ≤ n ≤ N}.

Suppose the following conditions hold:
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(1) We have

#{(m1, m2, n1, n2) ∈ A4 : m1m2 = n1n2, P
+(mi) = P+(ni), mi

	= ni, 1 ≤ i ≤ 2} = oN→+∞(N2).

(2) We have

#{(m1, m2, n1, n2) ∈ A4 : m1m2 = n1n2, P
+(m1) = P+(m2)

= P+(n1) = P+(n2)} = oN→+∞(N2).

Then, as N → +∞, we have

1√
N

∑

n≤N

f(P (n)) d−→ CN (0, 1).

Proof of Lemma 2.3. The largest prime factor of P (x) is CNd for some constant
C and d is the degree of the polynomial. Consider SN =

∑
p≤CNd Mp, where Mp

are defined in (2.3). As noted before, {Mp}p forms a martingale difference sequence.
Therefore, we may apply Lemma 2.2 to evaluate E[eit1Re(SN )+it2Im(SN )]. Observe that
∑

p≤N

E[|Mp|4] =
1

|A|2
∑

p≤CNd

∑

m1,m2,n1,n2∈A
P+(m1)=P+(m2)=P+(n1)=P+(n2)=p

E[f(m1m2)f(n1n2)]

=
1

|A|2
∑

m1,m2,n1,n2∈A
P+(m1)=P+(m2)=P+(n1)=P+(n2)

m1m2=n1n2

1,

which is o(1) by our assumption (2). Thus the first error term in Lemma 2.2 becomes
o(et2). We next compute

E

[( ∑

p≤CNd

|Mp|2 − 1
)2]

=
∑

p,q≤CNd

E[|Mp|2|Mq|2] − 2
∑

p≤CNd

E[|Mp|2] + 1. (2.5)

Separating the terms m1 = n1 and m2 = n2, and using assumption (1) to bound the
remaining terms, we end up with

∑

p,q≤CNd

E[|Mp|2|Mq |2] =
1

|A|2
∑

p,q≤CNd

∑

m1,n1∈A
P+(n1)=P+(m1)=p

∑

m2,n2∈A
P+(m2)=P+(n2)=q

E[f(m1m2)f(n1n2)]

=
1

|A|2
∑

m1,n1,m2,n2∈A
m1m2=n1n2

P+(m1)=P+(n1)

P+(m2)=P+(n2)

1 =
1

|A|2
( ∑

n∈A
1
)2

+ o(1) = 1 + o(1).

Further the subtracted term in (2.5) is
∑

p≤CNd

E[|Mp|2] =
1

|A|
∑

p≤CNd

∑

m,n∈A
P+(m)=P+(n)=p

E[f(m)f(n)] =
1

|A|
∑

n∈A
1 = 1,
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so that (2.5) gives acceptable contribution of o(1). Therefore the second error term
while using Lemma 2.2 can also be bounded by o(et2).

We are left to handle the third error term in Lemma 2.2, which involves the
maximum over φ ∈ [0, 2π] of

E

[( ∑

p≤CNd

(e−iφM2
p + eiφMp

2
)
)2]

=
∑

p,q≤CNd

E

[
(e−iφM2

p + eiφMp
2
)(e−iφM2

q + eiφMq
2
)
]
.

If p 	= q then upon expanding we get

E[M2
p M2

q ] = E[M2
p Mq

2] = E[M2
pM

2
q ] = E[M2

pMq
2] = 0.

From our treatment of the first error term, it follows that the terms with p = q
contribute

�
∑

p≤CNd

E

[
|Mp|4

]
= o(1).

Thus the third error term appearing in Lemma 2.2 is o(1) and we have finally showed
that

E[eit1Re(SN )+it2Im(SN )] = e−t2 + o(1).

Note that e−t2 is the Fourier transform of a standard Gaussian which in turn imply
the desired convergence in distribution. �

We use “�d” and “�P ” to denote that the implicit constant depends on the
degree d or polynomial P respectively.

Proof of Theorem 1.1 assuming Proposition 1.4. It suffices to check that both con-
ditions of Lemma 2.3 are satisfied. To check condition (1), we need to show that

#{(m1, m2, n1, n2) ∈ [N ]4 : P (m1)P (m2) = P (n1)P (n2), {m1, m2} 	= {n1, n2}}
= oN→+∞(N2).

The latter immediately follows from Proposition 1.4. The second condition can be
written as

#{(m1, m2, n1, n2) ∈ [N ]4 : P+(P (m1)) = P+(P (m2)) = P+(P (n1)) = P+(P (n2)),

and P (m1)P (m2) = P (n1)P (n2)} = o(N2).

Using Proposition 1.4, we conclude that the off-diagonal contribution is o(N2). To es-
timate the diagonal contribution, we distinguish between three ranges: p ≤ log log N ,
log log N ≤ p ≤ N or p > N .
We first consider the case p ≤ log log N . Since P (n) ∈ {1, . . . , P (N)} for n ≤ N,
we trivially bound the contribution in this case by � ψ(P (N), log log N)4, where
ψ(x, y) is the number of y-smooth integers between 1 and x. By using the estimate
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for the smooth numbers (e.g. see [Gra08, (1.18)]) and the fact that P (N) = O(Nd),
we have the bounds

�P ψ(P (N), log log N)4 �P (log N)OP (log log N) = oP (N).

Next, we consider the case log log N ≤ p ≤ N . Notice that the number of n ≤ p such
that p|P (n) is at most d = deg P for each fixed p and consequently, the number of
diagonal solutions is at most

�P

∑

log log N≤p≤N

N2

p2
= oP (N2).

Finally, if p > N we notice that for each fixed n ≤ N with large N ≥ 1, there
are at most Od(1) primes p ≥ N with p|P (n) and therefore there is in total Od(N)
number of pairs (p, n) such that p|P (n) and p ≥ N . Combining with the fact that
for each p ≥ N there are at most Od(1) integers n such that p|P (n), it follows that
the number of diagonal solutions in this regime is Od(N) which is negligible. This
concludes the proof. �

Remark 2.4. Lemma 2.3 and Theorem 3.2 could be used to establish a quantitative
rate of convergence in our Theorem 1.1. We leave the details to the interested reader.

