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string compactifications.

KeEywoRrDS: Differential and Algebraic Geometry, Superstring Vacua, Superstrings and
Heterotic Strings

ARX1v EPRINT: 2305.08901

*Corresponding author.

OPEN AccCESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP07(2023)164


mailto:ashmore@uchicago.edu
mailto:hey@maths.ox.ac.uk
mailto:elli.heyes@city.ac.uk
mailto:ovrut@elcapitan.hep.upenn.edu
https://arxiv.org/abs/2305.08901
https://doi.org/10.1007/JHEP07(2023)164

Contents

Introduction and summary

Phenomenology and the Dolbeault Laplacian

2.1 Supersymmetry, Yukawa couplings and the matter-field Kéhler metric
2.2 The Dolbeault Laplacian on a vector bundle

2.3 The eigenvalue problem

The spectrum of Az on P3
3.1 Analytic results
3.2 An approximate basis
3.3 Numerical results
3.3.1 The bundle-valued scalar spectrum
3.3.2  The bundled-valued (0, 1)-form spectrum

The torus as a Calabi-Yau one-fold
4.1 Analytic results
4.2 Numerical results
4.2.1 The bundle-valued scalar spectrum
4.2.2 The bundled-valued (0, 1)-form spectrum

Quintic Calabi-Yau three-folds
5.1 Numerical results
5.1.1 The bundle-valued scalar spectrum
5.1.2  The bundle-valued (0, 1)-form spectrum
5.2 Application: computing a superpotential

Useful calculations

A.1 The slope u

A.2 Matrix elements of the Laplacian

A.3 A local holomorphic frame

A.4 O(1)-valued scalar spectrum of the Dolbeault Laplacian on P3

Differential forms on projective space
B.1 Vertical, horizontal and basic

B.2 Derivatives

B.3 Forms on S?V*! and PV

Y

No RN NG

11
11
14
16
17
17

19
20
22
23
24

24
27
27
28
29

31
31
32
33
35

36
37
38
39




1 Introduction and summary

Heterotic string theory has provided a plethora of string models with realistic low-energy
physics [1-13]. The standard ingredients in these models are a Calabi-Yau three-fold X,
equipped with a Ricci-flat metric, and a vector bundle V whose connection solves the her-
mitian Yang-Mills equation [14]. Upon compactifying on X, one finds a four-dimensional
effective theory with N/ = 1 supersymmetry governed by a Kéhler potential and a su-
perpotential. By judicious choices of the three-fold and the vector bundle, one can find
MSSM-like models incorporating a variety of desirable features. In principle, the masses
and couplings in these models can be computed directly from the geometry of X and V.
However, even after decades of work, we are still unable to compute these numbers for all
but the simplest examples. A substantial part of the difficulty can be attributed to the
lack of explicit expressions for non-trivial Calabi-Yau metrics and hermitian Yang-Mills
connections.

Some general features, such as the number of generations or the vanishing of certain
couplings, can be inferred from topological or algebraic data of the three-fold X and bun-
dle V' [15-22]. However, the details of the resulting four-dimensional physics — Yukawa
couplings and so on — are determined by a Kéhler potential and a superpotential, both of
which depend on the metric on X and connection on V. Without this data, it is generally
not possible to compute masses or couplings, thereby preventing us from making precise
particle physics predictions using string theory.

With little to no chance of ever discovering analytic expressions for the relevant met-
rics or connections, there has been considerable focus on using numerical methods to com-
pute these objects. Numerous algorithms have been devised for numerically determining
Ricci-flat metrics and hermitian Yang-Mills connections on Calabi-Yau manifolds, includ-
ing position-space techniques [23], spectral methods [24-32], and more recent advances
employing machine learning and neural networks [33—-42]. Building on these, there are now
works which take the first steps in using these numerical metrics for computations, such
as finding the spectrum of the Laplacian on scalars and (p, ¢)-forms [43, 44], checking the
swampland distance conjecture as a function of complex structure moduli [45], discovering
chaos in two-dimensional sigma models [46], and relating level crossing in the spectrum to
the presence of attractor points [47].

The focus of the present paper is to give all the ingredients necessary for computing the
superpotential and Kéhler potential in simple examples. In more detail, as is well known
to experts, in order to derive the matter sector of the four-dimensional effective theory
that descends from the heterotic string on a Calabi-Yau three-fold X admitting a bundle
V', one has to carry out the following steps:

1. Calculate the Calabi-Yau metric on X for a particular point in both complex and
Kéhler moduli space.

2. Calculate the hermitian Yang-Mills connection on V.

3. Calculate the zero modes of a certain twisted Dirac operator. Since X is Kéhler, this
is equivalent to finding bundle-valued differential forms which are harmonic with re-



spect to the Dolbeault Laplacian A By associated to the twisted Dolbeault differential
Ov [14, 48, 49].

4. Find an orthonormal basis for the harmonic modes (or compute the matter-field
Kéhler metric from inner products of these modes).

5. Calculate the physical superpotential from integrals of wedge products of the nor-
malised harmonic modes.

The focus of this paper is step three. (In fact, our numerical approach means that step four
comes for “free”; as we will see.) We give the first numerical calculation of the spectrum
and eigenmodes of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-
fold. Specifically, we compute the approximate spectrum and eigenmodes of the Dolbeault

L We restrict

Laplacian acting on bundle-valued scalars ((0,0)-forms) and (0, 1)-forms.
our attention to line bundles over Calabi-Yau n-folds constructed as hypersurfaces in a
single ambient projective space. With the eigenmodes in hand, we are able to compute
an orthonormal basis of harmonic modes and thus the correctly normalised superpotential
which determines physical Yukawa couplings. Unfortunately, the examples we consider
are too simple to admit non-vanishing cubic superpotential couplings, and so there are no
matter-field Yukawa couplings to calculate. However, this proof-of-concept calculation still
represents a significant step towards calculating a Yukawa coupling in a physically relevant
compactification.

It should be emphasized that even decoupled from the physical context which moti-
vated our study, our calculations are of wider interest. The methods we use are applicable
to line bundles over any Kéhler manifold, such as complex projective space. More gener-
ally, explicit and numerical eigenmodes of the bundle-valued Laplacian should be useful to
geometers and mathematical physicists alike.

The organisation of the paper is as follows. In section 2 we review how four-dimensional
physics is determined by the geometry of a Calabi-Yau metric and a hermitian Yang-Mills
connection. We also outline the concepts needed to define the Dolbeault Laplacian on a
bundle and specify the precise eigenvalue problem that we will solve. In section 3, we
apply our numerical method to the toy example of line bundles over complex projective
space. We present the known analytic results for the spectrum, describe how to convert
the eigenvalue problem into one of finite-dimensional linear algebra, and then compare the
exact and numerical results. In section 4, we consider the simplest Calabi-Yau hypersurface,
namely the flat torus described by a cubic equation in P2. Again, we present the known
exact results for the spectrum and then compare these to results for the bundle-valued
scalar and (0, 1)-form spectra computed numerically. In section 5, we apply our numerical
method to compute the spectrum for a line bundle over the Fermat quintic three-fold.
Though there are no analytic results to compare with, we carry out a number of consistency
checks that the spectrum should satisfy.

!Calculations were carried out on a laptop computer using custom-written code in Mathematica [50].
The authors hope to release a package in the near future.



Summary and future directions. To summarise, the results of this paper are:

e The construction in section 3.2 of a finite basis of bundle-valued differential forms on
complex projective space, which can be used to approximate the space of eigenmodes
of the Dolbeault Laplacian on both PV and hypersurfaces therein.

o Numerical calculations of the eigenmodes and eigenvalues of the Dolbeault Laplacian
on O(m)-valued scalars and (0, 1)-forms on P3. These are presented in figures 1 and 2
and tables 2 and 3. We find perfect agreement with known exact results for the
scalar spectrum and perform a number of consistency checks for the (0,1) spectrum.
We have not found exact results for the bundle-valued (0, 1)-form spectrum in the
literature, so, to the best of the authors’ knowledge, our numerical calculation is the
first of its kind.

e Numerical calculations of the eigenmodes and eigenvalues of the Dolbeault Laplacian
on O(m)-valued scalars and (0, 1)-forms on a torus. The torus is a Calabi-Yau one-
fold, allowing us to compare our numerical results with exact predictions. These
results are presented in figures 3 and 4 and tables 5 and 6. Again, we find perfect
agreement with the known exact results.

e The first numerical calculations of the eigenmodes and eigenvalues of the Dolbeault
Laplacian on O(m)-valued scalars and (0, 1)-forms on a Calabi-Yau three-fold. We
focus on the Fermat quintic three-fold and give the results in figures 5 and 6 and
tables 7 and 8. Here, there are no analytic results to compare with; instead, we
perform a number of non-trivial checks on the spectrum which come from Serre

duality and the Hodge decomposition.

This paper focuses on the examples of line bundles over Calabi-Yau manifolds in a
single ambient projective space. In future work, we plan to extend this in two ways.
First, we will move from hypersurfaces in a single projective space to complete intersection
Calabi-Yau (CICY) manifolds, defined by multiple equations in products of projective
space. Even without moving to non-abelian bundles, these examples are rich enough to
admit Standard Model-like theories with non-vanishing Yukawa couplings [11-13, 51-55].
Second, we plan to generalise our algorithm to non-abelian bundles, starting with the
examples considered by Douglas et al. [26]. This will allow us to compute the spectrum and
corresponding Yukawa couplings for compactifications which give rise to realistic physics,
such as the so-called heterotic Standard Models [1, 4, 9, 11-13, 51-53, 56-60]. Of particular
interest for the authors is a certain SU(4) bundle over the Z3 x Zz symmetric Schoen three-
fold discussed in [9, 56, 57, 61-77] and analysed numerically by Braun et al. [27]. These
advances, together with progress on non-perturbative superpotentials [78-92] and moduli
stabilisation [73, 93-107], should allow concrete computations of masses and couplings in
top-down string models in the near future.

More generally, the numerical methods we have employed may be useful for studying
the geometry of Kéhler manifolds and bundles in their own right. For example, the scalar



spectrum of Agv can be interpreted in terms of the quantum mechanics of a charged par-
ticle moving on the curved manifold. Indeed, many of the known analytic results for the
spectrum of this Laplacian were first found from considerations of particles moving on pro-
jective space or Riemann surfaces [108-110]. Moreover, the methods we have described can
also be applied to the full (p, ¢)-form spectrum. Though general (p, ¢)-form eigenmodes of
the Laplacian are not immediately relevant for string compactifications, they surely encode
many interesting quantities which characterise manifolds and bundles, such as regularised
heat kernels and analytic torsions. All of these are accessible using the techniques of this
paper. We hope to return to these ideas in future works.

2 Phenomenology and the Dolbeault Laplacian

Supersymmetric Minkowski compactifications of the Eg x Eg heterotic string without three-
form flux are specified by a choice of Calabi-Yau n-fold (X,g), where g is a Ricci-flat
Ké&hler metric, and a principal G-bundle with G C Eg x Eg, whose curvature F' satisfies
the hermitian Yang-Mills equation:

Fj=F;=0, g¢9F;x1, (2.1)

where %, j label holomorphic coordinates on the Calabi-Yau, 1 is the identity element of
(G, and the constant of proportionality in the second equation is a real number known as
the slope which is determined by the choice of G-bundle. A solution to (2.1) is equivalent
to the bundle being holomorphic and admitting a hermitian metric on its fibres which is
“Hermite-Einstein”. Unfortunately, there are no explicitly known Calabi-Yau metrics on
three-folds, nor Hermite-Einstein metrics on bundles over Calabi-Yau manifolds. Instead,
one must turn to numerical techniques. With these now available, the question becomes
what physically interesting quantities we want to compute. Among many possible appli-
cations, the motivation of this work is the computation of physical Yukawa couplings in
string models. To set the scene, we quickly review how a four-dimensional N = 1 effective
theory is derived from a ten-dimensional string compactification.

2.1 Supersymmetry, Yukawa couplings and the matter-field Kdhler metric

In addition to a metric, dilaton and B field, the bosonic sector of the heterotic string has an
Eg x Eg gauge field A. Matter fields in four dimensions come from a decomposition of this
gauge field and its associated gaugino. Consider a background of the form R x X, where
X is Calabi-Yau, and focus on a single Eg factor. Assuming that X admits a principal
G-bundle with G C Eg, the gauge group H in four dimensions is given by the commutant
of G in Eg. For concreteness, consider an illustrative example? where G = SU(3) and
H =Eg3

2For simplicity, we ignore any discrete factors.

3The special case where V = T'X is known as the “standard embedding”. Many quantities of interest
can be computed using the techniques of special geometry without needing an explicit metric on X [16, 17,
19, 49, 111, 112]. Unfortunately, it is difficult to find acceptable MSSM-like physics in these simple models,
so one is forced to consider more general vector bundles.



The matter multiplets can then be read off from a decomposition of the 248 represen-
tation in which the ten-dimensional gaugino transforms under SU(3) x Eg as

248 — (P(r,R) = (8,1) & (1,78) @ (3,27) @ (3,27), (2.2)
R

where here and below, we use 7 to denote a representation of SU(3) and R, that of Eg.
From this, we observe that the low-energy theory can contain matter transforming as the
1, 27 or 27 of Eg, corresponding to bundle moduli, families and anti-families. Using
standard Kaluza-Klein analysis on Kédhler manifolds [113, 114], one finds that these matter
fields come from harmonic bundle-valued (0, 1)-forms t),., where the relevant bundles are
vector bundles V, over X associated to the principal SU(3) bundle over X and the SU(3)
representation r. For example, from (2.2), the number of 27 families present in four
dimensions is counted by the number of harmonic V3-valued (0,1)-forms on X, where
V3 is a rank-three vector bundle on X whose fibres admit an action of SU(3) in the 3
representation. The number of these harmonic (0,1)-forms, and hence the number of
families, is equal to the dimension* of H'(X, V3). Similarly, the bundle moduli are counted
by HY(X,Vs) ~ HY(X,Vz ® Vg).

Since the effective theory has A/ = 1 supersymmetry, it is determined by a super-
potential and a Kéahler potential [115]. These objects are fixed by the geometry of the
compactification in the following way. Let 1% be a basis for H'(X, V,.) which is not neces-
sarily harmonic. If there is a singlet in the product = x 7’ x r”/, there can be a holomorphic
Yukawa coupling of the form

Ay (r,r r") = / QA tr(w,{ A w;{, A wﬁ), (2.3)
X

where ) is the holomorphic (3,0)-form on X and the trace indicates a projection to the
SU(3) singlet. Using the above decomposition (2.2), we denote the four-dimensional chiral
superfields associated via Kaluza-Klein reduction to each ! by CII%. The superpotential
for these chiral superfields is then given by

W = \yx(R, R, R")CLCHCE,, (2.4)

where we have relabelled the Yukawa couplings by the four-dimensional gauge group,
i.e. their Eg representations. Given that a singlet appears in 83, 8 -3 -3, 3% and their
conjugates, the possible types of Yukawa couplings are 13, 1 - 27 - 27, 273 and 27°.

The above are often known as holomorphic Yukawa couplings as they are quasi-
topological in the sense that A7jx can be computed using representatives of H'(X,V})
which are not harmonic (this follows straightforwardly from dQ2 = 0). However, the phys-
ical Yukawa couplings depend on the normalisation of the kinetic terms for the chiral
superfields. This normalisation is fixed by the matter-field Kédhler metric, given by

Grj = /X;vi/%{ Ay, (2.5)

4As is standard in the literature, H7(X,V) denotes the V-valued (0, ¢)-form sheaf cohomology, and not
the de Rham cohomology.



which is simply the inner product between harmonic representatives of H'(X,V;.). Due to
the need for harmonic forms and the presence of the Hodge star on bundle-valued forms
*y, this depends on knowledge of the Calabi-Yau metric on X, the Hermite-Einstein metric
on the fibres of V,. and the zero modes of the Dolbeault Laplacian on (0, 1)-forms valued
in V;.. There is now much progress in computing Calabi-Yau and Hermite-Einstein metrics
numerically, so this paper will focus on the bundle-valued harmonic modes. In particular,
the aim of this paper is to understand how to compute these ingredients numerically for
the simple case where r is a representation of U(1), corresponding to V;. being a line bundle
over X.

2.2 The Dolbeault Laplacian on a vector bundle

In the previous section, we saw that physical Yukawa couplings can be obtained by com-
puting overlap integrals of harmonic representatives of certain bundle-valued cohomologies.
Here, we will be a little more precise about the equations that these representatives should
satisfy and the particular eigenvalue problem that we will solve. We first review the general
formalism of bundles on Kéhler manifolds and the Dolbeault Laplacian acting on bundle-
valued (p, q)-forms. In practice, computing Yukawa couplings needs only the (0, 1)-form
sector, but we find it useful to keep our discussion more general.

