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Recently  it  has  become  clear  that many  technologies  follow  a generalized  version  of  Moore’s  law,  i.e. costs
tend to  drop  exponentially,  at different  rates  that depend  on the  technology.  Here  we  formulate  Moore’s
law  as a correlated  geometric  random  walk with drift,  and apply  it to historical  data  on  53  technologies.
We  derive  a closed  form  expression  approximating  the  distribution  of forecast  errors  as  a  function  of
time.  Based  on  hind-casting  experiments  we  show  that this  works  well,  making  it possible  to  collapse
the  forecast  errors  for  many  different  technologies  at different  time  horizons  onto  the  same  universal
distribution.  This  is valuable  because  it allows  us to make  forecasts  for  any  given technology  with  a
clear  understanding  of  the  quality  of  the forecasts.  As a practical  demonstration  we make  distributional
forecasts  at  different  time  horizons  for solar  photovoltaic  modules,  and  show  how  our  method  can  be
47
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used  to estimate  the  probability  that a  given  technology  will  outperform  another  technology  at  a given
point  in  the future.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

adjusted price of coal has fluctuated by a factor of three or so,
but shows no long term trend, and indeed from the historical time
series one cannot reject the null hypothesis of a random walk with
olar energy

. Introduction

Technological progress is widely acknowledged as the main
river of economic growth, and thus any method for improved
echnological forecasting is potentially very useful. Given that
echnological progress depends on innovation, which is gener-
lly thought of as something new and unanticipated, forecasting
t might seem to be an oxymoron. In fact there are several pos-
ulated laws for technological improvement, such as Moore’s law
nd Wright’s law, that have been used to make predictions about
echnology cost and performance. But how well do these methods
ork?

Predictions are useful because they allow us to plan, but to form
ood plans it is necessary to know probabilities of possible out-

omes. Point forecasts are of limited value unless they are very
ccurate, and when uncertainties are large they can even be dan-
erous if they are taken too seriously. At the very least one needs

∗ Corresponding author.
E-mail addresses: doyne.farmer@inet.ox.ac.uk (J.D. Farmer),

rancois.lafond@inet.ox.ac.uk (F. Lafond).

ttp://dx.doi.org/10.1016/j.respol.2015.11.001
048-7333/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
error bars, or better yet, a distributional forecast, estimating the
likelihood of different future outcomes. Although there are now
a few papers testing technological forecasts1 there is as yet no
method that gives distributional forecasts based on an empirically
validated stochastic process. In this paper we remedy this situa-
tion by deriving the distributional errors for a simple forecasting
method and testing our predictions on empirical data on tech-
nology costs. To motivate the problem that we address, consider
three technologies related to electricity generation: coal mining,
nuclear power and photovoltaic modules. Fig. 1 compares their
long-term historical prices. Over the last 150 years the inflation-
1 See e.g. Alchian (1963), Alberth (2008). Nagy et al. (2013) test the relative accu-
racy of different methods of forecasting statistically but do not produce and test a
distributional estimate of forecast reliability for any particular method. McCrory,
cited in Jantsch (1967), assumes a Gaussian distribution and uses this to calculate
the probability that a targeted level of progress be met  at a given horizon. Here we
assume and test a Gaussian distribution for the natural log.
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Fig. 1. A comparison of long-term price trends for coal, nuclear power and solar
photovoltaic modules. Prices for coal and nuclear power are costs in the US in dollars
per  kilowatt hour (scale on the left) whereas solar modules are in dollars per watt-
peak, i.e. the cost for the capacity to generate a watt of electricity in full sunlight
(scale on the right). For coal we use units of the cost of the coal that would need to
be  burned in a modern US plant if it were necessary to buy the coal at its inflation-
adjusted price at different points in the past. Nuclear prices are Busbar costs for US
nuclear plants in the year in which they became operational (from Cooper (2009)).
The  alignment of the left and right vertical axes is purely suggestive; based on recent
estimates of levelized costs, we took $0.177/kW h = $0.82/Wp in 2013 (2013$). The
number $0.177/kW h is a global value produced as a projection for 2013 by the
International Energy Agency (Table 4 in International Energy Agency (2014)). We
note  that it is compatible with estimated values (Table 1 in Baker et al. (2013),
Fig. 4 in International Energy Agency (2014)). The red cross is the agreed price for
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age is essential for computation causes a tight coupling between the
two technologies. Lienhard, Koh and Magee, and others3 examined
data for other products, including many that have nothing to do
he planned UK Nuclear power plant at Hinkley Point which is scheduled to come
nline in 2023 (£ 0.0925 ≈ $0.14). The dashed line corresponds to an earlier target
f  $0.05/kW h set by the U.S. Department of Energy.

o drift2 (McNerney et al., 2011). Nuclear power and solar pho-
ovoltaic electricity, in contrast, are both new technologies that
merged at roughly the same time. The first commercial nuclear
ower plant opened in 1956 and the first practical use of solar pho-
ovoltaics was as a power supply for the Vanguard I satellite in 1958.
he cost of electricity generated by nuclear power is highly variable,
ut has generally increased by a factor of two or three during the
eriod shown here. In contrast, a watt of solar photovoltaic capac-

ty cost $256 in 1956 (Perlin, 1999) (about $1910 in 2013 dollars)
s. $0.82 in 2013, dropping in price by a factor of about 2330. Since
980 photovoltaic modules have decreased in cost at an average
ate of about 10% per year.

In giving this example we are not trying to make a head-to-
ead comparison of the full system costs for generating electricity.

nstead we are comparing three different technologies, coal mining,
uclear power and photovoltaic manufacture. Generating electric-

ty with coal requires plant construction (whose historical cost
as dropped considerably since the first plants came online at the
eginning of the 20th century). Generating electricity via solar pho-
ovoltaics has balance of system costs that have not dropped as fast
s that of modules in recent years. Our point here is that different

echnologies can decrease in cost at very different rates.

Predicting the rate of technological improvement is obviously
ery useful for planning and investment. But how consistent are

2 To drive home the point that fossil fuels show no long term trend of dropping
n  cost, after adjusting for inflation coal now costs about what it did in 1890, and a
imilar statement applies to oil and gas.
Policy 45 (2016) 647–665

such trends? In response to a forecast that the trends above will
continue, a skeptic would rightfully respond, “How do we know
that the historical trend will continue? Isn’t it possible that things
will reverse, and over the next 20 years coal will drop in price
dramatically and solar will go back up?”.

Our paper provides a quantitative answer to this question. We
put ourselves in the past, pretend we don’t know the future, and
use a simple method to forecast the costs of 53 different technolo-
gies. Actually going through the exercise of making out-of-sample
forecasts rather than simply doing in-sample regressions has the
essential advantage that it fully mimics the process of making fore-
casts and allows us to say precisely how well forecasts would have
performed. Out-of-sample testing such as we do here is particularly
important when models are mis-specified, which one expects for a
complicated phenomenon such as technological improvement.

We show how one can combine the experience from forecast-
ing many technologies to make reliable distributional forecasts for
a given technology. For solar PV modules, for example, we can say,
“Based on experience with many other technologies, the probabil-
ity is roughly 5% that in 2030 the price of solar PV modules will be
greater than or equal to their current (2013) price”. We  can assign a
probability to different price levels at different points in the future,
as is done later in Fig. 10 (where we  show that very likely the price
will drop significantly). We  can also compare different technolo-
gies to assess the likelihood of different future scenarios for their
relative prices, as is done in Fig. 11.

Technological costs occasionally experience structural breaks
where trends change. Indeed there are several clear examples in our
historical data, and although we  have not explicitly modeled this,
their effect on forecast errors is included in the empirical analysis
we have done here. The point is that, while such structural breaks
happen, they are not so large and so common as to over-ride our
ability to forecast. Every technology has its own story, its own spe-
cific set of causes and effects, that explain why  costs went up or
down in any given year. Nonetheless, as we demonstrate here, the
long term trends tend to be consistent, and can be captured via his-
torical time series methods with no direct information about the
underlying technology-specific stories.

In this paper we use a very simple approach to forecasting
that was originally motivated by Moore’s Law. As everyone knows,
Intel’s ex-CEO, Gordon Moore, famously predicted that the number
of transistors on integrated circuits would double every two  years,
i.e. at an annual rate of about 40%. Making transistors smaller also
brings along a variety of other benefits, such as increased speed,
decreased power consumption, and less expensive manufacture
costs per unit of computation. As a result it quickly became clear
that Moore’s law applies more broadly, for example, implying a
doubling of computational speed every 18 months.

Moore’s law stimulated others to look at related data more
carefully, and they discovered that exponential improvement is a
reasonable approximation for other types of computer hardware
as well, such as hard drives. Since the performance of hard drives
depends on physical factors that are unrelated to transistor density
this is an independent fact, though of course the fact that mass stor-
3 Examples include Lienhard (2006), Koh and Magee (2006, 2008), Bailey et al.
(2012), Benson and Magee (2014a,b), Nagy et al. (2013). Studies of improvement
in  computers over long spans of time indicate super-exponential improvement
(Nordhaus, 2007; Nagy et al., 2011), suggesting that Moore’s law may only be an
approximation reasonably valid over spans of time of 50 years or less. See also e.g.
Funk (2013) for an explanation of Moore’s law based on geometric scaling, and Funk
and  Magee (2014) for empirical evidence regarding fast improvement prior to large
production increase.
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ith computation or information processing, and postulated that
xponential improvement is a much more general phenomenon
hat applies to many different technologies, even if in most cases
he exponential rates are much slower.