Remark 2.5. We now sketch the proof to the claim in (1.1), i.e. establishing similar
results when n ranges over the primes. Due to the power saving N c for some c > 0,
in Proposition 1.4 for the off-diagonal contribution, it is enough to show that the
number of diagonal solutions to P (p1)P (p2) = P (p3)P (p4) with all P (pi) having
the same largest prime factors is o(π(N)2). We follow similar lines as above and
split the estimation into three cases. When p ≤ log log N or p ≥ N , the same
bounds used in the proof of Theorem 1.1 are sufficient for our purposes. Finally, for
log log N ≤ p ≤ N , we have an estimate

�P

∑

log log N≤p≤N

N2

(log 2N
p )2p2

= od(π(N)2).

3 Energy bounds and paucity phenomena

The main purpose of this section is to give a proof of Theorem 3.2 which concerns
the paucity phenomenon of polynomial sequence and directly implies Proposition
1.4. Our task is to calculate the number of integral points on the variety

VP = {(x1, x2, x
′
1, x

′
2) ∈ [N ] : P (x1)P (x2) = P (x′

1)P (x′
2)} (3.1)

and more generally, we consider the variety

VP = {(x1, . . . , xk, x
′
1, . . . , x

′
k) ∈ F

2k : P (x1) . . . P (xk) = P (x′
1) . . . P (x′

k)}, (3.2)
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where F is an arbitrary field and k ≥ 2. We aim to obtain a paucity result, that is,
the number of the “non–trivial” solutions is negligible relative to the “trivial” ones.
There are two basic questions concerning VP . The first one is related to the definition
of the “trivial” solutions. The points (x1, . . . , xk, x

′
1, . . . , x

′
k) with {x1, . . . , xk} =

{x′
1, . . . , x

′
k} clearly belong to VP and one can hope that those contribute the main

term to E×(P [N ]). The other natural choice comes from the “trivial” curves lying
on (3.2) which are of the form P (xi) = P (x′

j), i, j ∈ [k]. To this end, one can show
that if the curve P (x)−P (y) = 0 is irreducible, then it contains a negligible number
of points. The question of its reducibility is more subtle and it is known [Fri70,
Theorem 1] that the polynomial φ(x, y) := P (x)−P (y)

x−y is absolutely irreducible unless
P (x) is decomposable, that is of the form h(r(x)) for some polynomials h(x), r(x).
See [DLS61, DS64, Sch85] for further discussion of this notion. Other examples come
from the families P (x) = axd + b and P (x) = cTd(x), where Td(x) is the Chebychev
polynomial of the first kind. On the other hand, if P (x) = h(r(x)), then solutions
r(xi) = r(x′

j) can be treated as “trivial” and r(xi) = r(x′
j) and xi = x′

j have
approximately the same number of solutions.

The second question is concerned with the low–dimensional subvarieties of VP .
Typically, such subvarieties contain the main mass of the solutions (see [Hea02]).
Fortunately, we will be able to get away by considering just one–dimensional subva-
rieties and consequently we need to understand lines belonging to VP .

Let F be an algebraically closed field (later we apply the case F = C only), k ≥ 2
be an integer, P (x) ∈ F[x], P (x) 	= ω(x + c)d for any ω, c ∈ F.

Let ZP denote the set of distinct zeros of P (x). Since P (x) 	= ω(x + c)d, it
follows that |ZP | > 1. Let l1, . . . , lk, l

′
1, . . . , l

′
k be non–vertical and non–horizontal

linear transforms and suppose that

{(l1(t), . . . , lk(t), l′1(t), . . . , l
′
k(t)) : t ∈ F} ⊆ VP . (3.3)

We are interested in describing nontrivial families of lines L = {l1, . . . , lk}, L′ =
{l′1, . . . , l′k}, that is L 	= L′, satisfying (3.3).

Example 1. We call polynomial Pβ(x) a generalized even polynomial if Pβ(x) =
g(x − β/2), where g(x) is an even polynomial. Clearly Pβ(x) = Pβ(β − x) which
produces a large family of nontrivial lines. In our case, we confine ourselves with
positive variables and thus such an obstacle could be easily treated.

Example 2. Let us turn our attention to the following construction from [Pra04,
Section 18.2.2]. Let d0 = deg P ≥ 3, αd0 = 1, α 	= ±1 and let

Pα,β(x) = a0

(
x +

β

α − 1

)d0

+ c, where a0 ∈ F \ {0} and c ∈ F. (3.4)

Then Pα,β(x) = Pα,β(αx + β) and upon taking different pair α∗, β∗, αd∗ = 1 such
that β

α−1 = β∗
α∗−1 , we obtain Pα,β(x) = Pα∗,β∗(x). Consequently, for any t ∈ F one
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has

Pα,β(t)Pα∗,β∗(t) = Pα,β(αt + β)Pα∗,β∗(α∗t + β∗).

Moreover, one can further consider P (x) := h(Pα,β(x)) for any h ∈ F[x] to increase
the number of possible “nontrivial subvarieties”.

To overcome the difficulties mentioned above, we formulate a simple finiteness
result on lines (3.3) (see Lemma 3.1 below). We begin by introducing generalizations
of polynomials (3.4). Let I be the family of all possible products of such polynomials,

I := {P1P2 · · ·Pj : j ∈ N, Pi satisfy (3.4) for all 1 ≤ i ≤ j}. (3.5)

We observe that r ∈ I if and only if the set Zr is a shift of a union of some concentric
regular polygons. Notice that I contains all generalized even polynomials. We now
consider polynomials of the form a0

∏d
j=1(x + b0 − ρj) where ρ is not a root of unity

and, more generally define the family

a0

d1∏

i=1

(x + b1 − ρi
1) · · ·

ds∏

i=1

(x + bs − ρi
s) · r(x), (3.6)

where s ≥ 0 is an integer, r ∈ I, d1 + · · · + ds + deg(r) = deg(P ), a0 ∈ F\{0},
b1, . . . , bs ∈ F and ρ1, . . . , ρs ∈ F are not roots of unity. One can check that for any
polynomial P belonging to the family (3.6), the set ZP consists of the union of at
most s shifts of geometric progressions and a shift of a union of some concentric
regular polygons. Finally, let L(ZP ) be the set of all lines, generated by ZP × ZP .
Since an arbitrary line is determined by any two points of ZP × ZP we have that
|L(ZP )| ≤

(|ZP |2
2

)
, and the line l(t) = t always belongs to L(ZP ).