Let X be a compact, complex manifold of complex dimension n (real dimension d = 2n)
with Kéhler metric g;; and Kéhler form w, and let V' be a rank-r holomorphic vector bundle
over X. The physically relevant case is when V is any of the vector bundles V;., where the
representation r appears in the decomposition of the 248, such as in (2.2). However, for
simplicity we will just write V. We denote by Q74(V') the space of V-valued (p, g)-forms.
Unlike a real vector bundle, a holomorphic bundle comes with a canonical differential
operator 5\/:

v QPI(V) — QPItH(Y). (2.6)

This generalises the usual Dolbeault operator d on (p, q)-forms, and likewise is nilpotent
and obeys the Leibniz rule. Explicitly, let {FE,} be a holomorphic frame for V, i.e. on each
patch of X, the E, form a basis for C" and have holomorphic transition functions valued
in GL(r,C). A bundle-valued (p, ¢)-form « can then be written locally as

-
o= Z O[a ® Ea, (27)
a=1
where a® € QP4(X) are standard (p, ¢)-forms on X.
A hermitian structure on V' is equivalent to a hermitian metric G on the fibres of V'
such that, for sections s, so € Q%0(V),

G(Sl, 82) = G(SQ, 51) = Gabﬁé‘g, (28)

where Gg is a positive-definite hermitian matrix. As with a conventional metric on a
manifold, the hermitian structure gives an isomorphism between V' and the dual bundle
V*. Combining this with the Hodge star operator, we have a generalised Hodge star *y



which maps QP4(V') to Q"P"~9(V*) and defines an inner product (-, -) as

(a1, ag) :/ *y a1 A ag :/ (a1, ag) vol, (2.9)
X X

where vol is the volume form defined by %1 and (aq, az) is given by

1 7 b = k . Z
p!—q!(m)a (a2)k1...kpil...iqgll Loog" L G- (2.10)

(1,00) = i1..pJ1--Jg

The adjoint of dy is then defined relative to this inner product as (dyaq, az) = (o, 5‘T/ag>
and is given explicitly by
55 = (71)np+1 *V a*v s (2'11)

where 0 is the standard Dolbeault differential.
Using these ingredients, we define the Dolbeault Laplacian as

Ag, = 0}0y + 0y}, (2.12)

which is self-adjoint with respect to (-,-). A bundle-valued (p,q)-form « is then called
harmonic (or a zero mode) if
Ag =0, (2.13)

We emphasise that the statement that « is harmonic makes sense only with respect to a
choice of Kéhler metric g on X and hermitian structure G on V. On a compact manifold,
harmonic is equivalent to being both dy- and 53/—closed, with the harmonic forms giving
the harmonic representatives of the Dolbeault cohomologies Hgf(X , V). In what follows,
it will be useful to define AP4(V') = dim Hgf(X, V') as the dimension of the V-valued (p, q)-
form cohomology. There is also a Hodge decomposition which ensures that a bundle-valued
(p, q)-form can be written uniquely as the sum of a harmonic, a dy-exact and a 5€-exact
form. The bundle-valued sheaf cohomologies H4(X, V) are then defined as

HI(X,V) ~ Hgf(X, V). (2.14)

We now want to define a connection on V and a corresponding differential operator
D that maps QP(V) to QPT1(V). Locally, D = d + A, where A is a connection one-form
(gauge field). Acting on a section s € Q00(V), the curvature of D is given by

D?s=(dA+ANA)-s=F s, (2.15)

where F' € Q?(End V) acts on s via the adjoint representation. A connection is compatible
with the holomorphic structure of V' if the (0, 1)-component of D agrees with the Dolbeault
differential, D%! = 0y,. Furthermore, the connection is hermitian if it is compatible with
the hermitian structure on V in the sense that

d(G(sl, SQ)) = G(Dsl, 32) + G(Sl, DSQ), (2.16)

or equivalently DG = 0. Note that compatibility with the holomorphic and hermitian
structures uniquely determines the connection as the Chern connection of G. The Chern



connection is characterised by a local one-form A whose components in a holomorphic
frame {E,} are given by
A% = (G71oG)%,. (2.17)

Note that the Chern connection is type (1,0) by construction. The curvature F of the
Chern connection is then purely type (1,1), and so defines a connection on a holomorphic
bundle.

The hermitian Yang-Mills equation (2.1) can be expressed in terms of the hermitian
structure G. First, as we mentioned above, the Chern connection of G is automatically
holomorphic as F' has no (2,0) or (0,2) components. The remaining condition is simply

T ija A _ ij —1/9.
g jFij =9 ]8]'141 = -9 ]%(G (0:G)) ox u(V) 1, (2.18)

where p(V') is the slope of V', given by (more details on the slope can be found in ap-

pendix A.1):
1 n—1
w(V) = -y /X a(V)Aw™ . (2.19)

A hermitian fibre metric G which solves (2.18) is known as Hermite-Einstein. Whether

there exists a Hermite-Einstein metric on V' depends on the so-called stability of the bun-
dle [116, 117]. This can often be checked by somewhat laborious algebraic calculations,
though the guarantee of existence is not constructive — even if a given bundle is stable,
it is often impossible to find an explicit expression for the corresponding Hermite-Einstein
metric. This is especially true on manifolds without explicitly known metrics, such as for
Ricci-flat metrics on Calabi-Yau manifolds.

For completeness, the covariant derivative of a section s is

(D™95)% = s + A%s®, (D%1s)® = 9s°. (2.20)

For a holomorphic vector bundle, both D9 and D%! are nilpotent, while D? = F 1,1- One
then usually denotes these by D'V = 9y = 9 + A and D%! = 9y = 9, with the adjoint of
dy given by

A, = (=)™ % Oy . (2.21)

Following from this, one has the Bochner-Kodaira-Nakano identity [118-121] which relates
the Oy -Laplacian to the dy-Laplacian as

Ag, = Doy + [FA], (2.22)

where A is contraction with the Kéhler form w on X. When V is trivial, so that the
curvature F vanishes, this reduces to the usual relation between the d- and d-Laplacians
on a Kéhler manifold, i.e., Az = Ap.

In order to link this back to the discussion of the previous section, we recall that
certain (0, 1)-form sheaf cohomologies count the number of four-dimensional matter fields
in heterotic string compactifications. These cohomologies are spanned by harmonic modes
which satisfy (2.13), where V should be replaced by the relevant bundles V. associated to
families, anti-families and so on. In addition, since the Dolbeault Laplacian depends on



the metrics on both X and the fibres of V', the connection one-form A that appears in A By
should be the appropriate hermitian Yang-Mills connection for V;., defined by a Hermite-
Einstein metric on the fibres. The matter superfields relevant for Yukawa couplings then
come from modes on X that are Agv—harmonic representatives of

1 ~ 0,1

With the necessary background on differential operators on holomorphic vector bundles
now in place, we move on to consider the eigenvalue problem for A By -

2.3 The eigenvalue problem

The general problem analysed in this work is finding the spectrum and eigenmodes of the
Dolbeault Laplacian A 5, acting on (p, q)-forms valued in a vector bundle V. The particular
examples we consider are those where the bundle V' is a line bundle over a compact Kéhler
manifold X. Furthermore, we will focus on computing the (0,0)- and (0, 1)-form spectra.
The spectrum of bundle-valued scalars will be useful for comparing with known results
when X is a projective space or a torus, while the (0, 1)-form spectrum is what one needs
to compute Yukawa couplings.
The eigenmodes ¢ € QP4(V) and eigenvalues A are defined by®

Ng, b= A, (2.24)

where the eigenvalues A are real and non-negative. The eigenmodes with zero eigenvalue,
A = 0, are the “harmonic” or “zero modes” which span Hg"f(X , V). Since X is assumed
to be compact, the eigenvalues are discrete and have finite degeneracies. As we will see
in examples, if the Kéhler metric g on X admits either continuous or discrete symmetries,
there may be multiple eigenmodes with the same eigenvalue. We will denote the n-th
eigenvalue by A, with multiplicity ¢, starting from n = 0. Note that \g always labels the
smallest eigenvalue of Agv even when g is not zero — only when A\g = 0 do we refer to
the corresponding eigenmodes as harmonic or zero modes. As usual, the eigenvalues scale
with the volume of X as A\ ~ Vol(X)~2/¢. We always normalise the volume of X to one in
the examples that follow.
Let us make a few comments on the expected structure of the spectrum of Aév‘ First,
Serre duality implies
RPI(V) = APV, (2.25)

so that the counting of zero modes of Aj —acting on QP(V) and Q""P"79(V*) should
agree. In fact, since the Hodge star with conjugation %y commutes with the Laplacian,
*y A 5, = A By ¥V there is a relation between the entire tower of eigenmodes and eigenval-
ues. Denoting the set of V-valued (p, ¢)-form eigenmodes by {¢}}}? and the corresponding
eigenvalues as {\}}?) one has

sy = (o),

e (2.26)
(A=A

5Note that, in the case where the bundle is trivial, V ~ O, Ag, is equal to one-half of the de Rham
Laplacian, so the spectrum of Ag  will be related to the usual spectrum by a factor of two.



Moreover, for (0, q)-forms, one can write this in terms of the canonical bundle Kx of X
as {)\}(‘)}q = {)\}(I);Z_@qv*. We will use these relations as a non-trivial check on the numerical
spectra in later parts of the paper.

Since the practicalities of solving for the eigenmodes and eigenvalues are covered thor-
oughly in the literature [43-45, 47], we mention it only to fix some notation. For fixed
(p,q), let {aa} be a basis for the vector space of complex-valued (p, q)-forms valued in
V on the manifold. This basis is infinite-dimensional, A = 1,...,00, as we want to be
able to express any element of QP?(V') as a linear combination of the basis with constant
coefficients.® The basis is not assumed to be orthonormal; the inner product (2.9) defines
a matrix Oyp as

Oup = (g, ap) = /X;VOZA Aag, (2.27)

which captures the non-orthonormality. Similarly, the matrix elements of A By with respect
to this basis are

AAB = <04A7A(§VOZB>‘ (2.28)

The eigenvalue equation (2.24) can then be written in terms of the matrix elements as

Aapdp =A0aBoB, (2.29)

where ¢ = ¢pcac. This is then a generalised eigenvalue problem for (A, ¢4), albeit an
infinite-dimensional one. Upon truncating {4} to finite-dimensional basis, one is left with
a standard linear algebra problem to determine the eigenvalues A and the eigenvectors ¢ 4,
which in turn give the spectrum of Az = and the expansion of the eigenmodes in terms of the
truncated basis. Note that there is no reason to expect the basis modes a4 to themselves
be eigenmodes of the Laplacian (in practice they are chosen to be numerically simple to
compute). Thanks to this, truncating to a finite basis gives only an approximation of
the spectrum and eigenmodes, with the dimension of the basis controlling the accuracy of
the approximation. Our conventions for calculating the matrix elements in terms of the
components of sections can be found in appendix A.2.

Finally, we note that the matter-field Kdhler metric (2.5) is particularly straightforward
to calculate once one has solved the eigenvalue problem. Explicitly, upon expanding the
relevant harmonic representatives 1! of H'(X,V) as ¢! = wl{‘a A, the metric Gy; can be
written as

Gry = /X;Vi/)l AT =l /X*?VCYA Nap

= ¢LOap}.

In practice, when dealing with a generalised eigenvalue problem of the form (2.29), Math-

(2.30)

ematica will return eigenvectors which are automatically O 4p-orthogonal [50]. They can
then be made O4p-orthonormal by simply rescaling the ¢,I4 coefficients. In this basis, the
field-space metric Gy is trivial.

SRecall that QP*?(V) restricted to a point = € X is a finite-dimensional C-vector space. If one does not
restrict to a point but instead wants to describe the space of forms over the entire manifold, Q79(V) is an
infinite-dimensional C-vector space (or equivalently a finitely generated C'°°-module).
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3 The spectrum of Az on P?

As in previous works [43, 44], we begin with a study of three-dimensional complex projective
space P? equipped with the Fubini-Study (FS) metric. Since much is known explicitly about
projective space, this will provide an arena where we can check our numerical methods
against exact results.

Recall that the Fubini-Study metric is the unique (up to scale) Kéhler metric on P3
with SU(4) isometry, corresponding to the presentation of P? as a symmetric space:

s SU(4)

U() ~ 5(003) x U)" (3.1)

The Fubini-Study metric is defined by g;; = 82-53[( , where K is the Kéahler potential

K 68 log Z'Z 3.2
= o 0g I- (3.2)
Here [Z° : .- : Z3] are homogeneous coordinates on P? where, for example, on the patch

Up = {Z° = 1}, we have Z! = (1,2") with i = 1,2,3. The choice of prefactor in (3.2)
ensures Vol(P3) = 1.

The bundles we consider are line bundles V = O(m) on P? for integer values of m. A
hermitian metric on the fibres of O(m) is given by’

G=(z1z)™™. (3.3)

Indeed, this is actually automatically Hermite-Einstein with respect to the Kéhler metric
defined by (3.2). It is simple to see this by unwinding the various definitions in section 2.2,
first by computing the connection as A = dlog G and then the curvature as F = 9A. The
slope p, defined in (2.19), which appears as the constant of proportionality in the hermitian
Yang-Mills equation, is then simply pu(O(m)) = m (see appendix A.1).

3.1 Analytic results

The particular eigenvalue problem we want to solve is

Nj, b=\, (3.4)

where ¢ is an O(m)-valued (0,0)- or (0,1)-form. At this point, we consider the general
problem of PV and specialise to N = 3 when presenting our numerical results. First,
we note that global holomorphic sections of O(m) are counted by Hg"?(IP’N ,0(m)) ~

HO(PN O(m)), which should match the number of harmonic/zero modes of the above

"See appendix A.3 for a discussion of the components of G relative to a choice of holomorphic frame for

O(m).
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Laplacian. On PV, these cohomologies can be computed using the Bott formula:®

m

—-m—1 (3.5)
<-N-1
<—N—m—1>’ = ’

dim HP(PY,O(m)) = 0, otherwise.

N
dnnfﬂ%PN,cmnw)::< +7”>, m >0,

dim HY (PY, O(m))

In other words, the only non-vanishing cohomologies are HY(P,O(m)) for m > 0 and
HN (PN O(m)) for m < —N — 1. On P3, we see that 2%°(O(m)) will have zero modes,
i.e. A =0, for m > 0, while there are no zero modes at all for Q%1(O(m)).

Away from zero modes, since both the Kihler metric on P and Hermite-Einstein
metric on O(m) are known, one might expect that one can solve for the full spectrum.
Indeed, though this exact problem does not seem to have been considered in the literature
before, there is a related problem from which we can extract the spectrum (at least for the
scalar eigenmodes). Kuwabara [108] and Bykov and Smilga [109] analysed the spectrum
of a Schrédinger operator on a line bundle O(m) over N-dimensional complex projective
space equipped with a Fubini-Study metric with volume (47)Y/N!. Given a connection
D on O(m) with curvature F, they showed that the spectrum of the Bochner Laplacian
Ap = DD' 4+ DD acting on (0, 0)-forms (scalars) is spanned by the following eigenvalues
Ap with multiplicities ¢, for n =0,1,...:

\mv( m| ) m?

n = 5 - tN) - ) ’
A (n—|—2 n+2—|— 1 (3.6)
_(n+N—-1\[n+|m|+N—-1\2n+|m|+N

T e |Gt CE T TR S

Looking back to section 2.2, from (2.22) we see that the Bochner Laplacian Ap =
Ap, +Aj, acting on scalars is related to the dv-Laplacian as Ap = 2A5, +AF, where A is
contraction with the Kéhler form on X. The fibre metric on O(m) is taken to be the unique
Hermite-Einstein metric (3.3), so that F' = 1mw, which then implies AF = Nm/2.° Thus,
we expect the spectrum of the Dolbeault Laplacian to be given in terms of the Bochner
Laplacian as

1 Nm
A; =—Ap——). .
By 2( D~ ) (3.8)
Finally, our convention that Vol(PY) = 1 implies a rescaling of the eigenvalues by

47 /(NN Putting this all together, we expect the Q09(O(m)) spectrum of the Dol-

8More generally, the dimensions of Hg;/q(X, O(m)) can be computed using Macaulay?2 [122]. For example,
defining P3 using C4 = QQ[x0,x1,x2,x3] and P3 = Proj C4, the cohomologies can be computed using the
command HH"q(cotangentSheaf (p,P3)**00_P3(q).

9These somewhat unexpected coefficients come from the difference between the usual normalisation
in algebraic geometry of pr wV =1 vs f]PN wV o= (47T)N which is implied by the volume conventions
of [108, 109].
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-3 -2 -1 0 1 2 3
An ln An L An ln An ln An ln An ln An ln
31.1 20 20.7 10 10.4 4 0 1 0 4 0 10 0 20
55.3 120 41.5 70 27.7 36 13.8 15 173 36 20.7 70 24.2 120
86.4 420 69.2 270 519 160 346 84 415 160 484 270 55.3 420
124 1120 104 770 83.0 500 622 300 726 500 83.0 770 934 1120
169 2520 145 1820 121 1260 96.8 825 111 1260 124 1820 138 2520

s ow v o~ o33

Table 1. Exact eigenvalues of As and their multiplicities for O(m)-valued scalars on P3.

beault Laplacian to be given by

27 N(|m|—m)

Ap = (NN [n(n + N+ |m|) + 2}, (3.9)
n+N—-1\{n+|m|l+N—-1\2n+ |m|+ N

= (R ey,

for n > 0. As a check, we recall that the zero modes should appear with multiplicity
predicted by (3.5). Indeed, for n = 0 the above reduces to

27 N(lm|—m N+ |m
o= ) EO:( i |>’ (311

so that one has zero modes, A = 0, only for m > 0 with multiplicities agreeing with the
Bott formula (3.5).
Using this exact expression, we give the first few eigenvalues in the spectrum for

N =3 and m € {-3,...,3} in table 1. The zero modes of Ag are easy to understand
— they are the global holomorphic sections of O(m) given by symmetric monomials of the
homogeneous coordinates. As we mentioned above, on PV, there are (N :;m) of these, in
agreement with the number of zero modes in table 1. Furthermore, using the language
of [44], the multiplicities of all the modes actually correspond to the dimensions of the

SU(N + 1) representation defined by the highest weight

(n, 0,...,0 ,n+|ml), (3.12)
———
N — 2 times

and the eigenvalues themselves (up to the normalisation factor) are given by the difference
of Casimir invariants for the weights (n,0,...,0,n 4 |m|) and (0,0,...,0,|m|). Note that
the m = 0 eigenvalues are exactly one-half of the eigenvalues of the de Rham Laplacian
A calculated by Ikeda and Taniguchi [43, 44, 123], which one expects since for V' = O the
Dolbeault Laplacian simplifies to A 5y = %A.