Although Moore’s law is traditionally applied as a regression of
he log of the cost on a deterministic time trend, we  reformulate it
ere as a geometric random walk with drift. This has several advan-
ages. On average it results in more accurate forecasts, especially at
hort horizons, indicating that it is indeed a better model. In addi-
ion, this allows us to use standard results from the time series
orecasting literature4. The technology time series in our sample
re typically rather short, often only 15 or 20 points long, so to test
ypotheses it is essential to pool the data. Because the geometric
andom walk is so simple it is possible to derive formulas for the
orecast errors in closed form. This makes it possible to estimate
he forecast errors as a function of both sample size and forecast-
ng horizon, and to combine data from many different technologies
nto a single analysis. This allows us to get highly statistically sig-
ificant results. And most importantly, because this allows us to
ystematically test the method on data for many different tech-
ologies, this allows us to make distributional forecasts for a single
echnology and have confidence in the results.

Motivated by structure we find in the data, we  further extend
oore’s law to allow for the possibility that changes in price are

ositively autocorrelated in time. We  assume that the logarithm
f the cost follows a random walk with drift and autocorrelated
oise, more specifically an Integrated Moving Average process of
rder (1,1), i.e. an IMA(1,1) model. Under the assumption of suf-
ciently large autocorrelation this method produces a good fit
o the empirically observed forecasting errors. We  derive a for-

ula for the errors of this more general model, assuming that
ll technologies have the same autocorrelation parameter and the
orecasts are made using the simple random walk model. We use
his to forecast the likely distribution of the price of photovoltaic
olar modules, and to estimate the probability that solar mod-
les will undercut a competing technology at a given date in the
uture.

We want to stress that we do not mean to claim that the gener-
lizations of Moore’s law explored here provide the most accurate
ossible forecasts for technological progress. There is a large litera-
ure on experience curves5, studying the relationship between cost
nd cumulative production originally suggested by Wright (1936),
nd many authors have proposed alternatives and generalizations6.
agy et al. (2013) tested these alternatives using a data set that

s very close to ours and found that Moore’s and Wright’s laws
ere roughly tied for first place in terms of their forecasting per-

ormance. An important caveat is that Nagy et al.’s study was  based
n a trend stationary model, and as we argue here, the difference
tationary model is superior, both for forecasting and for statistical
esting. It seems likely that methods using auxiliary data such as

roduction, patent activity, or R&D can be used to make forecasts
or technological progress that incorporate more factors, and that

4 Several methods have been defined to obtain prediction intervals, i.e. error bars
or the forecasts (Chatfield, 1993). The classical Box-Jenkins methodology for ARIMA
rocesses uses a theoretical formula for the variance of the process, but does not
ccount for uncertainty due to parameter estimates. Another approach is to use
he  empirical forecast errors to estimate the distribution of forecast errors. In this
ase, one can use either the in-sample errors (the residuals, as in e.g. Taylor and
unn (1999)), or the out-of-sample forecast errors (Williams and Goodman, 1971;
ee  and Scholtes, 2014). Several studies have found that using residuals leads to
rediction intervals which are too tight (Makridakis and Winkler, 1989).
5 Arrow (1962), Alchian (1963), Argote and Epple (1990), Dutton and Thomas

1984), Thompson (2012).
6 See Goddard (1982), Sinclair et al. (2000), Jamasb (2007),  Nordhaus (2014).
Policy 45 (2016) 647–665 649

such methods should yield improvements over the simple method
we use here7.

The key assumption made here is that all technologies follow
the same random process, even if the drift and volatility parame-
ters of the random process are technology specific. This allows us
to develop distributional forecasts in a highly parsimonious man-
ner and efficiently test them out of sample. We  restrict ourselves
to forecasting unit cost in this paper, for the simple reason that
we have data for it and it is comparable across different technolo-
gies. The work presented here provides a simple benchmark against
which to compare forecasts of future technological performance
based on other methods.

The approach of basing technological forecasts on historical data
that we  pursue here stands in sharp contrast to the most widely
used method, which is based on expert opinions. The use of expert
opinions is clearly valuable, and we do not suggest that it should be
supplanted, but it has several serious drawbacks. Expert opinions
are subjective and can be biased for a variety of reasons (Albright,
2002), including common information, herding, or vested interest.
Forecasts for the costs of nuclear power in the US, for example,
were for several decades consistently low by roughly a factor of
three (Cooper, 2009). A second problem is that it is very hard to
assess the accuracy of expert forecasts. In contrast the method we
develop here is objective and the quality of the forecasts is known.
Nonetheless we  believe that both methods are valuable and that
they should be used side-by-side.8

The remainder of the paper develops as follows: in Section 2 we
derive the error distribution for forecasts based on the geometric
random walk as a function of time horizon and other parameters
and show how the data for different technologies and time horizons
should be collapsed. We  also show how this can be generalized to
allow for autocorrelations in the data and derive similar (approxi-
mate) formulas. In Section 3 we describe our data set and present
an empirical relationship between the variance of the noise and
the improvement rate for different technologies. In Section 4 we
describe our method of testing the models against the data, and
present the results in Section 5. We then apply our method to
give a distributional forecast for solar module prices in Section 6
and show how this can be used to forecast the likelihood that one
technology will overtake another. Finally we  give some concluding
remarks in Section 7. A variety of technical results are given in the
appendices.

2. Models

2.1. Geometric random walk

In this section we discuss how to formulate Moore’s law in the
presence of noise and argue that the best method is the geometric
random walk with drift. We  then present a formula for the distri-
bution of expected errors as a function of the time horizon and
the other parameters of the model, and generalize the formula
to allow for autocorrelation in the data generating process. This
allows us to pool the errors for many different technologies. This
is extremely useful because it makes it possible to test the validity

of these results using many short time series (such as the data we
have here).

7 See for example Benson and Magee (2014b) for an example of how patent data
can  be used to explain variation in rates of improvement among different technolo-
gies.

8 For additional discussion of the advantages and drawbacks of different methods
of  technology forecasting, see Ayres (1969), Martino (1993) and National Research
Council (2009).
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dent of �̂j , K̂j , and �. It depends neither on the properties of the
technology nor on the time horizon. As a result we can pool fore-
cast errors for different technologies at different time horizons. This

10 The point forecast is the expected logarithm of the cost for the random walk with
drift model, E[yt+� ]. We  assume yt+� is normally distributed. This means the cost is
log-normally distributed and the forecast of the median cost is eE[yt+� ] . Because the
mean of a log-normal distribution also depends on the variance of the underlying
50 J.D. Farmer, F. Lafond / Res

The generalized version of Moore’s law we study here is a pos-
ulated relationship which in its deterministic form is

t = p0e�t,

here pt is either the unit cost or the unit price of a technology
t time t; we will hereafter refer to it as the cost. p0 is the initial
ost and � is the exponential rate of change. (If the technology is
mproving then � < 0.) In order to fit this to data one has to allow for
he possibility of errors and make an assumption about the struc-
ure of the errors. Typically the literature has treated Moore’s law
sing a trend stationary model, minimizing squared errors to fit a
odel of the form

t = y0 + �t + et, (1)

here yt = log(pt). From the point of view of the regression, y0 is
he intercept, � is the slope and et is independent and identically
istributed (i.i.d.) noise.

But records of technological performance such as those we study
ere are time series, giving the costs pjt for technology j at succes-
ive times t = 1, 2, . . .,  Tj. It is therefore more natural to use a time
eries model. The simplest possible choice that yields Moore’s law
n the deterministic limit is the geometric random walk with drift,

t = yt−1 + � + nt. (2)

s before � is the drift and nt is an i.i.d. noise process. Letting the
oise go to zero recovers the deterministic version of Moore’s law

n either case. When the noise is nonzero, however, the models
ehave quite differently. For the trend stationary model the shocks
re purely transitory, i.e. they do not accumulate. In contrast, if y0
s the cost at time t = 0, Eq. (2) can be iterated and written in the
orm

t = y0 + �t +
t∑

i=1

ni. (3)

his is equivalent to Eq. (1) except for the last term. While in the
egression model of Eq. (1) the value of yt depends only on the cur-
ent noise and the slope �, in the random walk model (Eq. (2)) it
epends on the sum of previous shocks. Hence shocks in the ran-
om walk model accumulate and the forecasting errors grow with
ime horizon as one would expect, even if the parameters of the

odel are perfectly estimated.9

For time series models a key question is whether the process has
 unit root. Most of our time series are much too short for unit root
ests to be effective (Blough, 1992). Nonetheless, we found that our
ime series forecasts are consistent with the hypothesis of a unit
oot and that they perform better than several alternatives.

.2. Prediction of forecast errors

We  now derive a formula for the forecast errors of the geomet-
ic random walk as a function of time horizon. We  assume that
ll technologies follow the geometric random walk, i.e. our noisy
ersion of Moore’s law, but with technology-specific parameters.
ewriting Eq. (2) slightly, it becomes

jt = yj,(t−1) + �j + njt,
here the index j indicates technology j. For convenience we
ssume that noise njt is i.i.d. normal, i.e. njt∼N(0,  K2

j
). This means

hat technology j is characterized by a drift �j and the standard

9 Nagy et al. (2013) used trend stationary models to study a similar dataset. Their
hort term forecasts were on average less accurate and they had to make ad hoc
ssumptions to pool data from different horizons.
Policy 45 (2016) 647–665

deviation of the noise increments Kj. We  will typically not include
the indices for the technology unless we  want to emphasize the
dependence on the technology.

We now derive the expected error distribution for Eq. (2) as a
function of the time horizon �. Eq. (2) implies that

yt+� = yt + �� +
t+�∑

i=t+1

ni. (4)

The point forecast � steps ahead is10

ŷt+� = yt + �̂�, (5)

where �̂ is the estimated �.  The forecast error is defined as

E = yt+� − ŷt+� . (6)

Putting Eqs. (4) and (5) into Eq. (6) gives

E = �(� − �̂) +
t+�∑

i=t+1

ni, (7)

which separates the error into two  parts. The first term is the
error due to the fact that the mean is an estimated parameter and
the second term represents the error due to the fact that unpre-
dictable random shocks accumulate (Sampson, 1991). Assuming
that the noise increments are i.i.d normal and that the estimation
of the parameters is based on a trailing sample of m data points, in
Appendix B.1 we  derive the scaling of the errors with m, � and K̂ ,
where K̂2 is the estimated variance.

