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1 Introduction

Gravitational-wave observations [1] have been stimulating the search of new computational
methods for general relativity (GR). In addition to classical approaches to the gravitational
two-body problem, which have seen constant improvement [2–12], new results have been
obtained via scattering amplitudes, which encode the relevant, quantum or classical, physics
in a gauge-invariant way. See [13–16] for recent reviews.
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The conservative scattering of non-spinning compact bodies has been calculated up to
fourth post-Minkowskian (PM) order using amplitude- [17, 18] and worldline-based meth-
ods [19–22]. For the spinning case, the conservative scattering has been evaluated at second
PM order and all-order in the angular momenta [23–25] with the help of Heavy-Particle
Effective Theory [26, 27]. Higher PM orders have also been obtained, though limited to
lower spin orders [22, 28–31]. Progress on the spinning front has resulted in different and
complementary on-shell approaches [27, 32–42]. For the interesting case of black-hole (BH)
dynamics, many of these works rely on the matching [32, 33] of three-point amplitudes to
the Kerr multipole expansion [43]. An all-spin understanding of the relevant four-point
Compton scattering amplitude, however, is still lacking, despite recent progress in the
description of massive higher-spin particles [44–46], matching to the Teukolsky-equation
solutions [38, 39] through sixth order in spin, and the availability of the conservative tree-
level Compton with arbitrary coefficients [47]. The quantum-field-theoretic (QFT) program
of gravitational dynamics has also seen impressive advances in methods for obtaining clas-
sical observables from amplitudes, such as the Kosower-Maybee-O’Connell (KMOC) for-
malism [48–53], heavy-particle expansion [26, 27, 54–58], eikonal ideas [59–65], worldline
QFT [28–30], boundary-to-bound map [66–69], and strong-field amplitudes [70–72].

Despite the successes in the conservative section, the progress in non-conservative ef-
fects has been slower, since those effects are naturally smaller. In particular, the absorption
of mass and angular momentum is tiny, especially for non-spinning bodies, and is unlikely
to be observed by ground-based detects, as shown in [73] for 5-to-50 solar masses black
holes. However, for space-based detectors, the fraction of the radiated energy that is ab-
sorbed by the BHs will be around 5% [74]. This becomes especially important for rapidly
rotating BHs, as shown in [75]. The change of mass and spin of a BH naturally leads to
a change in the horizon by the second law of BH thermodynamics [76]. Such effects are
already included in a few of the effective-one-body waveform templates [77–79] and will be
needed for a future precision program.

In this paper, we initiate the study of absorption effects using modern on-shell methods
for scattering amplitudes. In particular, we use mass-changing three-point amplitudes to
describe leading absorption effects from a simplified single-quantum approach. We thus
construct an in-in on-shell probability-based formalism for a partial wave impinging on a
BH. Using this covariant effective-field-theory (EFT) description, we can match the micro-
scopic cross-section calculation from GR literature and obtain the values of the relevant
effective coupling coefficients. As a concrete application, we focus on absorption by a
non-spinning BH, while leaving the more phenomenologically relevant spinning case for
future work.

Absorption effects have been considered before in the literature, starting with Starobin-
sky, Churilov [80, 81] and Page [82, 83] and with later higher-order corrections in [84]
and relatively recently in [85] by using traditional GR methods. The scattering and
absorption cross-sections are obtained using a partial-wave expansion (in spin-weighted
spherical harmonics) of the scattering phases and transmission factors. These factors are
obtained by solving the Teukolsky equation, which describes perturbation around Kerr
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BHs. Absorption of mass and angular momentum by a BH was also computed in great
detail [73, 74, 86, 87] in post-Newtonian theory.

From the worldline perspective, the study of absorption is more recent. It has been
considered in [88] for scalar BHs, with subsequent inclusion of spin effects [89, 90]. Fur-
thermore, absorption has been combined with spontaneous emission to understand super-
radiance effects in [91]. The authors of [88–92] put EFT operators on a classical worldline
to model the intricate behavior of a compact object. In particular, higher-derivative op-
erators were included in [92] for the spinning case, which starts at 1.5 PN order, tackling
the discrepancy in the literature of the horizon fluxes in the test-body limit. We propose
to go further and consider the object itself as a quantum particle, but amenable to an ap-
propriately defined classical limit. This lets us profit not just from QFT techniques, which
have been available on the worldline, but also from the on-shell approach to scattering
amplitudes.

Purely mass-changing absorption effects from on-shell scattering amplitudes were never
studied to the best of our knowledge,1 although similar amplitudes have appeared in the
context of quantum emission [93, 94]. The basic building blocks for modeling absorption
effects are three-point amplitudes of two different massive particles and a graviton, in which
the initial state absorbs the graviton, changing its mass and spin. These amplitudes induce
the introduction of a spectral-density function for the black holes, which goes beyond the
simplest point particle approach. Even before matching, the EFT cross-section reproduces
known facts about Schwarzchild BHs: (i) the cross-section does not depend on the magnetic
quantum number m, and (ii) there is no absorption in the static limit σabs(ωcl → 0) = 0.

Properly modeling the interaction of a BH with a classical wave from amplitudes
requires the use of massless coherent states. For that, we describe a covariant probability-
based formalism for spherical coherent states, so as to substantiate the single-quantum
leading-order calculation, and to explain how one could improve the absorption description
to higher orders and combine it with conservative effects.

This paper is organized as follows. In section 2 we give construct a scattering-matrix
element for a compact object absorbing a partial/spherical wave in terms of mass-changing
and spin-changing amplitudes, the form of which is specified in section 3. In section 4 we
combine these ingredients into an absorptive cross-section with the help of the BH spec-
tral density function, which enters as an additional effective coupling factor. In section 5
we match to the microscopic cross-section from GR to make sense of the effective cou-
plings. Finally, in section 6, we connect the single-quantum cross-section description to the
framework involving massless spherical coherent states. In this section, we also introduce
a diagrammatic expansion of the T -matrix, which allows for perturbations of the BH-wave
interaction that can be matched to higher orders of the cross-section. We conclude in
section 7. Though we assume familiarity with the spinor-helicity formalism [95], we briefly
explain it and its connection to covariant spin-weighted spherical harmonics in appendix A.

1In [38, 39] the authors have introduced contact terms non-analytical in spin for the Compton amplitude
to match the solutions of the Teulkosky equation. These terms are then suggested to model absorption
effects, despite the masses of the initial and the final particles being equal. Here what we call absorption
effects are strictly inelastic changing-mass interactions.
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Figure 1. Wave impinging on a scalar black hole.

2 Partial-wave absorption matrix element

In this section we describe our setup for obtaining classical absorption effects from the
quantum on-shell scattering amplitudes. Such a setup of course relies on EFT ideas, such
as treating black holes as point particles. These concepts have been heavily used recently
to provide predictions for conservative dynamics and dissipation effects.

As in most of EFTs, the knowledge of the coefficients that parametrize the theory
is either provided by experimental data or by performing a matching calculation to the
underlying theory. In our case, the underlying theory is Einstein’s GR, or more practically,
the solution to the Teukolsky equation [96–98]. Given these two sides of the EFT matching,
we will sometimes be referring to the EFT side of the calculation as macroscopic, and to the
solution to Teukolsky equation as microscopic. On the EFT side, we will model absorption
effects using mass-changing amplitudes.

We focus on the simplest relevant process depicted in figure 1: a graviton spherical state
impinging on a massive particle of mass M1 (for simplicity taken spinless), which absorbs
the graviton and changes its mass to M2 and spin to s2. It is natural to think of the
corresponding scattering amplitude in terms of plane-wave states as described in section 3.
However, GR methods give us results [80–83, 85, 99–101] for spherical waves with fixed
angular-momentum quantum numbers. Therefore, we start by translating between these
two pictures — with a focus on single-graviton states. In section 6 we will come back to
justifying this setup further using classical coherent states, which are more appropriate for
modeling classical waves.

2.1 Spherical helicity amplitude

By definition (see e.g. [102]), spherical helicity states partially diagonalize the total spin
operator J . They are eigenstates of J2, Jz and helicity (J · P )/P 2, as well as the Hamil-
tonian P 0. These states are labeled by energy ω, angular-momentum quantum numbers j,
m = −j, . . . , j and helicity h = ±2 (graviton) or ±1 (photon):2

|ω, j,m, h⟩ = a†
j,m,h(ω)|0⟩, ⟨ω′, j′,m′, h′|ω, j,m, h⟩ = δ̂(ω′ − ω)δj

j′δ
m
m′δh

h′ . (2.1)

2Here and below, the hat notation [48] means d̂np := dnp/(2π)n and δ̂n(. . .) := (2π)nδn(. . .). For the
spherical helicity states, we also assume that masslessness: P 2|ω, j, m, h⟩ = 0.
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This is in contrast to the more familiar plane-wave states |k, h⟩, which diagonalize the
four-momentum Pµ in addition to the helicity (J · P )/P 2:

|k, h⟩ := a†
h(k)|0⟩, ⟨k′, h′|k, h⟩ = 2|k|δ̂3(k′ − k)δh

h′ . (2.2)

The two bases of one-particle states may be related by [91]

⟨k, h′|ω, j,m, h⟩ = 4π√
2ω
δh

h′ δ̂(|k| − ω) −hYjm(k̂), (2.3)

where the spin-weighted spherical harmonics −hYjm(k̂) depend on the momentum direc-
tion k̂ := k/|k| and constitute a generalization [103, 104] of the usual (scalar) spherical
harmonics. The corresponding completeness relations imply that the one-particle spinning
spherical state can be written as

|ω, j,m, h⟩= 4π√
2ω

∫
k
δ̂(k0− ω) −hYj,m(k̂)|k, h⟩=

√
2ω
∫
dΩk̂

4π −hYj,m(k̂)|k, h⟩
∣∣
|k|=ω

, (2.4)

where dΩk̂ denotes the spherical-angle integration measure over the directions of k. Here
and below, we use a shorthand for the on-shell integration measure (for Mk = 0)∫

p
:=
∫
d4p

(2π)3 Θ(p0)δ(p2 −M2
p ) =:

∫
d4p

(2π)3 δ
+(p2 −M2

p ). (2.5)

In order to write the scattering matrix element for a spherical helicity state, we need
to be careful with the massive particle at the origin, which, strictly speaking, cannot be a
plane-wave state either. So instead we use a wavepacket

|ψ⟩ :=
∫

p1
ψξ(p1)|p1⟩ :

⟨ψ|ψ⟩ = 1, ⟨ψ|Pµ|ψ⟩ = pµ
1,cl := (M1,0),

⟨ψ|PµP ν |ψ⟩ = ⟨ψ|Pµ|ψ⟩⟨ψ|P ν |ψ⟩+O(ξ).
(2.6)

For concreteness, we may think of ψξ(p1) ∝ exp
(
− p0

1
ξM1

)
. The dimensionless parameter

ξ = ℓ2C/ℓ
2
WP encodes the ratio of the Compton wavelength and the position-space spread

of the wavepacket [48]. We will be focusing on the scale hierarchy ℓC ≪ ℓWP ≪ 2πℏc/ω
relevant for classical scattering of a wave with frequency ω/ℏ.

We are now ready to express the S-matrix element for a spherical helicity state in
terms of the conventional plane-wave scattering amplitude:

⟨X|S|ψ;ω, j,m, h⟩ = 4πi√
2ω

∫
p1
ψξ(p1)

∫
k
δ̂(k0− ω)δ̂4(p1 + k − pX) −hYj,m(k̂)A(X|p1; k, h).

(2.7)
As usual, we have ignored the no-scattering term in S = 1 + iT . For the amplitude
arguments, we choose to mimic the structure of the matrix elements and write the outgoing
particles first separated from the incoming particles by a vertical line.

