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Laplacian renormalization group for 
heterogeneous networks
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Andrea Gabrielli1,8

The renormalization group is the cornerstone of the modern theory of 
universality and phase transitions and it is a powerful tool to scrutinize 
symmetries and organizational scales in dynamical systems. However, its 
application to complex networks has proven particularly challenging, owing 
to correlations between intertwined scales. To date, existing approaches 
have been based on hidden geometries hypotheses, which rely on the 
embedding of complex networks into underlying hidden metric spaces. 
Here we propose a Laplacian renormalization group diffusion-based picture 
for complex networks, which is able to identify proper spatiotemporal scales 
in heterogeneous networks. In analogy with real-space renormalization 
group procedures, we first introduce the concept of Kadanoff supernodes 
as block nodes across multiple scales, which helps to overcome detrimental 
small-world effects that are responsible for cross-scale correlations. We 
then rigorously define the momentum space procedure to progressively 
integrate out fast diffusion modes and generate coarse-grained graphs. We 
validate the method through application to several real-world networks, 
demonstrating its ability to perform network reduction keeping crucial 
properties of the systems intact.

A basic open question in statistical physics of networks is how to 
define a reduction scheme to detect all internal characteristic scales 
that significantly exceed the microscopic one. This is the hunting 
ground for a very powerful tool in modern theoretical physics, the 
renormalization group (RG)1,2. The RG provides an elegant and precise 
theory of criticality and allows for connecting—via the scaling hypoth-
esis—extremely varied spatiotemporal scales and understanding the 
fundamental concept of scale invariance3–5. The formulation of the 
RG in complex networks is still an open issue. Different schemes have 
been introduced, such as spectral coarse-graining6 or box-covering 
methods7–10, allowing the identification of general sets of scaling rela-
tions in networks11,12, starting from the general assumption of fractality 
of the system. Nevertheless, small-world effects reflected in short 
path lengths overcomplicate the identification of ‘block nodes’13,14, 

while Kadanoff’s decimation presents different issues when applied 
to real networks15.

Solid efforts in the complex network community have been made 
to develop further RG techniques. In a pioneering work, García-Pérez 
et al.16 defined a geometric RG approach by embedding complex net-
works into underlying hidden metric geometrical spaces. This 
approach has found particular application in the RG analysis of the 
Human Connectome17, by studying zoomed-out layers and evidencing 
self-similarity under particular coarse-graining transformations16,17. 
Notwithstanding the power of these procedures, they all rely on the 
critical assumption that they dwell in different isomorphic geometric 
spaces (𝕊𝕊1 and ℍ2), or consider a fitness distance between nodes11,15, 
conditioning the probability of connection among nodes to establish 
subsequent supernodes. For example, these techniques may lead to 
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macronodes and connections, and a renormalized ‘slow’ Laplacian on 
the coarse-grained graph. Finally, we apply the LRG to several actual 
networks, connecting the specific heat with the scale-invariant proper-
ties of a network, and show the ability of the method to perform net-
work reduction and to capture essential properties of several systems.

Statistical physics of information network 
diffusion
Information communicability in complex networks is governed by the 
Laplacian matrix24,29, ̂L, defined for undirected networks as 
Lij = [(δij∑kAik) − Aij], where Aij are the elements of the adjacency matrix 
̂A and δij is the Kronecker delta function. The evolution of information 

of a given initial specific state of the network, s(0), will evolve with time, 
τ, as s(τ) = e−τ ̂Ls(0). The network propagator, ̂K = e−τ ̂L, represents the 
discrete counterpart of the path-integral formulation of general dif-
fusion processes20,30, and each matrix element Kij describes the sum 
of diffusion trajectories along all possible paths connecting nodes i 
and j at time τ (refs. 31–33). We assume connected networks to fulfill 
the ergodic hypothesis.