Because we  want to aggregate forecast errors for technologies
with different volatilities, to study how the errors grow as a func-
tion of � we use the normalized mean squared forecast error �(�).
Assuming m > 3 it is

�(�) ≡ E

[( E
K̂

)2
]

= m − 1
m − 3

(
� + �2

m

)
, (8)

where E represents the expectation.
This formula makes intuitive sense. The diffusion term � is due

to the accumulation of noisy fluctuations through time. This term
is present even in the limit m→ ∞,  where the estimation is perfect.
The �2/m term is due to estimation error in the mean. The need
to estimate the variance causes the prefactor11 (m − 1)/(m − 3) and
also means that the distribution is Student t rather than normal, i.e.

� = 1√
A

( E
K̂

)
∼t(m − 1),  (9)

with

A = � + �2/m. (10)

Eq. (9) is universal in the sense that the right hand side is indepen-
normal distribution, the expected cost diverges when �→ ∞ due to parameter uncer-
tainty. Our forecasts here are for the median cost. This has the important advantage
that (unlike the mean or the mode) it does not require an estimate of the variance,
and is therefore simpler and more robust.

11 The prefactor is significantly different from one only when m is small. Sampson
(1991) derived the same formula but without the prefactor since he worked with
the true variance. Sampson (1991) also showed that the square term due to error in
the  estimation of the drift exists for the regression on a time trend model, and for
more general noise processes. See also Clements and Hendry (2001).
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properties of the data and more description of the sources can be
found in Appendix A. This plot also makes it clear that technologies
improve at very different rates.

13 Note that although we make the estimate of the variance �-dependent, we
J.D. Farmer, F. Lafond / Res

roperty is extremely useful for statistical testing and can also be
sed to construct distributional forecasts for a given technology.

.3. Generalization for autocorrelation

We  now generalize the formula above to allow for autocor-
elations in the error terms. Although the uncorrelated random
alk model above does surprisingly well, there is good evidence

hat there are positive autocorrelations in the data. In order to
ncorporate this structure we extend the results above for an
RIMA(0,1,1) (autoregressive integrated moving average) model.
he zero indicates that we do not use the autoregressive part, so
e will abbreviate this as an IMA(1,1) model in what follows. The

MA(1,1) model is of the form

t − yt−1 = � + vt + �vt−1, (11)

ith the noise vt∼N(0,  �2). This model is also a geometric random
alk, but with correlated increments when � /= 0 (the autocorre-

ations of the time series are positive when � > 0).
We chose this model rather than other alternatives mainly for

ts simplicity12. Moreover, our data are often time-aggregated, that
s, our yearly observations are averages of the observed costs over
he year. It has been shown that if the true process is a random walk
ith drift then aggregation can lead to substantial autocorrela-

ion (Working, 1960). In any case, while every technology certainly
ollows an idiosyncratic pattern and may  have a complex auto-
orrelation structure and specific measurement errors, using the
MA(1,1) as a universal model allows us to parsimoniously under-
tand the empirical forecast errors and generate robust prediction
ntervals.

A key quantity for pooling the data is the variance, which by
nalogy with the previous model we call K for this model as well.
t is easy to show that

2 ≡ var(yt − yt−1) = var(vt + �vt−1) = (1 + �2)�2,

ee e.g. Box and Jenkins (1970). The relevant formulas for this case
re derived in Appendix B.2. We  make the same point forecasts as
efore given by Eq. (5). If the variance is known the distribution of
orecast errors is

∼N(0, �2A∗), (12)

ith

∗ = −2� +
(

1 + 2(m − 1)�
m

+ �2

)  (
� + �2

m

)
. (13)

ote that we recover Eq. (10) when � = 0. In the usual case where the
ariance has to be estimated, we derive an approximate formula for
he growth and distribution of the forecast errors by assuming that
ˆ

 and E are independent. The expected mean squared normalized
rror is

(�) ≡ E

[( E
K̂

)2
]

= m − 1
m − 3

A∗

1 + �2
, (14)

nd the distribution of rescaled normalized forecast errors is

∗ = 1√
A∗/(1 + �2)

( E
K̂

)
∼t(m − 1).  (15)
These formulas are only approximations so we  compare them to
ore exact results obtained through simulations in Appendix B.2 –

12 Our individual time series are very short, which makes it very difficult to find the
roper order of differencing and to distinguish between different ARMA models. For

nstance, slightly different ARIMA models such as (1,1,0) are far from implausible
or  many technologies.
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see in particular Fig. 12. For m > 30 the approximation is excellent,
but there are discrepancies for small values of m.

As before the right hand side is independent of all the parame-
ters of the technology as well as the time horizon. Eq. (15) can be
viewed as the distribution of errors around a point forecast, which
makes it possible to collapse many technologies onto a single distri-
bution. This property is extremely useful for statistical testing, i.e.
for determining the quality of the model. But its greatest use, as we
demonstrate in Section 6, is that it makes it possible to formulate a
distributional forecast for the future costs of a given technology.
When m is sufficiently large the Student t distribution is well-
approximated by a standard normal. Using the mean given by Eq.
(5) and the variance determined by Eqs. ((12 and 13)), the distribu-
tional forecast for the future logarithm of the cost yt+� conditioned
on (yt, . . .,  yt−m+1) is13

yt+�∼N(yt + �̂�, K̂2A∗/(1 + �2)). (16)

We will return later to the estimation of �.

2.4. Alternative hypotheses

In addition to autocorrelation we  investigated other ways to
generalize the model, such as heavy tails and long-memory. As dis-
cussed in Appendix C.4, based on forecast errors we  found little
evidence for heavy tails. Long-memory is in a sense an extreme
version of the autocorrelation hypothesis,14 which produces errors
that grow faster as a function of the forecasting horizon � than a
random walk. Given that long-memory is a natural result of nonsta-
tionarity, which is commonly associated with technological change,
our prior was that it was a highly plausible alternative. However, as
we will see, the geometric random walk with normal noise incre-
ments and autocorrelations seems to give good agreement for the
time scaling of forecasting errors, so we did not investigate long-
memory further.

3. Data

3.1. Data collection

The bulk of our data on technology costs comes from the Santa
Fe Institute’s Performance Curve DataBase,15 which was originally
developed by Bela Nagy and collaborators; we augment it with a
few other datasets. These data were collected via literature search,
with the principal criterion for selection being availability. Fig. 2
plots the time series for each data set. The motley character of our
dataset is clear: the time series for different technologies are of
different lengths and they start and stop at different times. The
sharp cutoff for the chemical data, for example, reflects the fact that
it comes from a book published by the Boston Consulting Group in
Boston Consulting Group (1972). Table 1 gives a summary of the
always use the estimate of the mean corresponding to � = 0. We do this because
this  is simpler and more robust.

14 A process has long-memory if the autocorrelation function of its increments
is  not integrable. Under the long-memory hypothesis one expects the diffusion
term of the normalized squared errors to scale as �(�) ∼ �2H ,  where H is the Hurst
exponent. In the absence of long-memory H = 1/2, but for long-memory 1/2 < H < 1.
Long-memory can arise from many causes, including nonstationarity. It is easy to
construct plausible processes with the � parameter varying where the mean squared
errors grow faster than �2.

15 pcdb.santafe.edu
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Table 1
Descriptive statistics and parameter estimates (using the full sample) for all available technologies. They are ordered by the p-value of a one-sided t-test for �̃, i.e. based on
how  strong the evidence is that they are improving. The improvement of the last 13 technologies is not statistically significant and so they are dropped from further analysis
–  see the discussion in the text.

Technology Industry T �̃ p value K̃ �̃

Transistor Hardware 38 −0.50 0.00 0.24 0.19
Geothermal.Electricity Energy 26 −0.05 0.00 0.02 0.15
Milk..US. Food 79 −0.02 0.00 0.02 0.04
DRAM Hardware 37 −0.45 0.00 0.38 0.14
Hard.Disk.Drive Hardware 20 −0.58 0.00 0.32 −0.15
Automotive..US. Cons. Goods 21 −0.08 0.00 0.05 1.00
Low.Density.Polyethylene Chemical 17 −0.10 0.00 0.06 0.46
Polyvinylchloride Chemical 23 −0.07 0.00 0.06 0.32
Ethanolamine Chemical 18 −0.06 0.00 0.04 0.36
Concentrating.Solar Energy 26 −0.07 0.00 0.07 0.91
AcrylicFiber Chemical 13 −0.10 0.00 0.06 0.02
Styrene Chemical 15 −0.07 0.00 0.05 0.74
Titanium.Sponge Chemical 19 −0.10 0.00 0.10 0.61
VinylChloride Chemical 11 −0.08 0.00 0.05 −0.22
Photovoltaics Energy 34 −0.10 0.00 0.15 0.05
PolyethyleneHD Chemical 15 −0.09 0.00 0.08 0.12
VinylAcetate Chemical 13 −0.08 0.00 0.06 0.33
Cyclohexane Chemical 17 −0.05 0.00 0.05 0.38
BisphenolA Chemical 14 −0.06 0.00 0.05 −0.03
Monochrome.Television Cons. Goods 22 −0.07 0.00 0.08 0.02
PolyethyleneLD Chemical 15 −0.08 0.00 0.08 0.88
Laser.Diode Hardware 13 −0.36 0.00 0.29 0.37
PolyesterFiber Chemical 13 −0.12 0.00 0.10 −0.16
Caprolactam Chemical 11 −0.10 0.00 0.08 0.40
IsopropylAlcohol Chemical 9 −0.04 0.00 0.02 −0.24
Polystyrene Chemical 26 −0.06 0.00 0.09 −0.04
Polypropylene Chemical 10 −0.10 0.00 0.07 0.26
Pentaerythritol Chemical 21 −0.05 0.00 0.07 0.30
Ethylene Chemical 13 −0.06 0.00 0.06 −0.26
Wind.Turbine..Denmark. Energy 20 −0.04 0.00 0.05 0.75
Paraxylene Chemical 12 −0.10 0.00 0.09 −1.00
DNA.Sequencing Genomics 13 −0.84 0.00 0.83 0.26
NeopreneRubber Chemical 13 −0.02 0.00 0.02 0.83
Formaldehyde Chemical 11 −0.07 0.00 0.06 0.36
SodiumChlorate Chemical 15 −0.03 0.00 0.04 0.85
Phenol Chemical 14 −0.08 0.00 0.09 −1.00
Acrylonitrile Chemical 14 −0.08 0.01 0.11 1.00
Beer..Japan. Food 18 −0.03 0.01 0.05 −1.00
Primary.Magnesium Chemical 40 −0.04 0.01 0.09 0.24
Ammonia Chemical 13 −0.07 0.02 0.10 1.00
Aniline Chemical 12 −0.07 0.02 0.10 0.75
Benzene Chemical 17 −0.05 0.02 0.09 −0.10
Sodium Chemical 16 −0.01 0.02 0.02 0.42
Methanol Chemical 16 −0.08 0.02 0.14 0.29
MaleicAnhydride Chemical 14 −0.07 0.03 0.11 0.73
Urea  Chemical 12 −0.06 0.03 0.09 0.04
Electric.Range Cons. Goods 22 −0.02 0.03 0.04 −0.14
PhthalicAnhydride Chemical 18 −0.08 0.03 0.15 0.31
CarbonBlack Chemical 9 −0.01 0.03 0.02 −1.00
Titanium.Dioxide Chemical 9 −0.04 0.04 0.05 −0.41
Primary.Aluminum Chemical 40 −0.02 0.06 0.08 0.39
Sorbitol Chemical 8 −0.03 0.06 0.05 −1.00
Aluminum Chemical 17 −0.02 0.09 0.04 0.73

