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Abstract: Real-world social and economic networks typically display a number of
particular topological properties, such as a giant connected component, a broad degree
distribution, the small-world property and the presence of communities of densely
interconnected nodes. Several models, including ensembles of networks, also known
in social science as Exponential Random Graphs, have been proposed with the aim of
reproducing each of these properties in isolation. Here, we define a generalized ensemble
of graphs by introducing the concept of graph temperature, controlling the degree of
topological optimization of a network. We consider the temperature-dependent version of
both existing and novel models and show that all the aforementioned topological properties
can be simultaneously understood as the natural outcomes of an optimized, low-temperature
topology. We also show that seemingly different graph models, as well as techniques used to
extract information from real networks are all found to be particular low-temperature cases
of the same generalized formalism. One such technique allows us to extend our approach
to real weighted networks. Our results suggest that a low graph temperature might be a
ubiquitous property of real socio-economic networks, placing conditions on the diffusion of
information across these systems.
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1. Introduction

Complex networks have attracted the interest of physicists, because statistical physics has proven
to be an effective tool for the measurement and explanation of robust empirical properties of these
networks [1,2]. Social and economic networks, in particular, often exhibit particular topological
properties, such as the presence of a giant connected component (a set of mutually reachable vertices
spanning a finite fraction of the system), the “small-world” property (the combination of a large density
of triangles and a short distance among nodes), community structure (a subdivision of the network into
modules of densely interconnected nodes) and a broad-degree distribution (the presence of many more
highly connected vertices than expected in random graphs).

Taken together, these properties place conditions on the diffusion of information in social networks.
For instance, the “strength of weak ties” effect [3], i.e., the phenomenon by which links connecting
different communities are sparser and weaker than intra-community links, implies that the dynamics
of information is mostly confined within communities, with rare (but crucial in terms of network-wide
communication) jumps across different communities. In combination with the “small-world” property,
this means that real social networks display what has been called the “small but slow world” effect [4]:
even if, at a purely topological level, it only takes a few steps to connect two randomly chosen nodes (that
are, in general, found in different communities), these steps are not the ones taken by typical dynamical
processes (which are instead confined within communities). The result is an overall slowing down of
the dynamics.

Among the several approaches that have been explored in order to reproduce the structure of real
social and economic networks, an interesting class of models has a long tradition in social network
analysis and goes under the name of Exponential Random Graphs (ERGs) [5]. ERGs allow one to specify
a set of desired topological properties or “constraints” and estimate the probability to be assigned to every
possible network in order to reproduce the observed values of such properties. More recently, ERGs
have been shown to be equivalent to a class of statistical ensembles of graphs [6] and have been further
generalized [7–15]. This powerful formalism allows one to treat, in a unified fashion, a large class of
models, including random graphs [1,2], the Configuration Model [16], Hidden Variable models [17,18]
and extensions of them [6,9]. If we restrict ourselves to binary networks with a fixed number of vertices,
N , and with no self-loops or multiple edges, the analogy with statistical physics lies in the fact that
in these models, each link can be regarded as a “particle” that can be placed between any two vertices,
subject to the constraint that the “occupation number” for each pair of vertices, i, j, can only be aij = 0, 1

(for missing or existing links respectively), as in the familiar Fermi statistics. Clearly, aij coincides with
the entries of the N × N adjacency matrix, A, characterizing the topology completely. Each allowed
adjacency matrix,A, corresponds to a possible configuration, and the set of possible configurations (each
with its statistical weight PA) defines the statistical ensemble of graphs. Thus, the framework of ERGs
allows one to develop the “statistical mechanics of networks” by exploiting a range of tools that are well
known in physics [6].
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A multitude of specifications of ERGs have been proposed in order to reproduce, mostly in isolation
from each other, the topological properties mentioned above [7–15]. Here, we show that, if the analogy
with statistical physics is completed via the introduction of the concept of graph temperature, all the
above empirical properties can be easily understood as the consequences of a single phenomenon:
the fact that real networks tend to have a low value of the temperature, presumably as the result of a
topological optimization driven by the cost of establishing links.

In particular, we find that many well-known topological properties, such as the presence of a giant
component, a scale-free degree distribution, the small-world effect and a modular or “community”
structure, can be easily understood in terms of the low-temperature behaviour of real networks.

2. Temperature-Dependent Ensembles of Graphs

We will now generalize the existing statistical formalism in order to include the concept of graph
temperature. To realize why this extension is important, we note that in all ERG models, the probability,
PA, depends on the energy, EA, representing the topological “cost” of realising the particular graph,
A. The energy, EA, is chosen to be a linear combination of the so-called “constraints” [6,12], i.e., the
topological quantities that one desires to enforce.

Now, the concept of topological cost, or energy, is unclear without the quantification of its relative
role with respect to the available resources that can be exploited to form the network. The relative
importance of “cost” and “available resources” is usually controlled in statistical physics by the
temperature. The zero-temperature regime corresponds to complete optimization, so that only the
cheapest configuration can be formed and the units of the system occupy the states with the lowest
energy (this is the optimized case). In the opposite, infinite-temperature extreme, the system does
not distinguish between energetically cheap and expensive states, so that all configurations occur with
the same probability. The formalism that we develop here is particularly suitable to model networks
subject to such economic/engineering constraints. We shall complement the standard results obtained
in the literature for the generic finite-temperature case (which is recovered when T = 1) with the
interesting ones corresponding to zero and infinite temperature, which are not accessible to current
finite-temperature models. We find that a range of interesting results can be obtained by even the simplest
models when T is allowed to vary, in particular when T approaches zero.