Unfortunately, the matrix element (2.7) by itself is too singular to handle unambigu-
ously, which is due to the infinite norm ⟨ω, j,m, h|ω, j,m, h⟩ = δ̂(0) of the massless spherical
state (2.4). So we also smear its energy with a wavefunction:

|γ⟩ :=
∫ ∞

0
d̂ωγζ(ω)|ω, j,m, h⟩ :

⟨γ′|γ⟩ = δj
j′δ

m
m′δh

h′ , ⟨γ|P 0|γ⟩ = ωcl,

⟨γ|P 0P 0|γ⟩ = ⟨γ|P 0|γ⟩⟨γ|P 0|γ⟩+O(ζ).
(2.8)
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The corresponding scattering-matrix element is finally

⟨X|S|ψ; γ⟩ = 4πi
∫

p1
ψξ(p1)

∫
k

γζ(k0)√
2k0

δ̂4(p1 + k − pX) −hYj,m(k̂)A(X|p1; k, h). (2.9)

2.2 Covariant spherical states

Before we proceed to the absorption cross-section, it is rewarding to covariantize our
spherical-helicity state setup. By covariantization we mean allowing for an arbitrary time
direction uµ, with u2 = 1, as well a spacelike spin quantization axis nµ, with n2 = −1
and n · u = 0. (In section 2.1, these were set to (1,0) and (0, 0, 0, 1), respectively.) The
corresponding angular-momentum operator is

Jµ(u) := 1
2ϵ

µνρσJνρuρ ⇒ [Jµ(u), Jν(u)] = iϵµνρσuρJσ(u), (2.10)

which is not to be confused with the Pauli-Lubanski spin vector Wµ := ϵµνρσJνρPρ/2.
A spherical helicity state |ω, j,m, h⟩ is then an eigenstate of “energy” E(u) := u · P and
angular-momentum combinations −J(u)2, n · J(u) and J(u) · P = W · P . Similarly to
eq. (2.4), we choose to construct them directly from the plane-wave states:

|ω, j,m, h⟩u,n := 4π√
2ω

∫
d̂4k δ̂+(k2)δ̂(k · u− ω) −hYj,m(k;u, n)|k, h⟩. (2.11)

The crucial new ingredient here is the covariant spin-weighted spherical harmonic. We
define these functions in terms of spinor products as follows:

hỸj,m(k;u, n) := 1
⟨k|u|k]j

[
[uak]⊙(j+h) ⊙ ⟨kua⟩⊙(j−h)

]
{a}=(1 . . . 1︸ ︷︷ ︸

j−m

2 . . . 2︸ ︷︷ ︸
j+m

)
. (2.12)

We have hereby followed [39, 105] in using the massive spinor-helicity formalism [95] (see
appendix A for a brief review) to covariantize the spinorial construction dating back to
Newman and Penrose [103]. The exposed indices {a} = {a1, . . . , a2j} correspond to the
little group SU(2) of uµ and are understood to be fully symmetrized, as indicated by
the symmetric tensor-product symbol ⊙. We adopt the spinor conjugation conventions(
|pa⟩α

)∗ = [pa|α̇,
(
[pa|α̇

)∗ = −|pa⟩α for p0 > 0, which immediately imply

hỸ
∗

j,m(k;u, n) = (−1)2j+m−h
−hỸj,−m(k;u, n). (2.13)

The properly normalized functions seen in eq. (2.11) are written without the tildes:

hYj,m(k;u, n) := (−1)m(2j)!
√

2j+1
4π(j+m)!(j−m)!(j+h)!(j−h)! hỸj,m(k;u, n), (2.14)

with the orthonormality statement being

2
ω

∫
d4kδ+(k2)δ(k · u− ω) hY

∗
j′,m′(k;u, n) hYj,m(k;u, n) = δj′

j δ
m′
m . (2.15)

For the proof and a more detailed exposition of the harmonics (2.12), see appendix A.
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Here let us point out the new important features of these harmonics. First of all,
the harmonics are by definition (2.12) insensitive to the overall scale of both kµ and uµ.
Moreover, they are now clearly formulated in a convention-independent way — in the sense
that it is covariant with respect to the two little groups:

• the massless little-group U(1) of kµ may be used to change the phases of all spher-
ical harmonics in a local but mutually consistent way. Namely, transforming |k⟩ →
e−iϕ(k)/2|k⟩, |k]→ eiϕ(k)/2|k] implies phase adjustments of the form hYj,m(k;u, n)→
eihϕ(k)

hYj,m(k;u, n), which connect between various possible definitions of spin-
weighted spherical harmonics, e.g. via quaternions [106].

• the massive little group SU(2) of uµ may be used to change the physical meaning
of the magnetic quantum number m. For instance, the explicit spinor parametriza-
tions (A.9) and (A.10) correspond to the m-quantization along u ̸= 0 and the con-
ventional z-axis for u = 0, respectively. However, we may just as well apply trans-
formations |ua⟩ → Ua

b(u)|ub⟩, |ua]→ Ua
b(u)|ub] to the massive spinors, and this will

rotate the spin quantization axis

nµ := 1
2(⟨u2|σµ|u2] + [u2|σ̄µ|u2⟩) ⇒ n2 = −1, u · n = 0. (2.16)

Having this relation in mind, we henceforth compress our notation to hYj,m(k;u).

In addition, we can specify general frame transformations of the covariant spherical
harmonics (2.12). Indeed, it is shown in appendix B that under the time-direction change
uµ → vµ = Lµ

ν(v←u)uν the massive spinors are boosted as follows:

|va⟩ =
√
µ

µ+1 |u+v|ua], |va] =
√
µ

µ+1 |u+v|ua⟩, µ := u · v +
√

(u · v)2− 1. (2.17)

Here we have assumed that the spin quantization axis for the resulting time direction vµ is
automatically Lµ

ν(v←u)nν , i.e. the boosted version of the original quantization axis nµ.
Of course, it can then be easily tweaked by an additional little-group transformation of the
resulting spinors |va⟩ → Ua

b(v)|vb⟩, |va]→ Ua
b(v)|vb].

Given this covariant formulation of the spherical states, we rewrite eq. (2.9) as

⟨X|S|ψ; γ⟩ = 4πi
∫ ∞

0

d̂ω√
2ω
γζ(ω)

∫
d̂4p1δ̂

+(p2
1−M2

1 )ψξ(p1) (2.18)

×
∫
d̂4kδ̂+(k2)δ̂(k · u1 − ω)δ̂4(p1 + k − pX) −hYj,m(k;u1)A(X|p1; k, h).

This is the scattering matrix-element formula that we are going to use in the absorption
cross-section calculation below. For concreteness, we will employ the following Lorentz-
covariant realization of the massive wavefunction ψξ is [48, 107]

ψξ(p1) = 1
M1

[
8π2

ξK1(2/ξ)

]1/2

exp
(
−p1 · u1
ξM1

)
, (2.19)

where K1 denotes the modified Bessel function of the second kind.
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So far we have not specified the form of the scattering amplitude A(X|p1; k, h). In
our EFT approach to non-conservative effects, it is natural to assume that the leading
contribution to the absorption process comes from mass-changing three-point amplitudes,
i.e. X is particle of mass M2 and s2. We discuss such amplitudes next.

3 Basic mass-changing amplitudes

In this section we construct the three-point amplitudes that serve as basic building blocks
for modeling absorption effects. As discussed above, these amplitudes involve a massless
messenger particle and two particles with different masses. They were first explored in [108]
and covariantized in [95]. Here we further reorganize the latter formulation, while also using
coherent-spin eigenvalues [52], which saturate the massive spin indices and thus act as a
book-keeping device [44].

We continue to work in the massive spinor-helicity formalism [95], which is briefly
reviewed in appendix A. In this formalism, an amplitude A{b}

{a} involving two massive
particles carries 2s1 symmetrized little-group SU(2) indices a1, . . . , a2s1 for the incoming
particle 1, and 2s2 such indices b1, . . . , b2s2 for the outgoing particle 2. We choose to use
the chiral basis of massive spinors (angle brackets) for positive helicities and the antichiral
basis (square brackets) for negative helicities. Since det{|1a⟩α} = det{|1a]α̇} = M1 and
det{|2b⟩β} = det{|2b⟩β̇} = M2, we may proceed by stripping the spinors |1a⟩ and |2b⟩ for
the positive messenger helicity and |1a] and |2b] for negative helicity. For instance, in the
positive-helicity case we write

A{b}
{a}(p2, s2|p1, s1; k, h) =: A(k, h){α},{β}(|1a⟩α)⊙2s1(|2b⟩β)⊙2s2 , (3.1)

where ⊙ denotes the symmetrized tensor product. In addition to the A{b}
{a} and A{α},{β}

objects, a third perspective on the same amplitude is provided by contracting massive
spinors with auxiliary SU(2)-spinor variables [44],

|1⟩ := |1a⟩αa, |2̄⟩ := |2b⟩β̃b, (3.2)

which may serve as an extra handle on the spin quantization axis.3 We write the fully
contracted amplitude in boldface as a scalar in terms of the spinor-stripped one:

A(p2, s2|p1, s1; k, h) := A(k, h){α},{β}(|1⟩⊗2s1){α}(|2̄⟩⊗2s2){β}, (3.3)

the advantage being that the index symmetrization is now entirely automatic.

3.1 Classifying mass-changing amplitudes

Going back to the stripped amplitude A(k, h){α},{β} with two sets of symmetrized SL(2,C)
indices, we may decompose it in the chiral-spinor basis of |k⟩ and |p1|k]. Unlike the equal-
mass case, these two spinors are linearly independent (and there is no need for a helicity
factor [95]), because

⟨k|p1|k] = 2p1 · k = M2
2 −M2

1 ̸= 0 (3.4)
3The auxiliary SU(2) spinors αa and β̃b transform under the action of the little groups of p1 and p2,

respectively, and in this sense have an implicit dependence on their momenta. Moreover, in the coherent-spin
framework they constitute eigenvalues of the spin-annihilation operators [52, 109].
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due to momentum conservation p2 = p1 + k. This equation also tells us about the possible
dimensionful scales entering the three-point process from an EFT perspective, which will
have to be matched later. We can either use the mass pair (M1,M2) or (M1, 2p1 · k), and
in this work we are going to favor the latter. For instance, we may use M1 to absorb
the mass dimension of the amplitude and allow the EFT coefficients to depend on the
dimensionless ratio

w := 2p1 · k
M2

1
, (3.5)

while expanding in terms of the dimensionless spinors of helicity −1/2 and 1/2:

λα := M
−1/2
1 |k⟩α, µα := M

−3/2
1 p1,αβ̇ |k]β̇ ⇒ ⟨λµ⟩ = w. (3.6)

Therefore, the most general stripped amplitude involving two unequal masses and one
massless positive-helicity particle is schematically given by [95, 108]

A(k, h){α},{β} = M1−s1−s2
1

∑
i

ch
(i),s1,s2

(w)[λs1+s2−hµs1+s2+h](i){α},{β}. (3.7)

Here i enumerates inequivalent tensor products with the given spinorial index structure,
and their scalar coefficients ch

i,s1,s2(ω) may depend on each spin and in the dimensionless
ratio w. Before we specify the relevant spinorial structures, note that there are natural
constraints that follow already from the form of eq. (3.7), such as

s1 + s2 ± h ∈ Z≥0 ⇒ s1 + s2 ≥ |h|. (3.8)

Moreover, there can clearly be no three-point amplitude for one or three half-integer spins
— in QFT this standard fact is usually derived from the spin-statistics theorem.