In the rest of this section, we will lay out how to construct an approximate basis of
bundle-valued forms which we use to compute matrix elements of the Dolbeault Laplacian.
We will then compute the spectra of bundle-valued (0,0)- and (0, 1)-forms, and compare
these numerical results with the exact expressions given in table 1. Note that we have
not found exact expressions for the spectrum of O(m)-valued (0, 1)-forms on PV in the
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literature. Instead, as a check of this spectrum, we will appeal to Serre duality (2.26) which
implies that the O(m)-valued (0, 1)-form spectrum should agree with the Kx ® O(—m)-
valued (0, N — 1)-form spectrum. In particular, for N = 3 we have Kx ~ O(—4), so that
the O(—m)-valued (0, 1)-form spectrum should agree with the honest (0, 2)-form spectrum
computed in previous work [44].

3.2 An approximate basis

We now want to find a basis of bundle-valued forms which can be used to approximate the
space of eigenmodes of A By and calculate the spectrum via matrix elements such as (2.29).
We first consider bundle-valued scalars for m > 0. Building on the work of [43, 44], we
note that the set

(degree kg + m monomials in Z7) @ (degree ks monomials in Z7)
(Z 1z ])k¢ 7

Fl (m) (3.13)
gives a finite set of O(m)-valued scalar functions a4 on PV, with the size of the set
controlled by the non-negative integer parameter ky. Under the scaling Z1 - vZ!, the
scalars transform as ag — v a4, and so they are naturally thought of as smooth sections
of O(m). Upon increasing the degree kg, one has a series of inclusions

Foo>m) c F(m) c -+~ c Q*0(0O(m)), (3.14)

where F5°(m) ~ HO(X, O(mn)), so that larger values of k4 better approximate the (infinite-
dimensional) space of O(m)-valued scalar functions on PV, and so also the space of eigen-
functions of Ag . One recovers Q%0(O(m)) only in the ky, — oo limit. In fact, the eigen-
functions of Az, on PV are given by finite linear combinations of these functions [108, 109]
at each degree, with J—",Sf(m) spanning up to and including the kg-th eigenspace. It is in
this sense that an expansion in a4 € .F,S;O(m) should be thought of as a spectral expansion
on projective space.

As discussed elsewhere by one of the authors [44], there is a generalisation of (3.13)
to give a finite set of (p, ¢)-forms at degree ky on PY. As we review in appendix B, these
are constructed by considering forms which are well defined on PV under both the R* and
U(1) action on the homogeneous coordinates. A simple extension of this produces a set
f,ff(m) of O(m)-valued (p, q)-forms on PV for m > 0:

(degree ks +m (p,0)-forms in Z!) ® (degree kg (0,q)-forms in Z1)
(ZIZ])k¢ ’

f,ff(m) = (3.15)
where, for example, the degree-two (1, 0)-forms are {Z°dZ! — Z1dZ%, Z2°dz? — Z2dZ°,.. .}
and so on. Unlike the scalars, there is some redundancy in this set, so one has to discard
any o € f,ff(m) which can be written as linear combinations of the remaining forms.
Again, there is an inclusion of sets, F3*(m) C F{"(m) C --- C QP4(O(m)), so that larger
values of kg will better approximate the space of eigenmodes of A By -
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What about for m < 07 What kind of basis should we use in this case? Instead of
simply writing it down, we note that the fibre metric (3.3) on O(1) pairs

G: O(1) x O(1) — C. (3.16)

Here, our notation is that sections of O(1), O(—1) and O(1) transform with factors of
v, v~1 and v respectively under the scaling Z! — vZ! . There is also a natural pairing
(without needing a metric) between O(1) and its dual bundle O(1)* ~ O(—1) such that
O(1) x O(—1) — C. Combining these two, we see there is a map between smooth sections

of O(—1) and O(1) of the form

O(1) - O(-1)
_ f(2) (3.17)
1(2) i

where G = (Z!Z;)~! is the Hermite-Einstein metric on O(1). Given f(Z) + vf(Z) under
the scaling of homogeneous coordinates on PV, we have f(2)(Z!Z;) ' —v= f(2)(Z2' Z) 71,
and so it transforms as a (smooth) section of O(—1). Extending this logic to all m < 0,
this means the basis can be taken to be

(degree ky (p,0)-forms in Z1) @ (degree kg + |m| (0, q)-forms in Z1)
(ZIZI)k¢+|m| )
(3.18)
where again one should discard any elements that are linearly dependent on the remaining

Fpo(—lml) =

forms. Denoting this basis by f,f;q(m) = F,f;q(—]m\) for m < 0, there is again an inclusion
of sets, Fy!(m) C F{"!(m) C --- C QP4(O(m)), so that the eigenmodes of Az on PV for

m < 0 are again given by finite linear combinations of these forms.
For (p,q) = (0,0) and kg = 0, the set fg’o(—]m\) reduces to

00, _ (degree |m| monomials in zh

which are never holomorphic, consistent with the absence of zero modes for m < 0
from (3.5). Similarly, for (p,q) = (0, N) and kg =0, .Fg’N(—|m|) is spanned by

(degree |m| (0, N)-forms in Z7)
(ZIZ[)|m| ’

0,N
Fo o (=Iml) = (3.20)
where one includes only those that are linearly independent on PYV. These are automatically
dy-closed since there are no (0, N 4 1)-forms on a complex N-fold, and they actually give
a basis for HY (PN, O(—|m|)) since they are also 5€—closed:

s o xd((2 Z1)™aa) = 0. (3.21)

The number of these forms on PV is dim Fy'™ (—|m|) = (‘nl’ﬁ;f_l), again in agreement with
the Bott formula.

As a check that our conventions for the Fubini-Study Ké&hler potential and so on
are consistent with the exact results of section 3.1, in appendix A.4 we use the basis
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constructed in (3.13) to compute the first non-zero eigenvalue of the Dolbeault Laplacian
for O(1)-valued scalars. We find a perfect match between this calculation and the exact
and numerical results of this section.

A final point: the attentive reader may have noticed that there has no been any
mention of a local holomorphic frame for O(m). As we comment on in appendix A.3, one
can introduce such a local frame and show that the integrals, matrix elements, etc. are
independent of the choice of frame. It turns out that line bundles on projective space are
simple enough to write down expressions using global sections, as in (3.13), with no need
to work locally. This subtlety, however, cannot be sidestepped if one moves to non-abelian
bundles for which global sections often do not exist.

3.3 Numerical results

Before presenting our numerical results, we recall the essential ingredients for computing
the matrix elements Asp and Ogp in (2.27) and (2.28) that determine the generalised
eigenvalue problem for the spectrum. Since descriptions of point sampling, discretisation
and Monte Carlo methods for numerical metrics have appeared in many other works, we
will be brief. More details can be found in the literature [25-37, 39-45, 47].

One begins by choosing a truncated basis .F,S;O(m) = {4} of bundle-valued forms for
some degree ky. Larger values of kg will give larger matrices which better approximate
the action of the Laplacian on the space of bundle-valued forms. The matrix elements
Aap and Oap are then computed relative to this basis by Monte Carlo integration on
P3, where integrals over projective space are approximated by summing over Ny random
points p; € P? according to

1o
ACE m;f(pi). (3.22)

Here, vol is the volume form associated to the Fubini-Study metric on P? and the distribu-
tion of the random points is chosen to reproduce this measure.' With A4z and O4p in
hand, one computes the eigenvalues and eigenvectors using, for example, the Mathematica
function Eigensystem[{Delta,0}]. The eigenvalues are the A which appear in (3.4), with
the eigenvectors determining the eigenmodes ¢ in (3.4) in the chosen basis {a4}.

Before moving to the results, we make a quick comment on the dependence on the num-
ber of integration points Ny used to approximate integrals. The exact results in section 3.1
showed that the eigenspaces of the Dolbeault Laplacian have dimensions given by SU(4)
representations. However, the finite point sampling explicitly breaks the SU(4) symmetry.
As we will see, this leads to eigenvalues which cluster around the analytic results but are
not exactly degenerate. As the number of integration points is taken to infinity, the SU(4)
symmetry is restored and the spread of eigenvalues in a cluster decreases to zero, and so
one expects that larger values of Ny will better reproduce the exact degeneracies of the
analytic results.

1011 a little more detail, if one picks random points distributed uniformly with respect to the SU(4) action
on P3| the resulting measure is that of the Fubini-Study metric [25, 26].
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3.3.1 The bundle-valued scalar spectrum

We begin with a numerical calculation of the spectrum of bundle-valued eigenfunctions
of Agv. The inputs are the exact Fubini-Study metric on P3 determined by the Kéahler
potential in (3.2), a bundle O(m) together with a hermitian structure determined by the
Hermite-Einstein metric (3.3), a choice of degree k, which determines the size of the ap-
proximate basis (3.13) in which we expand the eigenfunctions, and the number of points
N, that are used to discretise the integrals that appear in the matrix elements of the Lapla-
cian. For the rest of this section, we fix ky = 3 and Ny = 105 and compute the spectrum
for m € {—3,...,3}. The results are shown in table 2 and figure 1.

We see that the numerical results in table 2 reproduce the exact results in table 1 with
excellent precision and the correct multiplicities. In particular, the mean of the numerical
eigenvalues in each cluster match the exact results to better than 1% in all cases. One
can also see this from figure 1 which shows the numerical results and indicates the values
of the exact eigenvalues; in all cases, the exact result is in the middle of the cluster of
numerical eigenvalues. For m = 0, these exactly match the numerical spectrum given
by Ikeda and Taniguchi [43, 44, 123] after dividing by a factor of two to account for the
difference between the de Rham Laplacian and the Dolbeault Laplacian. For m > 0, one
expects the zero modes of A 5, to be given by monomials of degree m in the homogeneous
Z! coordinates. The counting of these monomials, which is simply dim H°(P3, O(m)),
agrees with the number of zero modes we get in each case. For m < 0, the numerical
results indicate there are no zero modes, in agreement with H°(P3, O(m)) = {0} for m < 0
from the Bott formula (3.5).

As an additional check, since *y commutes with the Laplacian and the canonical bundle
of P? is Kps = O(—4), the relations in (2.26) imply that the O(—4)-valued scalar spectrum
should agree with (one-half of) the honest (0,3)-form spectrum, which was calculated
exactly in [123]. We have calculated this spectrum at k, = 2 and found the first three
eigenvalues to be (41.4 +0.3,69 + 1,104 + 3), which agree well with the exact values of
(41.5,69.2,103.8) for the (0, 3)-form spectrum; the multiplicities also match.

As we have explained, the degree kg controls the number of eigenvalues that one
is computing, while the number of integration points N, controls how well we recover
the SU(4) symmetry of the underlying Fubini-Study metric. For larger values of N,
the eigenvalues in figure 1 become more tightly clustered, eventually becoming exactly
degenerate in the Ny — oo limit.

3.3.2 The bundled-valued (0, 1)-form spectrum

Next, we have the numerical calculation of the Q%!(O(m)) spectrum. This follows the
scalar calculation almost exactly apart from using an appropriate basis of bundle-valued
(0, 1)-forms from (3.15). The results for m € {—3,...,3} are shown in table 3 and figure 2.

Unlike the scalar spectrum, we do not have complete exact results to compare with. For
m = 0, our results match the exact spectrum given in [44, 123] after dividing by a factor
of two to account for the difference between the de Rham Laplacian and the Dolbeault
Laplacian. There are no zero modes for any values of m, in agreement with the Bott
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m -3 -2 -1 0 1 2 3

n An Oy, An Oy, An s An Oy, An Oy, An Oy, An Uy
0 31.14+02 20 207+0.1 10 1037+0.02 4 0 1 0 4 0 10 0 20
1 552+07 120 414+£04 70 276=£02 36 13.8+0.1 15 173+£.1 36 20702 70 242+0.3 120
2
3

86 £ 2 420 69 £1 270 51.8+08 160 346+04 84 41.5+0.6 160 483+09 270 55+1 420
125£5 1120 104+£3 770 83+2 500 62.3+1.3 300 72.7+£19 500 83£3 770 94+£4 1120

Table 2. Numerical eigenvalues A, of Aj on P? acting on O(m)-valued scalars for m €
{=3,...,3}. We have also included their multiplicities ¢,,. The quoted eigenvalues are the mean of
the eigenvalues in a cluster, with the error given by the standard deviation of the cluster. We used
ks = 3 to allow us to compute the first four eigenspaces.

SR S R S ﬁ
IR SR R S 4 I

60 & -+ P 3 777777 + -

+ : : 3 : +

: : + : : + :
ol T A + . L

B : : + : : :

: : + : : : ‘
o0 JR— S A S o

3 3 +~ 3 3

Figure 1. Numerical eigenvalues A, of Aj on P3 acting on O(m)-valued scalars for m €
{=3,...,3}. These were computed using the Fubini-Study metric on P? and the associated Hermite-
Einstein metric on O(m). Integrals were computed via Monte Carlo over Ny = 10° points. We
used k4 = 3 for the basis functions, giving us access to the first four eigenspaces. The horizontal
black lines indicate the exact analytic values from table 1.

formula (3.5). As we observed for the scalar spectrum, the relations in (2.26) imply that
the O(—4)-valued (0, 1)-form spectrum should agree with (one-half of) the honest (0,2)-
form spectrum, calculated exactly in [123]. We have calculated this spectrum at kg = 1 and
found the first three eigenvalues to be (27.7 +0.2,41.5 £ 0.3,51.9 £+ 0.7), which agree well
with the exact values of (27.7,41.5,51.9) for the (0,2)-form spectrum; the multiplicities
also agree.

As additional evidence that the spectra are correct, we recall that the 9y Hodge decom-
position implies that a non-zero mode of A 5,, must be either dy- or 5€—exact. Specifically,
an O(m)-valued (0, 1) eigenmode ¢ of the Laplacian with non-zero eigenvalue can be writ-
ten as

¢ = OB+ o), (3.23)
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m -3 -2 —1 0 1 2 3

n An Uy, An s An Ly, An Uy, An Oy, An Uy, An s
0 20.744+0.09 20 13.83+0.03 6 10.37+0.03 4 13.8+0.1 15 17.3£0.1 36 20.7+£02 70 242+0.3 120
1 31.14+£02 20 20.74+£0.09 10 20.74+0.09 20 27.7+0.2 45 35.6+03 84 414+04 140 483+0.6 216
2
3

41.5+04 140 31.1£02 64 27.7+£02 36 346+04 84 41.5£0.6 160 484+£0.9 270 55+1 420
55.3+£0.7 120 415+04 70 41.54+04 140 51.9+£0.7 256 62+1 420 73+2 640 83+2 924

Table 3. Numerical eigenvalues X, of Aj on P? acting on O(m)-valued (0,1)-forms for m €
{=3,...,3}. We have also included their multiplicities £,,. The quoted eigenvalues are the mean of
the eigenvalues in a cluster, with the error given by the standard deviation of the cluster. We used
kg = 2 for m < 0 and ky = 3 for m > 0.

where 3 and v are O(m)-valued scalar and (0, 2)-forms respectively. Crucially, since Ag
commutes with both 0y and 51/7 B and ~ will also be eigenmodes of the Laplacian with
the same eigenvalue as ¢. From this we see that the Q%1(O(m)) spectrum must be some
combination of the Q%%(O(m)) and Q2%2(O(m)) spectra. In fact, using a further Hodge
decomposition for 3 and 7, it is simple to see that the Q%!(O(m)) spectrum should consist
of the entire Q%°(O(m)) non-zero mode spectrum plus the Q%2(O(m)) eigenvalues whose
eigenmodes are Jy-exact. We then have one final simplification: since %, commutes with
the Laplacian, (2.26) implies that the Q%2(O(m)) and Q%!(O(—4 — m)) spectra should
match.

We can check these claims for the numerical spectrum we have calculated. For the
dy-exact modes in (3.23), comparing tables 2 and 3, we see that, for example, for m = —2
the eigenvalues (20.7,41.4) (to within numerical accuracy) appear in both the (0,1) and
(0,0) spectra with the same multiplicities. A cursory glance at the rest of the results should
assure the reader that this holds for the other values of m, with all the (0,0) eigenvalues
appearing in the (0, 1) spectra. For the 5;&—exact modes in (3.23), for m = —1, for example,
we expect that the remaining O(—1)-valued (0, 1) eigenvalues should come from roughly
half of O(—3)-valued (0,1) spectrum. Indeed, looking at table 3, we see that both the
contain the eigenvalues (20.7,41.5) with the same multiplicities. Together, these constitute
a non-trivial check that our numerical algorithm is correct for both the scalar and (0, 1)
modes.

4 The torus as a Calabi-Yau one-fold

We now apply our numerical method to calculate the spectrum of bundle-valued scalars
and (0, 1)-forms on Calabi-Yau manifolds. As a warm-up, and as another example where
we can check things analytically, we consider a Calabi-Yau one-fold (a torus) defined by
a single cubic equation in P?. As we discuss, the spectrum can be computed analytically
and so provides a non-trivial check of our numerical results in the case of a hypersurface in
projective space. Moving to Calabi-Yau three-folds is then just a matter of changing the
dimension of the ambient projective space and the defining equation of the hypersurface
(the algorithm does not change in any other way). With confidence that our algorithm is
correct, in the next section we move to the more involved and physically relevant case of a

Calabi-Yau three-fold.