Our approach works equally well for directed and undirected graphs, but for the sake of simplicity,
we write all the expressions for the undirected case only. The generalization to directed graphs is
straightforward. Similarly, the full generalization to weighted networks is possible using the available
results for weighted ensembles [10,12,13], but we will not consider it here. Rather, we will consider a
partial generalization to weighted networks by exploiting one particular approach that we have recently
proposed to relate edge weights to edge probabilities [19].
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2.1. General Formalism

The most general statistical ensemble for an equilibrium undirected network is a grandcanonical
one with 2N(N−1)/2 graphs having a fixed number of vertices, N , and a varying number of links,
LA =

∑
ij aij , controlled by the chemical potential, µ [6,9]. The chemical potential is an important

parameter governing the link density of the network and the probability of connections [9]. However, in
order to have a global parameter coupled not only to the number of links, but also to any other topological
property of the network, we also introduce the graph temperature, T . We therefore define a generalized
ensemble, where the probability of graph A is given by:

PA =
1

Z
exp

[
µLA − EA

T

]
(1)

where EA is the energy of the particular graph, A (a function of one or more topological properties of A,
to be specified in each particular model) and:

Z ≡
∑
A

exp

[
µLA − EA

T

]
(2)

is the grand partition function of the ensemble. Note that when T →∞, we have PA = 2−N(N−1)/2 for
all graphs, while when T → 0, we have PA = 1 for the graph with the maximum value of µLA − EA
(or PA = M−1 if there are M degenerate such graphs), and PA = 0 for all other graphs.

The temperature in Equation (1) might appear to be redundant, since the parameter, T , can be, in
principle, reabsorbed in a redefinition of EA and µ without loss of generality. In other words, all choices
of parameters that lead to the same values of EA/T and µ/T will generate indistinguishable results,
meaning that the value of T is indeterminate. While this is mathematically true, there is a definite
“physical” benefit in including the temperature as an additional parameter. As we discuss below, the
benefit is that of incorporating in T all the “collective effects” arising in large networks, while leaving
the local properties (such as the energy of a single link) well defined in the thermodynamical limit. In
other words, if we have empirical information about the local link energies, this will fix the scale of the
problem and define the temperature unambiguously for a given network. We will indeed show examples
when, for realistic scale-free specifications of network properties, it is possible to measure the graph
temperature empirically.

2.2. Networks with Finite Energy Per Link

In general, being a combination of topological properties, the energy, EA, can be an arbitrarily
complicated function of the adjacency matrix, A, but throughout the present paper, we consider the
simple and instructive case, explored in many models, where it can be written as a sum over the individual
link energies, εij [6,9,12]:

EA ≡
∑
i<j

εijaij (3)
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As we show below, this choice can—despite its simplicity—give rise not only to random graphs, but also
to complex scale-free networks, small-worlds, networks with correlations, clustering and community
structure. The partition function reads:

Z =
∑
{A}

∏
i<j

e(µ−εij)aij/T =
∏
i<j

[
1 + e(µ−εij)/T

]
(4)

and the graph probability is:
PA =

∏
i<j

p
aij
ij (1− pij)1−aij (5)

where:
pij(T ) =

1

e(εij−µ)/T + 1
(6)

is the probability that a link between i and j exists. Equation (6) has the usual form of Fermi statistics
(alternative derivations of the above expression for pij are given in [6,9,20] for T = 1). Therefore, the
additivity of EA implies that each link is drawn independently with probability, pij .

If the form of εij is further simplified, many important network models are obtained as particular cases
of Equation (6), including hidden-variable models, the configuration model and random graphs [6]. We
shall introduce the temperature-dependent version of these models in what follows. We shall also exploit
Equation (6) to study a temperature-dependent small-world model, a model with community structure
and ensembles of binary graphs derived from real-world weighted networks. Therefore, Equation (6)
gives rise to a rich phenomenology and will be of central importance throughout the paper.

Before considering particular cases, let us first note some general properties of Equation (6). Note
that, independently of T , pij > 1/2, when εij < µ, and pij < 1/2, when εij > µ. It is interesting to
consider the infinite- and zero-temperature limits, as well as the “classical” one.

When T → +∞, Equation (6) implies that:

pij(+∞) =
1

2
(7)

irrespective of the values of εij and, hence, of the differences in the cost of links. As a consequence,
the network is a random graph with p = 1/2 and is, therefore, trivial. Note that, in this case, any two
configurations, A and B, become equiprobable (PA = PB).

When T = 0, we instead have:
pij(0) = Θ(µ− εij) (8)

where Θ(x) = 1 if x > 0 and Θ(x) = 0 if x < 0. Technically, we should define Θ(0) = 1/2 in order
to capture the correct behaviour of Equation (6), even if we will not encounter this situation in what
follows. The above equation means that only those pairs of vertices for which εij < µ are connected.
This is analogous to the well-known degenerate behaviour of Fermions at zero temperature, and µ is
also termed the Fermi energy, εF = µ. This clarifies the role of µ as the available energy per link when
T → 0: at absolute zero, only the topology with the minimum value of EA − µLA can be realized. This
topology is obtained by drawing all and only the links with εij < µ.

A final general comment is that Equation (6) reduces to the “classical limit” [6]:

pij(T ) ≈ e(µ−εij)/T when e(εij−µ)/T � 1 (9)



Entropy 2013, 15 3153

We will consider the above limit in some applications later on.
An important consequence of the above general considerations is that, since both εij and µ are

link-specific quantities, we will be interested in the case when their value is finite and independent
of the network’s size, N . This is because large-scale networks arise as a bottom-up combination of local
link formation processes. The energy per pair of vertices should, therefore, have a finite value in the
thermodynamic limit, (N →∞). For the same reason, we will assume that εij and µ are independent of
the temperature, T . In other words, εij and µ fix the scale of pair-specific properties (that should remain
well-defined in the large N limit), and the collective (network-wide) effects are reabsorbed in T . As
we have anticipated above, this is the main added value of isolating T from the other parameters of the
model and the ultimate reason why we believe that investigating the temperature dependence of network
ensembles is important. As a final remark, we require εij , µ and T to be dimensionless. If we imagine
that εij is (a function of) an empirically measurable quantity, such as distance or money, a dimensionless
specification can be achieved by assuming that both εij and µ have been preliminarily divided by some
appropriately averaged (either over vertices or vertex pairs) value of εij and by simply considering T as
a dimensionless parameter. We will discuss this point in each of the following examples.