Free.Standing.Gas.Range Cons. Goods 22 −0.01 0.10 0.04 −0.30
CarbonDisulfide Chemical 10 −0.03 0.12 0.06 −0.04
Ethanol..Brazil. Energy 25 −0.05 0.13 0.22 −0.62
Refined.Cane.Sugar Food 34 −0.01 0.23 0.06 −1.00
CCGT.Power Energy 10 −0.04 0.25 0.15 −1.00
HydrofluoricAcid Chemical 11 −0.01 0.25 0.04 0.13
SodiumHydrosulfite Chemical 9 −0.01 0.29 0.07 −1.00
Corn..US. Food 34 −0.02 0.30 0.17 −1.00
Onshore.Gas.Pipeline Energy 14 −0.02 0.31 0.14 0.62
Motor.Gasoline Energy 23 −0.00 0.47 0.05 0.43

fi
o
i

Magnesium Chemical 19 

Crude.Oil Energy 23 

Nuclear.Electricity Energy 20 
A ubiquitous problem in forecasting technological progress is
nding invariant units. A favorable example is electricity. The cost
f generating electricity can be measured in dollars per kWh, mak-
ng it possible to sensibly compare competing technologies and
−0.00 0.47 0.04 0.58
0.01 0.66 0.07 0.63
0.13 0.99 0.22 −0.13
measure their progress through time. Even in this favorable exam-
ple, however, making electricity cleaner and safer has a cost, which
has affected historical prices for technologies such as coal and
nuclear power in recent years, and means that their costs are
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Fig. 2. Cost vs. time for each technology in our dataset. This shows the 53 technolo-
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that can be made with a given historical window m is highest for
� = 1 and decreases for longer horizons.20 Fig. 5 shows the total
number of possible forecasts that can be made with our dataset at
DNA sequencing is divided by 1000 to fit on the plot; the y-axis is in log scale).
ore details can be found in Table 1 and Appendix A.

ifficult to compare to clean and safe but intermittent sources of
ower such as solar energy. To take an unfavorable example, our
ataset contains appliances such as television sets, that have dra-
atically increased in quality through time.16 Yet another problem

s that some of them are potentially subject to scarcity constraints,
hich might potentially introduce additional trends and fluctua-

ions.
One should therefore regard our results here as a lower bound

n what is possible, in the sense that performing the analysis with
etter data in which all technologies had invariant units would very

ikely improve the quality of the forecasts. We  would love to be
ble to make appropriate normalizations but the work involved is
rohibitive; if we dropped all questionable examples we would end
ith little remaining data. Most of the data are costs, but in a few

ases they are prices; again, this adds noise but if we were able to
e consistent that should only improve our results. We  have done
arious tests removing data and the basic results are not sensitive to
hat is included and what is omitted (see Fig. 14 in the appendix).

We have removed some technologies that are too similar to each
ther from the Performance Curve Database. For instance, when
e have two datasets for the same technology, we  keep only one

f them. Our choice was based on data quality and length of the
ime series. This selection left us with 66 technologies belonging
o different sectors that we label as chemistry, genomics, energy,
ardware, consumer durables and food.

.2. Data selection and descriptive statistics

In this paper we are interested in technologies that are improv-
ng, so we restrict our analysis to those technologies whose rate of
mprovement is statistically significant based on the available sam-

le. We  used a simple one-sided t-test on the first-difference (log)
eries and removed all technologies for which the p-value indicates
hat we cannot reject the null that �j = 0 at a 10% confidence level.17

16 Gordon (1990) provides quality change adjustments for a number of durable
oods. These methods (typically hedonic regressions) require additional data.
17 This is under the assumption that � = 0.
Policy 45 (2016) 647–665 653

Table 1 reports the p-values for the one sided t-tests and the
bottom of the table shows the technologies that are excluded as a
result. Table 1 also shows the estimated drift �̃j and the estimated
standard deviation K̃j based on the full sample for each technology j.
(Throughout the paper we use a hat to denote estimates performed
within an estimation window of size m and a tilde to denote the
estimates made using the full sample). Histograms of �̃j , K̃j , sample
size Tj and �̃j are given18 in Fig. 3.

3.3. Relation between drift and volatility

Fig. 4 shows a scatter plot of the estimated standard deviation K̃j

for technology j vs. the estimated improvement rate − �̃j . A linear fit
gives K̃ = 0.02 − 0.76 �̃ with R2 = 0.87 and standard errors of 0.008
for the intercept and 0.04 for the slope, as shown in the figure.
A log-log fit gives K̃ = e−0.68(− �̃)0.72 with R2 = 0.73 and standard
errors for the scaling constant of 0.18 and for the exponent of 0.06.
This indicates that on average the uncertainty K̃j gets bigger as the
improvement rate − �̃j increases. There is no reason that we  are
aware of to expect this a priori. One possible interpretation is that
for technological investment there is a trade-off between risk and
returns. Another possibility is that faster improvement amplifies
fluctuations.

4. Estimation procedures

4.1. Statistical validation

We use hindcasting for statistical validation, i.e. for each tech-
nology we pretend to be at a given date in the past and make
forecasts for dates in the future relative to the chosen date.19 We
have chosen this procedure for several reasons. First, it directly tests
the predictive power of the model rather than its goodness of fit to
the data, and so is resistant to overfitting. Second, it mimics the
same procedure that one would follow in making real predictions,
and third, it makes efficient use of the data available for testing.
We fit the model at each time step to the m most recent changes
in cost (i.e. the most recent m + 1 years of data). We  use the same
value of m for all technologies and for all forecasts. Because most of
the time series in our dataset are quite short, and because we  are
more concerned here with testing the procedure we have devel-
oped rather than with making optimal forecasts, unless otherwise
noted we  choose m = 5. This is admittedly very small, but it has the
advantage that it allows us to make a large number of forecasts. We
will return later to discuss the question of which value of m makes
the best forecasts.

We perform hindcasting exhaustively in the sense that we make
as many forecasts as possible given the choice of m.  For technology
j, the cost data yt = log pt exists in years t = 1, 2, . . .,  Tj. We  then make
forecasts for each feasible year and each feasible time horizon, i.e.
we make forecasts ŷt0+�(t0) rooted in years t0 = (m + 1, . . .,  Tj − 1)
with forecast horizon � = (1, . . .,  Tj − t0).

Since our dataset includes technology time series of different
length (see Table 1 and Fig. 2) the number of possible forecasts
18 The �̃j are estimated by maximum likelihood letting �̂MLE be different from �̂.
19 This method is also sometimes called backtesting and is a form of cross-

validation.
20 The number of possible forecasts that can be made using a technology time

series of length Tj is [Tj − (m + 1)][Tj − m]/2 which is O(T2
j

). Hence the total number
of  forecast errors contributed by a given technology time series is disproportionately
dependent on its length. However, we have checked that aggregating the forecast
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 given horizon � and the number of technology time series that are
ong enough to make at least one forecast at horizon �. This shows

hat the amount of available data decreases dramatically for large
orecast horizons. We  somewhat arbitrarily impose an upper bound
f �max = 20, but find this makes very little difference in the results

rrors so that each technology has an equal weight does not qualitatively change
he  results.
Similarly # of forecasts refers to the total number of forecasts that can be made at
time horizon �. The horizontal line at � = 20 years indicates our (somewhat arbitrary)
choice of a maximum time horizon.