In terms of the network propagator (Methods), ̂K, it is possible to 
define the ensemble of accessible information diffusion states25,26,34, 
namely,

ρ̂(τ) =
̂K

Tr( ̂K)
= e−τ ̂L

Tr(e− L) . (1)

where ρ̂(τ) is tantamount to the canonical density operator in statisti-
cal physics (or to the functional over fields configurations)3,35,36. It fol-
lows that S[ρ̂(τ)] corresponds to the canonical system entropy25,26,

S[ρ̂(τ)] = − 1
log(N)

N
∑
i=1
μi(τ) logμi(τ). (2)

where N is the number of network nodes, and μi represents the specific 
ρ̂(τ) set of eigenvalues. In particular, S ∈ [0, 1] reflects the emergence 
of entropic transitions (or information propagation transitions, that 
is, diffusion) over the network26. By increasing the diffusion time τ from 
0 to ∞, S[ρ̂(τ)] decreases from 1 (the segregated and heterogeneous 
phase—the information diffuses from single nodes only to the local 
neighbourhood) to 0 (the integrated and homogeneous phase—the 
information has spread all over the network). The temporal derivative 
of the entropy, C(τ) = − dS

d(log τ)
, represents the specific heat of the sys-

tem, tightly linked with the system correlation lengths. In particular, 
a constant specific heat is a reflection of the scale-invariant nature of 
the network (Methods).

As shown in Fig. 1, for the specific case of Barabasi–Albert (BA) 
networks and random trees (RTs), there is a characteristic loss of infor-
mation as the time τ increases. The larger the time, the lower the local-
ized information on the different mesoscale network structures. From 
the analysis of the changes in the entropy evolution (Methods), 
together with its derivative, C, the characteristic network resolution 
scales emerge26. Specifically, the peaks in the specific heat reveal the 
full network scale at significant diffusion times (scaling with the system 
size) and the short-range characteristic scales of the network (τ*, tan-
tamount to the lattice spacing a in well-known Euclidean spaces ℝn).

Real-space LRG
A crucial point is to extract the network ‘building blocks’, that is, to 
generate a metagraph at each time τ, to link the different network mes-
oscales. Note that, at time τ = 0, ρ̂ is the diagonal matrix ρij(0) = δij/N. 
Hence, ρ̂(τ) will be subject to the properties of the network Laplacian, 
ruling the current information flow between nodes, and will reflect the 
RG flow. So far, we need to consider a rule (in a similar way to the ‘major-
ity rule’) to scrutinize the network substructures at all resolution scales 
(that is, τ). For the sake of simplicity, we choose the following one: two 

non-conservation of the average degree along the RG flow, leading to 
forced pruning of links in network reduction16. In particular, developing 
free-metric RG approaches induced by diffusion distances remains a 
basic open challenge18.

Free-field or Gaussian theories19–21 have allowed to Kadanoff’s 
intuitive ideas to be moved to a quantitative level2,22. In this specific 
case, the RG is profoundly linked with diffusion equations23, which, in 
the particular case of graphs, take the form of the Laplacian matrix24. 
In homogeneous spaces or lattices, the homogeneity and the trans-
lational invariance of the metrics allow either for the integration of 
small wavelength modes all over the space or equivalently for the 
definition of block variables in identical cells, immediately defining 
the coarse-graining procedure and ensuring their connection. This 
fundamental property is completely lost in heterogeneous networks, 
implying that both the integration of small wavelength modes and 
the definition of block variables appear completely arbitrary or even 
meaningless. Diffusion has been proven to be essential for the study of 
information spreading25 and for the identification of core structures of 
complex networks26. Since the Laplacian does not contain character-
istic scales beyond those of the space of definition, network geometry 
and topology are naturally encoded in the spectral properties of the 
graph Laplacian27 as, for example, the spectral dimension of the graph.

Here we propose a new diffusion-based RG scheme, taking advan-
tage of the Laplacian operator, which detects appropriate spatiotem-
poral scales in heterogeneous networks. First, we formulate a heuristic 
real-space version of the RG, in analogy with the Migdal–Kadanoff RG 
prescription22,28. We define a recursive coarse-graining procedure of the 
network nodes preserving its diffusion properties at larger and larger 
spatiotemporal scales and, in the spirit of real-space RG techniques22, 
we introduce the concept of Kadanoff supernodes based on the char-
acteristic resolution scales of the system. This method overcomes 
small-world issues and solves decimation problems that occur when 
performing downscaled replicas. We then move to a more rigorous 
formulation of the diffusion-driven RG, analogous to the the k-space 
RG following that of Wilson2 defined in statistical field theory. This con-
sists of formulating a new Laplacian RG (LRG) theoretical framework 
in which fast diffusion modes are progressively integrated out from 
the Laplacian operator, which defines the analogue of the conjugate 
Fourier space, and automatically induces a definition of coarse-grained 
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Fig. 1 | Entropy and specific heat. a,b, Entropy parameter (dashed lines, (1 − S)) 
and specific heat (solid lines, C) versus the temporal resolution parameter of 
the network, τ for BA scale-free networks with m = 1 (a) and RTs (b). The grey 
area represents the region where we perform the coarse graining to define the 
Kadanoff supernodes. Even though coarse graining can in principle be performed 
for arbitrary values of τ (see the main text), this area, corresponding to the first 
meaningful entropy transition marked by a change of slope of the specific heat, 
permits us to integrate the microscopic structure of the network where diffusion 
is fast by drawing the skeleton of heterogeneous substructures determining the 
communication organization of the network at larger scales26. Black dashed lines 
denote the expected analytical specific-heat constant values for both networks 
(evidencing scale-invariant properties, see Methods). Curves have been averaged 
over 102 realizations.
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nodes reciprocally process information when they reach a value  
greater than or equal to the information contained on one of the two 
nodes26, thereby introducing ρ′ij =