3. Random Graphs: Vanishing of the Percolation Threshold at Zero Temperature

In what follows, we consider various specific cases. The simplest scenario is when all link energies
are equal: εij = ε. This yields a temperature-dependent random graph of the Erdös-Rényi type, since all
probabilities, pij , are equal to:

p(T ) =
1

1 + e(ε−µ)/T
(10)

Note that, if we assume that the ε has been divided by its average value over all pairs of vertices to
make it dimensionless, we should simply set ε = 1. When looking at the above formula, as well as the
following ones, this is the value of ε that we should keep in mind.

While the properties of the random graph are well known, in our framework, some intriguing results
emerge as the temperature is varied and, in particular, when T → 0. First of all, we note that:

p(0) = Θ(µ− ε) (11)

implying that the graph is either fully connected (µ > ε) or empty (µ < ε). (Technically, we recall that if
µ = ε, then p(0) = 1/2, i.e., the graph is half-connected.) This result provides us with a useful (for our
purposes in what follows) definition of “sparseness” of a network. We define a random graph as sparse
(dense) if ε > µ (ε < µ), since when T → 0, the graph becomes empty (fully connected). This means
that, at finite temperature, a sparse graph (as defined above) will be such that p(T ) < 1/2, and a dense
graph will be such that p(T ) > 1/2. At infinite temperature, both sparse and dense graphs converge to
the intermediate density, p(+∞) = 1/2.

3.1. Critical Percolation Temperature

Before considering other models, it is quite interesting to consider the percolation transition marking
the onset of a giant connected component in an infinitely large random graph. For random graphs, it
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is well known that this transition occurs when the connection probability, p, is set to the critical value,
pc ∼ 1/N , i.e., when the function, f(N), introduced above is f(N) ∼ N . In our framework, since ε and
µ are fixed, we can regard the phase transition as temperature-dependent. If ε > µ, then p(T ) > 1/2 > pc

at all temperatures, meaning that dense graphs are obviously always above the critical threshold. If ε < µ,
there is a critical percolation temperature, Tc, such that p(Tc) = pc ∼ 1/N . Inverting, we find that for
sparse graphs:

Tc(N) ∼ ε− µ
lnN

ε < µ (12)

In the thermodynamic limit, we have:
lim
N→∞

Tc(N) = 0 (13)

meaning that whenN →∞, the critical percolation temperature tends to zero, i.e., the zero-temperature
topology naturally sets at the critical point, p = pc. It is well known that at this critical point, the
distribution of the sizes of connected components of the network has a power law distribution of the
form, P (s) ∝ s−5/2 [1]. Interestingly, this behaviour is similar to a scenario explored in the theory of
Self-Organized Criticality (SOC), where the onset of the SOC behaviour has been related to the vanishing
of the critical temperature [21]. Combining together the above results about dense and sparse graphs, we
find that, irrespective of their density, at finite temperature, infinitely large random graphs are always
above the percolation threshold.

3.2. Large and Sparse Graphs Have Low Temperature

We note that the link density of most real-world socio-economic networks is (significantly) smaller
than 1/2. This means that, when modeled as random graphs (i.e., when considering a connection
probability, p, equal to the observed link density, f ), real networks systematically fall in the “sparse
graph” category and are, therefore, such that ε > µ. It should also be noted that in most cases, the
observed density typically decays as 1/f(N), where f(N) is an increasing function of N . This means
that, in order to reproduce the empirically observed density, random graphs should be such that:

1

1 + e(ε−µ)/T
=

1

f(N)
(14)

which implies:

T =
ε− µ

ln[f(N)− 1]
(15)

This result shows that larger graphs have a smaller temperature, providing a first indication of the fact that
large real-world networks might be generally characterized by a small value of the graph temperature.

It is also important to note that, for most observed networks, f(N) ' cN with c & 1. In combination
with Equation (12), this means that, when modeled as random graphs, large real-world networks have
a low, but non-zero, temperature, i.e., they are “just above” the percolation threshold. This is enough
to ensure that large networks have a giant connected component. For social networks, being above the
percolation threshold ensures that, starting from any node in the giant connected component, information
can diffuse to any other node of the same component. Since, in the thermodynamic limit, the giant
component spans a finite fraction of an infinite network, this means that information can diffuse to a
macroscopic scale.
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Obviously, real networks are very different from random graphs. Still, the above considerations hold
true also for more realistic models of networks displaying “scale-free” and “small-world” properties,
as we show in the next examples. On the other hand, we also know that the way information diffuses
on real social networks is not uniquely determined by whether a giant connected component exists. In
particular, we know that information is mostly confined within denser modules, a feature that requires
the network to be partitioned into so-called “communities” [4]. We will discuss this point later on, when
we will introduce a model with temperature-induced community structure.

4. Fitness Models: Random Graphs at High Temperature, Scale-Free Networks at
Low Temperature

Another case of great interest is when the link energy in Equation (3) is the sum of two
single-vertex contributions:

εij = εi + εj (16)

For future convenience, we assume that εi ≤ 0 ∀i (this can always be achieved by an irrelevant overall
shift in the energies, εi → εi − εmax ≤ 0). Moreover, to have a dimensionless quantity, we imagine that
εi (and, similarly, εj) has been preliminary divided by the absolute value of its average over all vertices.
After these operations, we therefore have ε = −1, where the bar denotes an average of εi over vertices.

The above choice leads to the graph energy:

EA =
∑
i

εiki (17)

where ki ≡
∑

j aij is the degree (number of links) of vertex i. Note that all graphs, A, with the same
degrees have the same energy, EA, and are, therefore, equiprobable. This case, therefore, represents
the grand-canonical version of the so-called Configuration Model, i.e., a model of random networks
with given degrees [6]. It can also be regarded as a particular case of the class of Fitness Models [17],
where each node, i, is characterized by a “fitness” or “hidden variable”, xi, determining the connection
probability. The novelty of our approach is that the node fitness, xi ≡ e−εi/T , and the “fugacity”,
z ≡ eµ/T (in terms of which the model is conveniently described [20,22]), now depend on T . We can
therefore write:

pij(T ) =
1

e(εi+εj−µ)/T + 1
=

zxixj
1 + zxixj

(18)

which reduces to the random graph case discussed in the previous section when all vertices have the
same value of εi or, equivalently, xi.