~19 —



100 +-f------4-------

60 & -+ e e | I o i”

80<-,L ,,,,,, - : ,,,,,,,

.o | |
| | o I
P A S S B — S
b A S | |
| | * 4+\7 | |
S CETTEEE S o e RERTEE 5
| + | + I | |
| | ‘ | | | |
1 S S S S S S
0(=3) 0(=2) O(-1) 00 01 0@2) 0@

Figure 2. Numerical eigenvalues \, of A on P? acting on O(m)-valued (0,1)-forms for m e
{-3,...,3}. These were computed using the Fubini-Study metric on P* and the associated Hermite-
Einstein metric on O(m). Integrals were computed via Monte Carlo over Ny = 10° points. We
used kg = 2 for m < 0 and kg = 3 for m > 0 to allow us to compute the first four eigenspaces. The
horizontal black lines indicate the exact analytic values for the Q2%!(X) spectrum from [123].

The particular one-fold that we will study is the Fermat cubic hypersurface X in P?
defined by the vanishing locus of the equation'!

Q=Z3+7}+ 73 =0. (4.1)

This particular choice of defining equation corresponds to the “equilateral torus” [124],
which will allow us to compare the spectrum with known results.

4.1 Analytic results

First, we note that since the canonical bundle of a Calabi-Yau is trivial, Kx = O, the
relations in (2.26) imply {)\}(‘)/’0 = {)\}?/1 Thanks to this, once we compute the O(m)-
valued scalar spectrum for all m, we automatically have the bundle-valued (0,1)-form
spectrum. With this in mind, let us review what is known about the scalar spectrum.

For m = 0, since Ay, = %A, the scalar spectrum is exactly one-half of that for the de
Rham Laplacian on the torus. This is given by [125]'2

2 2
2
AM—4ﬁbO+a>ﬁ—%w+”

72 72 2| u,v € Z, (4.2)

"See [47] for a nice discussion of the map between the description as a cubic hypersurface and a flat
torus with complex structure 7.
12Gee also [126, section 3.3] for recent work.
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where the complex structure 7 = a + ib is fixed to €2™/3 for the Fermat cubic /equilateral
torus. The eigenvalue multiplicities match the dimensions of irreducible representations of
the symmetry group of X (automorphisms of @) together with complex conjugation), which
is (Sg X Zg) A (Zg X Zg) [47]

For m > 0, one expects the harmonic/zero modes of Ag, , i.e. those with A =0, to be
simply monomials of degree m in the homogeneous Z! coordinates modulo Q = 0. The
counting of these monomials should agree with the number of zero modes — this is indeed
the case. For example, for m = 2, the harmonic modes are linear combinations of Z/Z7,
which span a six-dimensional space. For m = 3, dim{Zl ANAS } = 10, but one of these is
linearly dependent thanks to () = 0, so we are left with nine harmonic modes.

In fact, one can go further than this zero-mode analysis. For m # 0, the exact scalar
spectrum can be inferred from the results of Tejero Prieto [110]. There, they compute the
eigenvalues and multiplicities for a Schrédinger-like operator

H=_"A 4.3
m D ( )
where D is a connection compatible with the hermitian metric on V' = O(m), and Ap =
DT D is the Bochner Laplacian for V. This can be related to the holomorphic structure on
V as follows.
Given the Dolbeault operators dy and 8y, where D = 8y + dy, [110] gives the identity

a0y — 81,0y = «F = ef, (4.4)
where F' = eB/h is the curvature of D and B = Brvol. This implies
DD = 20,0y + ef, (4.5)
where B is related to the degree of the line bundle V' by
degV = £ Vol(X). (4.6)

2mh

Remembering that our eigenvalue problem is for the Dolbeault Laplacian Agv = 53/5‘/,
we can use (4.5) to relate the spectrum of H calculated in [110] with the spectrum of A, -
From section 4.2 of that work, the spectrum (with multiplicity ¢) of H is given by

A 2mh? 1
SpecH:{EnzwldegV](n—i—Q),nZO}, (4.7)
UE,) =|degV]|. (4.8)
Equation (4.5) then implies
=t = 27| deg V'
spec 8@8\/ = {)\n = m(n + 3(1 — signdeg V)), n > 0}. (4.9)
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m -3 -2 -1 0 1 2 3

n A Uy A Uy A Uy An Ly An Uy A Uy A Uy
0 5655 9 3770 6 1885 3 0.0 1 0.0 3 0.0 6 0.0 9
1 1131 9 7540 6 3770 3 2279 6 188 3 3770 6 5655 9
2 1696 9 1131 6 5655 3 6838 6 3770 3 7540 6 1131 9
3 2262 9 1508 6 7540 3 9117 6 5655 3 1131 6 1696 9
4 2827 9 185 6 9425 3 1596 12 7540 3 150.8 6 2262 9
5 3393 9 2262 6 1131 3 2051 6 9425 3 1885 6 2827 9
6 390 9 2639 6 1696 3 2735 6 1131 3 2262 6 3393 9

Table 4. Exact eigenvalues of A = and their multiplicities for O(m)-valued scalars on the Fermat
cubic. The spectrum of O(m)-valued (0, 1)-forms is given by reflecting the table about m = 0.

We then recall that for a line bundle V' = O(m) on a torus, Riemann-Roch implies that
the degree is given by degV = h%(V) — h°(V*).!13 Thus, for m > 0, we have degV =
RO(O(m)), while for m < 0 we have degV = —h°(O(|m|)), with R°(O(|m]|)) = 3|m]|.
Finally, remembering that we always normalise the volume of the Calabi-Yau to one, the
eigenvalues and multiplicities of Az = for m # 0 should be

6mmn m > 0,
Ap = n >0, (4.10)
6mm|(n+1) m <0,
Ly, = 3|m]. (4.11)
The spectra for m € {—3,...,3} are given in table 4. In particular, we notice that there

are no zero modes for m < 0, in agreement with 2°(O(m)) = 0 for a negative-degree line
bundle. The O(m)-valued (0, 1)-form spectra are then given by the O(—m)-valued scalar
spectra, corresponding to mirroring table 4 about the m = 0 column. These are the exact
results that we will compare our numerical calculations with.

4.2 Numerical results

Before presenting our numerical results, we quickly outline how the calculation on a Calabi-
Yau hypersurface differs from that on projective space. More details can be found in, for
example, [25-37, 39-45, 47]. Practically, the salient differences are:

e The metric on the Calabi-Yau is not known analytically, but must be computed
numerically. We compute the Calabi-Yau using the “energy functional” approach
introduced by Headrick and Nassar [28]. In the case of the torus, the Calabi-Yau
metric is simply the flat metric associated to the presentation of the torus as a
quotient of C. However, this metric looks non-trivial in the coordinates inherited

13For a bundle V over a complex genus-g Riemann surface, the Riemann-Roch theorem implies
RO(V) — ' (V) = degV — (1 — g) rank V.

For a line bundle over a torus, g = 1 = rank V and the canonical bundle is trivial, so that h'(V) = h°(V*).
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from the ambient projective space. Thanks to this, and also to mimic the higher-
dimensional case where there are no analytic results, we will compute the metric
numerically.

e Theset F ,f(;q(m) defined in (3.15) is pulled back to the hypersurface to give an approx-
imate basis on the Calabi-Yau. The set may be overcomplete in the sense that some
elements are linearly dependent when restricted to the hypersurface. In practice, this
means removing elements of F,ff(m) that are related by @ = 0. Choosing larger
values of k4 corresponds to using a larger basis of forms with which to approximate
the eigenmodes of the Laplacian.

o The random points used to discretise integrals as in (3.22) should be distributed
according to the Calabi-Yau measure rather than the Fubini-Study measure. This
problem was solved for Calabi-Yau hypersurfaces by Douglas et al. [25] and Braun et
al. [27].

The metric on X is given by a choice of complex structure, via the defining equation (4.1),
and a choice of Kéhler potential. As usual, this is approximated by an “algebraic met-
ric” [24, 127] with K&hler potential

K= L log 5,733, (4.12)
wkp,
where h® is a hermitian matrix of parameters and {s,} are a basis for the degree-ky,
polynomials (sections of O(ky)) on P? restricted to the hypersurface. Here, ky, is a positive
integer parameter which controls the complexity of the ansatz (4.12) — larger values of kj
should be thought of as including higher Fourier modes to better approximate the honest
Calabi-Yau metric on X. The corresponding Kéhler metric is g5 = 0153K , where a pullback
to the hypersurface on the ¢, j indices is implicit.

The bundles we consider are line bundles V' = O(m) on the torus X for integer values
of m. Since the approximate Calabi-Yau metric is defined by (4.12), similar to (3.3), a
Hermite-Einstein metric on the fibres of O(m) is given by

_m/kh

G = (sah®’55) (4.13)

Again, one can check that this choice satisfies the hermitian Yang-Mills equation on X
with the Kéhler metric determined by (4.12). With these ingredients, we can now compute
the numerical spectrum of the Dolbeault Laplacian on our first example of a Calabi-Yau
hypersurface. In what follows, we computed the approximate Calabi-Yau metric at kp = 10
corresponding to a “o-measure” of o ~ 2 x 10715 [25]. Integrals were computed via Monte
Carlo using Ny = 108 points.

4.2.1 The bundle-valued scalar spectrum

We begin with a numerical calculation of the spectrum of bundle-valued eigenfunctions of
Agv. The inputs are the approximate Calabi-Yau metric on X determined by the Kéahler
potential in (4.12) with the parameters fixed by the “energy functional” approach [28], a
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-3 -2 -1 0 1 2 3

=
S

n An L An Ly An Ly An Ly An Iy An Ly An Ly
0 56.5+02 9 37701 6 1885+£0.05 3 0.0 1 0.0 3 0.0 6 0.0 9
1 1131+£05 9 754£03 6 37701 3 2280+0.08 6 1885+0.05 3 37701 6 56.5+02 9
2 169.6+0.7 9 113.1+£05 6 564+02 3 684+02 6 37.7+£01 3 7544+03 6 113.1+£05 9
3 226 £1 9 15084+07 6 75.6+02 3 91.24+04 6 566+01 3 113.1+£05 6 169.6+£0.7 9
4 283 +2 9 1885+06 6 943+03 3 159.7+09 12 7534+0.1 3 1508406 6 226+ 1 9
5 340 £2 9 22644+08 6 113.0£03 3 205.3£09 6 943+£03 3 18.6+£0.7 6 283 +1 9
6 396 £ 2 9 2640+09 6 131.9+04 3 274+ 1 6 113.1+02 3 2261+£09 6 339£1 9

Table 5. Numerical eigenvalues A\, of A5 on the Fermat cubic acting on O(m)-valued scalars for
m € {-3,...,3} with ky = 3. We have also included their multiplicities ¢,,. These were computed
using a numerical Calabi-Yau metric computed at k; = 10 and the associated Hermite-Einstein
metric on O(m). Integrals were computed via Monte Carlo over Ny = 10% points. The quoted
eigenvalues are the mean of the eigenvalues in a cluster, with the error given by the standard
deviation of the cluster.

bundle O(m) together with a Hermite-Einstein metric (4.13), a choice of degree kg which
determines the size of the approximate basis (3.13) in which we expand the eigenfunctions,
and the number of points Ny = 108 that are used to discretise the integrals that appear in
matrix elements of the Laplacian. For the rest of this section, we fix k4 = 3 and compute
the spectrum for m € {—3,...,3}. Our numerical results are shown in table 5 and figure 3.

The numerical results in table 5 reproduce the exact results in table 4 with excellent
precision and the correct multiplicities. This is also visible in figure 3 which shows the
numerical results and indicates the values of the exact eigenvalues; in all cases, the exact
result lies in the middle of the cluster of numerical eigenvalues. For larger values of Ny, the
eigenvalues in figure 3 become more tightly clustered. In the Ny — oo limit, one recovers
the (S35 X Zga) % (Zs x Z3) symmetry of X, and the eigenvalues become exactly degenerate.

4.2.2 The bundled-valued (0, 1)-form spectrum

Next, we have the numerical calculation of the Q%1 (O(m)) spectrum. Again, this follows
the scalar calculation in the previous subsection almost exactly, apart from using an ap-
propriate basis of bundle-valued (0, 1)-forms from (3.15). The results for m € {-3,...,3}
are shown in table 6 and figure 4.

As we mentioned at the start of this section, since X is Calabi-Yau, its canonical
bundle is trivial, Kx = O. The identity (2.26) then implies that the O(m)-valued (0, 1)-
form spectrum should match the O(—m)-valued scalar spectrum. Comparing tables 5
and 6, we see this is indeed the case up to numerical accuracy. This is also apparent in
figure 4, where we have plotted the numerical (0, 1) eigenvalues and indicated the values
that one infers from the exact O(m) scalar spectrum with black lines. In all cases, we see
the two agree.

5 Quintic Calabi-Yau three-folds

In the previous section, we extended the numerical calculation of the bundle-valued scalar
and (0, 1)-form spectra to a torus defined as a hypersurface in projective space. From this
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Figure 3. Numerical eigenvalues A, of Ag ~on the Fermat cubic acting on O(q)-valued scalars for
m € {-3,...,3}. These were computed using a numerical Calabi-Yau metric computed at kp = 10
and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo
over Ny = 10° points. We used kg = 3 for the basis functions. The horizontal black lines indicate
the exact analytic values from table 4.

m -3 -2 -1 0 1 2 3

n An Iy An Uy An Iy An Iy An Oy An Oy An Ly
0 0.0 9 0.0 6 0.0 3 0.04 1 18854+0.06 3 37.7+£01 6 56.5+£02 9
1 565+02 9 377+01 6 1885+006 3 2279+008 6 37.7+01 3 754+£03 6 113.14+05 9
2 1131+05 9 7544+02 6 37701 3 684+£02 6 564+02 3 113.1+05 6 169.6+0.7 9
3 1696+07 9 1131+£04 6 56501 3 91.2£02 6 756+02 3 1508+£0.7 6 226 £1 9
4 226 £1 9 150.84+0.7 6 7544+0.1 3 1595+£07 12 943+£03 3 18.5+£06 6 283+ 2 9
5 283+1 9 188.6+06 6 943+02 3 2052£07 6 113.0+03 3 2264+£08 6 340 £2 9
6 3401 9 2263+08 6 113.1+£03 3 2714 £1 6 131.9+£04 3 2640+09 6 396 £ 2 9

Table 6. Numerical eigenvalues \,, of Az on the Fermat cubic acting on O(m)-valued (0, 1)-forms
for m € {-3,...,3} with ky = 3 (ks =4 for m = 0). We have also included their multiplicities ¢,.
These were computed using a numerical Calabi-Yau metric computed at &, = 10 and the associated
Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo over N, = 10° points.
The quoted eigenvalues are the mean of the eigenvalues in a cluster, with the error given by the
standard deviation of the cluster. Thanks to (2.26), these eigenvalues should be related to those of

table 5 by {)\}g)(’gz) = {)\}g)&ljm), which simply reflects the table about m = 0.
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Figure 4. Numerical eigenvalues A\, of Az on the Fermat cubic acting on O(m)-valued (0, 1)-
forms for m € {—3,...,3}. These were computed using a numerical Calabi-Yau metric computed at
kp, = 10 and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte
Carlo over Ny = 10% points. We used kg = 3 for the basis functions. The horizontal black lines
indicate the exact analytic values inferred from table 4 and the identity (2.26).

toy example, it is simple to generalise to higher-dimensional Calabi-Yau manifolds defined
as hypersurfaces. The particular example that we focus on is that of the Fermat quintic
three-fold X defined as the vanishing locus in P* of the equation

Q=Z3+Z3+Z3+ 723+ 7} =0. (5.1)

Unlike the previous examples, there are no analytic results to match to other than the
dimensions of certain bundle-valued cohomologies which count zero modes. The results we
present below are thus the first calculation of the spectrum of a bundle-valued Laplacian
on a non-trivial Calabi-Yau manifold.

Before moving to the numerical results, we describe various constraints on bundle
cohomologies on general Calabi-Yau manifolds.'* These will provide a consistency check
for the count of zero modes. First, Serre duality relates the sheaf cohomologies as

HP(X,V)=H""P(X,V"). (5.2)
Second, the Kodaira vanishing theorem states that on a Calabi-Yau X
HP(X,V)={0} forp>0ifV is positive, (5.3)

where for manifolds with Picard rank one (such as the hypersurfaces in a single projective
space that we consider), positive just means line bundles V' = O(m) with m > 0. These

1See, for example, [128] and references therein for a nice review of these vanishing theorems.
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m -3 -2 -1 0 1 2 3

An Uy An ly An Uy An Uy An Uy An Iy An Iy
53.24+0.2 35 354401 15 17.73+0.05 5 0.0 1 0.0 5 0.0 15 0.0 35
71.9+£0.1 10 57.0+£0.1 20 39.5+£0.1 20 20.56+0.07 20 21.79+0.07 20 21.50+0.06 20 17.944+0.04 10
82.0+0.4 60 626+0.9 8 420402 30 394+01 20 243+01 30 266+01 60 27.7+£01 60
85.84+0.8 90 7444+0.1 15 51.94+0.1 10 42284+0.06 4 33.75+0.06 10 28.6+0.1 20 30.7+£0.1 30
87.84+0.1 5 80.24+0.5 50 60.14+0.1 15 473+0.2 60 4243+0.08 15 388+£0.07 15 32.0+0.2 60

N =

Table 7. Numerical eigenvalues A, of Ag = on the Fermat quintic acting on O(m)-valued scalars for
m € {=3,...,3}. These were computed using a numerical Calabi-Yau metric computed at kp = 6
and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte Carlo
over Ny = 5 X 10% points. The approximate basis used ks = 3, except for m = £3 which were
computed at kg = 2. We have also included their multiplicities £,,. The quoted eigenvalues are the
mean of the eigenvalues in a cluster, with the error given by the standard deviation of the cluster.

constraints imply that on a three-fold, such as the Fermat quintic, the only non-vanishing
cohomologies are h%(O(m)) and h3(O(—m)) for m > 0. The scalar zero modes of Ag,s
counted by h%(O(m)), are the degree-m holomorphic monomials of the Z! coordinates on
P* pulled back to the hypersurface. Since h'(O(m)) = 0 for all m, there are no bundle-
valued (0, 1)-form zero modes. We will see this counting reflected in the numerical results
in the next subsection.