Lemma 3.1. Let F be an algebraically closed field, and P (x) ∈ F[x] such that P (x) 	=
ω(x + c)d for any ω, c ∈ F and d ≥ 2. Let ZP be the set of distinct zeros of P (x) in
F with |ZP | > k ≥ 2 and let the lines l1, . . . , lk, l

′
1, . . . , l

′
k satisfy (3.3). Then,

(1) For any i ∈ [k] there exists j ∈ [k] such that l′i ◦ l−1
j ∈ L(ZP ).

(2) If P /∈ I and l′i 	= lj , then there exists j∗ ∈ [k], j∗ 	= j such that the graph of

l′i ◦ l−1
j∗ intersects ZP × ZP .

(3) Let s be an integer, s ≥ k − 1, l′i 	= lj and suppose that P (x) is not of the form

(3.6). Then there exists j̃∗ ∈ [k], j̃∗ 	= j such that l′i ◦ l−1
j̃∗

∈ L(ZP ).

Proof. From the definition of VP it follows that for any i ∈ [k], if l′i(t) ∈ ZP for
some t, then there exists j ∈ [k] with lj(t) ∈ ZP . Hence (l′i ◦ l−1

j )(z1) = z2 for some
z1, z2 ∈ ZP and the graph of l′i ◦ l−1

j intersects ZP × ZP . Since |ZP | > k, we have
|ZP | distinct zeros of P and |ZP | pairs of lines (l′i, lj), j ∈ [k]. By the pigeonhole
principle there is a line l−1

j such that the graph of l′i ◦ l−1
j intersects ZP × ZP in at

least two points and hence it belongs to L(ZP ). This concludes the proof of 1).
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To prove (2) and (3), we consider l := l′i ◦ l−1
j such that l(t) is not an identical

map. We begin by considering all affine transformations x → αx + β fixing ZP , in
other words, one has αZP + β = ZP . By shifting, we have αZ ′

P = Z ′
P for the set

Z ′
P := ZP −β/(α − 1) and one can see that Z ′

P is a geometric progression with step
α. Since |Z ′

P | = |ZP | > 1, it follows that α is a root of unity and by shifting again, if
necessary, we arrive at the conclusion that P ∈ I. Since by our assumption, P /∈ I
(equivalently, there are no non-identical affine transformations fixing ZP ), we see
that l(ZP ) 	= ZP and thus there exists j∗ ∈ [k], j∗ 	= j such that the graph of l′i ◦ l−1

j∗
intersects ZP × ZP and we have proved (2). Now more generally, we have seen that
Z ′

P is a union of α-invariant sets and a non-invariant part. Split the non-invariant
part as a union of non-invariant geometric progressions with step α. Since P (x)
is not of the form (3.6), the number of such progressions must be at least s + 1.
Consequently, |l(ZP ) ∩ ZP | < |ZP | − s. By our assumption s ≥ k − 1 and applying
the pigeonhole principle again we find j̃∗ ∈ [k], j̃∗ 	= j such that l′i ◦ l−1

j̃∗
∈ L(ZP ).

This completes the proof. �

It will be convenient to formulate our energy results with variables constrained
to certain arithmetic progressions. To this end, for positive numbers q < N/2 and
non–negative 0 ≤ a < q we let [N ]a,q to denote the set of x ∈ [N ] such that x ≡ a
(mod q). In particular, for q = 1, a = 0 we have [N ]a,q = [N ]. Let d(a) = 1 for a = 0
and d(a) = 0 otherwise.

Theorem 3.2. Let P (x) ∈ Z[x] with deg(P ) = d ≥ 2, and let N , q < 2−1N
1

2(1+d(a))

be positive integers, 0 ≤ a < q. If P (x) 	= ω(x + c)d for any choice of ω ∈ Z, c ∈ Q,
then for d > 2

E×(P ([N ]a,q)) − 2N2

q2
� N

2− 1
2(2d−1)

+od(1)

q2+ d(a)
2d−1

, (3.7)

and for d = 2 the following holds

E×(P ([N ]a,q)) − 2N2

q2
� N5/3+od(1)

q2+ d(a)
3

. (3.8)

We remark that the terms 2N2/q2 correspond to the diagonal solutions and
thus Theorem 3.2 yields a power saving for the off-diagonal contribution. The main
ingredient in our proof is the following celebrated result due to Bombieri and Pila
[BP89, Theorem 5].

Lemma 3.3. (Bombieri–Pila). Let C be an absolutely irreducible curve (over the
rationals) with degree d ≥ 2 and N ≥ exp(d6). Then the number of integral points
on C and inside a square [0, N ] × [0, N ] does not exceed

N
1
d exp(12

√
d log N log log N).
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Having Lemmas 3.1 and 3.3 at our disposal, we are ready to obtain the main result
of this section. The proof of our Theorem 3.2 involves a series of case considerations,
so we split it into some steps to help the reader.

Proof of Theorem 3.2. Let τ := maxn∈[|P (N)|2] τ(n) = Nod(1) where τ(n) is the num-
ber of divisors of n.

Preliminary reduction. We begin with the following simple observation. By our
assumption P (x) 	= ω(x + c)d for any ω ∈ Z, c ∈ Q and hence performing a rational
change of variables one can assume that P (x) = xd + g(x), where g ∈ Q[x], λ 	= 0
is the leading coefficient of g and deg g = m ≤ d − 2. Now our variable x runs over
a rational shift of [N ]a,q, say, u[N ]a,q+v

w with u, v, w ∈ Z and u, w > 0. We multiply
P (x) by wd which clearly does not change the multiplicative energy and thus we
may assume that x ∈ u[N ]a,q + v. Of course, after the multiplication our function
g(x) changes but with some abuse of the notation we use the same letter g for the
obtained new function. Since u[N ]a,q + v ⊂ [uN ]au+v,uq it suffices to estimate the off
diagonal contribution in E×(P ([uN ]au+v,uq)).