We now consider a standard procedure to obtain scale-free degree distributions, i.e., by assigning each
vertex, i, a fitness, xi, drawn from a power-law distribution, ρ(x) ∼ x−γ . It has been shown that this
choice leads to a scale-free degree distribution with the same exponent, −γ, followed by a cut-off for
large degrees [20]. The cut-off arises from the fact that pij saturates to one as xi → +∞, which is, in
turn, a reflection of the fact that the degrees cannot exceed the maximum number, N−1. Clear empirical
evidences of this saturation have been observed, for instance, in the analysis of the Internet [20] and of
the World Trade Web (WTW) [22].

To highlight the role of T , we now rephrase the above results in terms of the energies, εi. For
convenience, we introduce the non-negative quantity, φi ≡ −εi ≥ 0, which measures the tendency
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of vertex i to form connections [17]. Similarly, we define φ0 ≡ −µ. Now, if we want x to be distributed
according to:

ρ(x) = (γ − 1)x−γ (19)

(where 1 ≤ x < +∞ and γ > 1), then the quantity, φi = −εi = T lnxi, must be distributed according to:

q(φ) =
γ − 1

T
e−φ(γ−1)/T (20)

Now, since φ does not depend on T , q(φ) must be T -independent, as well. The only possibility is,
therefore, (γ−1)/T = λ, where λ is a constant independent of T . Note that the mean of the distribution,
q(φ), is φ = λ−1. On the other hand, since φi = −εi and ε = −1, we also have φ = −ε = 1. This means
that we must set λ = 1. This yields γ = 1 + T and:

q(φ) = e−φ (φ ≥ 0) (21)

ρ(x) = Tx−1−T (x ≥ 1) (22)

which is an important result, showing how T determines ρ(x), and, consequently, the topology of
the network.

For instance, in the classical limit (9), we recover the T -dependent version of a model studied in [17]:
since pij(T ) ≈ zxixj , the expected degree, k̄i =

∑
j pij(T ) ≈ zxi

∑
j xj , is proportional to xi and is

therefore distributed as:
P (k̄) ∝ k̄−1−T (23)

In this case, there are no degree correlations, due to the factorization of pij(T ).
In the more general case (i.e., outside the “classical” regime), P (k) has a power-law region with an

exponent that is still an increasing function of T , followed by a cut-off arising from the saturation of
pij(T ). The power-law region narrows as T increases. This qualitative behaviour can be characterized
rigorously by computing k̄i as a function of xi or φi and inverting this relation to find P (k̄) from ρ(x)

or q(φ). This is not easy, in general, but here, we show that in the three paradigmatic cases, T = +∞,
T = 1 and T = 0, it can be done successfully.

4.1. High-Temperature Regime (T = +∞)

For T = +∞, we have the usual result, pij(+∞) = 1/2. Therefore, the network is a random graph
with density, 1/2, and average degree, N/2. In this regime, the degree distribution, P (k̄), approaches a
trivial Poisson distribution with mean, N/2. There are no degree-degree correlations, and all nodes have
an expected clustering coefficient equal to 1/2.

4.2. Finite-Temperature Regime (T = 1)

For T = 1, denoting pij(T ) = p(φi, φj), the expected degree of a vertex with fitness φ can be
evaluated as the integral:

k̄ = N

∫ +∞

0

p(φ, φ′)q(φ′)dφ′ = N

∫ +∞

0

q(φ′)

eφ0−φ−φ′ + 1
dφ′

= N
ln(eφ0−φ + 1)

eφ0−φ
= Nzx ln

1 + zx

zx
(24)
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which is an increasing function of x and is, therefore, invertible. If x(k̄) denotes the inverse function,
the expected degree distribution is P (k̄) = ρ[x(k̄)]dx/dk̄. Note that k̄ ∝ x for small x, while k̄ → N

for large x. Thus, in the linear regime (small k̄), we have x ∝ k̄, as in the classical limit, so that dx/dk̄
is constant and:

P (k̄) ∝ ρ[x(k̄)] ∝ k̄−2 (25)

This scale-free region is followed by a cut-off for large k, corresponding to the “saturated” behaviour.

4.3. Zero-Temperature Regime (T = 0)

Finally, when T = 0, the expression for ρ(x) in Equation (22) breaks down, since all the xi’s become
infinite, and from Equation (8), we find:

pij(0) = Θ(φi + φj − φ0) (26)

Surprisingly, this coincides with another model introduced in [17], which precisely assumes q(φ) = e−φ,
as in Equation (21), and, thus, turns out to be the zero-temperature limit of our general model. This model
is intriguing, since a derivation similar to that in Equation (24) shows that it yields a purely scale-free
degree distribution:

P (k̄) = (Ne−φ0) k̄−2 = (Neµ) k̄−2 (27)

(now without cut-off), even if no power-laws are introduced “by hand” in the model [17,18]. Moreover,
the model displays anticorrelation between degrees: the average nearest neighbour degree scales as:

k̄nn(k̄) ∝ k̄−1 (28)

and the clustering coefficient scales as
: c̄(k̄) ∝ k̄−2 (29)

(times logarithmic corrections) [17,18].
We note that, while in [17], the above model was proposed as an alternative way to produce scale-free

networks, different from the specification leading to Equation (23), here, we find that both choices are
actually two particular cases of the same temperature-dependent model. We also note that Equation (27)
cannot be retrieved as the zero-temperature limit of Equation (23), since in such a limit, the “classical”
approximation (9) is no longer valid. Rather, the above results show that as T goes to zero, the exponent
of the degree distribution approaches −2, with a gradual disappearance of the upper cut-off. Moreover,
we stress that while the topological properties of the network depend on both the temperature, T , and
the chemical potential, µ, the latter strongly determines the mean of the degree distribution (i.e., the link
density), but not its functional form, which is, instead, mainly determined by T .