5.1 Numerical results

Since there are no known explicit expressions for either the Calabi-Yau metric on the quin-
tic nor Hermite-Einstein metrics on bundles over it, we must compute these numerically.
The ansatz for the Kéhler potential is again of the form (4.12), but now with degree-kj
polynomials on P* restricted to the hypersurface. Similarly, the Hermite-Einstein metric
on the fibres of O(m) over the quintic is given by (4.13). For what follows, we will use
an approximate Calabi-Yau metric on the quintic computed at k; = 6 using the “energy
functional” approach of Headrick and Nassar [28], with a o-measure of o ~ 2 x 1074 [25].
The numerical integrations were carried out using Ny = 5 x 10° points. Unless otherwise
stated, the spectra were computed using an approximate basis f,ff(m) at ky = 3.

5.1.1 The bundle-valued scalar spectrum

We have computed numerically the O(m)-valued scalar spectrum of Ag  forme {-3,...,3}
on the Fermat quintic three-fold. The results are shown in table 7 and figure 5. For
m = 0, the eigenvalues are one-half of those computed in [44], as expected from the iden-
tity Ag, = %A when V' = O. For m > 0, the zero modes of As  should be monomials of
degree m in the homogeneous Z! coordinates modulo the defining equation, @ = 0. The
counting of these monomials, given by h%(O(m)) = (4;7”) for 0 < m < 5, agrees with
the number of zero modes in table 7. For m < 0, the numerical results indicate there
are no zero modes, in agreement with the vanishing of the relevant cohomologies that we
mentioned above.
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Figure 5. Numerical eigenvalues \,, of As on the Fermat quintic acting on O(m)-valued scalars
for m € {-3,...,3}. These were computed using a numerical Calabi-Yau metric computed at
kp = 6 and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte
Carlo over Ny = 5 x 106 points. We used kg = 3 for the basis functions, except for m = £3 which
were computed at kg = 2.

5.1.2 The bundle-valued (0, 1)-form spectrum

Finally, we have the numerical calculation of the Q%!(O(m)) spectrum on the Fermat
quintic. Our results for m € {—3,...,3} are shown in table 8 and figure 6. We first note
that there are no zero modes for any values of m, in agreement with the constraints from
Serre duality and the Kodaira vanishing theorem. As additional evidence that the spectra
are consistent, we can again appeal to the 9y Hodge decomposition. This discussion mirrors
that for projective space given around Equation (3.23). Since there are no zero modes, all
(0,1)-form eigenmodes of A 5, must be either dy- or é;r/-exact. The dy-exact eigenmodes
must be of the form Oy 3, where 8 is an O(m)-valued scalar eigenmode, while the 5{,—exact
modes are of the form 53/7, where «y is Oy-exact O(m)-valued (0,2) eigenmode. Since A By
commutes with xy» and the canonical bundle of a Calabi-Yau is trivial, the spectrum of
O(m)-valued (0,2) eigenmodes agrees with the O(—m)-valued (0,1) spectrum. Putting
this together, the spectrum of the Laplacian acting on Q%(O(m)) should be the union of
the entire Q2°°(0O(m)) spectrum and roughly half of the Q%! (O(—m)) spectrum.
Comparing tables 7 and 8, we see this appears to be the case, though with worse
accuracy than we achieved for P3. For example, for m = 1, the Q%!(O(1)) modes with
eigenvalue 25.2 and multiplicity 50 originate from the 2%°(O(1)) modes with eigenvalues
(21.8,24.3) whose multiplicities sum to 50. (It appears that either the truncated basis of
forms or the number of integration points was not sufficient for the (0,1) modes to be
properly resolved.) Moving up the spectrum, the Q%1(O(1)) modes with eigenvalue 31.7
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m -3 -2 -1 0 1 2 3

An ly An Uy An Iy An Uy An Uy An ly An U
35,5+0.1 40 23.7+0.1 10 17.76+0.04 5 21.60+£0.06 20 25.2+0.1 50 29.7+04 110 23.83+0.05 20
53.3+0.4 957 36.54+0.1 15 28.77+0.08 30 33.50+0.08 30 31.7+0.1 30 45.74+0.1 15 33.94+0.4 155
60.6+0.3 30 4314+01 60 43.3+05 110 36.7+£0.1 30 37.8+£0.1 10 47.1+£0.1 20 42.7£0.1 40
62.6+0.1 120 45.64+0.1 40 49.7+0.1 10 423£01 34 428+£05 75 50.0£0.2 60 44.73+0.09 10
66.1+0.1 15 51.9+0.1 30 53.6+0.2 115 48.0+0.1 20 453+0.1 10 51.8+0.1 30 47.8+0.1 15

N =

Table 8. Numerical eigenvalues A, of Aj on the Fermat quintic acting on O(m)-valued (0, 1)-
forms for m € {-3,...,3}. These were computed using a numerical Calabi-Yau metric computed
at k, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte
Carlo over Ny = 5 x 105 points. We used kg = 3 for the basis functions for m = 0, £1 and kg = 2
for m = +2,4+3. We have also included their multiplicities £,,. The quoted eigenvalues are the mean
of the eigenvalues in a cluster, with the error given by the standard deviation of the cluster.

and multiplicity 30 likely come from the Q%!(O(—1)) modes with eigenvalue 28.8 and the
same multiplicity. Similarly, the Q%1(O(1)) modes with eigenvalue 37.8 and multiplicity
10 likely come from the Q%%(O(1)) modes with eigenvalue 33.8 and the same multiplicity.

A glance at the other results should convince the reader that this decomposition holds
more generally, though the match is not perfect. This is likely due to inaccuracies intro-
duced by the truncation at ks = 3 to a finite-dimensional basis of forms. Recall that on
projective space, the basis F,ff(m) exactly spans the first k4 eigenspaces of Aé_’v' However,
since the Calabi-Yau metric is not simply the pullback of Fubini-Study, the eigenspaces of
the Laplacian are not exactly spanned by .F,ff (m) for finite k¢, nor there is not a direct map
between (0,0) and (0,1) modes at each degree k4. Instead, the approximate eigenmodes
computed at some finite degree will receive corrections as kg is increased and the basis of
forms is enlarged. We believe that upon moving to larger values of ky and increasing the
number of integration points, the match between the Q%1(O(m)) and the Q%°(O(m)) and
Q01 (O(—m)) spectra will improve.

Regardless of this, one should remember that the lower-dimensional physics of a string
compactification is determined by properties of harmonic/zero modes on the compactifi-
cation manifold. These zero modes are, by definition, long wavelength and slowly varying,
and likely to be very well approximated already at the modest values of kg that we have
used. The same is certainly not true for massive modes higher up the spectrum; thankfully,
these modes seem to be less relevant for low-energy physics questions.

5.2 Application: computing a superpotential

As we outlined in section 2.1, the low-energy N/ = 1 physics of a Calabi-Yau compactifi-
cation is controlled by a superpotential and a Kahler potential. In particular, the matter
sector is determined, to lowest order, by integrals of harmonic modes on the Calabi-Yau. In
principle, the numerical method that we have presented gives us direct access to the data
needed to compute all of this information. In practice, however, the line bundle and three-
fold we have considered are too simple to admit non-vanishing superpotential couplings.
Let us see why this is the case.
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Figure 6. Numerical eigenvalues A, of A on the Fermat quintic acting on O(m)-valued (0, 1)-
forms for m € {-3,...,3}. These were computed using a numerical Calabi-Yau metric computed
at kp, = 6 and the associated Hermite-Einstein metric on O(m). Integrals were computed via Monte
Carlo over Ny =5 x 108 points. We used kg = 3 for the basis functions for m = 0, %1 and kg = 2
for m = £2, £3.

The Fermat quintic three-fold was constructed as a hypersurface in a single ambient
projective space. This implies that the rank of the Picard lattice is one and so line bundles
on this quintic are of the form O(m) for some integer m.'> Now imagine trying to write
down a non-vanishing superpotential coupling as

Arjk (mi,ma,m3) = /X QAYL AL AYE. (5.4)

where ¢}, € H'(X,O(my)) is an O(m)-valued harmonic (0, 1)-form, and we have dropped
a trace compared with (2.3) since the relevant group is abelian. Since €2 is an honest three-
form, this integral vanishes whenever the degrees of the relevant line bundles do not sum
to zero:

)\UK(ml,mg,mg) =0 if my+mg+msg 7&0. (5.5)

In other words, the charges of the harmonic modes must sum to zero so that the integrand
of (5.4) is an honest top-form. Thus, for a non-vanishing superpotential contribution, all
the charges must be zero or at least one of them is negative. However, it is simple to argue
that the requisite harmonic (0, 1) modes are not present in either case. When the charges
are zero, we need harmonic (0,1)-forms. These are counted by the Hodge number h°!
which vanishes on the quintic (and any Calabi-Yau three-fold with irreducible holonomy),

151n fact, this is obvious from A'! = 1 for the Fermat quintic. However, the following argument holds

for any hypersurface in a single projective space.
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so the (0,1) modes are not present. When there are both positive and negative charges,
we can appeal to Serre duality and the Kodaira vanishing theorem. The first of these
gives h%1(O(—m)) = h%2(O(m)), while the second implies h%(O(m)) = h*2(O(m)) = 0
if m > 0. Together, these imply that there are no harmonic O(m)-valued (0, 1)-forms
for either sign of m, in complete agreement with our numerical results in table 8. We
conclude that there are no non-vanishing superpotential couplings for matter coming from
line bundles on the Fermat quintic.

There are a number of ways to generalise our set-up to allow for interesting superpo-
tential couplings. First is simply moving from line bundles to non-abelian bundles, such as
the examples given in [26, 30, 31], where instead of the charges summing to zero, one re-
quires a singlet in the antisymmetric product of the three representations appearing in the
cubic coupling. Second, we can stay with line bundles but move to Calabi-Yau manifolds
with higher-rank Picard lattices. Line bundles on these spaces are labelled by a vector of
charges m and the corresponding vanishing theorems are less restrictive. In practice, this
means moving to, for example, complete intersection Calabi-Yau (CICY) manifolds given
as hypersurfaces in products of projective spaces, such as those used for finding heterotic
line bundle models [1, 4, 11-13, 51-53, 56-60, 129, 130].
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A Useful calculations

Here we collect a few useful calculations which we refer to in the main text.

A.1 The slope p

Following [131, appendix C], let us compute an expression for the slope x on PV, It is
cleanest to work in conventions where [py w” = 1. The Fubini-Study Kihler potential is
simply
K= ilog K, (A.1)
27

where & restricts to 1 + 2'Z; on the patch Uy = {Z° = 1} with Z! = (1,2%). The corre-
sponding Kéahler form and metric are then

w=100K,  g;=0,0;K. (A.2)
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The bundle metric on O(m) is given by G = k=™, with gauge field and curvature
A =0logG = —2mmoK, F = 0A = —27imw. (A.3)
The Chern class of O(m) is then
c1(O(m)) = iF = mw. (A.4)

Using the expression (2.19) for the slope and the volume normalisation above, one finds

p(Om) = [ a(@m) nw = m, (A5)

PN

as expected.

A.2 Matrix elements of the Laplacian

As in [44], we denote real coordinate indices by {a,b,...} and complex coordinates by
{i,j,...} and {i,7,...}. As discussed in the main text, the two matrices that we need
to compute to find the spectrum of the Laplacian are Ayp = (a4, Agva3> and Ogp =
(aa, ap), where {a4} is a finite set of bundle-valued (p, ¢)-forms. The second of these can
be computed straightforwardly using the inner product elements of Q74(O(m)):

_ 1 1 ¥
(v,w) = /*vv ANw = ol /vol Wgalbl . .gapbpval,_.apwblmbp. (A.6)

For example, for scalars, this is simply

1 *
(aa,ap) = /Vol W ()" ap, (A.7)

whereas for (0, 1)-forms, we have

1
g™ ()i (an)y = [ vol

(Z27Zp)m — g (aa)i(aB);.  (AS8)

(g, ap) = /Vol W

The matrix element of the Dolbeault Laplacian can be computed similarly. For scalars, it

is given by
_ _ 1 _ _
(aa,Ag ap) = (Ovaa,dvap) = /VOI ——=—g""(Ovaa);(Ovan)y
(Z Z[)m
1 o - (A.9)
with
(Ovap); = daz. (A.10)
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For (0, 1)-forms, we have

<OéA, A5VOéB> = <5VO(A, 5\/O[B> + <5I/O[A7 52'/043)

1 _ . _
= 5 vol mgalblgme(BVO‘A)alaz(a\/aB)blbg
+/vol ; (éT aA)*éT g
(z1zpm 7V v (A.11)

1 1 ik i3 x (5
= §/V01 (ZIT)mg gj (8VaA)ij(aVaB)f€Z

1 4 -
+/V01 W (aé—/OéA) 82./04B7
with
(dva)ir = Ogar — g, Fya = —g7 Diag = —g" (905 + Aiarj), (A.12)

where we have used (2.21) to write 5{504 = —ipa with D = V + A, Via; = 9;a; and the
connection is given by 4; = —0;G"'G = G719;G.

A.3 A local holomorphic frame

As we mentioned in section 3.2, for line bundles on projective space (or hypersurfaces
therein), one does not need to choose a local holomorphic frame and instead one can work
with global objects. Here, we collect a few relevant comments to this effect.

As an example, we focus on P2. The homogeneous Z! coordinates are global holomor-
phic sections of O(1) where we specify that in each patch we have Uy = {Z4 = 1}. On P?
we have three such patches:

Up={2"=1,2"=2"2=2", U ={2"=v"2'=1,2"=v"},

A.13
Uy ={2° =2t 7' = 22 2% = 1}. (A.13)

When P? is endowed with the standard Fubini-Study metric, the Hermite-Einstein metric
on O(1) is given by G = (Z'Z;)~!. In each patch, this restricts to

1 1 1

’UO 1+ 2152" ’Ul 1+ ’LUZ’LT)Z'7 ’U2 1+ 2z,

(A.14)

Crucially, these expressions are valid when working with the global form of both the sections
and G. Instead, as in section 3.2, let us introduce a local holomorphic frame E, for O(1) as

B, =2° (A.15)

One could in principle pick any linear combination of the Z! — gauge-invariant quantities
will not be affected by the choice. In each patch, the frame restricts to

E1|Uo =1, E1|U1 = wl’ E1|U2 =z (A.lﬁ)

Expressing G relative to our choice of frame gives

!
- Zlz;

1

=G E'®FE' = Gr——, A.17
e ® 107 (A.17)
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where E® is a frame for O(1)* ~ O(—1), such that E*(E},) = 0. We see that the compo-

nents of G are given by
1

Gi=—=2°%. A.18
1= iz 4 % (A.18)
In each patch we have
1 wlu_Jl .’L‘l.fl
Giily, = ———— Giily, = ———— Giily, = ———. A.19
11|Uo l—i—zZZi’ 11‘U1 1—|—uﬂu7i’ 11|U2 1+ 2iz; ( )

Recall that G1 should be invariant under the rescaling Z! — vZ! (it is a scalar for the
C* action, though a tensor for GL(1,C) changes of frame). Thankfully, this is obvious
from (A.18) or can be checked explicitly on the overlaps of patches Us N Up.

With these observations in mind, we can check that the matrix elements computed
in the previous appendix do not depend on whether one picks a local frame or works
with global objects. For example, acting on bundle-valued scalars, the relevant matrix
element (A.9) is

1 ii' _ =
<O[A,A5VO[B> = \/P2 vol mg‘]alaAajaB, (A20)

where the ay € .F,S(;O(m) transform as sections of O(m) as defined in (3.13). For the
example of kg = m = 1, the basis is spanned by

(22,2021, 23, 2179, 23, ZoZ9) @ (Zo, Z1, Z9)

In the Uy and U; patches, we have
17217227Z1Z2a22722 & 1721722
{aatv, = ( ! 1+2 Z.,') ( ),
< s (A.22)
{Oé }’ _ (w%,wl,l,w%w%,wlwg)®(1T)1,1,u_)2)
Aslt 1 —i—wiu?i ’
The integrands of (A.20) in each case become
1 = = (1,21, 29)
Upt —— gi(1, 21, 22, 2129, 2 ()
0 1+2Z2ig ( 72172172122722722)@) 7 14 2% ( ) 5 (A 23)
. 1 ij 2 2 a ('U_Jl, 1711_)2) * '
U1 : m g”(wl,wl, 1, w2, Wy, w1w2) X 03 <1—*—ML> ( .. ) s

where (...)* denotes the conjugate of the tensor product of sections. Using (A.19), we
then convert the bundle metric pre-factors into the components in the frame F; = Z°:

ij a 1721722 *
UO: Gli g”(lazlazizlz%Z%vZZ) ®85(())() ,

1+Zi2i
(“)11“]2>>( )
P )

. (A.24)

1—

Uy: ———
w-w1

i ()2 2 5
G171 97 (w1, w1, 1, we, w5, wrws) & 6j<
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Then move the denominator of w'w; into the sections (w?,wi,1,...) and the conjugate
terms:

(.21, %) 52))(. )

Uo: Gyi 9" 1, 21,22, 2129, 25, 2 0( .
0 1197 (1, 21, 27, 2122, 25, 22) @ i\ 1+ 2

(wl,l,wQ))(m)*' (4.25)

C g -1 ,.—1 -1,,.2 3
Ur: Gig g (w1, 1wy, wy w2, wy wi, w) @ 0; T+ wia,

We see that the sections that appear are simply those of (A.21) written relative to the
local frame, i.e. on Uy N Uy

(23,2021, 2%, 2174, 73, ZoZo) = (Zo, Z1, Zy * 23, Zy * 2120, Zy * 73, Za) Er
= (1,21, 21, 2122, %, 22) B} (A.26)

_ -1, 1 ~1,2
= (w1, 1wy, wy “wa,wy ws, wa)E.