Main argument. In view of the above, changing q → uq and a → au + v if
necessary, we need to estimate the number of solutions x, y, X, Y ∈ [N ]a,q to the
equation

(xd + g(x))(yd + g(y)) = (Xd + g(X))(Y d + g(Y )) (3.9)

or, in other words,

(XY )d − (xy)d = (xdg(y) + ydg(x) + g(x)g(y))
−(Xdg(Y ) + Y dg(X) + g(X)g(Y )). (3.10)

The choice {x, y} = {X, Y } corresponds to 2N2

q2 + O(N/q) solutions of the last

equation and thanks to the condition q < 2−1N
1

2(1+d(a)) we see that the term O(N/q)
is negligible when compared to N

2− 1
2(2d−1)

+od(1) · q−2− d(a)
2d−1 . Now let Δ ≤ N/q be a

parameter to be chosen later. We may assume that all variables take the form qk+a,
where k ≥ Δ. Indeed, the contribution of the case where this does not hold is at
most 4ΔτN/q solutions.

Main argument: introducing two new variables s and t. Let s = XY − xy and
t = X + Y ∈ [2, 2N ] and notice that s, t − 2a are divisible by q (if a = 0, then
s is divisible by q2). If s = 0 and g(x) = λxm, m ≤ d − 2 (the case of constant g
corresponds to d = 2), then we obtain just trivial solutions of our equation. Indeed,
we have xy = XY and Equation (3.9) implies xd−m + yd−m = Xd−m + Y d−m. It
follows that {x, y} = {X, Y }. Thus, without loss of generality we first assume that
s > 0 and write

(XY )d − (xy)d = (xy + s)d − (xy)d = s

d−1∑

j=0

(
d

j

)
(xy)jsd−j−1. (3.11)
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From (3.10) and the fact that s > 0 it follows that |s|(Δq)2d−2 � Nd+m ≤ N2d−2

and hence

|s| � (N/Δq)2d−2. (3.12)

From the binomial formula we get

(α + β)n = αn + βn +
n−1∑

j=1

(
n

j

)
αjβn−j

and by induction we can write symmetric polynomial as αn + βn = fn(αβ, α + β),
where fn ∈ Z[z, w], fn(z, w) = wn + f̃n(z, w), degz f̃n = degw f̃n = n − 2, n > 2 and
f2(z, w) = w2 − 2z for n = 2. We need this information about fn(z, w) below. Now
we now fix variables s, t and define

Ps,t(xy) := −(Xdg(Y ) + Y dg(X) + g(X)g(Y )) − ((XY )d − (xy)d).

Using (3.11) and writing λ′ = λ if m = d − 2 and zero otherwise, we get

Ps,t(xy) = (2λ′ − sd)(xy)d−1 + P̃s,t(xy),

where deg P̃s,t ≤ d − 2.
Hence (3.10), with s, t being fixed takes the form

σ := G(x, y) + Ps,t(xy) = 0, (3.13)

where G(x, y) := xdg(y) + ydg(x) + g(x)g(y).
Main argument: application of Bombieri–Pila in the case of absence of linear

factors. We first consider the case that polynomial G(x, y) + Ps,t(xy) has no linear
factors over C. If G(x, y) + Ps,t(xy) is absolutely irreducible, then by Lemma 3.3
we have at most N1/d+o(1) solutions in x, y for d > 2. For d = 2 it is easy to check
directly that the number of solutions is No(1) (basically, it follows from the fact that
any non–linear quadratic equation can be reduced either to a Pell’s equation or to a
hyperbolic equation and thus to the question about the upper bounds on the divisor
function in Z or in Z[i]). In general, considering absolutely irreducible factors of
G(x, y)+Ps,t(xy) and recalling that there are no linear factors, we apply Lemma 3.3
with d = 2 to bound the total number of solutions in s, t, x, y by

O

(
ΔNτ

q
+

N

q
· (N/Δq)2d−2

q1+d(a)
N1/2+o(1)

)
. (3.14)

Indeed, the number of possible values of t is O(N/q) and by definition of s we
know that q1+d(a) divides s. Combining (3.12) and choosing Δ to satisfy Δ2d−1 =
N2d−2+1/2/q2d−1+d(a), we obtain

O

(
N

2− 1
2(2d−1)

+od(1)

q2+ d(a)
2d−1

)
. (3.15)
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solutions.
Main argument: linear factors. We now turn to the case when polynomial G(x, y)+

Ps,t(xy) has linear factors over C. In this case, for some α, β, γ ∈ C, one can write
(3.13) as

σ = (αx + βy + γ)F (x, y) (3.16)

with (by “. . . ” we denote lower order terms)

F (x, y) = α−1xd−1g(y) + β−1yd−1g(x) + . . . , (3.17)

where it is easy to check that the case α = 0 or β = 0 is not possible. We claim that
if 2λ′ − sd 	= 0, then g(x) = λxm, m = d − 2, λ′ = λ and γ = 0 (the case s = 0,
g = λxm corresponds to the trivial solutions and was considered before). Indeed,
since deg P̃s,t ≤ d − 2 and deg g ≤ d − 2, from the definition of σ and (3.17) we get

g(x)g(y) + (2λ′ − sd)(xy)d−1 + P̃s,t(xy)
= αβ−1yd−1xg(x) + βα−1xd−1yg(y)

+γ(α−1xd−1g(y) + β−1yd−1g(x)) + . . . (3.18)

and hence if g(x) has lower order terms we would not be able to compensate
yd−1xg(x), xd−1yg(y) via the left–hand side of (3.18). Without loss of generality,
we may assume that our linear factor in (3.16) is x − (γ − βy) (with some abuse of
notation, we have changed the definition of β and γ). Consequently, we arrive at

X2 − tX − βy2 + γy + s = 0. (3.19)

Linear factors I: Equation (3.19) also has linear factors. If the last equation has
a linear factor we necessarily have γ2 = β(t2 − 4s) (it can be seen by computing
discriminant of the conic (3.19)). If γ = 0, then t2 = 4 s and since q < 2−1N

1
2(1+d(a)) ,

we have that the number of solutions is O(N/q ·(N/Δq)2d−2Nod(1)), giving negligible
contribution. If γ 	= 0, then there are two possibilities: s = 0 and s = 2λ′/d. Without
loss of generality assume that our linear factor is X − (wy + r). Substituting the last
equation into (3.19), we derive w2 = β and r(t − r) = s. Thus we have four lines:
x = γ − βy, X = wy + r, Y = t − r − wy and y = y.