We find it helpful to observe that the massless little-group dependence may be com-
pletely factored out (in the tensor-product sense). This leaves a polynomial in λ and µ,
which is independent of the massless helicity:

[λµ⊕ µλ]n{α},{β} := c0(λn)α1...αn(µn)β1...βn + c1(λn−1µ)α1...αn(µn−1λ)β1...βn

+. . .+ cn−1(λµn−1)α1...αn(µλn−1)β1...βn + cn(µn)α1...αn(λn)β1...βn ,
(3.9)

where we have also omitted the ⊗ sign for brevity. The exponent n depends on the total-
spin quantum numbers, and in the amplitude each such term may have its own coefficient.
Without loss of generality, we consider s2 ≥ s1, where we have two cases:

• s2 − s1 ≥ h, where we saturate the s1 indices by the above polynomial, while the
remaining s2 indices are accounted for by the tensor product, which is unambiguously
defined by the overall helicity weight. The corresponding spinorial structures belong
to the following tensor power of a direct sum:

[λs1+s2−hµs1+s2+h](i){α},{β} ∈ [λµ⊕ µλ]2s1
{α},{β} (λs2−s1−hµs2−s1+h){β}; (3.10)
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• s2− s1 < h, where the polynomial (3.9) saturates the number of λ’s, which is equal to
s1 + s2 − h, while the remaining 2h of µ’s are unambiguously distributed among the
two massive particles. The spanning spinorial structure is thus

[λs1+s2−hµs1+s2+h](i){α},{β} ∈ [λµ⊕ µλ]s1+s2−h
{α},{β} (µs1−s2+h){α}(µs2−s1+h){β}. (3.11)

Note that in electromagnetism this case only occurs for s1 = s2, whereas in GR both
s2 = s1 and s2 = s1 + 1 are possible.

In both cases, we have the polynomial with free coefficients and the additional factor, which
carries the massless helicity. This factor completes the SL(2,C) indices of either massive
particle that are not accounted for by the polynomial, and of course all α’s and all β’s are
implicitly symmetrized.

This analysis should be repeated for s1 ≤ s2, and the SL(2,C) can then be contracted
with the massive spinors (and auxiliary variables), for which the Dirac equations |p1|1⟩ =
M1|1] and |p2|2̄⟩ = M2|2̄] hold. In this way, we arrive at

A(p2, s2|p1, s1; k, h) =



F h
s1,s2 ⟨2̄k⟩

s2−s1−h[2̄k]s2−s1+h,

F h
s1,s2 [2̄k]s2−s1+h[k1]s1−s2+h,

F h
s1,s2 ⟨2̄k⟩

s2−s1−h⟨k1⟩s1−s2−h,

F h
s1,s2 ⟨k1⟩s1−s2−h[k1]s1−s2+h,

s2 − s1 ≥ |h|,
|s2 − s1| < h,

|s2 − s1| < −h,
s1 − s2 ≥ |h|.

(3.12a)

where the factor F h
s1,s2 contains free coefficients and can now be written as

F h
s1,s2 = M1−2s1−2s2

1

n∑
r=0

gh
r,s1,s2(w) ⟨2̄|k|1]r [2̄|k|1⟩n−r. (3.12b)

These coefficients gh
r,s1,s2(w) are a refined version of ch

(i),s1,s2
(w) in eq. (3.7); the main

difference between them is some degree of rescaling by M2/M1. The polynomial degree n
above is related to the maximal number of terms:

n+ 1 =


2s1 + 1,

s1 + s2 − |h|+ 1,
2s2 + 1,

s2 − s1 ≥ |h|,
|s2 − s1| < |h|,
s1 − s2 ≥ |h|,

(3.12c)

This number matches the counting in [110]. For completeness, the above formulae (3.12)
already include the result of the above analysis for the negative messenger helicity, in which
case we used the anti-chiral basis, |k] and |p1|k⟩.

Interestingly, the coupling counting (3.12c) obeys the bound

# coeffs. ≤ 2min(s1, s2) + 1. (3.13)

For instance, there is only one term for the case of the scalar massive incoming state s1 = 0.
Indeed, the constraint (3.8) immediately implies s2 > |h|, so we get a trivial polynomial of
degree n(0, s2, h) = 0. In that case, the amplitude takes the form

A(p2, s2|p1, s1 = 0; k, h) = g
|h|
0,0,s2(w)M1−2s2

1 ⟨2̄k⟩s2−h[2̄k]s2+h. (3.14)
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Note that we have now assumed parity and thus conflated the dimensionless coupling
coefficients g±h

0,0,s2(w) into the single coupling g±|h|
0,0,s2(w), which still depends on the absolute

helicity value of the messenger particle.4

3.2 Minimal mass-changing amplitudes

As a minor digression, let us note that, for non-zero initial spin, the proliferation of possible
effective couplings in the mass-changing three-point amplitude (3.12) may be reduced if we
come up with some notion of minimality. Indeed, in a similar situation in the equal-mass
case, M1 = M2, Arkani-Hamed, Huang and Huang [95] managed to single out the so-called
“minimal” amplitudes by considering its massless limit. For positive helicity, these minimal
amplitudes include, for instance,

A(p2, s|p1, s; k, h) = gh
0 (p1 · ε+

k )h⟨2̄1⟩2s, (3.15)

where for simplicity we have assumed s1 = s2 = s. In other words, the stripped amplitude
is proportional to the tensor product of SL(2,C) Levi-Civita tensors (ϵ2s){α},{β}.

To expose a similar unique structure in the unequal-mass case, where the couplings
correspond to the terms in the polynomial (3.9), we may change the basis inside of it to
the antisymmetric and symmetric combinations of the basis spinors:

[λµ⊕ µλ]n{α},{β} = [ϵ⊕ σ]n{α},{β}, ϵαβ = λαµβ − µαλβ

⟨λµ⟩
, σαβ := λαµβ + µαλβ . (3.16)

Since of course ⟨1|α⟨2̄|βϵαβ = ⟨12̄⟩ and the symmetric combination leads to

⟨1|α⟨2̄|βσαβ = M2
2 +M2

1
M2

1
⟨12̄⟩+ 2M2

M1
[12̄], (3.17)

the main amplitude factor can simply be expanded in the angle and square brackets:

F h
s1,s2 = M1−2s1−2s2+n

1

n∑
r=0

g̃h
r,s1,s2(w) ⟨2̄1⟩n−r[2̄1]r. (3.18)

So we propose to define the minimal mass-changing stripped amplitudes as those with
highest power in ϵαβ , or, equivalently,

Amin(p2, s2|p1, s1; k, h) (3.19)

= g̃h
0,s1,s2(w)


M1−2s2

1 ⟨2̄1⟩2s1⟨2̄k⟩s2−s1−h[2̄k]s2−s1+h,

M1−s1−s2−h
1 ⟨2̄1⟩s1+s2−h[2̄k]s2−s1+h[k1]s1−s2+h,

M1−2s2
1 ⟨2̄1⟩2s2⟨k1⟩s1−s2−h[k1]s1−s2+h,

s2 − s1 ≥ h ≥ 0,
|s2 − s1| < h,

s1 − s2 ≥ h ≥ 0.

It is clear that for s1 = 0 and s2 > |h|, the minimal-coupling amplitude coincides with the
previously defined amplitude (3.14). Moreover, let us note in passing that these amplitudes
satisfy the double-copy prescription explored in the presence of massive spinning states
in [111, 112].

4In the worldline formalism, the parity assumption is called “electric-magnetic” duality [88, 89].
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We hope to explore these amplitudes in more detail elsewhere, whereas in the rest
of this paper for the sake of simplicity we focus on the mass-changing amplitudes (3.14)
with the non-spinning initial state, which we use to model the radiation absorption by a
Schwarzschild black hole. In this context, it is important to note that if we assume locality
of the EFT Lagrangian that implies the above amplitudes, the dimensionless coupling
constants gh

0,s1,s2(w) may then be constrained to only have non-negative powers of w.
Unfortunately, a rigorous proof of this statement may be to technical and require dealing
with all sorts of field redefinitions. So for the purposes of this paper, let us simply impose
that gh

0,0,s2(w) have no poles in w:

gh
0,0,s2(w) = O(w0) ⇒ A(p2, s2|p1, s1 = 0; k, h) = O(ws2), w → 0, (3.20)

which constitutes is a non-trivial EFT modeling assumption.

4 Absorption from mass-changing amplitudes

In this section we combine the ingredients from the previous two sections: the partial-wave
absorption setup leading to the matrix element (2.18), and the mass-changing three-point
amplitudes (3.14). The goal of this section will be to derive the absorptive cross-section as
a function of the effective coupling coefficients g|h|

0,0,s2(w).

4.1 Mass-changing amplitudes as harmonics

Focusing on the mass-changing amplitudes (3.14), it is rewarding to notice that they are
simply proportional to the spin-weighted spherical harmonics (2.12), namely

A1 . . . 1︸ ︷︷ ︸
s2−m

2 . . . 2︸ ︷︷ ︸
s2+m

(p2, s2|p1; k, h)= M1g
|h|
0,0,s2(w)(−1)s2−hws2

hỸs2,m(k;u2)=: Ah
s2,m(p2|p1; k).

(4.1)
However, the harmonics are defined with respect to uµ

2 , which is counterproductive for
plugging these amplitudes in the partial-wave absorption formula (2.18), where uµ

1 is fixed
but uµ

2 changes along with the integration variable kµ. So we wish to make the transition
between the two velocity vectors, which are related by the boost

uρ
2 = Lρ

σ(u2 ← u1)uσ
1 = exp

(
i log(u1·u2+

√
(u1·u2)2−1)√

(u1·u2)2−1
uµ

1u
ν
2Σµν

)ρ

σ
uσ

1 . (4.2)

The corresponding spinor transformations, given by eq. (2.17), may be rewritten as

|ua
2⟩ =

√
M1√
M2

(
|ua

1⟩+ |k|ua
1]

M1+M2

)
, |ua

2] =
√
M1√
M2

(
|ua

1] + |k|ua⟩
M1+M2

)
, (4.3)

where we have used µ := u1 · u2 +
√

(u1 · u2)2 − 1 = M2/M1. The net effect of this is that
the projection of the massive spinors onto the directions |k⟩ and |k] is invariant under this
boost, so the spherical harmonics are related simply by

⟨2ak⟩ = ⟨1ak⟩, [2ak] = [1ak] ⇒ hỸs2,m(k;u2) = hỸs2,m(k;u1). (4.4)
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(This is because we switch between rest frames of p1 and p2 = p1 + k inside the harmonics
in the same direction k.) The caveat here is that the spin of particle 2 is now quantized
along Lµ

ν(u2 ← u1)nσ
1 , i.e. the boost of the spin quantization axis of particle 1, which may

be arbitrary but has to be the same for every p2 = p1 + k. With this restriction in mind,
we may rewrite the three-point amplitude as

Ah
s2,m(p2|p1; k) = M1 g

|h|
0,0,s2(w)(−1)s2−hws2

hỸs2,m(k;u1). (4.5)

Let us now introduce the spherical scattering amplitude5

A{b}(p2, s2|p1;ω, j,m, h) := 4π√
2ω

∫
k
δ̂(k · u1 − ω) −hYj,m(k;u1)A{b}(p2, s2|p1; k, h) (4.6)

in an analogous manner to eq. (2.11). Using the conjugation and orthogonality proper-
ties (2.13) and (2.15), we find

A1 . . . 1︸ ︷︷ ︸
s2−m′

2 . . . 2︸ ︷︷ ︸
s2+m′

(p2, s2|p1;ω, j,m, h)

= (−1)−2j+m+h

π
√

2ω

∫
d4kδ+(k2)δ(k · u1 − ω)hY

∗
j,−m(k;u1)Ah

s2,m′(p2|p1; k) (4.7)

= (−1)−jδj
s2δ

−m
m′ M

3/2
1

[
4π(2j+1)

( 2j
j+m

)( 2j
j+h

)]−1/2
g

|h|
0,0,j(w)wj+1/2∣∣

w=2ω/M1
.

This neatly expresses the angular-momentum conservation law. This simple form of the
spherical scattering amplitude is valid under our assumption that the magnetic quantum
number m′ is defined with respect to the axis Lµ

ν(u2 ← u1)nσ
1 .