ρij
min(ρii ,ρjj)

. Thus, depending on their  

particular ρij matrix element at time τ, it is possible to define the meta-
graph, ζij = Θ(ρ′ij − 1), where Θ stands for the Heaviside step function. 
As expected, for τ → ∞, ρ̂ converges to ρij = 1/N and ̂ζ  becomes a matrix 
with all 1’s.

For a given scale, the metagraph ̂ζ  is thus the binarized counterpart 
of the canonical density operator, in analogy with the path-integral 
formulation of general diffusion processes37. Note that, after examining 
all continuous paths travelling along the network20 and starting from 
node i at time τ = 0, our particular choice selects the most probable 
paths from equation (1), giving information about the prominent 
information flow paths of the network in the interval 0 < t < τ. In the 
language of the statistical mechanics, we are considering the analogy 
with the Wiener integral and building the RG diffusion flow of the 
network structure2,20. The last step is to recursively group the nodes of 
the network into subsequent supernodes, that is,the procedure in order 
to perform the process of node decimation.

In full analogy with the Kadanoff picture, it is possible to consider 
nodes—under the accurate selection of particular blocking scales of 
the network—within regions up to a critical mesoscale, which behave 
like a single supernode22,38. Analogously to the real-space RG, there is 
no unique way to generate new groups of supernodes or coarse grain-
ing, but if the system is scale invariant, we expect it to be unaffected 
by RG transformations. In this perspective, using the specific heat, C, 
we propose an RG rule over scales τ ≈ τ*, where τ* stands for the C peak 
at short times, realizing the small network scales. The renormalization 
procedure consists of the following steps (see also Fig. 2):

	(1)	 Build the network metagraph for τ ≈ τ*, that is, a set of heteroge-
neous disjoint blocks of ni nodes extracted from ζ (ref. 26).

	(2)	Replace each block of connected nodes with a single supernode.
	(3)	Consider supernodes as a single node incident to any edge of the 

original ni nodes.
	(4)	Realize the scaling.

Figure 3 shows the application of multiple steps l of the LRG over 
different networks. Note that Erdös–Rényi networks exhibit only a 
characteristic resolution scale (Supplementary Information Section 2). 
Kadanoff supernodes are, before this scale, only single nodes, making 
the network trivially invariant. For any possible grouping of nodes—at 
every scale, τ—the mean connectivity of the network decreases after 
successive RG transformations. The network thus flows to a single-node 
state, reflecting the existence of a well-defined network scale (see fur-
ther analysis and other test cases as in, for example, stochastic block 
models in Supplementary Information Section 2).

The LRG can also be applied to challenging networks of particular 
interest to real-life applications as well as small-world ones, revealing 
the possibility of making network reduction in this type of structure 
(even if they present intertwined scales, see Supplementary Infor-
mation Section 2). Nonetheless, when performing RG analyses over 
bonafide scale-invariant networks, as in the BA model, both the mean 
connectivity and the degree distribution remain invariant after suc-
cessive network reductions, conserving analogous properties to the 
original one (see Fig. 3 and Supplementary Information Section 4 for 
further analysis with m > 1). Figure 3a shows a graphical example of 
a three-step decimation procedure for a BA network with m = 1 and 
N = 512 nodes. Different colours at every transformation represent 
Kadanoff supernodes. Analogously, Fig. 3e shows the LRG procedure 
over RTs, confirming the capability of our approach to perform network 
reduction on top of well-defined synthetic scale-invariant networks 
(see also Supplementary Information Section 3). Furthermore, Fig. 
3f displays the scale-invariant nature of the Laplacian for different 
downscaled BA replicas.