Suppose |ZP | > 2 and r 	∈ {0, t}. Applying part (1) of Lemma 3.1 with F = C

and line y = y, we deduce that there is finite number of possibilities for w and for
either r or t − r. Since r(t − r) = s, we obtain finite number of possibilities for
t, provided r 	= 0, t. The latter is possible only if s = 0. Since y ∈ [N ]q,a, we get
O(N/q) solutions.

Next we consider the case |ZP | > 2 and r ∈ {0, t}. We observe that we must
have s = 0 and there is a finite number of possibilities for w. In the case r = 0
(similar argument works for r = t) our lines are x = γ − βy, X = wy, Y = t − wy
and y = y. If w = 1, then since γ2 = β(t2 − 4 s) and β = w2, we have β = 1,
γ = t and we obtain just trivial solutions (the case γ = −t is impossible). Assuming
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now that w 	= 1 (recall that t 	= 0 and hence t − wy = Y 	= y) we apply part
(3) of Lemma 3.1 with k = 2, s = 1. This concludes the proof provided P (x) is
not of the form (3.6). Next, suppose that P (x) is of the form (3.6). If, additionally
P (x) ∈ I, we recall that t 	= 0 and γ 	= 0, and therefore w must be a root of unity.
Since our solutions are non-negative rationals we must have w = 1 and this case
has already been considered. If P (x) /∈ I, then part (2) of Lemma 3.1 implies that
the line Y = t − wy determines a point in ZP × ZP . Thus we have finite number of
possibilities for t.

It remains to consider the case |ZP | = 2. In this case we have system of equations
r(t−r) = s, w2 = β, γ2 = β(t2−4 s) and two intersections of our lines with ZP ×ZP ,
namely, wz1+r = z2, t−r−wz3 = z4 or wz1+r = z2, wz3+r = z4 or t−r−wz1 = z2,
t − r − wz3 = z4, where zi run over ZP . In either case, w and all other variables are
determined in a unique way (there are O(1) choices for γ). The case of permutations
corresponds to s = 0, r = 0, t and γ = t which produces a finite number of lines.

Linear factors II: Equation (3.19) has no linear factors. To conclude the proof,
we note that if (3.19) has no linear factors, then it has Nod(1) solutions. The number
of possibilities for s and t is N

q2+d(a) · (N/Δq)2d−2 and thus we obtain a bound which
is better than (3.15). This completes the proof. �

Remark 3.4. The condition that P (x) 	= ω(x + c)d for any pair ω ∈ Z, c ∈ Q

is clearly necessary. If, say, P (−x) = P (x), then we find non–trivial solutions of
the form (−z, w, z, w), where z, w ∈ [−N, N ] are integers (not necessary positive).
Nevertheless, as one can see from the proof if P is a generalized even polynomial,
then we have a similar asymptotic formula for E×(P ([N ]a,q)) albeit with a different
main term corresponding to the “generalized” trivial solutions.

Remark 3.5. It is worth mentioning that our exponent 5/3 in (3.8) coincides with
that of Hooley’s from [Hoo96], where the author considers equation xd+yd = Xd+Y d

with x, y ∈ [N ]. More general binary forms are considered in [Hoo86]. A special
(multiplicative) form of our Equation (3.9) makes the calculations simpler.

Remark 3.6. The argument of Theorem 3.2 is rather general and one can consider
the common energy E×(P ([N ]), S, P ([N ]), S) and even the energy E×(S1, S2, S3, S4)
for sufficiently large sets Si ⊆ [N ]. Furthermore, a similar argument works for the
equation

P1(x)P1(y) = P2(X)P2(Y ), x, y, X, Y ∈ [N ]a,q, (3.20)

where P1, P2 ∈ Z[x], deg(P1) = deg(P2) = d > 1, P1(x), P2(x) 	= ω(x + c)d for any
ω ∈ Z, c ∈ Q and P1, P2 have the same leading coefficients. These observations will
play an important role in our future work on the analogs of Theorems 1.1 and 1.3
for Rademacher random multiplicative functions.
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4 Large fluctuations: proofs of Corollary 1.2 and Theorem 1.3

In order to prove Corollary 1.2 we first show that this is directly implied by the local
version, that is Theorem 1.3, in the spirit of Harper’s work [Har21]. We begin by
recalling the first Borel–Cantelli lemma.

Lemma 4.1 (The first Borel–Cantelli Lemma). Let {En}n≥1 be any sequence of
events. Then

+∞∑

n=1

P(En) < +∞ =⇒ P(lim sup
n→+∞

En) = 0,

where

lim sup
n→+∞

En =
+∞⋂

n=1

+∞⋃

m=n

Em.

Proof of Corollary 1.2 assuming Theorem 1.3. Let W (X) = (log log X)0.02. Theo-
rem 1.3 implies that the probability that (1.4) fails is at most O(1/W (X)). Summing
over a suitable sparse set of X-values, we can guarantee that the series of exceptional
probabilities converges and thus by Lemma 4.1, almost surely, only finitely many
X in the chosen sparse set make the events (1.4) fail. Consequently, there exists
arbitrary large x, for which (1.3) holds. �

The rest of this section is devoted to the proof of Theorem 1.3. We recall the
following result borrowed from the work of Maynard and Rudnick [MR21, Corollary
3.2] (in fact, they attribute this Corollary to Granville).

Lemma 4.2. Let P (x) ∈ Z[x] be a polynomial with d = deg P ≥ 2 which is not a
product of linear factors (over Q). Then for a positive proportion of integers n,

+(P (n)) ≥ 1
2d2

· n log n.

We mention a simple and direct consequence of Lemma 4.2, needed for our ap-
plications. Let ρ = ρ(d) be the positive proportion in the lemma above. Then for
any x large enough, we have

#
{

n ≤ x : P+(P (n)) ≥ 1
2d2

· n log n

}
≥ ρx/2.