The upshot of this is that if you compute G ; on each patch relative to some choice of
frame, the sections that appear in the integrals should also be written in that frame. For
line bundles, you can just use the global form of the objects instead. This will not be true
for higher-rank bundles.

A.4 O(1)-valued scalar spectrum of the Dolbeault Laplacian on P3

As a check that our conventions and normalisations are consistent, we compute explicitly
the first non-trivial eigenvalue of the Dolbeault Laplacian acting on O(1)-valued scalars
on P3. Acting on scalars, the operator reduces to Aév = 5‘T/év. Therefore, the eigenvalue
problem we wish to solve is

Al ve = A, (A.27)

for ¢ an O(1)-valued (0,0)-form. We work in the patch Uy = {Z° = 1,Z¢ = 2!} with
i = 1,2,3. Using the definition of the Kéhler potential given in (3.2), the inverse Fubini-
Study metric is

5 1+2'% 2%z, 237

= T .

Ji — 3—\/6(1 +2'%)| 2z 1422z 2% |, (A.28)
2’123 2253 1+ 2323

and the Hermite-Einstein metric on O(1), restricted to the patch Up, is simply

1

G = — A.29
1+ 2z ( )

Finally, from (3.13), a basis of sections of O(1) at k4 = 1 is given by

(17 21,22, 23, 2%7 Z1%2, %173, Z%, 2223, Z%) 02y (17 217 227 23)
= : . A.30
{aa} T+ (4:50)
As discussed in section 2.2, the action of dy on ¢ is simply

Oy = D¢, (A.31)
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where 9 is the usual Dolbeault differential. The action of 5{, on Oy ¢ is then simply the
contraction of the connection D into the one-form component of dy¢. That is, if « is a
bundle-valued (0, 1)-form, 9t acts as

53/04 = —1p&x = —gZEDiOg = —gij(aiaj + AiOéj), (A'32)

where A is the connection one-form defined in (2.17). In our case, we have

Zq

A’i - _GilaiG - T _ -
1+ 27z

(A.33)

Replacing « by Oy ¢ then gives an explicit expression for the action of the Dolbeault
Laplacian on ¢: )
0,0y = —g" (0,030 + Aids). (A.34)

Using the expressions for A; and gﬁ from above, we then compute the action of 5‘T/év on

each of the elements in {a4}. For example, for ay = ﬁ%, using Mathematica it is simple
to check that )
~t = 2 =34 22'%;
a0 == A.35
L (4.35)
The right-hand side can be written in terms of the basis (A.30) as
27
—7(—3041 + 2a8 + 2010 + 20416)- (A.36)

V6
Repeating this procedure for the other basis elements, we can write the action of A 5, in

terms of a matrix acting on the {a4} basis. The eigenvalues of this matrix are then the
eigenvalues of Az . Explicitly, we find that the exact eigenvalues are

107 107
0,0,0,0, —~ ... =X A.37
( Vo) (4.37)
—_— ———

36 times

where 107/4/6 ~ 17.3. This agrees with both the exact and numerical results given in
tables 1 and 2 respectively.

B Differential forms on projective space

For numerical calculations, it is useful to have an explicit construction of differential forms
on projective space. In doing this, we will make explicit what was left implicit in the
construction of the basis of (p, ¢)-forms in [44]. Much of this discussion follows the recent
textbook by Tomasiello [132, section 6].

Complex projective space can be defined as

(CN-H _ {0}
C* ’

or equivalently as the base space of a C*-bundle with total space CN*1 — {0}, where the

]P)N

(B.1)

C* action acts as
v (2% ..., 2Ny = wZz",...,vZ"), (B.2)
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and Z! are the homogeneous coordinates on PY. As usual, one can cover PV with charts
Upr={Z4+#0}, A=0,..., N, with coordinates

ZO ; Zi+1
{Z(IA):ZA,...,Z(A):ZA,...}, (B3)

where the coordinate z&) is skipped, since it is equal to one. These coordinates are invariant
under the C* action and so are good coordinates on P,

Constructing functions or forms on PV is somewhat subtle thanks to the C* identifica-
tion. One way to proceed is to construct them on a space that we understand, say a sphere,
and then project down to projective space. For example, P? is equivalent to S’ JU(1), so
functions on P3 are functions on the seven-sphere that are also invariant under the U(1)
action. Formally, this means we think of taking the C* = R* x U(1) quotient in two steps:
first quotienting by the RT to give the (2N + 1)-sphere, and then by the U(1). The first of
these is realised by

Rt —— CN*1 — {0}

J (B.4)

S2N+1

so that CV*! — {0} is an R*-bundle over the sphere. One can perform the R quotient
simply by choosing a sphere S?V*+1 ¢ CN*! of fixed radius 7:

r? =217 (B.5)

Of the initial C* action, this choice is left invariant by a residual U(1), given by v = e'?
with ¢ € R. The sphere is then the total space of a circle bundle over projective space:

U(l) —— S2V+H!
l (B.6)
IP)N

The construction of well-defined forms on PV then follows from standard theory on con-
structing vertical and horizontal vectors/forms on fibre bundles, which we now review.

B.1 Vertical, horizontal and basic

In order to define functions and forms on PV, we use the observation that forms that are
basic under a bundle projection can be thought of as forms living only the base of the
bundle. For example, in our example where P? = S7/U(1), well-defined forms on P? are
the forms on S” that are basic with respect to the U(1) action.

Let us recall how this works in general. Consider a bundle E with typical fibre F' and
base space B,

F 'y

&

(B.7)

%
3



where 7 is the inclusion of F' in F, and 7 is the projection map from the total space to the
base. Now consider vectors and forms on the total space E. A vector field v on F is said to
be wvertical if m,v = 0, where 7, is the pushforward of the projection map (in coordinates,
this just acts as a Jacobian on the components of v). Such a vector is tangent to the fibre
F, and hence has no component lying along the base.'® Similarly, we say a form a on E
is horizontal if 1,a = 0 for all vertical vectors v. Furthermore, if « is invariant under the
Lie derivative of all vertical vectors, L,a = 0 for all v, « is in fact the pullback via 7* of a
form ap on the base B:

wo=0= Ly, Vvertical v & o =T apR. (B.8)

Equivalently, both « and da are horizontal. A form on the total space that is the pullback
of one on the base is called basic. The key idea is that basic forms on F can be thought of
as forms living on the base space B.

A generalisation of this is given by forms which are horizontal but have a definite charge
under the vertical vectors. For example, for a C*-bundle, one can consider horizontal forms
« such that £,a = va where v € C*. Such a form is then thought of as a bundle-valued
section. Indeed, the homogeneous coordinates Z! are precisely of this kind since they scale
according to (B.2) under the C* action and are thus thought of as sections of O(1) over PV.

B.2 Derivatives

We can use the concept of basic forms to first define forms on S?V*! and then PV itself.
Starting on CV*+! with a radial coordinate r defined by (B.5), the Euler vector field, which
generates scaling in the radial direction, and its dual one-form read'”

rd, = 2re(Z10;), rdr = re(Z;dZ7), (B.9)

where we have taken the flat metric ¢ = dZ! @ dZ; with zaleI = 6§. The standard
complex structure on CV*! is then defined by I;7 = i§{ and I'; = —i§%. Using this, we
can act on the Euler vector to give another vector £ and a one-form #:

E=1"r, = —2im(Z10r),  r’*n=1,0.J =im(Z1dZ;), (B.10)

where ¢ and 7 are dual in the sense that 2cn = 1. Crucially, £ is a wvertical vector for
U(1) — S+ 5 PN and 70, is vertical for Rt — (CN*t! — {0}) — S?N*1. Since the
fibres are one-dimensional in each case, all vectors tangent to the fibres are proportional to

5Note that there is no natural definition of a horizontal vector field (or a vertical form). Such a vector
field should be tangent to the base and zero under some natural map between E and F. However, there is
no natural way to move a vector from F to F' without additional data (instead, the natural map on vectors
is the pushforward . from F to E, though even this is problematic since ¢ is not surjective).

Y The first of these comes from writing
O gzt 4 9f

+ —=dZ,

df = Vi A

and then noting that Z7 /7 is independent of r. The second comes from lowering using the flat metric on
cNFL
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& or r0, respectively. Thus, to check whether a form on the total space of either bundle is

horizontal, the form must vanish when £ or 73, is contracted into it. Similarly, we have that

dr and n are horizontal for the U(1)- and R*-bundles respectively, i.e. 1edr = 0 = 1,9,1.
It is then useful to define a projected derivative of the coordinates:

Dzl =pldz7 =az" - (dr + in> AR (B.11)
T

where the projector is P! ; = 55 — T%Z 17 ;. The reason for doing this is the following. Both
dZ! and DZ! are (complex) one-forms on CN*1 but DZ!, unlike dZ’, is horizontal for
both the U(1)- and R*-bundles:

4o, DZ" =0 =1.DZ". (B.12)

It is not, however, basic. Instead, Z! and DZ! have weight +1 under the R* action of rd,
and weight +i under U(1) action of &:

RY: L2l =27! LDz =DZ!,

B.13
u): cLzt=iz',  Lepz'=iDZz'. (B.13)

B.3 Forms on S*M*11! and PV

Since Z! and r are both weight +1 under the R*, and the Lie derivative obeys a Leibniz
rule, Z!/r is automatically invariant under 79,. Thus, Z!/r is a basic function (zero-form)
for the R* fibration (B.4) and so is a well-defined function on S?¥*1. Similarly, one can
show that the one-form DZ!/r is invariant under rd, and so can be thought of as an honest
one-form on S?V*1!. Higher-degree forms on the sphere can then be constructed from wedge
products of the DZ! /r.

From (B.6), forms on PV are simply forms on S**! that are basic (horizontal and
uncharged) with respect to the U(1) action generated by £. For example, both Z!/r and
DZ!/r are basic with respect to the RT but not the U(1) since they are weight +i under
&. However, it is simple to combine them to get basic forms that are invariant under &.

For example, ~
ZrDz’

- (B.14)

r
is basic and so is a well-defined one-form on P¥. Furthermore, it is actually of complex
type (1,0) with respect to the standard (Fubini-Study) complex structure on PV inherited
from CN*! and so can be thought of as a section of Q1%(PY). More generally, horizontal
forms with non-zero charge under the combined C* action, such as DZ!, can be thought
of as bundle-valued forms, or equivalently sections of Q2P4(PN O(m)). In summary:

o Z!'/r and DZ! /r are well-defined functions and one-forms on SV *1 with charge +i
under the U(1) action.

o« Well-defined functions and forms on PV = S*¥*+1/U(1) are constructed by taking
combinations of Z!/r and DZ!/r and their complex conjugates so that the overall
U(1) charge cancels.
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e Functions or horizontal forms with non-zero C* charge can instead be thought of as
living in QP4(PN, O(m)).

We will now see how this analysis relates to the construction of an appropriate basis in
which to expand the eigenmodes of the Laplacian, as discussed for scalars by Braun et
al. [43] and for (p, ¢)-forms by one of the present authors [44]. As we recalled in (3.13), for
the scalar spectrum, one expands the eigenmodes using linear combinations of functions of
the form

(degree k4 monomials in A ) ® (degree k4 monomials in Z 1 )
(Z1Zp)ko ’

ke >0, (B.15)

which is equivalent to expanding in the U(1)-invariant spherical harmonics on S*V*+1 [28].
These are simply the well-defined functions on PV of bi-degree (kg,ks) in (Z1/r, Z;/r)
that the analysis of this appendix would point to. The basis used in [44] for the (p, ¢)-form
spectrum is a little less straightforward. For example, for (1,0)-forms at degree ky = 4,
the basis was

{Z%az' — 7'dz°, 7%dz? — 72d2°,...) ® (degree 2 monomials in ZI>
(21Z)?

(B.16)

This has no mention of the projected derivative DZ!, which we seemed to need to obtain
a horizontal one-form. However, from the definition of DZ in (B.11), it is simple to check
that

7z'Dz’ - 7'Dz! = 71477 — 7747’ (B.17)

and so the projector drops out. The same is true for the higher-degree basis forms used
in [44]. The set of O(m)-valued (p,q)-forms given in (3.13) and (3.15) then follows from
allowing a non-zero C* scaling, so that the basis forms are horizontal for both the R™ and
U(1) actions, but not basic.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References
[1] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B
618 (2005) 252 [hep-th/0501070] [INSPIRE].

[2] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The Universe as a domain wall, Phys.
Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].

[3] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard models from heterotic M
theory, Adv. Theor. Math. Phys. 5 (2002) 93 [hep-th/9912208] [INSPIRE].

[4] V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006)
783 [hep-th/0512149] [INSPIRE].

40 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2005.05.007
https://doi.org/10.1016/j.physletb.2005.05.007
https://arxiv.org/abs/hep-th/0501070
https://inspirehep.net/literature/674694
https://doi.org/10.1103/PhysRevD.59.086001
https://doi.org/10.1103/PhysRevD.59.086001
https://arxiv.org/abs/hep-th/9803235
https://inspirehep.net/literature/468657
https://doi.org/10.4310/ATMP.2001.v5.n1.a4
https://arxiv.org/abs/hep-th/9912208
https://inspirehep.net/literature/512313
https://doi.org/10.1016/j.physletb.2005.12.042
https://doi.org/10.1016/j.physletb.2005.12.042
https://arxiv.org/abs/hep-th/0512149
https://inspirehep.net/literature/700545

[5] R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua
from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186
[hep-th/0603015] [INSPIRE].

[6] O. Lebedev et al., A Mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys.
Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].

[7] P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in
the Landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134] [INSPIRE].

[8] O. Lebedev et al., Heterotic mini-landscape. (II). Completing the search for MSSM vacua in
a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384| INSPIRE].

[9] M. Ambroso and B.A. Ovrut, The Mass Spectra, Hierarchy and Cosmology of B-L MSSM
Heterotic Compactifications, Int. J. Mod. Phys. A 26 (2011) 1569 [arXiv:1005.5392]
[INSPIRE].

[10] D.K. Mayorga Pena, H.P. Nilles and P.-K. Oehlmann, A Zip-code for Quarks, Leptons and
Higgs Bosons, JHEP 12 (2012) 024 [arXiv:1209.6041] [INSPIRE].

[11] L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A
New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [InSPIRE].

[12] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on
Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804]
[INSPIRE].

[13] L.B. Anderson et al., A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP 01
(2014) 047 [arXiv:1307.4787] [INSPIRE].

[14] P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for
superstrings, Nucl. Phys. B 258 (1985) 46 nSPIRE].

[15] B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Superstring Inspired Standard
Model, Phys. Lett. B 180 (1986) 69 [INSPIRE].

[16] B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring
Model. 1. Compactification and Discrete Symmetries, Nucl. Phys. B 278 (1986) 667
[INSPIRE].

[17] B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring
Model. 2. Symmetry Breaking and the Low-Energy Theory, Nucl. Phys. B 292 (1987) 606
[INSPIRE].

[18] T. Matsuoka and D. Suematsu, Realistic Models From the E(8) X E(8)-prime Superstring
Theory, Prog. Theor. Phys. 76 (1986) 886 [INSPIRE].

[19] B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, 27% Yukawa Couplings for a Three
Generation Superstring Model, Phys. Lett. B 192 (1987) 111 [INnSPIRE].

[20] R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model bundles, Adv. Theor.
Math. Phys. 5 (2002) 563 [math/0008010] [iNSPIRE].

[21] V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP
04 (2006) 019 [hep-th/0601204] [INSPIRE].

[22] L.B. Anderson, J. Gray and B. Ovrut, Yukawa Textures From Heterotic Stability Walls,
JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].

_41 -


https://doi.org/10.1016/j.nuclphysb.2006.06.005
https://arxiv.org/abs/hep-th/0603015
https://inspirehep.net/literature/711620
https://doi.org/10.1016/j.physletb.2006.12.012
https://doi.org/10.1016/j.physletb.2006.12.012
https://arxiv.org/abs/hep-th/0611095
https://inspirehep.net/literature/731220
https://doi.org/10.4310/ATMP.2008.v12.n2.a6
https://arxiv.org/abs/0706.3134
https://inspirehep.net/literature/753702
https://doi.org/10.1016/j.physletb.2008.08.054
https://arxiv.org/abs/0807.4384
https://inspirehep.net/literature/791636
https://doi.org/10.1142/S0217751X11052943
https://arxiv.org/abs/1005.5392
https://inspirehep.net/literature/856709
https://doi.org/10.1007/JHEP12(2012)024
https://arxiv.org/abs/1209.6041
https://inspirehep.net/literature/1188189
https://doi.org/10.1007/JHEP02(2010)054
https://arxiv.org/abs/0911.1569
https://inspirehep.net/literature/836417
https://doi.org/10.1103/PhysRevD.84.106005
https://arxiv.org/abs/1106.4804
https://inspirehep.net/literature/914940
https://doi.org/10.1007/JHEP01(2014)047
https://doi.org/10.1007/JHEP01(2014)047
https://arxiv.org/abs/1307.4787
https://inspirehep.net/literature/1243447
https://doi.org/10.1016/0550-3213(85)90602-9
https://inspirehep.net/literature/16270
https://doi.org/10.1016/0370-2693(86)90137-1
https://inspirehep.net/literature/230837
https://doi.org/10.1016/0550-3213(86)90057-X
https://inspirehep.net/literature/18667
https://doi.org/10.1016/0550-3213(87)90662-6
https://inspirehep.net/literature/236956
https://doi.org/10.1143/PTP.76.886
https://inspirehep.net/literature/230053
https://doi.org/10.1016/0370-2693(87)91151-8
https://inspirehep.net/literature/245445
https://doi.org/10.4310/ATMP.2001.v5.n3.a5
https://doi.org/10.4310/ATMP.2001.v5.n3.a5
https://arxiv.org/abs/math/0008010
https://inspirehep.net/literature/531165
https://doi.org/10.1088/1126-6708/2006/04/019
https://doi.org/10.1088/1126-6708/2006/04/019
https://arxiv.org/abs/hep-th/0601204
https://inspirehep.net/literature/709395
https://doi.org/10.1007/JHEP05(2010)086
https://arxiv.org/abs/1001.2317
https://inspirehep.net/literature/842787

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Headrick and T. Wiseman, Numerical Ricci-flat metrics on K3, Class. Quant. Grav. 22
(2005) 4931 [hep-th/0506129] [INSPIRE].