4.2 Leading-order absorption cross-section

We are now ready to construct the leading absorption cross-section from the three-point
amplitudes discussed above. The inclusive cross-section for the spherical scattering setup
described in section 2.1 is [88, 91]

σinc(ωcl, j,m, h) = π

ω2
cl
Pinc(ωcl, j,m, h) = π

ω2
cl

∑
X

∣∣⟨X|S|ψ; γ⟩
∣∣2

⟨X|X⟩⟨ψ|ψ⟩⟨γ|γ⟩
, (4.8)

It is invariant under the basis choice for the outgoing states. The leading contribution due
to absorption is then given by the 3-point process:

PLO
inc (ωcl, j,m, h) = V

∫ ∞

0
dM2

2ρ(M2
2 )
∫
d̂3p2

∣∣⟨p2|S|ψ; γ⟩
∣∣2

⟨p2|p2⟩⟨ψ|ψ⟩⟨γ|γ⟩
. (4.9)

Here V := ⟨p2|p2⟩/(2p0
2) = δ̂3(0) is the space volume, which immediately cancels against

the normalization of the outgoing state, for which we have temporarily suppressed any
5Note that the definition (4.6) ignores the delta function δ̂4(p1+k−p2), which accompanies the scattering

amplitude and imposes momentum conservation. Although it will play a role in the cross-section calculation
in the next section, the above definition can still be found useful.
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quantized degrees of freedom. We have also been compelled to include the spectral density
ρ(M2

2 ), which is positive and normalized to 1:

ρ(q2) ≥ 0,
∫ ∞

0
ρ(q2)dq2 = 1. (4.10)

In a conservative scenario, one may simply assume ρ(q2) = δ(q2 − M2
1 ), and the

relevant amplitude would be the same-mass three-point amplitude. More generally, it
is allowed to contain suitably normalized delta-functions for the “elementary” particles
and the continuous part due to multi-particle states. Since we are interested in modeling
absorption effects, we are led to explore the continuous part of the spectrum for q2 > M2

1 .
It can be checked that without a continuous part of the spectral-density function the three-
point kinematics would be overconstrained, and the cross-section integration would yield
a distribution.

In view of the normalization of the initial states, ⟨ψ|ψ⟩ = ⟨λ|λ⟩ = 1, the resulting
leading-order probability is given by

PLO
inc (ωcl, j,m, h) =

∑
s2

∫
dM2

2ρs2(M2
2 )
∫

p2

∑
b1,...,bs2

∣∣⟨p2, s2, {b}|S|ψ; γ⟩
∣∣2, (4.11)

where we have now made the spin degrees of freedom of the outgoing state explicit. The
integration over masses of p2 different from M1 is what allows the three-point amplitude
to exist on real kinematics and thus makes this cross-section meaningful. As we will see,
momentum conservation will later fix this mass to

M2
2 = M2

1 + 2M1ωcl. (4.12)

After restoring ℏ in front of ωcl, it actually becomes sent back to M1 in the classical
limit, so the spectral density will only by probed in the vicinity of the original BH mass.
This, however, does not negate the crucial roles that the unequal masses and the spectral
density play in allowing for a non-singular construction of the cross-section from three-point
amplitudes.

Coming back to the squared amplitude in the integrand of eq. (4.11), we have∑
{b}

∣∣⟨p2, s2, {b}|S|ψ; γ⟩
∣∣2 =

8π2
∫ ∞

0

d̂ωd̂ω′
√
ωω′

γ∗
ζ (ω)γζ(ω′)

∫
p1,p′

1,k,k′
ψ∗

ξ (p1)ψξ(p′
1)

× δ̂(k · u1 − ω)δ̂(k′ · u1 − ω′)δ̂4(p1 + k − p2)δ̂4(p′
1 + k′ − p2)

× −hY
∗

j,m(k;u1) −hYj,m(k′;u1)A∗{b}(p2, s2|p1; k, h)A{b}(p2, s2|p′
1; k′, h),

(4.13)

where the summation over the little-group indices {b} is now implicit. We may use δ̂4(p1 +
k−p2) to perform the integration over p2, which leaves the on-shell constraint δ̂((p1 +k)2−
M2

2 ). We then change the integration variables to

pµ
a := (pµ

1 + p′µ
1 )/2, qµ := p′µ

1 − p
µ
1 , (4.14)
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and remove q with δ̂4(q + k′ − k) originating from δ̂4(p′
1 + k′ − p2). Thus we get

PLO
inc (ωcl, j,m, h) =

8π2∑
s2

∫
dM2

2ρs2(M2
2 )
∫ ∞

0

d̂ωd̂ω′
√
ωω′

γ∗
ζ (ω)γζ(ω′)

∫
k,k′
δ̂(k · u1 − ω)

× δ̂(k′ · u1 − ω′) −hY
∗

j,m(k;u1) −hYj,m(k′;u1)
∫
d̂4pa δ̂

+(p2
a −M2

1 − k′ · k/2)|ψξ(pa)|2

× δ̂(2pa · k − 2pa · k′)δ̂(M2
1 + 2pa · k + k′ · k −M2

2 )A∗{b}
(
pa+ k+k′

2 , s2|pa+ k′−k
2 ; k, h

)
×A{b}

(
pa+ k+k′

2 , s2|pa+ k−k′

2 ; k′, h
)
,

(4.15)
where we have also used the convenient property ψ∗

ξ (pa− q
2)ψξ(pa + q

2) = |ψξ(pa)|2 of the
momentum wavepackets (2.19).

4.3 Absorption cross-section in classical limit

So far no classical limit was taken, and eq. (4.15) still represents a quantum probability. To
rectify that, we send ξ → 0 and evaluate the integral over pa, which in the presence of the
squared wavefunction |ψξ(pa)|2 and the mass-shell delta function has the effect of setting
the momentum pµ

a to its classical value uµ
1

√
M2

1 + k′ · k/2 =: Mau
µ
1 . Subsequently, using

the delta function δ̂(2pa·k−2pa·k′) becomes δ̂(ω−ω′)/(2Ma), which removes the integration
over ω′. In the integral over the remaining ω, we send ζ → 0, so the squared wavefunction
|γζ(ω)|2 localizes it at the classical value ωcl. In this way, the above probability becomes

lim
ζ→0

lim
ξ→0

PLO
inc (ωcl, j,m, h) =

16π3

ωcl

∑
s2

∫
k,k′

1
2Ma

ρs2(M2
1 + 2Maωcl + k′ · k)δ̂(k · u1 − ωcl)

× δ̂(k′ · u1 − ωcl) −hY
∗

j,m(k;u1) −hYj,m(k′;u1)A∗{b}
(
pa+ k+k′

2 , s2|pa+ k′−k
2 ; k, h

)
(4.16)

×A{b}
(
pa+ k+k′

2 , s2|pa+ k−k′

2 ; k′, h
) ∣∣

pa=Mau1
,

where we have also taken the integral over M2
2 using δ̂(M2

1 + 2Maω + k′ · k −M2
2 ).

Even though we have simplified the probability expression considerably, the integrals
over kµ and k′µ are still intertwined, in particular because the spectral density and Ma
both depend on k · k′. Note, however, that the two massless momenta are constrained to
have the energy projection ωcl, so |k · k′| ≤ 2ω2

cl, as most easily seen in the rest frame of
uµ

1 . The basic classical-limit assumption ωcl ≪M1 then implies

|kµ|, |k′µ| ≪ M1 ⇒ |k · k′| ≪ M1u1 · k = M1u1 · k′ = M1ωcl. (4.17)

Therefore, we may define the classical limit of the above probability as

PLO
inc, cl = 8π3

M1ωcl

∑
s2

ρs2(M2
1 )
∫

k,k′
δ̂(k ·u1 − ωcl)−hY

∗
j,m(k;u1)A∗{b}(p2, s2|p1; k, h)

× δ̂(k′·u1 − ωcl) −hYj,m(k′;u1)A{b}(p2, s2|p′
1; k′, h),

(4.18)
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where for brevity we have now used the momenta

p1 = M1u1 + k′−k
2 , p′

1 = M1u1 + k−k′

2 , p2 = M1u1 + k+k′

2 =: M2u2 (4.19)

not as independent integration variables but to denote their classical values. Note that
in the expression above, we have already assumed that the outgoing states are described
by a sufficiently smooth spectral-density function, which makes sense because our EFT is
meant to describe absorption of classical waves of arbitrary frequency (provided it is small).
Therefore, ρs2 can be expanded in ωcl/M1, for which 2M1ωcl and k′ · k provide linear and
quadratic terms, respectively, and both may be dropped, leaving only the leading term
ρs2(M2

1 ) in the classical limit.
Let us now deal with the momentum dependence of the amplitudes, which, as we have

noticed in eq. (4.1), are proportional to the covariant spin-weighted spherical harmonics
hỸs2,m′(k;u2), while their prefactors depend on the dimensionless ratio

w := 2p1 · k
M2

1
≃ 2ωcl

M1
≃ 2p′

1 · k′

M2
1

=: w′. (4.20)

Moreover, just as we did in section 4.1, we may boost the time direction uµ
2 of either

harmonic to our preferred uµ
1 , with their difference now being equal to (k+ k′)µ/2, but the

result still being6
hỸs2,m′(k;u2) ≃ hỸs2,m′(k;u1). Therefore, the squared amplitude is

A∗{b}(p2, s2|p1; k, h)A{b}(p2, s2|p′
1; k′, h)

≃M2
1 |g

|h|
0,0,s2(w)|2w2s2

s2∑
m′=−s2

( 2s2
s2+m′

)
hỸ

∗
s2,m′(k;u1) hỸs2,m′(k′;u1).

(4.21)

Having thus completely disentangled the integrations in k and k′, we may evaluate

PLO
inc, cl(ωcl, j,m, h) (4.22)

= 8π3

ωcl
M1

∑
s2

ρs2(M2
1 )|g|h|

0,0,s2(w)|2w2s2

×
s2∑

m′=−s2

(
2s2

s2 +m′

) ∣∣∣∣ ∫ d̂4k δ̂+(k2)δ̂(k · u1 − ωcl) −hYj,m(k;u1) hỸs2,m′(k;u1)
∣∣∣∣2

= M2
1

4(2j + 1)

(
2j
j + h

)−1

ρj(M2
1 ) |g|h|

0,0,j(w)|2w2j+1,

6More explicitly, one may use the most general spinor transformations (B.6) to observe:

|2b⟩=Ub
a(u2←u1)

√
M1

{
|ua

1⟩+ |k+k′|ua
1 ]

2(M1+M2)

}
⇒ ⟨2bk⟩=Ub

a(u2←u1)
√

M1

{
⟨ua

1k⟩+O
(
[ua

1k′]⟨k′k⟩
M1

)}
,

and similarly for the anti-chiral spinors. We have thus exposed the spinorial (square-root) version of the
classical hierarchy assumption (4.17). Coming back to the original three-point amplitude (3.14), one can
then expose its classically meaningful term as (proportional to)

⟨2bk⟩⊙(s2−h) ⊙ [2bk]⊙(s2+h) ≃ Ms2
1
{

(Ub
a(u2←u1)

}⊙2s2⟨ua
1k⟩⊙(s2−h) ⊙ [ua

1k]⊙(s2+h),

Moreover, the unitarity of the SU(2) transformation matrices Ub
a(u2 ← u1) ensures that they cancel in

all inclusive-probability expressions, such as eq. (4.21), and hence justifies our liberal treatment of the
little-group indices, also phrased as the quantization-axis choice assumption in section 4.1.
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where we have used the conjugation and orthogonality properties (2.13) and (2.15).7 Note
that its power in ωcl = M1w/2 is dictated by the total angular-momentum quantum num-
ber j of the incoming wave, which also determines the absorptive three-point coupling that
is being probed.