This implies that

#
{

ρx/100 < n ≤ x : P+(P (n)) ≥ 1
2d2

n log n

}
≥ ρx

(
1
2

− 1
100

)
≥ ρx/3.

Since log(ρx/100) ≥ 1
2 log x for large x ≥ 1, it follows that

#
{

ρx/100 ≤ n ≤ x : P+(P (n)) ≥ ρ

400d2
x log x

}
≥ ρx/3. (4.1)

Next we collect two important probabilistic tools (see [Har13a, Har21, RR09, HL18]).
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Lemma 4.3 (Normal approximation result). Suppose that m ≥ 1, and that R is a
finite nonempty set. Suppose that for each 1 ≤ i ≤ m and h ∈ R we are given a
deterministic coefficient c(i, h) ∈ C. Finally, suppose that (Vi)1≤i≤m is a sequence
of independent, mean zero, complex-valued random variables, and let Y = (Yh)h∈R
be the #R-dimensional random vector with components Yh := R(

∑m
i=1 c(i, h)Vi).

If Z = (Zh)h∈R is a multivariate normal random vector with the same mean vector
and covariance matrix as Y , then for any u ∈ R and any small η > 0 we have

P(max
h∈R

Yh ≤ u) ≤ P(max
h∈R

Zh ≤ u + η)

+ O

⎛

⎝ 1
η2

∑

g,h∈R

√√√√
m∑

i=1

|c(i, g)|2|c(i, h)|2E[|Vi|4] +
1
η3

m∑

i=1

E[|Vi|3](
∑

h∈R
|c(i, h)|)3

⎞

⎠ .

Lemma 4.4 (Normal comparison result). Suppose that n ≥ 2, and that ε ≥ 0 is
sufficiently small (i.e. less than a certain small absolute constant). Let X1, ..., Xn be
mean zero, variance one, jointly normal random variables, and suppose E[XiXj ] ≤ ε
whenever i 	= j. Then for any 100ε ≤ δ ≤ 1/100 (say), we have

P( max
1≤i≤n

Xi ≤
√

(2 − δ) log n) ≤ e−Θ(nδ/20/
√

log n) + n−δ2/50ε.

Proof of Theorem 1.3. We recall, that as in the Theorem 1.1, we may assume (2.1)
holds, i.e. all polynomial values are distinct and positive. Let X be large and xi =
Xi(log 3i)2 for all 1 ≤ i ≤ log X such that all points belong to [X, X2 log X(log log X)2 ].
We aim to show that with probability 1−O( 1

W (X)) where W (X) → +∞ as X → +∞,
one has

max
1≤i≤log X

|
∑

n≤xi
f(P (n))|

√
xi log log xi

� 1, (4.2)

where the implicit absolute constant is independent of X. To analyze (4.2), we use
a conditioning argument. Instead of simply conditioning on small primes (as has
been done before), we condition on all primes which are outside of the union of the
following sets Ai.

Step 1: construction of sets Ai. Recall the definition of constant ρ = ρ(d) in
(4.1). We first define set Ei :

Ei := Gi\Bi

:=
{

p ≥ xi log xi

400d2ρ−1
: ∃ n ≤ xi s.t. p|P (n)

}

\
{

p ≥ xi log xi

400d2ρ−1
: ∃ n ≤ xi−1 s.t. p|P (n)

}
.

(4.3)

We claim that for large enough X,

ρ

4d
xi ≤ |Ei| ≤ dxi. (4.4)
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Indeed, we first apply (4.1) to conclude that there exists a constant C > 0 such that

|Gi| ≥ ρxi/3d.

This is because that for each n ≤ xi, the number of primes {p ≥ ρ
400d2 xi log xi :

p|P (n)} is bounded by ≤ d for sufficiently large xi ≥ X. The subtracted set Bi has
cardinality at most dxi−1 = o(xi), yielding |Ei| ≥ ρ

4dxi for sufficiently large X. The
other inequality is immediate as |Gi| ≤ dxi.
We further pick a large subset Ai ⊂ Ei such that no two distinct primes in Ai both
divide P (n) for some n ≤ xi. This is done using a greedy algorithm as explained
below. For each n ≤ xi and p ∈ Ei, put

M(n) := {p ∈ Ei : p|P (n)} and N (p) := {n ≤ xi : p|P (n)}.

We similarly define the set

M(N (p)) :=
⋃

n∈N (p)

M(n).

We next greedily select elements to Ai ⊂ Ei as follows. We first pick the smallest
prime from Ei and label it as p1 ∈ Ai. Note that P (n) = O(nd) and for n ≤ xi < p1

we have |N (p1)| ≤ d and |M(n)| ≤ d for each n ∈ N (p1). Consequently,

|M(N (p1))| ≤ d · d = d2.

We now pick p2 ∈ Ai to be the smallest prime in

Ei\M(N (p1)),

and repeat this iterative procedure. This produces a set Ai of size

|Ai| ≥ |Ei|/d2,

which together with (4.4) yields

xi

4ρ−1d3
< |Ai| ≤ dxi.

In summary, we have chosen sets Ai of primes for 1 ≤ i ≤ log X such that

(1) Ai ∩ Aj = ∅ for all i 	= j.
(2) |Ai| 
d xi.
(3) There does not exist p, q ∈ Ai with p 	= q such that pq|P (n) for some n ≤ xi.

Let

A :=
⋃

1≤i≤log X

Ai. (4.5)
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Step 2: splitting the sum and treating negligible part. We split the sum
into the following three pieces, depending on how many prime factors in Ai that
P (n) has. Let

∑
n≤xi

f(P (n)) = Si,1 + Si,2 + Si,3 where

Si,1 :=
∑

p∈Ai

∑

n≤xi

p|P (n)
q �=p:q|P (n) =⇒ q �∈A

f(P (n)),

Si,2 :=
∑

n≤xi

∃p∈A\Ai

p|P (n)

f(P (n)),

Si,3 :=
∑

n≤xi

p|P (n) =⇒ p �∈A

f(P (n)).