S.K. Donaldson, Some numerical results in complex differential geometry, math/0512625.

M.R. Douglas, R.L. Karp, S. Lukic and R. Reinbacher, Numerical Calabi- Yau metrics, J.
Math. Phys. 49 (2008) 032302 [hep-th/0612075] [INSPIRE].

M.R. Douglas, R.L. Karp, S. Lukic and R. Reinbacher, Numerical solution to the hermitian
Yang-Mills equation on the Fermat quintic, JHEP 12 (2007) 083 [hep-th/0606261]
[INSPIRE].

V. Braun, T. Brelidze, M.R. Douglas and B.A. Ovrut, Calabi-Yau Metrics for Quotients
and Complete Intersections, JHEP 05 (2008) 080 [arXiv:0712.3563] [INSPIRE].

M. Headrick and A. Nassar, Energy functionals for Calabi- Yau metrics, Adv. Theor. Math.
Phys. 17 (2013) 867 [arXiv:0908.2635] [INSPIRE].

W. Cui and J. Gray, Numerical Metrics, Curvature Expansions and Calabi- Yau Manifolds,
JHEP 05 (2020) 044 [arXiv:1912.11068] [INSPIRE].

L.B. Anderson, V. Braun, R.L. Karp and B.A. Ovrut, Numerical Hermitian Yang-Mills
Connections and Vector Bundle Stability in Heterotic Theories, JHEP 06 (2010) 107
[arXiv:1004.4399] [INSPIRE].

L.B. Anderson, V. Braun and B.A. Ovrut, Numerical Hermitian Yang-Mills Connections
and Kahler Cone Substructure, JHEP 01 (2012) 014 [arXiv:1103.3041] [INSPIRE].

W. Cui, Numerical Hermitian Yang-Mills Connection for Bundles on Quotient Manifold,
arXiv:2302.09622 [INSPIRE].

L.B. Anderson et al., Moduli-dependent Calabi- Yau and SU(3)-structure metrics from
Machine Learning, JHEP 05 (2021) 013 [arXiv:2012.04656] [INSPIRE].

A. Ashmore, Y.-H. He and B.A. Ovrut, Machine Learning Calabi-Yau Metrics, Fortsch.
Phys. 68 (2020) 2000068 [arXiv:1910.08605] [INSPIRE].

M.R. Douglas, S. Lakshminarasimhan and Y. Qi, Numerical Calabi- Yau metrics from
holomorphic networks, arXiv:2012.04797 [INSPIRE].

V. Jejjala, D.K. Mayorga Pena and C. Mishra, Neural network approzimations for
Calabi- Yau metrics, JHEP 08 (2022) 105 [arXiv:2012.15821] [INSPIRE].

A. Ashmore, L. Calmon, Y.-H. He and B.A. Ovrut, Calabi- Yau Metrics, Energy Functionals
and Machine-Learning, Int. J. Data Science in the Math. Sci. 1 (2023) 49
[arXiv:2112.10872] [INSPIRE].

A. Ashmore, R. Deen, Y.-H. He and B.A. Ovrut, Machine learning line bundle connections,
Phys. Lett. B 827 (2022) 136972 [arXiv:2110.12483] [INSPIRE).

M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Learning Size and Shape of Calabi-Yau
Spaces, arXiv:2111.01436 [INSPIRE].

M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Numerical metrics for complete
intersection and Kreuzer—Skarke Calabi-Yau manifolds, Mach. Learn. Sci. Tech. 3 (2022)
035014 [arXiv:2205.13408] [INSPIRE].

M. Gerdes and S. Krippendorf, CYJAX: A package for Calabi- Yau metrics with JAX,
Mach. Learn. Sci. Tech. 4 (2023) 025031 [arXiv:2211.12520] INSPIRE].

— 492 —


https://doi.org/10.1088/0264-9381/22/23/002
https://doi.org/10.1088/0264-9381/22/23/002
https://arxiv.org/abs/hep-th/0506129
https://inspirehep.net/literature/685281
https://arxiv.org/abs/math/0512625
https://doi.org/10.1063/1.2888403
https://doi.org/10.1063/1.2888403
https://arxiv.org/abs/hep-th/0612075
https://inspirehep.net/literature/734038
https://doi.org/10.1088/1126-6708/2007/12/083
https://arxiv.org/abs/hep-th/0606261
https://inspirehep.net/literature/720173
https://doi.org/10.1088/1126-6708/2008/05/080
https://arxiv.org/abs/0712.3563
https://inspirehep.net/literature/771273
https://doi.org/10.4310/ATMP.2013.v17.n5.a1
https://doi.org/10.4310/ATMP.2013.v17.n5.a1
https://arxiv.org/abs/0908.2635
https://inspirehep.net/literature/829064
https://doi.org/10.1007/JHEP05(2020)044
https://arxiv.org/abs/1912.11068
https://inspirehep.net/literature/1773026
https://doi.org/10.1007/JHEP06(2010)107
https://arxiv.org/abs/1004.4399
https://inspirehep.net/literature/853030
https://doi.org/10.1007/JHEP01(2012)014
https://arxiv.org/abs/1103.3041
https://inspirehep.net/literature/892849
https://arxiv.org/abs/2302.09622
https://inspirehep.net/literature/2634811
https://doi.org/10.1007/JHEP05(2021)013
https://arxiv.org/abs/2012.04656
https://inspirehep.net/literature/1835403
https://doi.org/10.1002/prop.202000068
https://doi.org/10.1002/prop.202000068
https://arxiv.org/abs/1910.08605
https://inspirehep.net/literature/1759900
https://arxiv.org/abs/2012.04797
https://inspirehep.net/literature/1835417
https://doi.org/10.1007/JHEP08(2022)105
https://arxiv.org/abs/2012.15821
https://inspirehep.net/literature/1839096
https://doi.org/10.1142/S2810939222500034
https://arxiv.org/abs/2112.10872
https://inspirehep.net/literature/1995042
https://doi.org/10.1016/j.physletb.2022.136972
https://arxiv.org/abs/2110.12483
https://inspirehep.net/literature/1951244
https://arxiv.org/abs/2111.01436
https://inspirehep.net/literature/1958902
https://doi.org/10.1088/2632-2153/ac8e4e
https://doi.org/10.1088/2632-2153/ac8e4e
https://arxiv.org/abs/2205.13408
https://inspirehep.net/literature/2087991
https://doi.org/10.1088/2632-2153/acdc84
https://arxiv.org/abs/2211.12520
https://inspirehep.net/literature/2514129

[42] P. Berglund et al., Machine Learned Calabi-Yau Metrics and Curvature, arXiv:2211.09801
[INSPIRE].

[43] V. Braun, T. Brelidze, M.R. Douglas and B.A. Ovrut, Eigenvalues and Figenfunctions of
the Scalar Laplace Operator on Calabi-Yau Manifolds, JHEP 07 (2008) 120
[arXiv:0805.3689] [INSPIRE].

[44] A. Ashmore, Eigenvalues and eigenforms on Calabi- Yau threefolds, arXiv:2011.13929
[INSPIRE].

[45] A. Ashmore and F. Ruehle, Moduli-dependent KK towers and the swampland distance
conjecture on the quintic Calabi-Yau manifold, Phys. Rev. D 103 (2021) 106028
[arXiv:2103.07472] [INSPIRE].

[46] N. Afkhami-Jeddi, A. Ashmore and C. Cordova, Calabi-Yau CFTs and random matrices,
JHEP 02 (2022) 021 [arXiv:2107.11461] [iNSPIRE].

[47) H. Ahmed and F. Ruehle, Level crossings, attractor points and complex multiplication,
JHEP 06 (2023) 164 [arXiv:2304.00027] [INSPIRE].

[48] A. Strominger and E. Witten, New Manifolds for Superstring Compactification, Commun.
Math. Phys. 101 (1985) 341 [INSPIRE].

[49] A. Strominger, Yukawa Couplings in Superstring Compactification, Phys. Rev. Lett. 55
(1985) 2547 [INSPIRE].

[50] W.R. Inc., Mathematica, version 13.2, https://www.wolfram.com/mathematica.

[51] L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models,
JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].

[52] S. Groot Nibbelink, O. Loukas and F. Ruehle, (MS)SM-like models on smooth Calabi-Yau
manifolds from all three heterotic string theories, Fortsch. Phys. 63 (2015) 609
[arXiv:1507.07559] INSPIRE].

[63] S. Groot Nibbelink, O. Loukas, F. Ruehle and P.K.S. Vaudrevange, Infinite number of
MSSMs from heterotic line bundles?, Phys. Rev. D 92 (2015) 046002 [arXiv:1506.00879]
[INSPIRE].

[54] S. Groot Nibbelink and F. Ruehle, Line bundle embeddings for heterotic theories, JHEP 04
(2016) 186 [arXiv:1601.00676] INSPIRE].

[55] A.P. Braun, C.R. Brodie and A. Lukas, Heterotic Line Bundle Models on Elliptically
Fibered Calabi-Yau Three-folds, JHEP 04 (2018) 087 [arXiv:1706.07688] [INSPIRE].

[56] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string
theory, JHEP 05 (2006) 043 [hep-th/0512177] [nSPIRE].

[57] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Standard model from the E(8) x E(8)
heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].

[58] V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM Spectrum from
(0,2)-Deformations of the Heterotic Standard Embedding, JHEP 05 (2012) 127
[arXiv:1112.1097] [INSPIRE].

[59] M. Blaszczyk et al., Heterotic MSSM on a Resolved Orbifold, JHEP 09 (2010) 065
[arXiv:1007.0203] [INSPIRE].

[60] B. Andreas, G. Curio and A. Klemm, Towards the Standard Model spectrum from elliptic
Calabi-Yau, Int. J. Mod. Phys. A 19 (2004) 1987 [hep-th/9903052] [INSPIRE].

43 —


https://arxiv.org/abs/2211.09801
https://inspirehep.net/literature/2183269
https://doi.org/10.1088/1126-6708/2008/07/120
https://arxiv.org/abs/0805.3689
https://inspirehep.net/literature/786525
https://arxiv.org/abs/2011.13929
https://inspirehep.net/literature/1834026
https://doi.org/10.1103/PhysRevD.103.106028
https://arxiv.org/abs/2103.07472
https://inspirehep.net/literature/1851666
https://doi.org/10.1007/JHEP02(2022)021
https://arxiv.org/abs/2107.11461
https://inspirehep.net/literature/1892488
https://doi.org/10.1007/JHEP06(2023)164
https://arxiv.org/abs/2304.00027
https://inspirehep.net/literature/2648263
https://doi.org/10.1007/BF01216094
https://doi.org/10.1007/BF01216094
https://inspirehep.net/literature/16775
https://doi.org/10.1103/PhysRevLett.55.2547
https://doi.org/10.1103/PhysRevLett.55.2547
https://inspirehep.net/literature/221549
https://www.wolfram.com/mathematica
https://doi.org/10.1007/JHEP06(2012)113
https://arxiv.org/abs/1202.1757
https://inspirehep.net/literature/1088424
https://doi.org/10.1002/prop.201500041
https://arxiv.org/abs/1507.07559
https://inspirehep.net/literature/1385327
https://doi.org/10.1103/PhysRevD.92.046002
https://arxiv.org/abs/1506.00879
https://inspirehep.net/literature/1374238
https://doi.org/10.1007/JHEP04(2016)186
https://doi.org/10.1007/JHEP04(2016)186
https://arxiv.org/abs/1601.00676
https://inspirehep.net/literature/1413124
https://doi.org/10.1007/JHEP04(2018)087
https://arxiv.org/abs/1706.07688
https://inspirehep.net/literature/1607285
https://doi.org/10.1088/1126-6708/2006/05/043
https://arxiv.org/abs/hep-th/0512177
https://inspirehep.net/literature/700419
https://doi.org/10.1088/1126-6708/2005/06/039
https://arxiv.org/abs/hep-th/0502155
https://inspirehep.net/literature/676957
https://doi.org/10.1007/JHEP05(2012)127
https://arxiv.org/abs/1112.1097
https://inspirehep.net/literature/1080118
https://doi.org/10.1007/JHEP09(2010)065
https://arxiv.org/abs/1007.0203
https://inspirehep.net/literature/860010
https://doi.org/10.1142/S0217751X04018087
https://arxiv.org/abs/hep-th/9903052
https://inspirehep.net/literature/496303

[61] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf

cohomology, and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 525
[hep-th/0505041] [INSPIRE].

[62] V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic standard model

[63]

[71]

[72]

bundle, JHEP 06 (2006) 032 [hep-th/0602073] [NSPIRE).

Z. Marshall, B.A. Ovrut, A. Purves and S. Spinner, Spontaneous R-Parity Breaking, Stop
LSP Decays and the Neutrino Mass Hierarchy, Phys. Lett. B 732 (2014) 325
[arXiv:1401.7989] [INSPIRE].

Z. Marshall, B.A. Ovrut, A. Purves and S. Spinner, LSP Squark Decays at the LHC and the
Neutrino Mass Hierarchy, Phys. Rev. D 90 (2014) 015034 [arXiv:1402.5434| [INSPIRE].

B.A. Ovrut, A. Purves and S. Spinner, A statistical analysis of the minimal SUSY B-L
theory, Mod. Phys. Lett. A 30 (2015) 1550085 [arXiv:1412.6103] [INSPIRE].

B.A. Ovrut, A. Purves and S. Spinner, The minimal SUSY B — L model: from the
unification scale to the LHC, JHEP 06 (2015) 182 [arXiv:1503.01473] [INSPIRE].

R. Deen, B.A. Ovrut and A. Purves, The minimal SUSY B — L model: simultaneous
Wilson lines and string thresholds, JHEP 07 (2016) 043 [arXiv:1604.08588] [INSPIRE].

B.A. Ovrut, Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories,
Symmetry 10 (2018) 723 [arXiv:1811.08892] [INSPIRE].

S. Dumitru, B.A. Ovrut and A. Purves, The R-parity Violating Decays of Charginos and
Neutralinos in the B-L MSSM, JHEP 02 (2019) 124 [arXiv:1810.11035] [INSPIRE].

S. Dumitru, B.A. Ovrut and A. Purves, R-parity Violating Decays of Wino Chargino and
Wino Neutralino LSPs and NLSPs at the LHC, JHEP 06 (2019) 100 [arXiv:1811.05581]
[INSPIRE].

S. Dumitru, C. Herwig and B.A. Ovrut, R-parity Violating Decays of Bino Neutralino LSPs
at the LHC, JHEP 12 (2019) 042 [arXiv:1906.03174] [INSPIRE].

A. Ashmore, S. Dumitru and B.A. Ovrut, Line Bundle Hidden Sectors for Strongly Coupled
Heterotic Standard Models, Fortsch. Phys. 69 (2021) 2100052 [arXiv:2003.05455]
[INSPIRE].

A. Ashmore, S. Dumitru and B.A. Ovrut, Explicit soft supersymmetry breaking in the
heterotic M-theory B — L MSSM, JHEP 08 (2021) 033 [arXiv:2012.11029] [INSPIRE].

A. Ashmore, S. Dumitru and B.A. Ovrut, Hidden Sectors from Multiple Line Bundles for
the B—-LB — L MSSM, Fortsch. Phys. 70 (2022) 2200071 [arXiv:2106.09087] [iNSPIRE].

S. Dumitru and B.A. Ovrut, Heterotic M-Theory Hidden Sectors with an Anomalous U (1)
Gauge Symmetry, arXiv:2109.13781 [INnSPIRE].

S. Dumitru and B.A. Ovrut, Moduli and Hidden Matter in Heterotic M-Theory with an
Anomalous U(1) Hidden Sector, arXiv:2201.01624 [INSPIRE].

S. Dumitru and B.A. Ovrut, FIMP dark matter in heterotic M-theory, JHEP 09 (2022) 068
[arXiv:2204.13174] [INSPIRE].

E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030
[hep-th/9907041] [INSPIRE].

E.I. Buchbinder, R. Donagi and B.A. Ovrut, Superpotentials for vector bundle moduli, Nucl.
Phys. B 653 (2003) 400 [hep-th/0205190] [iNSPIRE].