Taken together, the above results lead to the following intriguing conclusion: in this model, correlated
scale-free networks with exponent−2 naturally arise as the optimized topology at zero temperature. As T
grows, the correlations become weaker, the exponent of P (k̄) increases and a cut-off appears, destroying
the purely scale-free behaviour, until for T → ∞, the network becomes an uncorrelated random graph
with a Poisson degree distribution. In our framework, it is clear that φ0 plays the role of a Fermi energy.
We can also interpret the correlations at T = 0 as the collective need to minimise the total energy, an
effect that gradually weakens as T increases.
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4.4. The Temperature of Real Binary Networks

We now make some important considerations about the temperature of real-world binary networks.
The degree distribution of most real scale-free networks has a broad tail of the form:

P (k) ∝ k−γ 2 . γ . 3 (30)

The above observed range of the exponent is another remarkable indication that real networks are
consistent with a low-temperature model. In particular, all binary scale-free networks in the “classical
regime” described by Equation (23) are consistent with a temperature:

Tbinary = γ − 1 =⇒ 1 . Tbinary . 2 (31)

Scale-free networks outside the classical regime are instead characterized by an even lower temperature,
since we have shown that γ = 2 is realized at T = 0. For these networks, a small positive value,
Tbinary > 0, is already enough to produce a realistic degree distribution with γ > 2.

We finally note that, if one has access to the empirical distribution, ρ(x), one can measure Tbinary for
any real network, which is well described by Equation (18), even if this network is not scale-free. This
is, for instance, possible for the WTW, where xi has been identified with the Gross Domestic Product
of country i, whose distribution has a fat tail consistent with a power-law with exponent −2 [22]. This
means that TWTW

binary ≈ 1 and that Equation (24) applies. This is consistent with the observed saturated
behaviour of k(x) and the cut-off displayed by P (k) for the real WTW [22].

5. More General Models

One can further explore Equation (6) by considering different forms of q(φ) and of εij as a function of
φi and φj , thus recovering the whole class of fitness models [17] with generic pij = p(φi, φj). An even
more general case is when εij cannot be written as a function of single-vertex contributions, so that each
pair of vertices has an associated quantity, φij ≡ −εij , drawn from a distribution, q(φ), and a probability,
pij = p(φij), to exist. This corresponds to the general case defined by Equations (3) and (6).

The vanishing of the percolation threshold, as shown previously in Equation (13) for the random
graph example, is actually a more general result and holds even when different pairs of vertices have
different values of εij , as in Equation (6), i.e., when εmin ≤ εij ≤ εmax < µ. In this case, we must have:

Tmin(N) ≤ Tc(N) ≤ Tmax(N) (32)

where:
Tmin(N) ≡ εmin − µ

lnN
, Tmax(N) ≡ εmax − µ

lnN
(33)

From the above equations, it follows that:

lim
N→∞

Tmin(N) = 0, lim
N→∞

Tmax(N) = 0 =⇒ lim
N→∞

Tc(N) = 0 (34)

Therefore, the critical temperature vanishes in this case, as well. Again, this suggests why most
large social networks display a giant connected component, including the class of scale-free networks
consistent with the model described above.
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In what follows, we consider three particular cases of the above model: a temperature-dependent
modification of the “small-world” network model [23], a novel model of networks with community
structure and a generalization of ensembles of binary graphs derived from weighted networks [19]. The
latter allows for a direct and simple extension to real weighted networks.

6. A Temperature-Driven Small-World Model

The energy in Equation (6) is particularly suitable as a model of networks with geometric
constraints [15,24,25]. Indeed, if vertices represent points of a metric space, the distance between pairs
of vertices will affect the cost of a link between them. We now show that this simple fact leads to
a straightforward definition of a temperature-dependent model of small-world networks, which can be
also extended to generate networks that are both small-world and scale-free.

6.1. Non-Scale-Free Small-Worlds

In the simplest situation, the energy, εij , of a link is simply proportional to the distance, dij , between
its end-point vertices. If we imagine that both εij and dij have been made dimensionless by dividing each
of them by the respective average value over all pairs of vertices, the proportionality constant drops out,
and we can simply write:

εij = dij (35)

This implies:
EA =

∑
i<j

εijaij =
∑
i<j

dijaij (36)

so that the probability of a link being there between i and j reads:

pij(T ) =
1

e(dij−µ)/T + 1
(37)

Let us first consider the zero-temperature behaviour. The above probability becomes:

pij(0) = Θ(µ− dij) (38)

which is nothing, but the definition of a local “metric” network connecting the geometrically closest
vertices (with a connectivity range set by the chemical potential, µ). Consider, for instance, N vertices
equally spaced on a circle. Let d be the dimensionless distance between nearest neighbours along the
circle, i.e., dij = d if i and j are first neighbours, dij = 2d if they are second neighbours, and so
on. At zero temperature, Equation (38) implies that if d < µ < 2d, then the network is a ring with
first-neighbour interactions (as in Figure 1); if 2d < µ < 3d, then the network is a ring with
second-neighbour interactions; and in general, ifmd < µ < (m+1)d (wherem is a positive integer), the
network is a ring with mth-neighbour interactions. If vertices are instead the nodes of a D-dimensional
lattice and d is the lattice spacing, then when md < µ < (m + 1)d, the zero-temperature network is
a lattice with the same dimensionality and with mth-neighbour interactions. (Note that, if we allow
the chemical potential to take precisely the integer value, µ = md, then the pairs of vertices separated
by a distance, dij = md, will be connected with probability, pij(0) = 1/2, adding a sort of “random
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anomaly” to the ring-like or lattice structure. For this reason, we have deliberately restricted µ to take
the non-integer values, md < µ < (m+ 1)d, so that µ 6= md.)

Figure 1. A temperature-dependent small-world model with vertices arranged in a circle
and chemical potential, d < µ < 2d (where d is the dimensionless distance between
nearest neighbours along the circle). When T = 0 (left), the network is a ring with
first-neighbour interactions. When T = ∞ (right), the network is a random graph with
connection probability, p = 1/2. When T = 1 (center), the network is a “small-world” with
a few long-range connections and an incomplete circular “backbone”.

T=0! T=∞!T=1!
If the temperature is slightly increased from T = 0 to a small positive value, then these regular

ring-like or lattice structures will be perturbed, with a small number of short-range connections
being replaced by longer-range ones (see Figure 1). At higher temperature, the zero-temperature
structure becomes increasingly obscured, and even longer-range connections are formed, until at
infinite temperature, the network becomes a completely random graph with connection probability,
pij(+∞) = 1/2.