By the decomposition above, we have

P

(
max

1≤i≤log X

|
∑

n≤xi
f(P (n))|

√
xi log log xi

� 1
)

≥ P(E1 ∩ E2) ≥ P(E1) − (1 − P(E2)) (4.6)

where E1 and E2 are the events (with appropriately chosen absolute constants)

E1 := max
1≤i≤log X

|Si,1 + Si,3|√
xi log log xi

� 1,

E2 := max
1≤i≤log X

|Si,2|√
xi(log log xi)0.01

� 1.

Our plan now goes as follows: we first use union bounds to show that the event E2

happens with probability close to 1. A more subtle task is to show that P(E1) is
close to 1. In order to do so, we use a conditioning argument. We first show that with
probability close to 1 the sum Si,3 is small (which only depends on f(p) for p 	∈ A
). In particular, with probability close to 1, we can find a large random subset of
indexes R ⊂ {1, 2, . . . , �log X�} such that for those i ∈ R all the corresponding Si,3

are small. We then condition on all f(p) with p 	∈ A (now R is fixed) and thus the
sum Si,1 transforms into a sum of independent variables with certain weights. The
latter puts us in the position of applying Lemma 4.4 to produce large fluctuations.

We first estimate P(E2). Using the orthogonality together with (2.1), we have

E[|Si,2|2] = #{n ≤ xi : ∃ p ∈ A\Ai s.t. p|P (n)}
= #{n ≤ xi : ∃ p ∈

⋃

1≤j≤i−1

Aj s.t. p|P (n)}. (4.7)
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The second equality above follows from the definition in (4.3). Recall that xj =
Xj(log 3j)2 and we can further bound the quantity (4.7),

�
∑

p∈⋃1≤j≤i−1 Aj

(
xi

p
+ 1
)

� xi

∑

1≤j≤i−1

∑

p∈Aj

1
p

+
∑

1≤j≤i−1

|Aj |

� xi

∑

1≤j≤i−1

1
log xj

+
xi

X

� xi

log X
.

Using Markov’s inequality, the event |Si,2| � √
xi(log log X)0.1 occurs with proba-

bility at most O(1/ log X(log log X)0.2). Applying union bound for all 1 ≤ i ≤ log X
we get that with appropriately chosen implicit constants,

P(E2) = P

(
max

1≤i≤log X

|Si,2|√
xi(log log X)0.1

� 1
)

= 1 − O(1/(log log X)0.2). (4.8)

Step 3: creating large fluctuations. We next estimate P(E1). To deal with Si,3

for 1 ≤ i ≤ log X, we show that with probability 1 − O( 1
(log log X)0.02 ), there exists a

large random subset R ⊂ {1, 2, 3, · · · , �log X�} with |R| ≥ 0.99 log X such that for
every i ∈ R,

|Si,3| = |
∑

n≤xi

p|P (n) =⇒ p �∈A

f(P (n))| � √
xi(log log xi)0.01. (4.9)

Indeed, using the second-moment estimate and Markov’s inequality, the expected
number of points xi with 1 ≤ i ≤ log X for which (4.9) fails is

E[#{i ≤ log X : (4.9) fails}] � log X

(log log X)0.02
,

and the claim follows. By our construction, each of the sums Si,3 is independent of
the values f(p) for p ∈ A. From now on, we condition on all variables f(p) with
p 	∈ A and thus the set R is fixed. We aim to apply Lemma 4.3 to understand
the maximum of Si,1 over i ∈ R. Since by our construction all Ai are disjoint for
different choices of i, we crucially have that Si,1’s are independent. We next apply
Lemma 4.3. The independent random variables Vj here are indexed by the primes
and

Vp :=
1√
xk

∑

n≤xk

p|P (n)
q �=p:q|P (n) =⇒ q �∈A

f(P (n)), (4.10)
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where k = k(p) is uniquely determined by p ∈ Ak. Let P̃ denote the conditional
probability and let Ẽ be the conditional expectation (conditioned on all values of
f(p) with p 	∈ A). Lemma 4.3 implies that for any u ∈ R and small η > 0, we have

P̃

(
max
i∈R

Re
Si,1√

xi
≤ u

)
≤ P(max

i∈R
Zi ≤ u + η)

+ O

⎛

⎝ 1
η2

∑

i,j∈R

√ ∑

p∈Ai∩Aj

Ẽ[|Vp|4]

⎞

⎠+ O

⎛

⎜⎜⎝
1
η3

∑

i∈R
p∈Ai

Ẽ[|Vp|3]|R|3

⎞

⎟⎟⎠ ,

(4.11)

where Zi are jointly normal random variables with mean zero

E[Zi] := Ẽ

[
R

Si,1√
xi

]
= 0.

We define

[a]t := the largest factor of a that is coprime to t.

e.g. [100]5 = 4. For every i ∈ R, the variance is

E[Z2
i ] := Ẽ[(RSi,1)2] =

1
2xi

∑

p∈Ai

∑

k≥1

∣∣∣∣∣∣∣∣∣∣∣

∑

n≤xi

pk||P (n)
q �=p:q|P (n) =⇒ q �∈A

f([P (n)]p)

∣∣∣∣∣∣∣∣∣∣∣

2

.

Since Ai ∩ Aj is empty unless i = j, the first “big Oh” term simplifies to

O

⎛

⎝ 1
η2

∑

i∈R

√∑

p∈Ai

Ẽ[|Vp|4]

⎞

⎠ . (4.12)

Notice that for each fixed p ∈ Ai, the number of n ≤ xi such that p|P (n) is ≤ d
(since p � xi log xi). Consequently, for p ∈ Ai we have a trivial pointwise bound

|Vp| =

∣∣∣∣∣∣∣∣∣∣∣

1√
xi

∑

n≤xi

p|P (n)
q �=p:q|P (n) =⇒ q �∈A

f(P (n))

∣∣∣∣∣∣∣∣∣∣∣

�d
1√
xi

. (4.13)

Plugging (4.13) into (4.11), and noticing that x1 ≥ X, the error terms in (4.11) are
at most

� 1
η2

|R|
X

+
1
η3

|R|4√
X

� η−3X−1/2+ε,
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for any given ε > 0. Thus we have

P̃

(
max
i∈R

Re
Si,1√

xi
≤ u

)
≤ P

(
max
i∈R

Zi ≤ u + η

)
+ O(η−3X−1/2+ε). (4.14)

Step 4: analyzing Gaussian model. From now on, we only need to focus on
Zi with i ∈ R and we aim to bound the probability P(maxi∈R Zi ≤ u + η) for
appropriately chosen u, η. To this end, we first show that there exist constants m, c >
0, such that with probability (over the realizations of f(p) for p /∈ A) at least
1 − O( 1

Xc ) one has mini∈R E[Z2
i ] ≥ m. Then we will apply Lemma 4.4 to establish

the estimate.
We use the following notation

Ti,p := {n ≤ xi : p|P (n), and there does not exist q ∈ A such that q 	= p and q|P (n)},

and

Ti,p,k := {n ∈ Ti,p : pk||P (n)}.