(see Appendix C.3). There are a total of 8212 possible forecasts that
can be made with an historical window of m = 5, and 6391 forecasts
that can be made with � ≤ 20.
To test for statistical significance we use a surrogate data
procedure (explained below). There are three reasons for doing
this: The first is that, although we  derived approximate formu-
las for the forecast errors in Eqs. (14) and (15), when � /= 0 the
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pproximation is not very good for m = 5. The second is that the
olling window approach we use for hindcasting implies overlaps
n both the historical sample used to estimate parameters at each
ime t0 and overlapping intervals in the future for horizons with

 > 1. This implies substantial correlation in the empirical fore-
ast errors, which complicates statistical testing. The third reason
s that, even if the formulas were exact, we expect finite sample
uctuations. That is, with a limited number of technologies and
hort time series, we do not expect to find the predicted result
xactly; the question is then whether the deviation that we observe
s consistent with what is expected. The surrogate data procedure
stimates a null distribution for the normalized mean squared fore-
ast error under the hypothesized model. This is done by simulating
oth the model and the forecasting procedure to create a replica
f the dataset and the forecasts. This is repeated for many differ-
nt realizations of the noise process in order to generate the null
istribution. More specifically, for each technology we  generate Tj

seudo cost data points using Eq. (11) with � = �̃j , K = K̃j and a
iven value of �, thereby mimicking the structure of the data set.
e  then estimate the parameters and perform hindcasting just as
e did for the real data, generating the same number of forecasts

nd computing the mean squared forecast error. This process is
hen repeated many times with different random number seeds to
stimate the distribution. This same method can be used to esti-
ate expected deviations for any quantity, e.g. we  also use this to

stimate the expected deviation of the finite sample distribution
rom the predicted distribution of forecast errors.

.2. Parameter estimation

We  estimate the mean and the variance for each technology
ynamically, using a rolling window approach to fit the parameters
ased on the m + 1 most recent data points. In each year t0 for which
orecasts are made the drift �̂t0 is estimated as the sample mean of
he first differences,

ˆ t0 = 1
m

t0−1∑
i=t0−m

(yi+1 − yi) = yt0 − yt0−m

m
,  (17)

here the last equality follows from the fact that the sum is tele-
copic, and implies that only two points are needed to estimate the
rift. The volatility is estimated using the unbiased estimator21

ˆ 2
t0

= 1
m − 1

t0−1∑
i=t0−m

[(yi+1 − yi) − �̂t0 ]2. (18)

his procedure gives us a variable number of forecasts for each tech-
ology j and time horizon � rooted at all feasible times t0. We  record
he forecasting errors Et0,� = yt+�(t0) − ŷt+�(t0) and the associated
alues of K̂t0 for all t0 and all � where we can make forecasts.

The autocorrelation parameter � for the generalized model has
o be treated differently. Our time series are simply too short to

ake reasonable rolling window, technology-specific estimates for
. With such small values of m the estimated autocorrelations are
ighly unreliable.

Our solution is to use a global value of �, i.e. we  use the same

alue for all technologies and all points in time. It may  well be that

 is technology specific, but given the short amount of data it is nec-
ssary to make a choice that performs well under forecasting. This

21 This is different from the maximum likelihood estimator, which does not make
se of Bessel’s correction (i.e. dividing by (m − 1) instead of m). Our choice is driven
y  the fact that in practice we use a very small m,  making the bias of the maximum

ikelihood estimator rather large.
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is a classic bias-variance trade-off, where the variance introduced
by statistical estimation of a parameter is so large that the forecasts
produced by a biased model with this parameter fixed are superior.
With very long time series this could potentially be avoided. This
procedure seems to work well. It leaves us with a parameter that
has to be estimated in-sample, but since this is only one parameter
estimated from a sample of more than 6,000 forecasts the resulting
estimate should be reasonably reliable.

Evidence concerning autocorrelations is given in Fig. 3, where
we present a histogram for the values of �̃j for each technology j
based on the full sample. The results are highly variable. Excluding
eight likely outliers where �̃j = ±1, the mean across the sample
is 0.27, and 35 out of the remaining 45 improving technologies
have positive values of �̃j . This seems to suggest that � tends to
be positive.

We use two  different methods for estimating a global value of
�. The first method takes advantage of the fact that the magnitude
of the forecast errors is an increasing function of � (we assume
� > 0) and chooses �m (m as in “matched”) to match the empirically
observed forecast errors, leading to �m = 0.63 as described in the
next section. The second method takes a weighted average �w (w
as in “weighted”) calculated as follows. We  exclude all technologies
for which the estimate of � reveals specification or estimation issues
(� ≈ 1 or � ≈ −1). Then at each horizon we  compute a weighted aver-
age, with the weights proportional to the number of forecasts made
with that technology. Finally we take the average of the first 20
horizon-specific estimated values of �, leading to �w = 0.25. See
Appendix D.

5. Comparison of models to data

In comparing the model to data we address the following five
questions:

1. Is the scaling law for the increase in forecasting errors as a func-
tion of time derived in Eqs. (8) and (14) consistent with the
data?

2. Does there exist a value of � such that the null hypothesis of the
model is not rejected? If so, what is this value, and how strong
is the evidence that it is positive?

3. When the normalized errors for different technologies at differ-
ent time horizons are collapsed onto a single distribution, does
this agree with the Student distribution as predicted by Eq. (15)?

4. Do the errors scale with the trailing sample size m as predicted
under the assumption that the random process is stationary (i.e.
that parameters are not changing in time)?

5. Is the model well-specified?

We will see that we get clear affirmative answers to the first four
questions but we  are unable to answer question (5).

5.1. Normalized forecast errors as a function of �

To answer the first question we compute the sample estimate of
the mean squared normalized forecast error �(�), averaging over
all available forecasts for all technologies at each time horizon with
� ≤ 20 (see Eq. (14)). Fig. 6 compares the empirical results to the
model with three different values of the autocorrelation parame-
ter �. Because the approximate error estimates derived in Eq. (14)

break down for small values of m, for each value of � we  estimate
the expected mean squared errors under the null hypothesis of the
model via the surrogate data procedure described in Section 4.1.22

22 When � = 0 the simulated and analytical results are visually indistiguishable.
Fig. 6 uses the analytical formula, Eq. (8).
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compute the number of errors greater than a given value X and divide by the total
number of errors to estimate the cumulative probability and plot in semi-log scale.

Fig. 8 shows the empirical distribution with all values of � pooled
together, using rescalings corresponding to � = 0, �w , and �m. The
predicted distribution is fairly close to the theoretical prediction,
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ine is for �m = 0.63.

The model does a good job of predicting the scaling of the fore-
ast errors as a function of the time horizon �. The errors are
redicted to grow approximately proportional to (� + �2/m); at long
orizons the error growth at each value of � closely parallels that

or the empirical forecasts. This suggests that this scaling is cor-
ect, and that there is no strong support for modifications such as
ong-memory that would predict alternative rates of error growth.

Using �m = 0.63 gives a good match to the empirical data across
he entire range of time horizons. Note that even though we  chose
m in order to get the best possible match, given that we  are rescal-
ng data for different technologies by the empirically measured
ample standard deviations over very short samples of length m = 5,
nd that we are predicting across 20 different time horizons simul-
aneously, the ability to find a value of the parameter � that matches
his well was far from guaranteed (It is completely possible, for
xample, that there would simply not exist a value of � < 1 yielding
rrors that were sufficiently large.).

To test the statistical significance of the results for different val-
es of � and � we use the surrogate data procedure described at the
nd of Section 4.1. For �m = 0.63 we indicate error bars by showing
n grey the region containing the 95% of the simulated realizations

ith errors closest to the mean. For � = 1 and � = 2 the predicted
rrors are visibly below the empirical observations, but the dif-
erence is within the error bars (though on the edge of the error
ars for � = 1); the agreement is very good at all other values of �.
he autocorrelation parameter �w = 0.25 is weakly rejected for �
etween 1 and 6 and weakly accepted elsewhere, indicating that

t is very roughly the lowest value of � that is consistent with the
ata at the two standard deviations level. In contrast the case � = 0,
hich gives normalized error predictions that are lower by about

 factor of two, is clearly well outside of the error bars (note the
ogarithmic scale). This strongly indicates that a positive value of �
s required to match the observed errors, satisfying � > �w = 0.25.

.2. Distribution of forecast errors
We  now address question (3) by testing whether we  correctly
redict the distribution of forecast errors. Fig. 7 shows the distri-
ution of rescaled forecast errors using �m = 0.63 with Eq. (15) to
For  the negative errors we do the same except that we take the absolute value of
the  error and plot against −X.

rescale the errors. Different values of � are plotted separately, and
each is compared to the predicted Student distribution. Overall, the
fit is good but at longer horizons forecast errors tend to be positive,
that is, realized technological progress is slightly slower than pre-
dicted. We  have tested to see if this forecast bias is significant, and
for � ≤ 11 we  cannot reject the null that there is no bias even at the
10% level. At higher horizons there is evidence of forecast bias, but
we have to remember that at these horizons we  have much less
data (and fewer technologies) available for testing.
Fig. 8. Cumulative distribution of empirical rescaled normalized forecast errors
with all � pooled together for three different values of the autocorrelation parameter,
�  = 0 (dashed line), � = 0.25 (dot-dash line) and � = 0.63 (solid line). See the caption
of  Fig. 7 for a description of how the cumulative distributions are computed and
plotted.
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nd as expected the fit with �m = 0.63 is better than with �w = 0.25
r � = 0.

To test whether the observed deviations of the empirical error
istribution from the predicted distribution are significant we once
gain use the surrogate data approach described at the end of Sec-
ion 4.1. As before we  generate many replicas of the dataset and
orecasts. For each replica of the dataset and forecasts we  compute

 set of renormalized errors �* and construct their distribution. We
hen measure the average distance between the surrogate distri-
ution and the Student distribution as described in Appendix E.
epeating this process 10,000 times results in the sampling distri-
ution of the deviations from the Student distribution under the
ull hypothesis that the model is correct. We  then compare this
o the corresponding value of the average distance between the
eal data and the Student distribution, which gives us a p-value
nder the null hypothesis. We  find that the model with �m = 0.63

s accepted. In contrast �w = 0.25 is rejected with p-values ran-
ing from 1% to 0.1%, depending on the way in which the average
istance is computed. The case with � = 0 is very strongly rejected.