From the above discussion, it is clear that this model is very similar to the popular “small-world”
model by Watts and Strogatz (WS) [23], where an initial lattice is perturbed by redirecting its links, with
probability, p, to randomly chosen vertices. In that model, if p = 0, the original lattice is preserved;
if 0 < p < 1, part of the original lattice coexists with long-range connections or “shortcuts”; while if
p = 1, all the links are rewired, as in a random graph.

There are two main differences between our model and the WS one. First, here, for all finite values
of T , longer links have a smaller probability than shorter links, whereas in the WS model, distance
does not affect the probability of creating shortcuts (which is a less realistic situation). Second, here,
the totally random (T = +∞) configuration has density, 1/2, irrespective of the density of the initial
(T = 0) lattice, whereas in the WS model, the totally random (p = 1) configuration has the same density
as the initial (p = 0) lattice. In fact, here, the density depends monotonically on T , while in the WS
model, it is independent of p. Therefore, the low-temperature regime of our model is similar to the WS
model in the regime of low rewiring probability, whereas the behaviour of the two models differs in their
high-temperature/high-rewiring regimes.

In the limit of low rewiring probability, the standard WS model exhibits the so-called “small-world”
effect, i.e., the combination of a large value of the clustering coefficient (measuring the average fraction
of realized triangles at each node) and of a small value of the average vertex-vertex distance (which
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increases only logarithmically with the size of the graph) [1]. Since these properties are found in the
low-rewiring regime, we can expect that they would be generated also in the low-temperature regime
of our model. Again, this means that the empirically observed properties (in this case, the small-world
effect) are reproduced for small positive values of the graph temperature.

6.2. Scale-Free Small-Worlds

As for the random graph model, we know that the simple small-world model (either the original WS
one or our temperature-dependent reformulation above) does not reproduce the broad degree distribution
so widely observed in real networks. Here, we briefly discuss how our model above can be extended in
order to account for a heterogeneous—and, if necessary, scale-free—degree distribution.

To this end, we combine two models considered so far, by assuming that the link energy in
Equation (3) is determined not only by distances, as in the above model, but also by vertex-specific
properties, as in Equation (16). This leads to:

εij = dij + εi + εj (39)

where, now, we imagine that dij has been divided by its average over all pairs of vertices, while εi and εj
have been divided by their average over all vertices. Correspondingly, Equation (3) becomes:

EA =
∑
i<j

dijaij +
∑
i

εiki (40)

and Equation (6) becomes:

pij(T ) =
1

e(dij+εi+εj−µ)/T + 1
=

zxixje
−dij

1 + zxixje−dij
(41)

(where we have used the same definitions as in Section 4). The above model has been recently exploited
in order to study the spatial properties of the World Trade Web, where dij is the (dimensionless)
geographic distance between countries i and j [15].

Clearly, a sufficiently heterogeneous distribution of the values of εi will induce a broad degree
distribution, exactly as we showed in Section 4. In particular, a suitable choice allows one to reproduce
the scale-free and small-world properties simultaneously. However, a general conclusion one can learn
from this model is that, if the distances arise from a homogeneous spatial distribution of vertices and
if the degree distribution induced by Equation (40) is very broad, this typically means that, while the
distribution of the sums, εi + εj , is very broad, the distribution of the distances, dij , is much more
narrowly concentrated around its average value, d = 1. Looking at Equation (39), this means that the
distribution of εij is mainly determined by that of εi + εj , i.e., we can make the approximation:

εij ≈ d̄+ εi + εj = 1 + εi + εj (42)

Clearly, the constant unit term, d̄ = 1, can be reabsorbed in the chemical potential by defining µ′ ≡ µ−1,
thus leading us back to the model defined by Equation (16) in Section 4. For instance, when T = 0, the
degree distribution reads:

P (k̄) ≈ (Neµ−1) k̄−2 (43)
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and the degree correlations and clustering properties are still given by Equations (28) and (29).
The above considerations mean that the scale-free property automatically implies the small-world

one, whereas the converse does not hold in general. An empirical confirmation of this idea comes from
the recent application of Equation (41) to the World Trade Web [15], which showed that this model only
slightly improves the fit to real data with respect to the simpler model defined by Equation (18) and
is, in any case, outperformed by other models, which, instead of the distances, add to Equation (18) a
different piece of information. Since, for a realistically broad distribution of εi, the model reduces to
the distance-independent one introduced in Section 4, we can again conclude that the relevant range of
temperature is when T is small, but non-zero, exactly as in the distance-independent model. Moreover,
for scale-free networks with a degree distribution given by Equation (30), the empirical value of the
temperature is still given by Equation (31).

7. A Model of Networks with Low-Temperature Community Structure

We now come to a simple model of networks with community structure. To this end, we actually keep
the same ingredients as in our temperature-driven small-world model defined above, with the difference
that, instead of assuming that the quantities, dij , are metric distances among the nodes of a lattice, we
imagine that they are ultrametric distances among the leaves of a dendrogram. In simpler words, we
assume that the N vertices of the network can be categorized into a taxonomic tree with N leaves at the
bottom layer, where dij is the height of the closest common branching point separating i and j.

7.1. Ultrametric Small-World Model

Having assumed that the distances, dij , are ultrametric, we further assume that the network is
specified by Equation (36). The rationale for this choice is that, as an increasing body of empirical
evidence suggests, the connectivity of content-rich networks, such as the World Wide Web or paper
citation networks, is strongly determined by the semantic relationships between nodes. Web pages or
scientific articles about similar topics are simply more likely to be connected to each other. Since topics
are generally associated with a hierarchical taxonomy (with subcategories nested within categories),
it follows that nodes with a closer common branching point in the taxonomic tree are more likely to
be connected. The above qualitative properties are precisely those featured by Equation (37), having
assumed an ultrametric distance, dij between all pairs of vertices. We can therefore regard this model as
an “ultrametric small-world model”. A similar idea, based on the embedding of vertices in a hyperbolic
space, has been found to give rise to a rich phenomenology explaining many empirical properties of
real networks [26,27].