Over all realizations of f(p) with p 	∈ A which we conditioned on before, the expected
value of E[Z2

i ] is

μi := E[E[Z2
i ]] =

1
2xi

∑

p∈Ai

∑

k≥1

#{(m, n) ∈ T 2
i,p,k : [P (m)]p = [P (n)]p}

=
1

2xi

∑

p∈Ai

∑

k≥1

#{(m, n) ∈ T 2
i,p,k : P (m) = P (n)}.

(4.15)

The second equality follows from the definition of Ti,p,k. Since polynomial values
P (n) are all distinct, we further have that

μi =
1

2xi

∑

p∈Ai

#{n ∈ Ti,p} �d 1, (4.16)

where the last inequality follows from the definition of Ai. Indeed the number of
n ≤ xi which have prime factors in Ai is �d xi and those n for which P (n) also has
some prime factor q ∈ ∪1≤k≤i−1Ak is o(xi) (see the computation in (4.7)).

Our final ingredient is the following concentration result, which essentially follows
from the energy estimates proved in Section 3. We have

E[(E[Z2
i ])

2]

=
1

4x2
i

∑

p1,p2∈Ai
k1,k2≥1

#{(m1, n1,m2, n2) ∈ T 2
i,p1,k1 × T 2

i,p2,k2

: [P (m1)]p1 [P (m2)]p2 = [P (n1)]p1 [P (n2)]p2}

=
1

4x2
i

∑

p1,p2∈Ai
k1,k2≥1

#{(m1, n1,m2, n2) ∈ T 2
i,p1,k1 × T 2

i,p2,k2 : P (m1)P (m2) = P (n1)P (n2)}.

(4.17)
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The second equality above follows from the definition of Ti,p,k. Now we are ready to
compute the variance of E[Z2

i ]:

E[(E[Z2
i ] − µi)

2] = E[(E[Z2
i ])

2] − µ2
i (4.18)

=
1

4x2
i

∑

p1,p2∈Ai
k1,k2≥1

#{(m1, n1,m2, n2) ∈ T 2
i,p1,k1 × T 2

i,p2,k2 : P (m1)P (m2)

= P (n1)P (n2)} −

⎛

⎝ 1

2xi

∑

p∈Ai

∑

k≥1

#{(m,n) ∈ T 2
i,p,k : P (m) = P (n)}

⎞

⎠
2

.

We analyze the difference in (4.18) as follows. Firstly, for the case p1 = p2 = p, as
|Ti,p| �d 1, we know that the number of such quadruples (m1, m2, n1, n2) is at most
�d |Ai| � xi and thus contributes �d

1
xi

(which is negligible) after normalized by
1/4x2

i in the above difference. For the general case p1 	= p2, the contribution to the
difference in (4.18) is � 1

4x2
i

times the number of quadruples (m1, n1, m2, n2) ∈ [N ]4

with

P (m1)P (m2) = P (n1)P (n2) but {P (m1), P (m2)} 	= {P (n2), P (n2)}.

We now invoke the result of Proposition 1.4 to conclude that there exists a constant
c′ > 0 such that the contribution in this case to the difference in (4.18) is � 1

xc′
i

.
Combining the above discussions together, we have that the quantity in (4.18) is
� 1

xc′
i

. By using Chebyshev’s inequality, it follows that the exceptional probability,
i.e.

P(E[Z2
i ] < μi/2) = O(1/xc′

i ).

Write

Vi := min
i∈R

E[Z2
i ].

Taking union bounds over all i ∈ R (here |R| ≤ log X) and using (4.16), we conclude
that there exist positive constants c and m such that over all realizations of (f(p))
that have been conditioned on, with probability at least 1 − O

(
1

Xc

)
,

Vi ≥ m > 0. (4.19)

For any u ∈ R and small η, we have, by the definition of Vi,

P(max
i∈R

Zi ≤ u + η) ≤ P

(
max
i∈R

Zi√
E[Z2

i ]
≤ u + η√

Vi

)
. (4.20)

Since Ai’s are disjoint, we have

E[ZiZj ] = 0, if i 	= j. (4.21)
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Let u =
√

m log log X. We apply Lemma 4.4 and (4.19) with δ = 1/100 and ε = 1/X
to get that the right hand side of (4.20) is

≤ P

(
max
i∈R

Zi√
E[Z2

i ]
≤

√
m log log X + η√

m

)
� e−Θ((log X)1/3000). (4.22)

Plugging (4.20) and (4.22) into (4.14) and choosing η to be a fixed constant, we
derive

P̃

(
max
i∈R

Re
Si,1√

xi
≤
√

m log log X

)
� e−Θ((log X)1/3000).

Since log log xi � log log Xi(log 3i)2 � log log X for all i ≤ log X, the latter inequality
can be rewritten as

P̃

(
max
i∈R

Re
Si,1√

xi log log xi
� 1
)

≥ 1 − O
(
e−Θ((log X)1/3000)

)
, (4.23)

for an appropriately chosen small absolute constant. Since the probability of ex-
istence of R satisfying (4.9) is at least 1 − O( 1

(log log x)0.02 ) and (4.19) holds with
probability 1 − O( 1

xc ), we combine these with the error term in (4.23) to arrive at
the estimate

P(E1) ≥ 1 − O

(
1

(log log x)0.02

)
. (4.24)

Inserting (4.8), (4.24) into (4.6) concludes the proof. �
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