These results make it clear that the positive autocorrelations
re both statistically significant and important. The statistical test-
ng shows that � = 0.63 provides a good estimate for the observed
orecasting errors across a large range of time horizons, with nor-

alized forecasting errors that are well-described by the Student
istribution.

.3. Dependence on sample size m

So far we have used only a small fraction of the data to make each
orecast. The choice for the trailing sample of m = 5 was  for testing
urposes, allowing us to generate a large number of forecasts and
est our method for estimating their accuracy.

We now address the question of the optimal value of m. If the
rocess is stationary in the sense that the parameters (�, K, �) are
onstant, one should always use the largest possible value of m.
f the process is nonstationary, however, it can be advantageous
o use a smaller value of m,  or alternatively a weighted average
hat decays as it goes into the past. How stationary is the process
enerating technology costs, and what is the best choice of m?

We  experimented with increasing m, as shown in Fig. 9, and
ompared this to the model with �m = 0.63. We  find that the errors
rop as m increases roughly as one would expect if the process
ere stationary23 and that the model does a reasonably good job

f forecasting the errors (see also Appendix C.1). This indicates that
he best choice is the largest possible value of m,  which in this case
s m = 16. However we should emphasize that it is entirely possible
hat testing on a sample with longer time series might yield an
ptimal value24 of m > 16.

.4. Is the model well-specified?

Because most of our time series are so short it is difficult to say
hether or not the model is well-specified. As already noted, for

uch short series it is impossible to usefully estimate technology-

pecific values of the parameter �, which has forced us to use a
lobal value for all technologies. Averaging over the raw samples
uggests a relatively low value �w = 0.25, but a much higher value

23 Note that to check forecast errors for high m we  have used only technologies
or  which at least m + 2 years were available. For large values of m the statistical
ariation increases due to lack of data.
24 We present the results up to m = 16 because less than a third of the technologies
an  be used with larger sample sizes. We  have performed the same analysis up to

 = 35, where only 5 technologies are left, and the results remain qualitatively the
ame.
16),  as shown in the legend. The corresponding theoretical predictions are made
using �m = 0.63, and are shown as solid curves ordered in the obvious way from top
(m  = 4) to bottom (m = 16).

�m = 0.63 is needed to match the empirically observed errors. How-
ever we should emphasize that with such short series � is poorly
estimated, and it is not clear that averaging across different tech-
nologies is sufficient to fix this problem.

In our view it would be surprising if there are not technology-
specific variations in �; after all �j and Kj vary significantly across
technologies. So from this point of view it seems likely that the
model with a global � is mis-specified. It is not clear whether this
would be true if we were able to measure technology-specific val-
ues of �j. It is remarkable that such a simple model can represent
a complicated process such as technological improvement as well
as it does, and in any case, as we  have shown, using � = �m does a
good job of matching the empirically observed forecasting errors.
Nonetheless, testing with more data is clearly desirable.

6. Application to solar PV modules

In this section we provide a distributional forecast for the price
of solar photovoltaic modules. We then show how this can be used
to make a comparison to a hypothetical competing technology in
order to estimate the probability that one technology will be less
expensive than another at a given time horizon.

6.1. A distributional forecast for solar energy

We have shown that the autocorrelated geometric random walk
can be used to forecast technological cost improvement and that
the formula we  have derived for the distribution of forecast errors
works well when applied to many different technologies. We now
demonstrate how this can be used to make a distributional fore-
cast for the cost improvement of a given technology. The fact that
the method has been extensively tested on many technologies in
the previous section gives us some confidence that this forecast is
reliable.

We make the forecast using Eq. (16). We  use all available years
of past data (m = 33) to fit the parameters �̂S = �̃S = −0.10 and

K̂S = K̃S = 0.15, and we  used � = �m = 0.63. The forecast is given by
Eq. (16) with appropriate substitutions of parameters, i.e.

yS(t + �)∼N(yS(t) + �̃S�, K̃2
S A∗/(1 + �m

2)), (19)
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here A*(�m) is defined in Eq. (13). Fig. 10 shows the predicted
istribution of likely prices for solar photovoltaic modules for time
orizons up to 2030. The intervals corresponding to plus or minus
wo standard deviations in Fig. 10 are 95% prediction intervals.

The prediction says that it is likely that solar PV modules will
ontinue to drop in cost at the roughly 10% rate that they have in
he past. Nonetheless there is a small probability (about 5%) that the
rice in 2030 will be higher than it was in 2013.25 While it might
eem remarkable to forecast 15 years ahead with only 33 years of
ast data, note that throughout most of the paper we  were forecast-

ng up to 20 years ahead with only six years of data. As one uses
ore past data, the width of the distributional forecast decreases.

n addition there are considerable variations in the standard devia-
ions K̃j of the technologies in Table 1; these variations are reflected
n the width of the distribution at any given forecasting horizon. The
arge deviation from the trend line that solar module costs made in
he early part of the millennium cause the estimated future variance
o be fairly large.

Except for the estimation of � no data from other technologies
as used in this forecast. Nonetheless, data from other technologies
ere key in giving us confidence that the distributional forecast is

eliable.

.2. Estimating the probability that one technology will be less
xpensive than another

Suppose we want to compute the probability that a given tech-
ology will be less expensive than another competing technology
t a given point in the future. We  illustrate how this can be done by
omparing the log cost of photovoltaic modules yS with the log cost

f a hypothetical alternative technology yC. Both the cost of photo-
oltaic modules and technology C are assumed to follow Eq. (19),
ut for the sake of argument we assume that, like coal, technology C

25 This forecast is consistent with the one made several years ago by Nagy et al.
2013) using data only until 2009. It is difficult to compare this forecast with expert’s
licitation studies, which are often more precise in terms of which PV technology
nd  which market is predicted and are often concerned with levelized costs. Indi-
idual experts’ distributional predictions for LCOE (see Fig. 6 in Bosetti et al. (2012))
eem tight as compared to ours (for modules only). However, the predictions for
he  probability that PV will cost less than $0.30/Wp in 2030 reported in Fig. 3 of
urtright et al. (2008) are overall comparable with ours.
is  on average not improving, i.e. �̃C = 0. The curves show Eq. (20) using �̃S = −0.10,
K̃S = 0.15, m = 33 for solar PV and three different values of the noise parameter K̃C

for technology C. The crossing point is at � ≈ 11 (2024) in all three cases.

has historically on average had a constant cost, i.e. �̃C = 0. We  also
assume that the estimation period is the same, and that �C = �S = �m.
We want to compute the probability that � steps ahead yS < yC. The
probability that yS < yC is the probability that the random variable
Z = yC − yS is positive. Since yS and yC are normal, assuming they are
independent their difference is normal, i.e.

Z∼N
(

�Z, �2
Z

)
,

where �Z = (yC (t) − yS(t)) + �( �̃C − �̃S) and �2
Z = (A∗/(1 +

�2
m))(K̃2

S + K̃2
C ). The probability that yS < yC is the integral for

the positive part, which is expressed in terms of the error function

Pr(yS < yC ) =
∫ ∞

0

fZ (z)dz

= 1
2

[
1 + Erf

(
�Z√
2�Z

)]
.

(20)

In Fig. 11 we  plot this function using the parameters estimated
for photovoltaics, assuming that the cost of the competing technol-
ogy is a third that of solar at the starting date in 2013, and that it is
on average not dropping in cost, i.e. �C = 0. We  consider three dif-
ferent levels of the noise parameter K̃C for technology C. Note that
changing the noise parameter does not change the expected time
when the curves cross.

The main point of this discussion is that with our method we
can reliably forecast the probability that a given technology will
surpass a competitor.

6.3. Discussion of PV relative to coal-fired electricity and nuclear
power

In the above discussion we have carefully avoided discussing a
particular competing technology. A forecast for the full cost of solar
PV electricity requires predicting the balance of system costs, for
which we lack consistent historical data, and unlike module costs,
the full cost depends on factors such as insolation, interest rates

and local installation costs. As solar PV grows to be a significant
portion of the energy supply the cost of storage will become very
important. Nonetheless, it is useful to discuss it in relation to the
two competitors mentioned in the introduction.
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An analysis of coal-fired electricity, breaking down costs into
heir components and examining each of the trends separately,
as been made by McNerney et al. (2011). They show that while
oal plant costs (which are currently roughly 40% of total cost)
ropped historically, this trend reversed circa 1980. Even if the
ecent trend reverses and plant construction cost drops dramati-
ally in the future, the cost of coal is likely to eventually dominate
he total cost of coal-fired electricity. As mentioned before, this
s because the historical cost of coal is consistent with a random

alk without drift, and currently fuel is about 40% of total costs. If
oal remains constant in cost (except for random fluctuations up
r down) then this places a hard bound on how much the total
ost of coal-fired electricity can decrease. Since typical plants have
fficiencies the order of 1/3 there is not much room for making
he burning of coal more efficient – even a spectacular efficiency
mprovement to 2/3 of the theoretical limit is only an improve-

ent of a factor of two, corresponding to the average progress PV
odules make in about 7.5 years. Similar arguments apply to oil

nd natural gas.26

Because historical nuclear power costs have tended to increase,
ot just in the US but worldwide, even a forecast that they
ill remain constant seems optimistic. Levelized costs for solar

V powerplants in 2013 were as low as 0.078–0.142 Euro/kWh
0.09–0.16$) in Germany (Kost et al., 2013),27 and in 2014 solar
V reached a new record low with an accepted bid of $0.06/kWh
or a plant in Dubai.28 When these are compared to the projected
ost of $0.14/kWh in 2023 for the Hinkley Point nuclear reactor, it
ppears that the two technologies already have roughly equal costs,
hough of course a direct comparison is difficult due to factors such
s intermittency, waste disposal, insurance costs, etc.