Finally, we apply the LRG to different scale-free real networks, that 
is, following bonafide finite-size scaling hypotheses39, and significant 
cases previously analysed in other RG approaches12,16, producing down-
scaled network replicas. Figure 4 shows the particular case of Arabi-
dopsis Thaliana40 and Drosophila Melanogaster41 metabolic networks 
(confirming the scale-free inherent nature of these networks), the 
Human HI-II-14 interactome42 and the Internet Autonomous system16 
(see Supplementary Information Section 5 for a significant number 
of examples).

LRG
Thus far, as in the Kadanoff hypothesis, we do not have a clear jus-
tification for our assumptions. In this section, we introduce a rigor-
ous formulation of the LRG, which can be appropriately seen as the 
analogue of the field theory k-space RG following that of Wilson2 in 
statistical physics. From this formulation, we get a Fourier-space ver-
sion of Kadanoff’s supernode scheme at each LRG step. We also give a 
real-space interpretation of this procedure.

Without loss of generality, let us consider the case in which we 
want to renormalize the information diffusion on the graph up to a 
time τ* so as to keep only diffusion modes on scales larger than τ*  
(for example, where C shows a maximum). Let us adopt the bra–ket 
formalism in which 〈i|λ〉 indicates the projection of the Laplacian 
eigenvector ||λ⟩ on the ith node of the graph. In this sense we can iden-
tify |i⟩ with the normalized N-dimensional column vector that has all 
components as 0 with the exception of the ith component, which is 1. 
In the bra–ket notation, the Laplacian operator is ∑λλ ||λ⟩ ⟨λ||. We  
then identify the n < N eigenvalues λ ≥  λ* = 1/τ* and the relative eigen-
vectors ||λ⟩. A LRG step consists of integrating out these diffusion 
eigenmodes from the Laplacian and appropriately rescaling the graph, 
namely:

	(1)	 We reduce the Laplacian operator to the contribution of the 
N − n slow eigenvectors with λ < λ*, ̂L′ = ∑λ<λ∗λ ||λ⟩ ⟨λ||.

	(2)	We then rescale the time τ→ τ′, so that τ* in τ becomes the uni-
tary interval in the rescaled time variable τ′, τ′ = τ/τ∗, and conse-
quently redefine the coarse-grained Laplacian as ̂L′′ = τ∗ ̂L′.
Apart from the temporal rescaling, this k-space LRG scheme can 

be represented in real space through the formation of N − n supernodes 
from the N original graph nodes using the operator ρ̂(τ): by ordering 
the values of |ρij(τ∗)| = | ⟨i| ρ̂(τ∗) |j⟩ | in descending order, we can follow 
this ordered list to aggregate the nodes, stopping when N − n clusters/
supernodes are obtained. Note that, in the original basis of N nodes, 
these supernodes are represented by N − n orthogonal vectors |α⟩ with 
α = 1, . . . , N − n, which can be used as a reduced (N − n)-dimensional 
basis to represent both the coarse-grained Laplacian operator ̂L′ and 
the corresponding adjacency matrix ̂A′: A′αβ = −L′αβ = − ⟨α| ̂L′ ||β⟩, for 
α ≠ β. Moreover, we set A′αα = 0 and L′αα = ∑βA

′
αβ.
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Fig. 2 | Sketch of the Kadanoff supernodes procedure. a, The lower layer shows 
the case of a BA network (N = 24, m = 1) and the upper layer shows ζ for τ = 1.96. 
Different colours identify the Kadanoff supernodes. b, Each block becomes a 
single node incident to any edge of the original ones.
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Clearly, –this real-space representation, as happens exactly in 
statistical physics, is just a mathematically approximated description 
of the k-space RG that preserves the physical meaning.

In this way, we have defined a consistent Laplacian-driven renor-
malization step of the graph, reducing the dimension from N to N − n. 
It is crucial to note that, as defined above, this formulation of the LRG 
is exactly the extension to graphs of the k-space RG defined in statistical 
mechanics. Indeed, in metric spaces, the Laplacian operator has eigen-
values proportional to k2, where the k are the wave vectors of the modes, 
and the corresponding eigenvector is the plane wave with wave vector 
k. In addition, the correspondence of the operator ρ̂(τ) with the Boltz-
mann factor e−β ̂H in statistical field theory makes our method strictly 
correspond to the renormalization of free-field theory. Finally, note 
that although we start with a binary graph, we end up with a weighted 
full one. To visualize better the resulting graph of macronodes, a rea-
sonable decimation method—tantamount to the majority rule—must 
be adopted to get a binary graph again (as stated before). We pinpoint 
that the particular election of τ (the grey areas in Fig. 1) facilitate the 
iterability of the LRG scheme, even if the coarse graining can be done 
for all values of τ. As τ* identifies points of fast information diffusion 
across the network, identifying large τ values to perform Kadanoff 
supernodes (or to integrate many network modes) will select large 
informationally connected structures, thus producing a marked net-
work reduction.