In this way, we have arrived at the partial-wave absorption cross-section

σLO
inc, cl(ωcl, j,m, h) := π

ω2
cl
PLO

inc, cl(ωcl, j,m, h)

= π

4ω2
cl

(j + h)!(j − h)!
(2j + 1)! M2

1ρj(M2
1 ) |g|h|

0,0,j(w)|2w2j+1,
(4.23)

where w = 2ωcl/M1. We will deal with the apparent issue of w being small for ωcl ≪ M1
in the next section.

5 Matching to microscopic calculation

The absorptive cross-section of a Kerr black hole in general relativity was originally ob-
tained by Starobinsky, Churilov [80, 81] and Page [82, 83] for the j = |h| case and recently
generalized to arbitrary j in [99–101]. However, the dynamics of non-spinning BHs under
small perturbations dates back to Regge and Wheeler [113], who proved linear stability of
Schwarzschild BHs. From the point of view of the EFT amplitudes, which treat the BH
as a particle, the GR results serve as the microscopic computation, to which the effective
couplings should be matched.

5.1 Classical absorption cross-section

In the general case of wave of spin |h| scattering off a spinning BH, the transmission and
scattering coefficients are usually obtained by solving the Teukolsky equation [96–98]. In
this work, we focus on the simpler case of non-spinning BHs. Let the Schwarzschild radius
be rS := 2GM1 and ω the frequency of the classical spin-|h| wave, which obey rSω ≪ 1.
Then the absorption cross-section is given by [101]8

σSchw
abs (ω, j,m, h) = (−1)h2π

ω2
(j + h)!(j − h)!
(2j)!(2j + 1)! (2rSω)2j+1ImF Schw

−hjh(ω). (5.1)

Here F Schw
hjm is the harmonic near-zone response function

F Schw
hjm (ω) = i(−1)h rSω

(j + h)!(j − h)!
(2j)!(2j + 1)!

j∏
l=1

[
l2+ (2rSω)2], (5.2)

7Alternatively, the result of eq. (4.22) may be obtained by plugging in the previously computed spherical
scattering amplitudes (4.7) with classical momentum values (4.19):

P LO
inc, cl(ωcl, j, m, h) = π

M1
ρs2 (M2

1 )
s2∑

m′=−s2

( 2s2
s2+m′

)∣∣A1 . . . 1︸ ︷︷ ︸
s2−m′

2 . . . 2︸ ︷︷ ︸
s2+m′

(p2, s2|p1; ωcl, j, m, h)
∣∣2.

8We have dropped the prefactor (2j + 1) from the expressions in the literature, which comes from
summing over m = −j, . . . , j.
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which does not depend on the quantum number m, since we wrote it for a non-spinning
black hole. We have followed the GR literature [99, 101] in writing the cross-section (5.1)
using the response function so as to point out that it is the latter that contains the expansion
in ω, whereas the outside power of ω is fixed to be 2j − 1, combined from the π/ω2

dimensionful prefactor and 2j + 1 powers of a dimensionless frequency combination. This
factorization mimics the structure of the corresponding EFT cross-section (4.23), that we
are going to match to next.

Our focus, however, is on the leading powers in ω for each j, which amounts to replacing
the complicated product in the response function (5.2) by (j!)2. We obtain

σSchw
abs, LO(ω, j,m, h) = 4πr2

S

[
j!(j + h)!(j − h)!

(2j)!(2j + 1)!

]2
(2rSω)2j , (5.3)

where of course |m|, |h| ≤ j, and otherwise it vanishes.

5.2 Scales and effective couplings

In order to properly compare the classical and EFT results, it is helpful to restore ℏ
(while leaving c = 1 throughout this paper). This introduces the distinction between
frequencies/lengths and masses:

[ℏ] = L×M, [M1] = [ωcl] = M, [ω] = L−1, [rS] = L, [G] = L×M−1, (5.4)

where we have insisted on the new meaning of ω := ωcl/ℏ as the wave frequency. We
should also multiply the right-hand side of the cross-section given from (4.23) by ℏ2, so as
to switch its dimensionality from M−2 to L2. This gives

σLO
inc, cl(ω, j,m, h) = π

4ω2
(j + h)!(j − h)!

(2j + 1)! M2
1ρj(M2

1 ) |g|h|
0,0,j(ω)|2

(2ℏω
M1

)2j+1
. (5.5)

Here we have left the effective couplings g0,0,s2(ω) fully dimensionless. Note, however, that
in view of the presence of multiple scales, they are now allowed to depend on ω through
more than just the ℏω/M1 ratio.

Let us discuss the two basic assumptions underlying the EFT- and GR-based com-
putations, i.e. ℏω ≪ M1 and rSω ≪ 1. The point is that the latter is a much stronger
inequality than the former, as the Schwarzschild radius must of course be assumed to be
many orders of magnitude larger than the Compton wavelength of the black hole:

ω ≪ 1
rS
≪ 1

λC
:= M1

2πℏ . (5.6)

Otherwise, we would be in the realm of quantum gravity and not GR. It is then clear
that in the context of comparing the classical and amplitude-based results, which both
constitute frequency expansions, we should retain only the leading order in ℏω/M1, but
classical frequency dependence may still be present in the form of rSω.

Therefore, matching the leading-order cross-sections (5.3) and (5.5) directly, we obtain

M2
1ρj(M2

1 ) |g|h|
0,0,j(ω)|2 = 8[j!]2(j + h)!(j − h)!

[(2j)!]2(2j + 1)!

(
M1rS
ℏ

)2j+1
rSω. (5.7)
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It is perhaps more aesthetically pleasing to rephrase this relationship in terms of the clas-
sical response function:

M2
1ρj(M2

1 ) |g|h|
0,0,j(ω)|2 = 8(−1)h

(2j)!

(
M1rS
ℏ

)2j+1
ImF Schw

−hjh, LO(ω). (5.8)

In other words, we have related the j-th effective absorptive coupling squared to the imag-
inary part of the response function, resembling a dispersion relation. It might seem awk-
ward to keep ℏ in the now classically meaningful cross-section expression (5.5), as well as
eqs. (5.7) and (5.8). However, the effective couplings are a priori arbitrary, and we are
free to make convenient modeling assumptions about them, so nothing prevents us from
absorbing the Planck constants into them as9

ḡ
|h|
0,0,s2(ω) := ℏs2+1/2g

|h|
0,0,s2(ω). (5.9)

Comparing the macroscopic and microscopic formulae (5.1) and (5.5), there are a
number of things to observe.

• Both cross-sections are consistent in that neither depends on the magnetic quantum
number m of the spherical wave.

• The EFT cross-section (5.5) reproduces the static limit σLO
inc,cl(ω = 0, j,m, h) = 0 for

electromagnetism and gravity (|h| = 1 and 2, respectively) because of the locality
assumption (3.20) that the Wilson coefficients have no negative powers of ω. This
can be considered as an EFT prediction, i.e. it holds prior to the matching of the
three-point couplings.

• As previously mentioned, the growth of the superficial leading power in ω with j

is the same in both cross-sections, where by superficial we mean excluding the ω

dependence in the response function and the three-point couplings. In other words,
the matching (5.7) contains that same leading power of ω for any j, and the cleaner
matching (5.8) between the response functions and the three-point couplings does not
involve ω at all.

• In the EFT cross-section (5.5), every three-point coupling |g|h|
0,0,s2(ω)|2 comes accom-

panied by the dimensionless combination M2
1ρs2(M2

1 ) involving the spectral density.
Its appearance is very sensible from the QFT point of view, as the probability that
a massive particle absorbs a lower-energy massless boson is necessarily proportional
to the number of possible resulting states with nearly identical mass. However,
since it always accompanies the couplings, one may regard the complete expression
M1
√
ρs2(M2

1 ) g|h|
0,0,s2(ω) as a kind of effective coupling. Alternatively, if one’s focus is

on modeling classical effects that are guaranteed to be insensitive to the difference
between spectral densities for different masses and spins, one could consider disregard-
ing the normalization constraint (4.10) altogether and make a modeling assumption
ρs2(M2

1 ) = 1/M2
1 .

9Recalling the form of the three-point amplitude (3.14), we see that the effective-coupling rescaling (5.9)
amounts to replacing massless momenta kµ with wavevectors k̄µ := kµ/ℏ, which is commonplace in the
KMOC formalism [48], plus an additional overall ℏ−1/2.
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• Perhaps most importantly, we observe that the matching (5.7) means that

g
|h|
0,0,s2(ω) = O(Gs2+1), (5.10)

in the post-Minkowskian expansion, since rS = GM . In other words, the amplitude
that the scalar particle which models a Schwarzschild black hole absorbs a spherical
wave with total angular momentum j is a (j+1)-PM object.

• For gravity (|h| = 2), the PM behavior (5.10) means that the Wilson coefficient starts
at s2 = 2 and scales as O(G3), whereas the resulting leading absorption cross-section
is at 6PM for a j = 2 spherical wave, and higher harmonics are suppressed in the PM
expansion.

In view of the classical cross-section (5.1) being a polynomial in ω spanned by {ω2j , . . . ,

ω4j}, one might hope that higher orders in rSω could be retained, as long as they are
captured by the response function (5.2) in a perturbation scheme [101] that is consistent
classically. Unfortunately, this is not the case in the present three-point setup, because
going to higher orders requires a more subtle matching. Indeed, the higher orders in
rSω in the EFT cross-sections (5.5) are subject to interference from higher-multiplicity
amplitudes. More specifically, the next order in the cross-section is O(G2j+4), for which
the EFT treatment must, for instance, include amplitudes with two additional conservative
couplings to the graviton, each O(

√
G). Furthermore, double-graviton absorption or even

the mass-changing contact terms contribution to the Compton amplitude might contribute
to this matching. We will discuss these matters further below in sections 6.4 and 6.5.

Generalizing this result to spinning objects is another story. In the non-spinning case,
the coupling constant G only enters in the Schwarzschild radius rS, whereas in the Kerr
case where the dimensionless spin ratio a∗ = a/GM also contains negative powers in G.
This shows that for Schwarzschild black holes, the first contribution to such amplitudes is
at 6PM (as can be reproduced by off-shell EFT methods [88, 89]), while it comes at a lower
order for Kerr black holes due to the negative power of G in a∗. For instance, the authors
of [92] consider four-point contact interactions, where such effects come at spin-5 in O(G)
amplitudes. Nevertheless, the general formalism presented in this paper does allow to go
to higher orders in spin, and we leave this for future work.

In this purely on-shell approach, we have modeled the absorption effects by allowing
a changing-mass amplitude from s1 = 0 to a spinning degree of freedom and the leading
order corresponds to a s2 = 2 particle. We have observed some similarities with the
worldline EFT approach [88, 89, 114], where the point-particle action coupled to the Weyl
tensor is not enough to model absorption. One then has to introduce electric and magnetic
composite operators QE

ab and QB
ab representing new degrees of freedom, which carry two

indices and couple to electric and magnetic components of the Weyl tensor Eab and Bab,
respectively. While in our approach higher orders require considering s2 ≥ 2 particles and
higher-multiplicity amplitudes, on the worldline higher-derivative operators acting on the
Weyl tensor and multi-index composite operators are needed to improve the calculation
beyond ω4, which is explored e.g. in [92].
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Figure 2. Gravitational diagrams in a non-spinning black-hole-wave interaction.

6 Coherent-state cross-section

A proper description of the interaction between a gravitational wave and a compact object
using scattering amplitudes requires the use of a coherent-state formalism to model the
incoming and outgoing wave [51, 91, 115]. In section 2, we have circumvented it by using a
single-graviton state with a wavefunction peaked at the classical frequency ωcl. The point
of this section is two-fold:

• substantiate the leading-order calculation via the coherent-state framework,

• explain how higher-order calculations may be done in a similar fashion.