As a final note, skeptics have claimed that solar PV cannot be
amped up quickly enough to play a significant role in combatting
lobal warming. A simple trend extrapolation of the growth of solar
nergy (PV and solar thermal) suggests that it could represent 20%
f the energy consumption by 2027. In contrast the “hi-Ren” (high
enewable) scenario of the International Energy Agency, which is
resumably based on expert analysis, assumes that PV will generate
6% of total electricity in 2050. Thus even in their optimistic forecast
hey assume PV will take 25 years longer than the historical trend
uggests (to hit a lower target). We  hope in the future to formulate
imilar methods for forecasting production so that we  can better
ssess the reliability of such forecasts. See Appendix F and Fig. 20
n particular.

. Conclusion

Many technologies follow a similar pattern of progress but
ith very different rates. In this paper we have proposed a sim-
le method based on the autocorrelated geometric random walk
o provide robust predictions for technological progress that are

tated as distributions of outcomes rather than point forecasts. We
ssume that all technologies follow a similar process except for
heir rates of improvement and volatility. Under this assumption

26 Though much has been made of the recent drop in the price of natural gas due
o  fracking, which has had a large effect, one should bear in mind that the drop
s  tiny in comparison to the factor of about 2330 by which solar PV modules have
ropped in price. The small change induced by fracking is only important because

t  is competing in a narrow price range with other fossil fuel technologies. In work
ith other collaborators we  have examined not just oil, coal and gas, but more than

 hundred minerals; all of them show remarkably flat historical prices, i.e. they all
hange by less than an order of magnitude over the course of a century.
27 Levelized costs decrease more slowly than module costs, but do decrease
Nemet, 2006). For instance, installation costs per watt have fallen in Germany and
re  now about half what they are in the U.S. (Barbose et al., 2014).
28 See http://www.renewableenergyworld.com/rea/news/article/2015/01/dubai-
tility-dewa-procures-the-worlds-cheapest-solar-energy-ever
Policy 45 (2016) 647–665 659

we can pool forecast errors of different technologies to obtain an
empirical estimation of the distribution of forecast errors.

One of the essential points of this paper is that the use of many
technologies allows us to make a better forecast for a given technol-
ogy, such as solar PV modules. Although using many technologies
does not affect our point forecast, it is the essential element that
allowed us to test our distributional forecasts in order to ensure
that they are reliable. The point is that by treating all technologies
as essentially the same except for their parameters, and collapsing
all the data onto a single distribution, we can pool data from many
technologies to gain confidence in and calibrate our method for a
given technology. It is of course a bold assumption to say that all
technologies follow a random process with the same form, but the
empirical results indicate that this a good hypothesis.

We do not want to suggest in this paper that we think that
Moore’s law provides an optimal forecasting method. Quite the
contrary, we  believe that by gathering more historical data, and
by adding other auxiliary variables such as production, R&D, patent
activity, there should be considerable room for improving forecast-
ing power. In the future we anticipate that theories will eventually
provide causal explanations for why  technologies improve at such
different rates and this will result in better forecasts. Nonetheless,
in the meantime the method we have introduced here provides
a benchmark against which other approaches can be measured.
It provides a proof of principle that technologies can be success-
fully forecast and that the errors in the forecasts can be reliably
predicted.

From a policy perspective we  believe that our method can
be used to provide an objective point of comparison to expert
forecasts, which are often biased by vested interests and other
factors. The fact that we  can associate uncertainties with our pre-
dictions makes them far more useful than simple point forecasts.
The example of solar PV modules illustrates that differences in
the improvement rate of competing technologies can be dramatic,
and that an underdog can begin far behind the pack and quickly
emerge as a front-runner. Given the urgency of limiting green-
house gas emissions, it is fortuitous that a green technology also
happens to have such a rapid improvement rate, and is likely to
eventually surpass its competition within 10 − 20 years. In a con-
text where limited resources for technology investment constrain
policy makers to focus on a few technologies that have a real chance
to eventually achieve and even exceed grid parity, the ability to
have improved forecasts and know how accurate they are should
prove particularly useful.

Acknowledgements

We would like to acknowledge Diana Greenwald and Aimee Bai-
ley for their help in gathering and selecting data, as well as Glen
Otero for help acquiring data on genomics, Chris Goodall for bring-
ing us up to date on developments in solar PV, and Christopher
Llewellyn Smith, Jeff Alstott, Michael Totten, our INET colleagues
and three referees for comments. This project was supported by the
European Commission project FP7-ICT-2013-611272 (GROWTH-
COM), by the U.S. Dept. of Solar Energy Technologies Office under
grant DE-EE0006133 and by the Institute for New Economic Think-
ing at the Oxford Martin School.

Appendix A. Data

The data are mostly taken from the Santa-Fe Performance

Curve DataBase, accessible at pcdb.santafe.edu. The database
has been constructed from personal communications and from
Colpier and Cornland (2002), Goldemberg et al. (2004), Lieberman
(1984), Lipman and Sperling (1999), Zhao (1999), McDonald and
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chrattenholzer (2001), Neij et al. (2003), Moore (2006), Nemet
2006), Schilling and Esmundo (2009). The data on photovoltaic
rices has been collected from public releases of Strategies Unlim-

ted, Navigant and SPV Market Research. The data on nuclear energy
s from Koomey and Hultman (2007) and Cooper (2009). The DNA
equencing data is from Wetterstrand (2015) (cost per human-
ize genome), and for each year we took the last available month
September for 2001–2002 and October afterwards) and corrected
or inflation using the US GDP deflator.

ppendix B. Distribution of forecast errors

.1. Random walk with drift

This section derives the distribution of forecast errors. Note that
y definition yt+1 − yt = �y∼N(�, K2). To obtain �̂ we assume m
equential independent observations of �y, and compute the aver-
ge. The sampling distribution of the mean of a normal variable
s

ˆ ∼N(�, K2/m). (21)

oreover, nt∼N(0, K2) implies

t+�∑
=t+1

ni∼N(0,  �K2). (22)

sing Eqs. (21) and (22) in Eq. (7) we see that the distribution of
orecast errors is Gaussian

 = �(� − �̂) +
t+�∑

i=t+1

ni∼N(0,  K2A), (23)

here A = � + �2/m (10). Eq. (23) implies

1√
A

E
K

∼N(0, 1). (24)

q. (23) leads to E[E2] = K2(� + �2/m), which appears in more gen-
ral form in Sampson (1991). However we also have to account for
he fact that we have to estimate the variance. Since K̂2 is the sample
ariance of a normally distributed random variable, the following
tandard result holds

(m − 1)K̂2

K2
∼	2(m − 1).  (25)

f Z∼N(0, 1), U ∼ 	2(r), and Z and U are independent, then
/
√

U/r∼t(r). Taking Z from Eq. (24), U from Eq. (25) and assuming
ndependence, we find that the rescaled normalized forecast errors
ave a Student t distribution

1√
A

E
K̂

∼t(m − 1).  (26)

ote that the t distribution has mean 0 but variance df/(df − 2),
here df are the degrees of freedom. Hence the expected squared

escaled normalized forecast error is[(
1√
A

E
K̂

)2
]

= 0 + Var
[

1√
A

E
K̂

]
= m − 1

m − 3
,

eading to Eq. (8) in the main text.

.2. Integrated moving average
Here we derive the distribution of forecast errors given that the
rue process is an IMA(1,1) with known �, � and K are estimated
ssuming that the process is a random walk with drift, and the
and  (15). Simulations are done using 5000 time series of 100 periods, all with with
�  = 0.04, K = 0.05, � = 0.6. The insets show the distribution of forecast errors, as in
Fig. 8, for m = 5, 40

forecasts are made as if the process was  a random walk with drift.
First note that, from Eq. (11),

yt+� = yt + �� +
t+�∑

i=t+1

[vi + �vi−1].

Using Eq. (5) to make the prediction implies that

E = yt+� − ŷt+� = �(� − �̂) +
t+�∑

i=t+1

[vi + �vi−1].

Now we can substitute

�̂ = 1
m

t−1∑
i=t−m

(yi+1 − yi) = � + 1
m

t−1∑
i=t−m

[vi+1 + �vi]

to obtain

E = �

m

(
−

t−1∑
i=t−m

[vi+1 + �vi]

)
+

t+�∑
i=t+1

[vi + �vi−1].

Expanding the two sums, this can be rewritten

E = − ��

m
vt−m − �(1 + �)

m

t−1∑
i=t−m+1

vi +
(

� − �

m

)
vt + (1 + �)

t+�−1∑
i=t+1

vi + vt+� .

Note that the term vt enters in the forecast error both because
it has an effect on parameter estimation and because of its effect
on future noise. Now that we have separated the terms we are left
with a sum of independent normal random variables. Hence we can
obtain E∼N(0, �2A∗), where

A∗ ≡
(

��

m

)2

+ (m − 1)

(
�(1 + �)

m

)2

+
(

� − �

m

)2
+ (� − 1)(1 + �)2 + 1.
can be simplified as (13) in the main text.
To obtain the results with estimated (instead of true) variance

(Eq. (14) and (15)), we follow the same procedure as in Appendix
B.1, which assumes independence between the error and the
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errors very much. While the IMA(1,1) model produces a parallel
shift of the errors at medium to long horizons, the Student noise
increments generate larger errors mostly at short horizons. Thus
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All technologies
Half technologies: Mean
Half technologies: 95% C.I.
ig. 13. Empirical mean squared normalized forecast errors as a function of the size
he  plain lines are those expected if the true model was an IMA (1,1) with �m = 0.63

stimated variance. Fig. 12 shows that the result is not exact but
orks reasonably well if m > 15.

ppendix C. Robustness checks

.1. Size of the learning window

As a check on the results presented in Section 5.3 we  test the
ependence of the forecast errors on the sample window m for sev-
ral different forecast horizons. The results are robust to a change
f the size of learning window m.  It is not possible to go below m = 4
ecause when m = 3 the Student distribution has m − 1 =2 degrees
f freedom, hence an infinite variance. Note that to make forecasts
sing a large m only the datasets which are long enough can be

ncluded. The results for a few values of m are shown in Fig. 9.
ig. 13 shows that the normalized mean squared forecast error
onsistently decreases as the learning window increases.