Conclusions
The RG represents a significant development in contemporary sta-
tistical mechanics3–5. Its application to diverse dynamical processes 
operating on top of regular spatial structures (lattices) allows the intro-
duction of the idea of universality and the classification of models 
(otherwise presumed faraway) within a small number of universality 
classes. Examples run from ferromagnetic systems22, to percolation43 

to polymers44. Recently, groundbreaking applications have addressed 
the problem in complex biological systems45, illuminating collective 
behaviour of neurons in mouse hippocampus46 or dynamical couplings 
in natural swarms47.

There is no apparent equivalence to analysing RG processes in 
complex spatial structures, even if some pioneering approaches have 
recently proposed sound procedures that can state equivalent gen-
eral RG schemes to those of statistical physics. The most promising 
approaches draw on hidden metric assumptions, spatially mapping 
nodes in some abstract topological space, which must be considered 
as an ‘a priori’ hypothesis16,17. Despite this, they show fundamental 
problems in maintaining the intrinsic network properties6,16—for exam-
ple, connectivity—of reduced replicas when performing decimation. 
Moreover, setting the equivalent to conventional RG flow without any 
spatial projection of the nodes or grouping premises15, but induced 
by diffusion distances18, remains an unsolved fundamental problem.

Here we develop an RG scheme based on information diffusion 
distances, taking advantage of the fact that the Laplacian operator is a 
sort of telescopic ‘scanner’ of the coarse-graining scales. It allows us to 
select, through the analysis of the specific heat, the critical resolution 
scales of the network. In particular, we derive mesoscopic collective 
variables (that is, block variables), perform the Kadanoff real-space 
renormalization in complex networks and solve specific problems such 
as decimation. The original real-space dynamical RG scheme requires 
the consideration of two fundamental scales: the lattice space (a) and 
the correlation length of the system (ξ). In concomitance with the origi-
nal formulation, the peaks in the specific heat of the information dif-
fusion flow allow us to identify the characteristic scales of the system: 
they are the counterpart to the correlation length or the lattice spacing 
when the process is carried out over blocks of spins or active sites in 
percolation38. We point out that complex networks exhibit degree 
heterogeneity, and thus lack indistinguishable groups of nodes under 
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Fig. 3 | Kadanoff supernodes LRG. a, LRG transformation for a particular 
selection of a BA network (N = 512, m = 1). Kadanoff supernodes are plotted in a 
different colour for every scale. b, Degree distribution versus node connectivity, 
κ, for a BA network (solid lines), with a characteristic exponent γ = 3 (dashed line) 
at different RG steps with τ = 1.26 (see legend; see Supplementary Information 
Section 4 for further examples with m > 1 and scale-free networks from the 

configuration model). c–f, Mean connectivity flow under subsequent LRG 
transformations for different τ values (see legend): an Erdős–Renyi network of 
〈κ〉0 = 30 (c), a BA scale-free network with m = 1 (d) and a RT (e). f, Spectral 
probability distribution, 𝒫𝒫(λ), of the downscaled Laplacian replicas, ̂L

i
, for 

different LRG steps in a BA network (see legend). All curves have been averaged 
over 102 network realizations with N0 = 4,096.
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the Kadanoff blocking scheme, that is, the blocks need to reflect the 
intrinsic heterogeneous architecture of the network. This conundrum 
automatically leads to many possibilities in grouping nodes, making 
the problem seem unsolvable.

The study of the Laplacian spectrum (which defines the conju-
gate Fourier space) allows us to compute the network modes, play-
ing the exact role of a and Λ (the microscopic ultraviolet cut-off) in 
RG schemes3,20. We point out that to select critical scales of the net-
work, all eigenvalues (fluctuations) can be of utmost relevance to 
give us information about the intertwined network scales, relating 
the short-distance cutoff and the macroscopic scale. In particular, 
our framework conserves the main network properties6—for example, 
the average degree16—of the downscaled networks (only if they are 
truly scale invariant39), thus confirming the existence of repulsive, 
non-trivial, fixed points in the RG flow. It also allows us to extract meso-
scopic information concerning the network communities even if they 
are blatantly scale dependent. Our RG scheme solves a crucial open 
problem15: the limited iterability in small-world networks due to short 
path lengths, limited only by network size.