We focus on a coherent cross-section-based (or probability-based) formalism instead of
an observable-based one [48]. We start with a quantum description and make gradual
assumptions relevant to the classical limit.

6.1 Elastic-inelastic separation

The initial state for our absorption process consists of a heavy non-spinning particle |ψ1⟩
and a wave of helicity h modeled by a massless coherent state |γh⟩. We write

|in⟩ := |ψ1; γh⟩ =
∫

p1
ψξ(p1)eib·p1/ℏ|p1; γh⟩, (6.1)

where the relativistic momentum-space wavefunction ψξ(p1) peaks at the classical momenta
pµ

1,cl = M1u
µ
1 , as discussed in section 2. We have also allowed for an impact parameter.

For the final state, we should distinguish two cases:

(c) a different coherent state |γ̃h̃⟩, but the heavy particle’s mass is preserved;

(nc) a different coherent state |γ̃h̃⟩ and an unspecified particle |X⟩ with M2 ̸= M1.

The two cases are depicted in figure 2, and we need to integrate over the possible final
states. Despite these assumptions, the formalism easily allows for initial spinning states,
and we delay the specification of the massless coherent-state type (plane-wave or partial-
wave) to later on. It is also worth commenting that even though case (c) has the same mass
as the initial state, intermediate mass transitions are allowed (e.g. Compton scattering with
different masses in the factorization channels).

The need to separate these two cases on the quantum side comes from the discon-
tinuous nature of basic scattering-amplitude building blocks at M2 = M1, as discussed in
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section 3, and on the classical side from the usual separation between conservative and non-
conservative effects. The total probability will then include the following mass-preserving
and mass-changing probabilities

Pγ→γ̃ = P
(c)
γ→γ̃ + P

(nc)
γ→γ̃ . (6.2)

For the first one, we may write

P
(c)
γ→γ̃ =

∞∑
2s2=0

∑
b1,...,b2s2 =1,2

∫
p2
⟨in|S†|p2, s2, {b}; γ̃h̃⟩⟨p2, s2, {b}; γ̃h̃|S|in⟩. (6.3)

In the second case, we are interested in the probability of all different configurations
X involving a heavy particle of mass M2 ̸= M1:

P
(nc)
γ→γ̃ =

∑
X∋M2 ̸=M1

|⟨X; γ̃h̃|S|in⟩|2 =
∑

X∋M2 ̸=M1

⟨in|S†|X; γ̃h̃⟩⟨X; γ̃h̃|S|in⟩. (6.4)

The crucial point now is to determine what part of the Hilbert space contributes to the
problem at hand. We are going to assume that all relevant configurations contain only
one heavy particle; in other words, in the classical limit no new black holes are created
in this S-matrix evolution. Let us also exclude decay of the heavy particle, i.e. black-
hole evaporation, from current consideration. In other words, we assume that the spectral
density10 of the heavy-particle states has a non-trivial continuous part only for M2 > M1
(alongside the delta-function responsible for case (c)):

1(nc) =
∑
Xrad

∑
s2

∑
{b}

∫ ∞

M2
1

dM2
2ρs2(M2

2 )
∫

p2
|p2, s2, {b};Xrad⟩⟨p2, s2, {b};Xrad|. (6.5)

The above “completeness” relation should normally also include a sum over possible
emitted radiation

|Xrad⟩⟨Xrad| =
∞∑

n=0

∑
h1,··· ,hn

∫
k1,··· ,kn

|kh1
1 ; · · · ; khn

n ⟩⟨k
h1
1 ; · · · ; khn

n |. (6.6)

However, we choose to make another assumption that all the outgoing radiation belongs
coherently to the wave γ̃, and there is no extra scattered photons/gravitons. In other
words, the final state is given by |p2, β; γ̃h̃⟩ and not |p2, β; γ̃h̃; kh1

1 ; kh2
2 ; · · ·⟩, which was also

assumed for the mass-preserving case (6.3). This assumption relies on the expectation
10In the coherent-spin approach to the classical limit [52], the SU(2) spinors βb that saturate the little-

group indices of the amplitude determine the resulting classical angular momentum of the compact object.
So one could trade the s2-dependence of the spectral density in eq. (6.5) for the perhaps more appropriate
dependence on ℏ∥β∥2 = 2

√
−S2

cl and use the coherent-spin final-state integration. All formulae in this
section may be adjusted accordingly, starting with eq. (6.3) which becomes

P
(c)
γ→γ̃ =

∫
p2

∫
d4β

π2 ⟨in|S
†|p2, β; γ̃h̃⟩⟨p2, β; γ̃h̃|S|in⟩.

Note that as long as the integration over the SU(2) spinors βb appears in the final-state summation, one
may regard and use it as a shorthand for the bulkier spin sum.
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that radiated quanta are not classically significant unless they belong to a classical wave
modeled by a coherent state, see e.g. [53]. Therefore, remembering the meaning of the
incoming state, we can write the absorption probability as

P
(nc)
γ→γ̃ =

∫
p1,p′

1

ψ∗
ξ (p1)ψξ(p′

1)eib·(p′
1−p1) (6.7)

×
∑
s2

∫ ∞

M2
1

dM2
2ρs2(M2

2 )
∫

p2

∑
{b}
⟨p1; γh|S†|p2, s2, {b}; γ̃h̃⟩⟨p2, s2, {b}; γ̃h̃|S|p′

1; γh⟩.

The building block ⟨p2, s2, {b}; γ̃h̃|S|p1; γh⟩ involves a transition of a scalar heavy state into
a possibly spinning one along with the incoming and outgoing massless coherent states.
Since the latter states contain an infinite number of photons/gravitons, the matrix elements
of S = 1 + iT should be expanded in perturbation theory.

6.2 T -matrix perturbative expansion

The massless coherent states (plane or spherical) are sensitive to all orders in perturbation
theory, and their matrix elements are non-trivial [51]. However, we can expand operators
in terms of annihilation and creation operators, plane or spherical. We are going to perform
the T -matrix expansion in the following way:11

T =
∞∑

m,n=0

(
T

(c)
(m|n) + T

(nc)
(m|n)

)
= T

(nc)
(0|1) + T

(nc)
(1|0) (6.8)

+ T
(c)
(1|1) + T

(c)
(0|2) + T

(c)
(2|0) + T

(nc)
(1|1) + T

(nc)
(0|2) + T

(nc)
(2|0) + · · · ,

where the superscripts (c) and (nc) represent mass-preserving and mass-changing elements,
respectively, while the subscript (m|n) corresponds to n incoming and m outgoing pho-
tons/gravitons, and each T -matrix element will generate an (m+ n+ 2)-point amplitude.
In the first line of eq. (6.8), we have isolated the leading non-conservative effects due to
absorption, T (nc)

(0|1), and emission, T (nc)
(1|0). Both terms are mass-changing three-point ampli-

tudes and non-zero even on real kinematics, while the mass-preserving counterparts vanish,
T

(c)
(1|0) = T

(c)
(0|1) = 0.12 In this paper, we have been studying the leading-order in absorption

term T
(nc)
(0|1), but the above expansion allows to also systematically understand higher orders.

In the second line, we have four-point terms that lead to the usual conservative Comp-
ton amplitude T

(c)
(1|1) and its non-conservative counterpart T (nc)

(1|1). The former has been
vastly studied recently, but the latter has been unexplored to the best of our knowl-
edge. Furthermore, we have double-emission (2|0) and double-absorption (0|2) both on
the conservative and non-conservative sides. Together with the non-conservative Comp-
ton, double-absorption would give the naive next-to-leading order (NLO) terms to our
leading-order analysis.

11We thank Donal O’Connell for valuable discussions on the expansion (6.8).
12See [116] for a discussion of large gauge effects, where such amplitudes do contribute.
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The T -matrix elements can be written in terms of scattering amplitudes:

T(m|n) =
∞∑

2s1,2s2=0

∫
p1,p2

∑
h1,...,hn

h̃1,...,h̃m

∫
k1,...,kn

k̃1,...,k̃m

δ̂4(p1+∑iki − p2−
∑

ik̃i
)

×A{b}
{a}(p2, s2; k̃1, h̃1; . . . ; k̃m, h̃m|p1, s1; k1, h1; . . . ; kn, hn)

×
[
a†{b}(p2, s2)a†

h̃1
(k̃1) · · · a†

h̃m
(k̃m)

][
a{a}(p1, s1)ah1(k1) · · · ahn(kn)

]
,

(6.9)

where for brevity we have left the summation over the symmetrized massive little-group
indices a1, . . . , a2s1 and b1, . . . , b2s2 implicit. The integration measure over p2 contains
either δ+(p2

2 −M2
1 ) or δ+(p2

2 −M2
2 ), depending on the conservative or non-conservative

sector considered. The corresponding two sets of T -matrix elements span the space of one
heavy particles and all possible photon/graviton radiation being emitted and absorbed. Of
course, this is not the whole T -matrix space, since we could have more heavy particles and
a mixed combination of photons and gravitons, but here we restrict to only one messenger
particle.

For simplicity, we have used plane-wave massless creation/annihilation operators, which
return the waveshape γ(k) when applied to plane-wave coherent states:

ah(k)|γh′⟩ = γ(k)δh′
h |γh⟩, (6.10)

see e.g. [51]. Aiming for the leading-order absorption effects, we can evaluate the contri-
bution of the T (nc)

(0|1) matrix element to the mass-changing probability as

⟨p2, s2, {b}; γ̃h̃|S|p1; γh⟩ ≃ i⟨p2, s2, {b}; γ̃h̃|T (nc)
(0,1)|p1; γh⟩

= i

∫
k
δ̂4(p1 + k − p2)A{b}(p2, s2|p1; k, h′)⟨γ̃h̃|ah′(k)|γh⟩

= iδh
h̃
⟨γ̃h|γh⟩

∫
k
γ(k)δ̂4(p1 + k − p2)A{b}(p2, s2|p1; k, h).

(6.11)

6.3 Partial-wave coherent states

We are interested in the scattering of a partial wave with a black hole, with the wave
modeled by a covariant spherical coherent state. Such states are defined as eigenstates of
the spherical annihilation operators:

aj,m,h(ω)|γh′⟩ = γj,m(ω)δh′
h |γh⟩, |γh⟩ = Nγ exp

[∑
j,m

∫ ∞

0
d̂ω γj,m(ω)a†

j,m,h(ω)
]
|0⟩. (6.12)

Setting ⟨γh|γh⟩ = 1 gives the normalization prefactor as

Nγ = exp
[
−1

2
∑
j,m

∫ ∞

0
d̂ω |γj,m(ω)|2

]
. (6.13)

The waveshape γj,m(ω) of these coherent states describes the contribution of each (j,m)
component to the total wave, and we expect that in the classical limit γj,m(ω) is peaked
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at the frequency ωcl. We can simplify the problem further by studying the incoming wave
|γh

j,m⟩ with just a particular (j,m) component, in which case the spherical waveshape
reduces to γj′,m′(ω) = δj

j′δm
m′γ(ω), such that

aj,m,h(ω)|γh′
j′,m′⟩ = γ(ω)δj′

j δ
m′
m δh′

h |γh
j,m⟩. (6.14)

Coming back to the initial state |in⟩ given in eq. (6.1), which describes a scalar black
hole and a partial wave as a wavepacket superposition of |p1; γh

j,m⟩. The S-matrix deter-
mines the probability amplitude of its evolution into a final massive state X and another
partial wave |γ̃h̃⟩ with perhaps more than one (ȷ̃, m̃) components. Let us write the leading
absorption term T

(nc)
(0|1) to such a process, by switching the states on the left-hand side of

eq. (6.11) from plane to spherical waves:

⟨p2, s2, {b}; γ̃h̃|S|p1; γh
j,m⟩ ≃ i

∫
k
δ̂4(p1 + k − p2)A{b}(p2, s2|p1; k, h′)⟨γ̃h̃|ah′(k)|γh

j,m⟩. (6.15)

The main difference is that to evaluate the matrix element of a plane-wave annihilation
operator between two spherical coherent states, we need to summon the decomposition of
the plane-wave operator into partial waves:

ah(k) = 4π
∞∑

j=|h|

j∑
m=−j

∫ ∞

0

d̂ω√
2ω
δ̂(k · u1 − ω) −hYj,m(k;u1)aj,m,h(ω), (6.16)

and hence
ah′(k)|γh

j,m⟩ = 4πδh
h′√

2k · u1
γj,m(k ·u1) −hYj,m(k;u1)|γh

j,m⟩. (6.17)

Therefore, we compute the leading mass-changing matrix element as

⟨p2, s2, {b}; γ̃h̃|S|p1; γh
j,m⟩ ≃ 4πi⟨γ̃h̃|γh

j,m⟩
∫ ∞

0

d̂ω√
2ω
γj,m(ω) (6.18)

×
∫

k
δ̂(k · u1 − ω) −hYj,m(k;u1)δ̂4(p1+k−p2)A{b}(p2, s2|p1; k, h).