Note that, since the authors of web pages or scientific articles are typically active in specialized topics,
the hierarchical taxonomy will also affect the structure of social networks defined at the level of the
authors themselves, e.g., networks of authors linked by co-authorship or (co-)citation. Moreover, even
when dij is defined as a ‘social distance’ that, in principle, is not necessarily ultrametric (for instance,
a metric distance between Euclidean vectors specifying the cultural traits of individuals), the empirical
values of dij are found to be approximately ultrametric [28].
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In this case, as well, when T = 0, the connection probability reduces to the deterministic
expression (38). However, the resulting network is now very different: the pairs of vertices separated
by a distance smaller than µ are now the leaves of the dendrogram having a common branching
point at a height smaller than µ. Equation (38) implies that all such pairs of vertices are connected,
while all other pairs are not. Visually, if we “cut” the dendrogram along the horizontal direction at a
height, µ, all the leaves found within a connected branch will be the nodes of complete cliques (fully
connected subgraphs) in the network (see Figure 2a). Leaves belonging to different connected branches
will not be connected, so the network is split into as many connected components as the number of
connected branches produced by cutting the dendrogram. Higher values of µ produce fewer and larger
connected components, but at zero temperature, all such components are, in any case, complete cliques
(see Figure 2a, b).

Figure 2. Our “ultrametric small-world model” as a function of temperature, T , and
chemical potential, µ. Nodes (blue circles) are leaves of a dendrogram (black lines),
separated by an ultrametric distance, dij (increasing along the purple axis), representing the
height of the closest branching point separating vertices i and j. The ultrametric distances
determine the topology of the network (lying on the horizontal purple plane): (a) when T = 0

and µ is small, the network is divided into many small cliques (blue links) corresponding to
the disconnected branches obtained by “cutting” the dendrogram along the orange dashed
line determined by µ; (b) when T = 0 and µ is larger, the network is divided into fewer
and larger cliques; (c) when T & 0 and µ is small, there are many small communities
that are highly connected internally (blue links) and sparsely connected across (red links);
(d) when T & 0 and µ is larger, there are fewer and larger communities, with a higher density
contrast between intra-community (blue) and inter-community (red) links. After introducing
an appropriate degree of heterogeneity at the level of vertices, this model can be turned into
our “ultrametric scale-free model”, where a non-trivial community structure coexists with a
broad degree distribution.
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For small, but positive, T , the zero-temperature structure will be perturbed into a finite-temperature
one, where the original cliques become “modules” of densely (but not completely) connected vertices,
with a few links connecting different modules (see Figure 2c, d). This is precisely the kind of community
structure that is observed in most real socio-economic networks [4]. When T becomes large, more
missing links will be produced within communities and more links will be produced among them, until
the intra-community and inter-community densities equalize to the common value, 1/2, in the limit, T →
+∞. Therefore, again, we find that in order to reproduce the empirical properties of socio-economic
networks (where the contrast between inter- and intra-community density is very marked, but at the
same time, communities are not isolated from each other), the relevant regime of the model is the one
found for small positive T .

7.2. Ultrametric Scale-Free Model

However, as for the ordinary small-world model, our ultrametric variant defined above does not
reproduce the broad degree distribution of real-world networks. However, in this case, as well, it
is possible to introduce the desired heterogeneity at the level of vertices by extending the model as
in Equations (39)–(41), where, now, dij is an ultrametric distance. For a sufficiently high level of
heterogeneity of εi, the model preserves the scale-free character of its distance-independent counterpart
described in Section 4. For this reason, we call this model the “ultrametric scale-free model”.

It should be noted that in this case, the range of variability of dij can be much broader than in the non-
ultrametric case, because, here, small intra-branch taxonomic distances coexist with large inter-branch
ones. This means that, now, the approximation in Equation (42) is no longer legitimate, and we cannot
reduce our model with community structure to the one without it. Rather, for all pairs of vertices, i and
j, within the same community, Cµ (as specified by µ when T = 0), we now have the inequality:

εij = dij + εi + εj < µ+ εi + εj ∀i, j ∈ Cµ (44)

The above expression only holds within each community, while across communities, the opposite
inequality applies, confirming that, now, distances cannot be reabsorbed in a unique value of the
chemical potential, µ. In other words, while our discussion in Section 6 suggested that the scale-free
property automatically ensures the small-world one, here, we find that the scale-free property does not
automatically ensure the presence of community structure (and vice versa). Of course, when the model
considered here displays a sufficiently heterogeneous degree distribution, it will also automatically imply
the small-world property, along the lines discussed in Section 6.

We can therefore conclude that the model defined by Equations (39)–(41), where dij is an ultrametric
distance, is a simple, but highly nontrivial, one. Since, throughout this paper, we have not been interested
in reproducing a particular network, but rather, a class of generic empirical properties, we will not
consider any specific dij . We merely note that, despite its simplicity, the above model is able to reproduce
all the topological properties of real socio-economic networks discussed at the beginning: the presence
of a giant connected component, as ensured by Equation (34), a strong community structure induced
by the ultrametric distance, dij , a broad degree distribution and a small-world behaviour driven by a
sufficiently heterogeneous distribution of εi in Equation (39) and, finally, some realistic clustering and
correlation properties, as discussed in Section 4, for the simpler model (and qualitatively preserved here).
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Remarkably, for each of these properties to be there, the temperature, T , must be small, but non-zero.
This summarizes why we believe that a small graph temperature might simultaneously explain a range
of structural properties that are found ubiquitously in real social and economic networks.

As discussed in the Introduction, the community structure observed in real networks strongly affects
the dynamics of information spreading in these systems. For most of the time, the dynamics are locally
confined within communities, with occasional jumps across different communities. At a dynamical level,
this implies the so-called “small but slow world” effect, i.e., the fact that even if topologically short paths
exist between most pairs of vertices, such paths are rarely explored dynamically, unless they fall within
one community.