Altogether, we propose here a new RG approach following that 
of Wilson2—therefore working in the momentum space—based on 
the Laplacian properties of the network: the LRG, which is the natural 
extension to heterogeneous networks of the usual RG approach in 
statistical physics and statistical field theory. We demonstrate that 
only true scale-invariant networks will exhibit constant specific-heat 
values at all resolution scales reflecting some sort of translational 
invariance, even if it is possible to define scale-free structures that can 
some how be renormalized. BA networks that present ultra-small-world 
properties14 are a prime example of this (they are scale invariant only 
for m = 1, see Supplementary Information Section 4), and are therefore 
the counterpart of the trees to the Watts–Strogatz process in lattices13.

Our LRG scheme opens a route to extend RG flow study further, 
developing a common mathematical framework classifying com-
plex networks in universality classes. Finally, subsequent analyses 
can also help in shedding light on the interplay between structure and 

dynamics48 through the analysis of specific RG flows and emergent fixed 
points for multiple dynamical models.
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Methods
Statistical physics of information network diffusion
Let us consider the adjacency matrix of a simple binary graph, ̂A, and 
define ̂L = ̂D − ̂A as the ‘fluid Laplacian matrix’24, where Dij = κiδij and κi 
is the connectivity of the node i. In terms of the network propagator, 
̂K = e−τ ̂L, it is possible to define the ensemble of accessible information 

diffusion states25,26,34, namely,

ρ̂(τ) = e−τ ̂L

Z , (3)

where ρ̂(τ) is tantamount to the canonical density operator in  
statistical physics (or to the functional over fields configurations)3,35,36, 
and Z = ∑N

i=1 e−λi, with λi being the set of system eigenvalues. Since, for 
a simple graph, ̂L is a Hermitian matrix, ̂L plays the role of the  
Hamiltonian operator and τ the role of the inverse temperature. It is 
possible to therefore define the network entropy25 through the 
relation

S[ρ̂(τ)] = −Tr [ρ̂(τ) log ρ̂(τ)] = Tr [ e
−τ ̂L

Z
(τ ̂L + logZ)]

= τ⟨λ⟩t + logZ
(4)

with ⟨Ô⟩t = Tr[ρ̂Ô]. Immediately, it is possible to define the specific heat 
of the network as

C(τ) = − dS
d log τ

= −τ2
d⟨λ⟩t
dτ

(5)

Informational phase transitions
The specific heat of the network of equation (5) is a detector of transi-
tion points corresponding to the intrinsic characteristic diffusion 
scales of the network. In particular, the condition dC

dτ
||τ∗ = 0 defines τ*, 

and reveals the existence of pronounced peaks revealing a strong 
deceleration of the information diffusion. Moreover, employing the 
thermal fluctuation-dissipation theorem38,49 the specific heat links to 
entropy fluctuations26 making C proportional to σ2S = ⟨S2⟩ − ⟨S⟩2, which, 
over many independent realizations, scales as 1/N, where N is the num-
ber of nodes of the network (as a direct application of the central limit 
theorem50).

Scale-invariant networks
Let us now define informationally scale-invariant networks in  
agreement with our def inition of the LRG. A network  
has scale-invariant properties in a resolution region if the entropic 
susceptibility/specific heat C takes a constant value C1 > 0 in the  
corresponding diffusion time interval. This property describes 
a situation in which the informational entropy increases by the 
same amount in two equal logarithmic time scales, which means a 
scale-invariant transmission of the information at every network reso-
lution scale. It is matter of simple algebra to see, from equation (5),  
that this means

d⟨λ⟩τ
dτ

= −C1
τ2
. (6)

Knowing that, for τ → ∞, 〈λ〉 → 0, by integration we find

⟨λ⟩τ =
C1
τ =

N
∑
i=1
λie−τλi /

N
∑
i=1

e−τλi .

In the continuum approximation of the Laplacian spectrum, equation 
(6) implies a power-law eigenvalue density function P(λ) ≈ λγ for small 
λ, that is, large diffusion times, with the exponent γ satisfying the fol-
lowing relation:

C1 =
Γ (γ + 2)
Γ (γ + 1) = γ + 1, (7)

where Γ(z) is the Euler gamma function.
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