The leading contribution to the absorption probability (6.7) is then given by

P
(nc)
γ→γ̃ ≃ 8π2∣∣⟨γ̃h̃|γh

j,m⟩
∣∣2∑

s2

∫ ∞

M2
1

dM2
2ρs2(M2

2 )
∫

p1,p′
1,k,k′,p2

ψ∗
ξ (p1)ψξ(p′

1)eib·(p′
1−p1) (6.19)

×
∫ ∞

0

d̂ωd̂ω′
√
ωω′

γ∗(ω)γ(ω′)δ̂(k · u1−ω)δ̂(k′ · u1−ω′)δ̂4(p1 + k − p2)δ̂4(p′
1+ k′− p2)

× −hY
∗

j,m(k;u1) −hYj,m(k′;u1)A∗{b}(p2, s2|p1; k, h)A{b}(p2, s2|p′
1; k′, h).

Note that apart from the overlap between the two spherical coherent states and the impact-
parameter exponent, we have landed exactly on the single-quantum absorption cross-section
given in eqs. (4.11) and (4.13) — with the (j,m) waveshape γ(ω) as the single-particle
energy wavefunction. In other words, we observe that the waveshape γ(ω) acts as a one-
dimensional wavefunction, which smears the energy spectrum but is peaked at the classical
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Figure 3. T -matrix operator expansion.

frequency ωcl. This observation was also made in [91], where single quanta and coherent
states gave the same results.

Let us discuss the seeming discrepancies between the leading-order cross-section for-
mulae (4.11) and (6.19). For a spherical wave defined in the rest-frame of (the classical
momentum of) the compact body and centered at it, the impact parameter should of
course be set to zero. Moreover, eqs. (4.11) and (4.13) were written for an inclusive prob-
ability, let us rename it to P

(nc)
(0|1) := PLO

inc (ωcl, j,m, h), whereas retaining the dependence
on the outgoing waveshape in eq. (6.19) is actually an enhancement of the single-quantum
formula:

P
(nc)
γ→γ̃ =

∣∣⟨γ̃h̃|γh
j,m⟩

∣∣2P (nc)
(0|1) + . . . , (6.20)

where the dots denote the higher orders to be briefly discussed below. In the limit where the
outgoing classical wave changes very little, the above prefactor may furthermore disappear,
⟨γ̃h̃|γh

j,m⟩ ≈ 1.

6.4 Higher-order diagrammatics

In this section, we use diagrams to help us understand all the effects relevant for BH-
wave interactions. Having a diagrammatic realization of the expressions from the previous
sections will guide us for the NLO corrections. However, this diagrammatic approach is
general enough to be also applicable to any order in perturbation theory, as well as such
processes as emitted radiation and superradiance.

Let us take a brief moment to explain the diagrammatic expansion of T -matrix in
figure 3, which represents eq. (6.8). The operator nature of this diagram is represented by
the “vertical line” after the wavy graviton line, and the double lines, which will “act” on
a ket quantum state, e.g. the massless coherent state |γh⟩ or the black-hole |p1⟩. In this
diagram, we then have
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Figure 4. T (nc)
(0|1)-matrix operator acting on the quantum states. Time flows right to left.

• n incoming graviton annihilation operators shown by wavy lines and labeled by
{k1, · · · , kn};

• m outgoing graviton creation operators shown by wavy lines and labeled by
{k̃1, · · · , k̃m};

• incoming and outgoing double line, labeled by p1 and p2. The two lines of different
thickness inside of the double line represents the fact that this diagram contains mass-
preserving and mass-changing transitions.

• vertical lines at the end of graviton/BH lines represent the operator nature of these
diagrams. For instance, the double-line part of the operator will act on |p1⟩, while the
wavy line will act on the coherent state |γh⟩.

• Evaluating this operator with outgoing states on the left and incoming states on the
right will result in scattering amplitudes, waveshapes, and coherent-state overlap.
Due to the operator-action convention, time flows from right to left in the resulting
amplitude.

Let us now apply these diagrams to the evaluation of the leading-order contribution
to absorption given in eq. (6.11). We take the first term T

(nc)
(0|1) on the right-hand side of

figure 3 and take its matrix element ⟨p2, s2, {b}; γ̃h̃|T (nc)
(0,1)|p1; γh⟩. The result is the overlap

between the coherent states, a scattering amplitude, and the waveshape γ(k), represented
in figure 4. Note that the integrated scattering amplitude is a single-graviton amplitude
smeared by the waveshape.

Similarly, figure 5 shows how this diagrammatic technique applies to the NLO non-
conservative contributions. They contains double absorption and the mass-changing Comp-
ton amplitude, which both involve two photons/gravitons, now integrated with two wave-
shapes coming from the coherent states.

6.5 PM absorption analysis

In the previous section, we have explained how to include higher orders in multiplicity
into the BH-wave interaction modeling by expanding the T -matrix. The PM expan-
sion, however, enters into the mass-changing amplitudes in a rather intricate way. In-
deed, as we have seen from eq. (5.7), even the three-point absorptive amplitudes must
behave O(Gs2+1). Let us now explore the mass-changing (m + n + 2)-point amplitude
A{b}

{a}(p2, s2; k̃1, h̃1; . . . ; k̃m, h̃m|p1, s1; k1, h1; . . . ; kn, hn) in eq. (6.9). For brevity, we com-
press the notation to A(s2|s1)

abs(m|n), emphasizing its distinction from the mass-conserving coun-
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Figure 5. Next-to-leading order contributions to mass-changing absorption effects.

terparts A(s2|s1)
(m|n) . In particular, at three points we have

A(s2,0)
abs(0|1) ∝ G

s2+1, A(s)
3,min ∝

√
G, (6.21)

where the second one is the usual three-point same-mass amplitude [95] of the minimal
form (3.15), which are known to correspond to Kerr BHs at 1PM [32, 33].

To obtain higher multiplicities, we can now naively multiply the powers of the Newton
constant of these three-point amplitudes, assuming that they scale uniformly in G, and any
subleading orders at three points should come from higher loop orders.13 At four points,
we have two incoming gravitons and a mass-changing heavy particle. We then have three
types of contributions: a contact four-point term, two successive three-point absorptions,
and one absorption together with one minimal-coupling amplitude. These terms be written
respectively as

C(s2,0)
abs(0|2) + A(s2,0)

abs(0|2)+0︸ ︷︷ ︸
∝ G2s2+2

+ A(s2,0)
abs(0|1)+1︸ ︷︷ ︸

∝ Gs2+3/2

=: A(s2,0)
abs(0|2), (6.22)

where the subscript notation (0|r) + n − r means that we have n gravitons, r out which
couple via an absorptive three-point amplitude and (n−r) via the mass-preserving minimal
coupling. More generally, for n-graviton absorption we thus have

A(s2,0)
abs(0|n) =

n∑
r=1
A(s2,0)

abs(0|r)+n−r + C(s2,0)
abs(0|n), A(s2,0)

abs(0|r)+n−r∝ G
r(s2+1)+(n−r)/2. (6.23)

In section 5, we have seen that, on the GR side, the PM expansion of the near-zone
response function (5.2) suggests that the leading-order absorption cross-section scales as
G2j+2, whereas the NLO does as G2j+4.14 Now from squaring the amplitudes (6.22), we
see that we obtain terms that scale as G2j+3, G3j+7/2 and G4j+4 for s2 = j (as follows from

13See [117] for loop corrections to Love numbers in the worldline EFT framework. For quantum corrections
to Love numbers due to emission see [93], which we also ignore in the above analysis.

14Tail effects may modify the NLO to O(G2j+2) [92, 117], but we expect them to arise from loops.
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spin conservation seen in eq. (4.7)). Therefore, it is not possible to obtain the NLO G2j+4

expected on the GR side from the tree-level counting on the EFT side, unless the contact
term is artificially introduced to account for this counting. However, a more natural way
to obtain the expected behavior in G is from the amplitude with three incoming gravitons,
which is expanded as

A(s2,0)
abs(0|3) = A(s2,0)

abs(0|1)+2︸ ︷︷ ︸
∝ Gs2+2

+A(s2,0)
abs(0|2)+1︸ ︷︷ ︸

∝ G2s2+5/2

+A(s2,0)
abs(0|3)+0︸ ︷︷ ︸
∝ G3s2+3

+C(s2,0)
abs(0|3). (6.24)

Indeed, we see that the first contribution squared induces the desired NLO G2j+4 correction
to the absorption cross-section.

7 Summary and discussion

In this work, we have initiated the exploration of classical absorption effects for com-
pact bodies using quantum scattering amplitudes. Central to this program are the mass-
changing three-point scattering amplitudes [95, 108] that entail new degrees of freedom
modeling non-conservative effects, which may change the mass and spin of the heavy par-
ticle (representing the compact object) due to the incoming wave.

We have made use of these amplitudes and their connection to covariantized spin-
weighted spherical harmonics to describe leading gravitational absorption effects from a
macroscopic/EFT point of view. Since this is an effective description, matching to the
underlying theory was required to obtain the values of the EFT coupling coefficients. We
have chosen to match at the cross-section level to the GR calculation dating back to
Starobinsky, Churilov [80, 81] and Page [82, 83]. Although we have performed a leading-
order match, this probability-based formalism can accommodate higher orders in the PM
expansion and incoming spinning BHs and neutron stars as well. For the latter case,
absorption effects were considered via tidal heating [118, 119], and it would be interesting
to understand how the effective couplings gr,s1,s2 deviate from the BH values. We leave
this for future work.

Having made sense of the effective couplings, we have explored how the used single-
quantum framework fits into a more general and consistent description of classical waves
using massless coherent states. In particular, we were able to connect the frequency wave-
function used in the former with the coherent-state waveshape, i.e. the eigenvalue of the
annihilation operator. An interesting feature of this analysis is the diagrammatic approach
for expanding the T -matrix and systematically introducing higher-order terms in the co-
herent cross-section. Crucial to this analysis was the separation of the probabilities into
conservative and absorptive, which is motivated by the intrinsically distinct nature of the
quantum amplitudes building blocks. Although the classical limit sends M2 → M1, the
form of the resulting cross-section follows from the amplitudes constructed on M2 ̸= M1
kinematics, which are qualitatively different from their same-mass counterparts, since they
belong to distinct Hilbert spaces.

The natural next step is to include spin effects for the initial black hole with the
end goal of modeling a Kerr BH absorption cross-section purely from on-shell amplitudes.
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According to the microscopic calculation from the GR side, such leading-order non-spinning
effects come at O(G3) at the cross-section level, suggesting that the effective coupling in
the amplitude should start at O(G3/2). From the EFT side, in this more general case
of s1 ̸= 0, we have observed the proliferation of possible effective couplings in the mass-
changing three-point amplitude (3.12), making the matching a harder task. However, the
proposed definition of the mass-changing minimal amplitudes (3.19) might streamline the
calculation and perhaps even correspond to the Kerr BH in the same way as the same-mass
“minimal coupling” [95] of the form (3.15) are known to [32, 33].