The aforementioned recent study, showing that the cultural distance, dij , among individuals of a
society is effectively ultrametric [28], has also proven that this particular distribution of individuals in
cultural space has dramatic effects for both short-term and long-term information dynamics. In the short
term, an ultrametric distance between individuals results in the onset of a “coordinated” regime, where
the combination of many microscopic inter-individual influences generates a society-wide collective
behaviour. In the long term, however, it constrains cultural convergence to the lower branches of the
dendrogram, which eventually become culturally homogeneous. Taken together, these mechanisms were
shown to explain the long-standing paradox of the coexistence of short-term collective social behaviour
and long-term cultural diversity [28].

These important consequences of ultrametric distances on social and cultural dynamics suggest
that our “ultrametric scale-free model” promises not only to reproduce the static topology of
real social networks, but to also enable a realistic simulation of distance-dependent dynamics of
information diffusion.

8. Weighted Networks as Temperature-Dependent Ensembles of Binary Graphs

So far, we have considered binary networks. Even if, thanks to recent results characterizing various
ensembles of weighted graphs [10,12,13], a full extension of our formalism to weighted networks is
possible, here, we only consider a simpler and practical extension that makes use of a mapping between
edge weights and edge probabilities. Quite recently, we explored the idea that the empirical weights,
wij , in a real weighted network can be transformed into a matrix of probabilities, pij = p(wij), defining
an ensemble of binary graphs [19]. Through this mapping, many topological properties, which are
non-obvious for weighted networks (such as the clustering coefficient), can be re-defined as ensemble
averages of the corresponding binary quantities. In [19], we explored the simplest possible choice,
where pij ∝ wij . The results presented here suggest that this choice is the “classical” limit, equivalent to
Equation (9), of a more general choice that we now consider.

8.1. The Temperature of Real Weighted Networks

Turning to Equation (6), if we require pij = 0, when wij = 0, and pij = 1, when wij = +∞, we find
that wij must be proportional to the link fitness, e−εij/T . In other words, the weights must depend on T ,
which corresponds to the property that at low T (more heterogeneous weights), some pairs of vertices
are much more likely to be connected than other pairs, while at high T (more homogeneous weights), all
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pairs of vertices tend to have a similar connection probability. Now, many real networks [29–33] display
a power-law distribution of non-zero link weights of the form:

ρ(w) ∝ w−α 1.5 . α . 3.5 (45)

If we restrict ourselves to pairs of vertices with wij > 0 and define xij ≡ wij/wmin ≥ 1 (where
wmin is the minimum non-zero weight for a given network), corresponding to the preliminary rescaling,
εij → εij − εmax, then we can repeat the arguments leading to Equation (22). Specifically, we set
εij ≡ −T lnxij ≤ 0 and φij ≡ −εij ≥ 0 to obtain:

q(φ) = e−φ (φ ≥ 0) (46)

ρ(x) = Tx−1−T (x ≥ 1) (47)

where, now, ρ(x) and q(φ) are distributions not over vertices, but over pairs of them (specifically, over
the pairs with non-zero weights). This allows us to compute the temperature of real networks with
power-law distributed weights as:

Tweighted = α− 1 =⇒ 0.5 . Tweighted . 2.5 (48)

The empirical values of α found in various weighted networks [29–33] are summarized in Table 1, and
the corresponding values of Tweighted are also shown. By contrast, note that binary networks (where all
weights are equal) correspond to T →∞, where xij = 1 ∀i, j.

We have therefore found that a general mapping from weights to probabilities is given by:

pij =
zxij

1 + zxij
(49)

where xij ≡ wij/wmin and z ≡ eµ/T is a free parameter. Note that the above expression works for both
zero and non-zero weights. We also note that the classical limit (9) of this expression reads pij ≈ zxij ,
and if we choose z = wmin/wmax, we have:

pij ≈
wij
wmax

(50)

which is approximately equivalent to the choice explored by us in [19].

Table 1. Empirical values of α and Tweighted for some real weighted networks.

Network α Tweighted Ref.

Metabolic flux networks 1.5 0.5 [29]
Interbank network 1.87 0.87 [30]
Erdős collaboration network 2 1 [31]
Chaos control & synchron. co-authorship 2.5 1.5 [31]
Financial cross-correlations 2.7 1.7 [32]
Financial cross-correlations 2.78 1.78 [33]
Financial cross-correlations 3.18 2.18 [33]
Mollusk research co-authorship 3.5 2.5 [31]
Binary graphs +∞ +∞
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8.2. Filtering of Weighted Networks as the Zero-Temperature Limit

When T → 0, the expression (49) defining our generalized mapping from a weighted network to
an ensemble of binary graphs reduces to Equation (8). This implies that the original weighted network
is mapped into a deterministic binary one, where only the links with εij < µ are drawn. This means
that the links with weight, such that xij(T ) > z−1(T ), in the limit T → 0, are selected, and the others
are discarded. Interestingly, since the ordering of the weights is preserved at all temperatures, this
corresponds to a standard thresholding procedure, adopted, for instance, in [34] to filter stock correlations
and in [35] to extract minimum spanning trees from real foodwebs. These filtering techniques discard
most of the information contained in the weights, resulting in a single (threshold-dependent) binary
graph. Here, we find that this corresponds to the zero-temperature limit of our mapping from weighted
networks to ensembles of binary graphs. Our results extend these techniques to the finite temperature
case, making it possible to preserve the heterogeneity of the links and explore the whole ensemble of
possible configurations with the appropriate probabilities. We expect that this will represent an improved
filtering technique, with a significantly reduced information loss.

9. Conclusions

We have introduced the concept of “graph temperature”, which can vary from zero to infinity, in
order to explore the behaviour of networks in the limit of large network size, while keeping the local
properties well-defined. Since our methodology makes use of statistical graph ensembles that extend the
class of Exponential Random Graphs widely used in social network analysis, it has a natural application
as a generalized model of social and economic networks. We showed that many structural properties
that are ubiquitous in socio-economic networks can be simply understood as the effects of an optimized
low-temperature behaviour resulting from “connectivity costs” and confirmed this by measuring the
temperature of both binary and weighted real-world scale-free networks. Furthermore, we have also
shown that a variety of different models and techniques can, in fact, be regarded as particular cases of
a more general temperature-dependent formalism. We believe that our results provide an intuitive and
unified understanding of many properties of real socio-economic networks, from their scale-free and
small-world behaviour to their hierarchical community structure.
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