— 44 —


https://doi.org/10.4310/ATMP.2006.v10.n4.a3
https://arxiv.org/abs/hep-th/0505041
https://inspirehep.net/literature/681969
https://doi.org/10.1088/1126-6708/2006/06/032
https://arxiv.org/abs/hep-th/0602073
https://inspirehep.net/literature/709932
https://doi.org/10.1016/j.physletb.2014.03.052
https://arxiv.org/abs/1401.7989
https://inspirehep.net/literature/1279782
https://doi.org/10.1103/PhysRevD.90.015034
https://arxiv.org/abs/1402.5434
https://inspirehep.net/literature/1282270
https://doi.org/10.1142/S0217732315500856
https://arxiv.org/abs/1412.6103
https://inspirehep.net/literature/1335143
https://doi.org/10.1007/JHEP06(2015)182
https://arxiv.org/abs/1503.01473
https://inspirehep.net/literature/1347392
https://doi.org/10.1007/JHEP07(2016)043
https://arxiv.org/abs/1604.08588
https://inspirehep.net/literature/1454084
https://doi.org/10.3390/sym10120723
https://arxiv.org/abs/1811.08892
https://inspirehep.net/literature/1704680
https://doi.org/10.1007/JHEP02(2019)124
https://arxiv.org/abs/1810.11035
https://inspirehep.net/literature/1700589
https://doi.org/10.1007/JHEP06(2019)100
https://arxiv.org/abs/1811.05581
https://inspirehep.net/literature/1703564
https://doi.org/10.1007/JHEP12(2019)042
https://arxiv.org/abs/1906.03174
https://inspirehep.net/literature/1739058
https://doi.org/10.1002/prop.202100052
https://arxiv.org/abs/2003.05455
https://inspirehep.net/literature/1785380
https://doi.org/10.1007/JHEP08(2021)033
https://arxiv.org/abs/2012.11029
https://inspirehep.net/literature/1837668
https://doi.org/10.1002/prop.202200071
https://arxiv.org/abs/2106.09087
https://inspirehep.net/literature/1869055
https://arxiv.org/abs/2109.13781
https://inspirehep.net/literature/1932630
https://arxiv.org/abs/2201.01624
https://inspirehep.net/literature/2003817
https://doi.org/10.1007/JHEP09(2022)068
https://arxiv.org/abs/2204.13174
https://inspirehep.net/literature/2074148
https://doi.org/10.1088/1126-6708/2000/02/030
https://arxiv.org/abs/hep-th/9907041
https://inspirehep.net/literature/503254
https://doi.org/10.1016/S0550-3213(02)01093-3
https://doi.org/10.1016/S0550-3213(02)01093-3
https://arxiv.org/abs/hep-th/0205190
https://inspirehep.net/literature/587051

[80] C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065
[hep-th/0304115] [iNSPIRE].

[81] A. Basu and S. Sethi, World sheet stability of (0,2) linear sigma models, Phys. Rev. D 68
(2003) 025003 [hep-th/0303066] [NSPIRE].

[82] V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion
curves, part A: Direct computation, JHEP 10 (2007) 022 [hep-th/0703182] [INSPIRE].

[83] V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion
curves, and non-perturbative superpotentials, Phys. Lett. B 649 (2007) 334
[hep-th/0703134] [INSPIRE].

[84] V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet Instantons and Torsion
Curves, Part B: Mirror Symmetry, JHEP 10 (2007) 023 [arXiv:0704.0449] [INSPIRE].

[85] M. Bertolini and M.R. Plesser, Worldsheet instantons and (0,2) linear models, JHEP 08
(2015) 081 [arXiv:1410.4541] [INSPIRE].

[86] E.I. Buchbinder and B.A. Ovrut, Non-vanishing Superpotentials in Heterotic String Theory
and Discrete Torsion, JHEP 01 (2017) 038 [arXiv:1611.01922] INSPIRE].

[87] E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Instantons and Hilbert Functions,
Phys. Rev. D 102 (2020) 026019 [arXiv:1912.08358] [INSPIRE].

[88] E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Heterotic Instantons for Monad and
Eaztension Bundles, JHEP 02 (2020) 081 [arXiv:1912.07222] INSPIRE].

[89] E. Buchbinder, A. Lukas, B. Ovrut and F. Ruehle, Heterotic Instanton Superpotentials from
Complete Intersection Calabi-Yau Manifolds, JHEP 10 (2017) 032 [arXiv:1707.07214]
[INSPIRE].

[90] E.I. Buchbinder, L. Lin and B.A. Ovrut, Non-vanishing Heterotic Superpotentials on
Elliptic Fibrations, JHEP 09 (2018) 111 [arXiv:1806.04669] INSPIRE].

[91] E.I. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli superpotentials in
heterotic superstrings and M theory, JHEP 07 (2002) 066 [hep-th/0206203] [INSPIRE].

[92] L.B. Anderson et al., Instanton superpotentials, Calabi-Yau geometry, and fibrations, Phys.
Rev. D 93 (2016) 086001 [arXiv:1511.05188] INSPIRE].

[93] K. Becker and L.-S. Tseng, Heterotic flux compactifications and their moduli, Nucl. Phys. B
741 (2006) 162 [hep-th/0509131] [INSPIRE].

[94] M. Becker, L.-S. Tseng and S.-T. Yau, Moduli Space of Torsional Manifolds, Nucl. Phys. B
786 (2007) 119 [hep-th/0612290] [INSPIRE].

[95] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in
Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].

[96] 1.V. Melnikov and E. Sharpe, On marginal deformations of (0,2) non-linear sigma models,
Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].

[97] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in
Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [InSPIRE].

[98] L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure
Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032
[arXiv:1107.5076] INSPIRE].

45 —


https://doi.org/10.1088/1126-6708/2003/10/065
https://arxiv.org/abs/hep-th/0304115
https://inspirehep.net/literature/616934
https://doi.org/10.1103/PhysRevD.68.025003
https://doi.org/10.1103/PhysRevD.68.025003
https://arxiv.org/abs/hep-th/0303066
https://inspirehep.net/literature/614802
https://doi.org/10.1088/1126-6708/2007/10/022
https://arxiv.org/abs/hep-th/0703182
https://inspirehep.net/literature/746934
https://doi.org/10.1016/j.physletb.2007.03.066
https://arxiv.org/abs/hep-th/0703134
https://inspirehep.net/literature/746494
https://doi.org/10.1088/1126-6708/2007/10/023
https://arxiv.org/abs/0704.0449
https://inspirehep.net/literature/747906
https://doi.org/10.1007/JHEP08(2015)081
https://doi.org/10.1007/JHEP08(2015)081
https://arxiv.org/abs/1410.4541
https://inspirehep.net/literature/1322597
https://doi.org/10.1007/JHEP01(2017)038
https://arxiv.org/abs/1611.01922
https://inspirehep.net/literature/1496042
https://doi.org/10.1103/PhysRevD.102.026019
https://arxiv.org/abs/1912.08358
https://inspirehep.net/literature/1771581
https://doi.org/10.1007/JHEP02(2020)081
https://arxiv.org/abs/1912.07222
https://inspirehep.net/literature/1770980
https://doi.org/10.1007/JHEP10(2017)032
https://arxiv.org/abs/1707.07214
https://inspirehep.net/literature/1611333
https://doi.org/10.1007/JHEP09(2018)111
https://arxiv.org/abs/1806.04669
https://inspirehep.net/literature/1677530
https://doi.org/10.1088/1126-6708/2002/07/066
https://arxiv.org/abs/hep-th/0206203
https://inspirehep.net/literature/588973
https://doi.org/10.1103/PhysRevD.93.086001
https://doi.org/10.1103/PhysRevD.93.086001
https://arxiv.org/abs/1511.05188
https://inspirehep.net/literature/1405125
https://doi.org/10.1016/j.nuclphysb.2006.02.013
https://doi.org/10.1016/j.nuclphysb.2006.02.013
https://arxiv.org/abs/hep-th/0509131
https://inspirehep.net/literature/692522
https://doi.org/10.1016/j.nuclphysb.2007.07.006
https://doi.org/10.1016/j.nuclphysb.2007.07.006
https://arxiv.org/abs/hep-th/0612290
https://inspirehep.net/literature/735743
https://doi.org/10.1007/JHEP02(2011)088
https://arxiv.org/abs/1010.0255
https://inspirehep.net/literature/871790
https://doi.org/10.1016/j.physletb.2011.10.055
https://arxiv.org/abs/1110.1886
https://inspirehep.net/literature/931277
https://doi.org/10.1103/PhysRevD.83.106011
https://arxiv.org/abs/1102.0011
https://inspirehep.net/literature/886354
https://doi.org/10.1007/JHEP10(2011)032
https://arxiv.org/abs/1107.5076
https://inspirehep.net/literature/920299

[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

L.B. Anderson, J. Gray and E. Sharpe, Algebroids, Heterotic Moduli Spaces and the
Strominger System, JHEP 07 (2014) 037 [arXiv:1402.1532] InSPIRE].

L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles
and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017
[arXiv:1304.2704] [INSPIRE].

X. de la Ossa and E.E. Svanes, Holomorphic Bundles and the Moduli Space of N=1
Supersymmetric Heterotic Compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725]
[INSPIRE].

X. de la Ossa, E. Hardy and E.E. Svanes, The Heterotic Superpotential and Moduli, JHEP
01 (2016) 049 [arXiv:1509.08724] [INSPIRE].

M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger
system and Killing spinors in generalized geometry, Math. Ann. 369 (2017) 539
[arXiv:1503.07562] INSPIRE].

P. Candelas, X. de la Ossa and J. McOrist, A Metric for Heterotic Moduli, Commun. Math.
Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].

A. Ashmore et al., Finite deformations from a heterotic superpotential: holomorphic
Chern-Simons and an Lo algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].

S. Blesneag et al., Matter field Kdhler metric in heterotic string theory from localisation,
JHEP 04 (2018) 139 [arXiv:1801.09645] [INSPIRE].

A. Ashmore, C. Strickland-Constable, D. Tennyson and D. Waldram, Heterotic backgrounds
via generalised geometry: moment maps and moduli, JHEP 11 (2020) 071
[arXiv:1912.09981] [INSPIRE].

R. Kuwabara, Spectrum of the Schridinger operator on a line bundle over complex
projective spaces, Tohoku Math. J. 40 (1988) 199.

D. Bykov and A. Smilga, Monopole harmonics on CP" !, arXiv:2302.11691 [INSPIRE].

C.T. Prieto, Holomorphic spectral geometry of magnetic Schrédinger operators on Riemann
surfaces, Differ. Geom. Appl. 24 (2006) 288.

P. Candelas, Yukawa Couplings Between (2,1) Forms, Nucl. Phys. B 298 (1988) 458
[INSPIRE].

P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355
(1991) 455 [INSPIRE].

M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: introduction,
Cambridge Monographs on Mathematical Physics (1988) [InSPIRE].

M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: loop amplitudes,
anomalies and phenomenology, Cambridge Monographs on Mathematical Physics (1988)
[INSPIRE].

J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton, NJ, U.S.A. (1992) [NSPIRE].

S.K. Donaldson, Anti self-dual yang-mills connections over complex algebraic surfaces and
stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1 [INSPIRE].

K. Uhlenbeck and S.T. Yau, On the existence of hermitian-yang-mills connections in stable

vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.

— 46 —


https://doi.org/10.1007/JHEP07(2014)037
https://arxiv.org/abs/1402.1532
https://inspirehep.net/literature/1280549
https://doi.org/10.1007/JHEP07(2013)017
https://arxiv.org/abs/1304.2704
https://inspirehep.net/literature/1227684
https://doi.org/10.1007/JHEP10(2014)123
https://arxiv.org/abs/1402.1725
https://inspirehep.net/literature/1280554
https://doi.org/10.1007/JHEP01(2016)049
https://doi.org/10.1007/JHEP01(2016)049
https://arxiv.org/abs/1509.08724
https://inspirehep.net/literature/1395276
https://doi.org/10.1007/s00208-016-1463-5
https://arxiv.org/abs/1503.07562
https://inspirehep.net/literature/1356297
https://doi.org/10.1007/s00220-017-2978-7
https://doi.org/10.1007/s00220-017-2978-7
https://arxiv.org/abs/1605.05256
https://inspirehep.net/literature/1459297
https://doi.org/10.1007/JHEP10(2018)179
https://arxiv.org/abs/1806.08367
https://inspirehep.net/literature/1679218
https://doi.org/10.1007/JHEP04(2018)139
https://arxiv.org/abs/1801.09645
https://inspirehep.net/literature/1650954
https://doi.org/10.1007/JHEP11(2020)071
https://arxiv.org/abs/1912.09981
https://inspirehep.net/literature/1772136
https://doi.org/10.2748/tmj/1178228026
https://arxiv.org/abs/2302.11691
https://inspirehep.net/literature/2635813
https://doi.org/10.1016/j.difgeo.2005.09.001
https://doi.org/10.1016/0550-3213(88)90351-3
https://inspirehep.net/literature/21691
https://doi.org/10.1016/0550-3213(91)90122-E
https://doi.org/10.1016/0550-3213(91)90122-E
https://inspirehep.net/literature/295485
https://inspirehep.net/literature/250488
https://inspirehep.net/literature/252419
https://inspirehep.net/literature/350988
https://doi.org/10.1112/plms/s3-50.1.1
https://inspirehep.net/literature/226805
https://doi.org/10.1002/cpa.3160390714

[118]
[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

S. Bochner, Curvature and Betti Numbers, Annals Math. 49 (1948) 379.

K. Kodaira, On a Differential-Geometric Method in the Theory of Analytic Stacks,
Proceedings of the National Academy of Sciences 39 (1953) 1268.

S. Nakano, On complex analytic vector bundles., J. Math. Soc. Japan 7 (1955) 1.

J.-P. Demailly, Sur l’identite de Bochner-Kodaira-Nakano en geometrie hermitienne, in
P. Lelong, P. Dolbeault and H. Skoda eds., Séminaire d’Analyse, Lect. Notes Math. 1198
(1986) 88.

D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic
geometry, http://www.math.uiuc.edu/Macaulay2/.

A. Tkeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on S™ and P™(C),
Osaka J. Math. 15 (1978) 515.

P. Bérard and B. Helffer, Courant-Sharp Figenvalues for the Equilateral Torus, and for the
Equilateral Triangle, Lett. Math. Phys. 106 (2016) 1729.

J. Milnor, Figenvalues of the laplace operator on certain manifolds, Proceedings of the
National Academy of Sciences 51 (1964) 542.

C.-Y. Kao, R. Lai and B. Osting, Maximization of Laplace-Beltrami eigenvalues on closed
Riemannian surfaces, arXiv:1405.4944 [DOI:10.1051/cocv/2016008].

G. Tian, On a set of polarized Kdihler metrics on algebraic manifolds, J. Diff. Geom. 32
(1990) 99.

M. Larfors and R. Schneider, Line bundle cohomologies on CICYs with Picard number two,
Fortsch. Phys. 67 (2019) 1900083 [arXiv:1906.00392] [INSPIRE].

H. Otsuka, SO(32) heterotic line bundle models, JHEP 05 (2018) 045 [arXiv:1801.03684]
[INSPIRE].

H. Otsuka and K. Takemoto, SO(32) heterotic standard model vacua in general Calabi-Yau
compactifications, JHEP 11 (2018) 034 [arXiv:1809.00838] [NSPIRE].

S. Blesneag, Holomorphic Yukawa Couplings in Heterotic String Theory, Ph.D. thesis,
Oxford University (2021) [arXiv:2204.01165] [INSPIRE].

A. Tomasiello, Geometry of String Theory Compactifications, Cambridge University Press
(2022) [D0I:10.1017/9781108635745] [INSPIRE].

47 —


https://doi.org/10.2307/1969287
https://doi.org/10.1073/pnas.39.12.1268
https://doi.org/10.2969/jmsj/00710001
https://doi.org/10.1007/BFb0077045
https://doi.org/10.1007/BFb0077045
http://www.math.uiuc.edu/Macaulay2/
https://doi.org/10.18910/6956
https://doi.org/10.1007/s11005-016-0819-9
https://doi.org/10.1073/pnas.51.4.542
https://doi.org/10.1073/pnas.51.4.542
https://arxiv.org/abs/1405.4944
https://doi.org/10.1051/cocv/2016008
https://doi.org/10.4310/jdg/1214445039
https://doi.org/10.4310/jdg/1214445039
https://doi.org/10.1002/prop.201900083
https://arxiv.org/abs/1906.00392
https://inspirehep.net/literature/1737759
https://doi.org/10.1007/JHEP05(2018)045
https://arxiv.org/abs/1801.03684
https://inspirehep.net/literature/1647581
https://doi.org/10.1007/JHEP11(2018)034
https://arxiv.org/abs/1809.00838
https://inspirehep.net/literature/1692617
https://arxiv.org/abs/2204.01165
https://inspirehep.net/literature/2062643
https://doi.org/10.1017/9781108635745
https://inspirehep.net/literature/2017797

	Introduction and summary
	Phenomenology and the Dolbeault Laplacian
	Supersymmetry, Yukawa couplings and the matter-field Kähler metric
	The Dolbeault Laplacian on a vector bundle
	The eigenvalue problem

	The spectrum of the Dolbeault Laplacian on P3
	Analytic results
	An approximate basis
	Numerical results
	The bundle-valued scalar spectrum
	The bundled-valued (0,1)-form spectrum


	The torus as a Calabi-Yau one-fold
	Analytic results
	Numerical results
	The bundle-valued scalar spectrum
	The bundled-valued (0,1)-form spectrum


	Quintic Calabi-Yau three-folds
	Numerical results
	The bundle-valued scalar spectrum
	The bundle-valued (0,1)-form spectrum

	Application: computing a superpotential

	Useful calculations
	The slope mu
	Matrix elements of the Laplacian
	A local holomorphic frame
	O(1)-valued scalar spectrum of the Dolbeault Laplacian on P3

	Differential forms on projective space
	Vertical, horizontal and basic
	Derivatives
	Forms on the sphere and projective space