.2. Data selection

We  have checked how the results change when about half of the
echnologies are randomly selected and removed from the dataset.
he shape of the normalized mean squared forecast error growth
oes not change and is shown in Fig. 14. The procedure is based on
0000 random trials selecting half the technologies.

.3. Increasing �max

In the main text we have shown the results for a forecast horizon
p to �max = 20. Moreover, we have used only the forecast errors up

o �max to construct the empirical distribution of forecast errors in
ig. 8 and to estimate � in Appendix D. Fig. 15 shows that if we  use
ll the forecast errors up to the maximum with � = 73 the results do
ot change significantly.
rning window for different forecast horizons. The dots are the empirical errors and

C.4. Heavy tail innovations

To check the effect of non-normal noise increments on �(�) we
simulated random walks with drift with noise increments drawn
from a Student distribution with 3 or 7 degrees of freedom. Fig. 16
shows that fat tail noise increments do not change the long horizon
Fig. 14. Robustness to dataset selection. Mean squared normalized forecast errors
as  a function of � when using only half of the technologies (26 out 53), chosen at
random. The 95% confidence intervals, shown as dashed lines, are for the mean
squared normalized forecast errors when we randomly select 26 technologies.



662 J.D. Farmer, F. Lafond / Research Policy 45 (2016) 647–665

1 2 5 10 2 0

5
10

20
50

20
0

50
0

20
00

 Forecast horizon τ

Ξ
(τ

)

Fig. 15. Robustness to increasing �max . Main results (i.e as in Figs. 6 and 8) using
�max = 73. We  use � = 0 and � = 0.63.
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f  the mean squared normalized forecast errors for four models, showing that
ntroducing fat tail innovations in a random walk with drift (RWD) mostly increases
rrors only at short horizons.

at-tail innovations are not the most important source of discrep-
ncy between the geometric random walk model and the empirical
ata.

ppendix D. Procedure for selecting the autocorrelation
arameter �

We  select � in several ways. The first method is to compute a
ariety of weighted means for the �̃j estimated on individual series.
he main problem with this approach is that for some technol-
gy series the estimated � was very close to 1 or −1, indicating
is-specification or estimation problems. After removing these 8

echnologies the mean with equal weights for each technology

s 0.27 with standard deviation 0.35. We  can also compute the

eighted mean at each forecast horizon, with the weights being
qual to the share of each technology in the number of forecast
rrors available at a given forecast horizon. In this case the weighted
Fig. 17. Estimation of � as a global parameter.

mean �w(�) will not necessarily be constant over time. Fig. 17 (right)
shows that �w(�) oscillates between 0.24 and 0.26. Taking the aver-
age over the first 20 periods gives �w = 1/20

∑20
�=1�w(�) = 0.25.

When doing this we do not mean to imply that our formulas are
valid for a system with heterogenous �j; we simply propose a best
guess for a universal �.

The second approach is to select � in order to match the errors.
As before we generate many artificial data sets using the IMA(1,1)
model. Larger values of � imply that using the simple random walk
model to make the forecasts will result in higher forecast errors.
Denote by �(�)empi the empirical mean squared normalized fore-
cast error as depicted in Fig. 6, and by �(�)sim,� the expected mean
squared normalized forecast error obtained by simulating IMA(1,1)
datasets 3,000 times with a particular global value of � and tak-
ing the average. We  study the ratio of these two, averaged over all

1 . . . �max = 20 periods, i.e. Z(�) = 1
20

∑20
�=1

�(�)empi

�(�)sim,�
. The values are

shown in Fig. 17 (left). The value at which |Z − 1| is minimum is at
�m = 0.63.

We also tried to make forecasts using the IMA model to check
that forecasts are improved: which value of � allows the IMA  model
to produce better forecasts? We  apply the IMA(1,1) model with
different values of � to make forecasts (with the usual estimate of
the drift term �̂) and study the normalized error as a function of
�. We  record the mean squared normalized error and repeat this
exercise for a range of values of �. The results for horizons 1,2, and
10 are reported in Fig. 18 (left). This shows that the best value of �
depends on the time horizon �. The curve shows the mean squared
normalized forecast error at a given forecast horizon as a function of
the value of � assumed to make the forecasts. The vertical lines show
the minima at 0.26, 0.40, and 0.66. Given that the mean squared
normalized forecast error increases with �, to make the curves fit on
the plot the values are normalized by the mean squared normalized
forecast error using � = 0. We  also see that as the forecast horizon
increases the improvement from taking the autocorrelation into
account decreases (Fig. 18, right), as expected theoretically from
an IMA  process. Note that the improvement in forecasting error is
0.0 0.2 0.4 0.6 5 10 1 0

Fig. 18. Using the IMA  model to make better forecasts. The right panel uses � = 0.25.
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timescale.
Of course the usual caveats apply, and the limitations of such

forecasting is evident in the historical series of Fig. 20. The increase
ig. 19. Expected deviations of the distribution of the rescaled variable �* of Eq. (15
ith  the same properties as ours. The histograms show the sampling distribution

imulations use � = 0.25 (3 upper panels) and � = 0.63 (3 lower panels).

ppendix E. Comparison of the empirical distribution of
escaled errors to the predicted Student distribution

In this section we check whether the deviations of the empirical
orecast errors from the predicted theoretical distribution shown
n Fig. 8 are consistent with statistical sampling error. For a given
alue of � we generate a surrogate data set and surrogate forecasts
imicking our empirical data as described at the end of Section

.1. We  then construct a sample surrogate (cumulative) distribu-
ion Pk for the pooled rescaled errors �* of Eq. (15). We  measure the
istribution Pk over 1,000 equally spaced values xk on the interval
− 15 ; 15]. Pk is estimated by simply counting the number of obser-
ations less than xk. This is then compared to the predicted Student
istribution tk by computing the difference �k = Pk − tk between the
urrogate distribution and the Student distribution in each inter-
al. We  measure the overall deviation between the surrogate and
he Student using three different measures of deviation:

∑
k|�k|,

k(�k)2, and max  �k. We  then repeat this process 10,000 times to
enerate a histogram for each of the measures above, and compare
his to the measured value of the deviation for the real data.

Results for doing this for �w = 0.25 and �m = 0.63 are reported in
ig. 19. For �w the resulting p-values (the shares of random datasets
ith a deviation higher than the empirical deviation) are (0.001,

.002, 0.011) respectively using (
∑

k|�k|,
∑

k(�k)2, max  �k) to
easure the deviation. In contrast for �m = 0.63 the p-values are

0.21, 0.16, 0.20). Thus �m = 0.63 is accepted and �w = 0.25 is
ejected. The uncorrelated case � = 0 is rejected even more strongly.

ppendix F. A trend extrapolation of solar energy capacity

In this paper we have been concerned with forecasting costs.
or some applications it is also useful to forecast production.
ur exploratory work so far suggests that, while the same basic
ethods can be applied, production seems more likely to deviate
ystematically from increasing exponentially. Nonetheless, Nagy
t al. (2013) found that as a rough approximation most of the tech-
ologies in our data set can be crudely (but usefully) approximated
s having exponentially increasing production for a long span of
 the Student distribution for hindcasting experiments as we do here using a dataset
iven statistic and the thick black line shows the empirical value on real data. The

their development cycle, and solar PV is no exception. Trend extrap-
olation can add perspective, even if it comes without good error
estimates, and the example we present below motivates the need
for more work to formulate better methods for assessing the reli-
ability of production forecasts (for an example, see Shlyakhter et al.
(1994)).

Many analysts have expressed concerns about the time required
to build the needed capacity for solar energy to play a role in
reducing greenhouse gas emissions. The “hi-Ren” (high renew-
able) scenario of the International Energy Agency assumes that PV
will generate 16% of total electricity29 in 2050; this was recently
increased from the previous estimate of only 11%. As a point of
comparison, what do past trends suggest? Though estimates vary,
over the last ten years cumulative installed capacity of PV has
grown at an impressive rate. According to BP’s Statistical Review
of World Energy 2014, during the period from 1983-2013 solar
energy as a whole grew at an annual rate of 42.5% and in 2013
represented about 0.22% of total primary energy consumption, as
shown in Fig. 20. By comparison total primary energy consump-
tion grew at an annual rate of 2.6% over the period 1965-2013.
Given that solar energy is an intermittent source, it is much eas-
ier for it to contribute when it supplies only a minority of energy:
new supporting technologies will be required once it becomes
a major player. If we  somewhat arbitrarily pick 20% as a target,
assuming both these trends continue unaltered, a simple calcula-
tion shows that this would be achieved in about 13.7 years.30 That
is, under these assumptions in 2027 solar would represent 20% of
energy consumption. Of course this is only an extrapolation, but
it puts into perspective claims that solar energy cannot play an
essential role in mitigating global warming on a relatively short
29 Electricity generation uses about 40% of the world’s primary energy but is
expected to grow significantly.

30 In this deterministic setting, the time to meet this goal is the solution for t of
0.0022(1.425)t = 0.2(1.026)t .
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Taylor, J.W., Bunn, D.W., 1999. A quantile regression approach to generating
ical Review of World Energy (BP, 2014). Under a projection for solar energy obtained
y fitting to the historical data the target of 20% of global primary energy is achieved

n  2027.

f solar is far from smooth, wind has a rather dramatic break in
ts slope in roughly 1988, and a forecast for nuclear power made
n 1980 based on production alone would have been far more
ptimistic than one today. It would be interesting to use a richer
conomic model to forecast cost and production simultaneously,
ut this is beyond the scope of this paper. The point here was  sim-
ly to show that if growth trends continue as they have in the past
ignificant contributions by solar are achievable.
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