Another direction that we have not explored is the study of observables from ampli-
tudes, in particular using the KMOC formalism [48–53]. With the obtained absorption
effective coefficients, many interesting local and global observables could be already be
explored at leading or higher PM orders using the presented formalism. Perhaps the most
interesting ones are the change in mass and spin induced by absorption, where one could
naturally use such quantum operators as P2 = PµPµ to obtain ∆M2 and S2 = SµSµ to
obtain ∆S2. Moreover, one could imagine probing the change in the area of the BH due
to absorptive effects. In classical GR, the area is defined as

AH := 8π(GM)2
[
1 +

√
1− χ2

]
, χ = a

GM
, (7.1)

and a =
√
−S2/M is the Kerr ring radius. To obtain the change in this quantity from

amplitudes, one would like to define a QFT operator for the area and try to compute ∆AH
in a scattering process. For that, one could substitute (S2,M2) → (S2,P2), which imples
the following proposal for the area operator:

AH = 8π
[
G2 P2 +

√
(G2 P2)2 +G2 S2

]
, (7.2)

which mixes PM orders. The simplicity of this proposal also comes from the fact that the
two operators commute [S2,P2] = 0. The mixing between orders in the expansion brings
an interesting interplay between the S2 and the P2 calculations. We leave the exploration
of such an operator for future work.

We hope that this work may open these and other avenues to include absorption effects
in the on-shell amplitude approach to gravitational waves. In particular, the work [39] on
matching Teukolsky-equation solutions to the gravitational Compton scattering amplitudes
suggests that absorption effects could be included into them in relation to horizon effects.
It is tempting to consider these effects from a purely on-shell perspective, as the four-
point amplitudes are likely to be related to the leading-order absorption cross-section by
dispersion relations.

Another direction is to explore in more detail the role of the spectral density function
that we were forced to introduce in our formalism. For instance, it would be interest-
ing to see if it appears in a similar way in the context of the Heavy Particle Effective
Theory [26, 27], which streamlines the classical limit. We leave this also for future work.
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A Spherical harmonics and spinors

Here we discuss the spinorial construction for the spin-weighted spherical harmonics.

Spherical harmonics in 3d. The original construction due to Newman and Penrose [103]
may be neatly formulated (see e.g. [120]) in terms of SU(2) spinors on the sphere S2 =
{k̂ = (cosφ sin θ, sinφ sin θ, cos θ)} ⊂ R3:

κa
+ =

(
e− iφ

2 cos θ
2

e
iφ
2 sin θ

2

)
, κa

− =
(
−e− iφ

2 sin θ
2

e
iφ
2 cos θ

2

)
⇒

{k̂ · σa
b κ

b
± = ±κa

±,

k̂i = −1
2σ

i,a
b(κa

+κ−b + κa
−κ+b),

(A.1)

where σa
b is the concatenation of the three standard Pauli matrices. We then define

hỸj,m(k̂) :=

j−m︷ ︸︸ ︷
︸ ︷︷ ︸

j+h

κ
(1
+ · · ·κ1

+

j+m︷ ︸︸ ︷
κ2

+· · ·κ2
+ κ

2
−· · ·κ

2)
−︸ ︷︷ ︸

j−h

. (A.2)

Up to normalization, these functions are directly related to the conventional angle-depen-
dent harmonics [104] via the spinor parametrization (A.1):

hYj,m(θ, φ) := (−1)m

√
(2j+1)(j+m)!(j−m)!

4π(j+h)!(j−h)!
(
sin θ

2
)2j

min(j+m,j−h)∑
r=max(0,m−h)

(−1)j−h−r(j−h
r

)
(A.3)

×
( j+h

r+h−m

)(
tan θ

2
)m−h−2r

eimφ

= (−1)m(2j)!
√

2j+1
4π(j+m)!(j−m)!(j+h)!(j−h)! hỸj,m(k̂).

The latter functions obey the standard orthonormality property on S2,∫
dΩk̂ hY

∗
j′,m′(k̂) hYj,m(k̂) = δj′

j δ
m′
m . (A.4)

Note that the usual conventions (A.3) fix the (functional) U(1) freedom

κ± → e±iϕ(k̂)/2κ± ⇒ hYj,m(k̂)→ eihϕ(k̂)
hYj,m(k̂), (A.5)

which leaves the directional vector k̂ invariant and does not affect any important properties
of the spherical harmonics.
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Spinors in 4d. In Minkowski space, spinors carry SL(2,C) Weyl indices α or α̇ of nega-
tive or positive chirality, respectively. In the spinor-helicity formalism, spinors are denoted
by bras and kets, written with angle or square brackets depending on their chirality. The
spinors corresponding to massless vectors obey [121–126]

|k⟩α[k|α̇ = kαα̇ := kµσ
µ
αα̇, k2 = det{kαα̇} = 0, (A.6)

where σµ = (1,σ). Assuming kµ = ω (1, cosφ sin θ, sinφ sin θ, cos θ), we may pick

|k⟩α =
√

2ω
(
−e−iφ sin θ

2
cos θ

2

)
, |k]α̇ =

√
2ω
(

cos θ
2

eiφ sin θ
2

)
, (A.7)

with the understanding that little-group U(1) transformations, |k⟩ → e−iϕ(k)/2|k⟩, |k] →
eiϕ(k)/2|k], leave eq. (A.6) invariant and are thus allowed.

Massive spinors [95]15 carry additional SU(2) little-group indices a and obey

|pa⟩α [pa|α̇ := ϵab|pa⟩α [pb|α̇ = pαα̇ := pµσ
µ
αα̇, p2 = det{pαα̇} = M2 ̸= 0. (A.8)

For pµ = (ε, ρ cosφ sin θ, ρ sinφ sin θ, ρ cos θ), such that ε2 − ρ2 = M2, one may choose the
massive spinors explicitly as (columns are labeled by a, rows by α or α̇)

|pa⟩α =
( √

ε−ρ cos θ
2 −
√
ε+ρ e−iφsin θ

2√
ε−ρ eiφsin θ

2
√
ε+ρ cos θ

2

)
, [pa|α̇ =

(
−
√
ε+ρ eiφsin θ

2 −
√
ε−ρ cos θ

2√
ε+ρ cos θ

2 −
√
ε−ρ e−iφsin θ

2

)
, (A.9)

This is ambiguous for p = 0, so one may choose e.g.

pµ = (M,0) = 0 ⇒ ⟨pa|α =
√
Mϵαa, [pa|α̇ =

√
Mϵα̇a. (A.10)

The SU(2) little-group rotations, |pa⟩ → Ua
b(p)|pa⟩, |pa]→ Ua

b(p)|pb], leave momentum pµ

invariant and correspond to choosing different spin quantization axes nµ. (More details may
be found in [52, 95, 130]). The parametrization (A.9) picks nµ =(ρ, ε cosφ sin θ, ε sinφ sin θ,
ε cos θ)/M , i.e. quantization along the momentum, while eq. (A.10) chooses the conven-
tional z-axis.

The momentum spinors serve as basic building blocks for scattering amplitudes. For
massless particles, the spin is always quantized along the momentum, and is thus counted
by helicity weights: −1/2 for each |k⟩ and +1/2 for |k]. Moreover, each massive spin-s
particle is represented by 2s symmetrized SU(2) indices. We denote the corresponding
symmetrized tensor product of spinors by ⊙, following [131].

Spherical harmonics in 4d. Returning to the spherical harmonics, we may now embed
the 3d construction in 4d. Namely, we regard it as corresponding to the default choice
of the time direction uµ = (1,0) and the celestial sphere swept by a massless momentum
kµ = ω (1, k̂(θ, φ)) and parametrized by the spinors |k⟩α =

√
2ωκa=α

− and |k]α̇ =
√

2ωκa=α̇
+ .

Lorentz boosts change the time direction and induce Möbius transformations on the celes-
tial sphere.

15For earlier iterations of the massive spinor-helicity formalism see refs. [108, 110, 127–129].
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For a general time direction uµ (such that u2 = 1 and u0 > 0), we choose to parametrize
the celestial sphere by the massless spinors |k⟩α and |k]α̇. Of course, the quantum numbers
of a spherical harmonic must be the same as in the rest frame of uµ. The massive spinors
⟨ua|α and [ua|α̇ provide a perfect transformation device between the current inertial frame
and the rest frame of uµ. This brings us to eq. (2.12), i.e.

hỸj,m(k;u, n) := 1
⟨k|u|k]j

j−m︷ ︸︸ ︷
︸ ︷︷ ︸

j+h

[u(1k] · · · [u1k]
j+m︷ ︸︸ ︷

[u2k] · · · [u2k] ⟨ku2⟩ · · · ⟨ku2)⟩︸ ︷︷ ︸
j−h

. (A.11)

Here the subscripts 1 and 2 are the explicitly symmetrized little-group indices, and the
prefactor involving ⟨k|u|k] = 2k · u −−−→

u→0
2k0 serves to cancel out the mass dimension. To-

gether with eq. (A.10), it guarantees the consistency with the rest-frame definition (A.2) —
up to the functional U(1) transformation of the form (A.5) in view of the differences in the
φ-dependence between eqs. (A.1) and (A.7). This is an example of acceptable convention
discrepancies, which maybe caused by switching between different spinor parametrizations.
The validity of the harmonics (A.11) as representations of the spin algebra follows from
the properties of massive spinors, see e.g. [34, 52]. Note that the dependence on the spin-
quantization axis nµ enters via the choice of the massive spinors, as discussed around
eq. (2.16). In other words, the SU(2) little-group transformations |ua⟩ → Ua

b(p)|ua⟩,
|ua] → Ua

b(p)|ub] induce the SO(3) rotations of nµ orthogonally to the time direction
given by uµ. Since the choice of spinors for uµ defines nµ, the notation may as well be
compressed to hYj,m(k;u).

Let us now discuss the orthonormality property (2.15). It is valid for the normalized
versions of the covariant harmonics, rescaled from those in eq. (A.11) analogously to their
non-covariant counterparts in eq. (A.3). It can be easily seen that in the rest frame of uµ

the covariant integration measure reduces to the solid-angle one:
2
ω

∫
d4kδ+(k2)δ(k · u− ω) −−−→

u→0

∫
dΩk̂, k0 = |k| = ω. (A.12)

So eq. (2.15) clearly holds for u = 0, and what we need is to extend it to any uµ.

Spinor integration. To expose the properties of the measure (A.12) in a neat way, we
first rewrite it using a null basis [132]:

kµ = t
(
rµ +γqµ + z

2[r|σ̄µ|q⟩+ z̄

2[q|σ̄µ|r⟩
)
⇒

∫
d4k = i(r + q)4

4

∫
t3dt∧dγ∧dz∧dz̄, (A.13)

where σ̄µ = (1,−σ), and the massless vectors rµ and qµ are not collinear but otherwise
arbitrary. Adding the masslessness condition eliminates γ from the measure:∫

d4kδ+(k2) = i(r + q)2

4

∫ ∞

0
tdt

∫
dz ∧ dz̄, kµ = t

2
(
⟨r|+ z⟨q|

)
σµ(|r] + z̄|q]

)
. (A.14)

(Here for concreteness one may assume r0, q0 > 0 so that k0 > 0.) However, this massless
measure may now be rewritten using spinor integration [133–135]∫

d4kδ+(k2) = − i4

∫ ∞

0
tdt

∫
λ̃=λ̄
⟨λdλ⟩ ∧ [λ̃dλ̃], kµ = t

2⟨λ|σ
µ|λ̃], (A.15)

– 33 –



J
H
E
P
1
2
(
2
0
2
3
)
1
0
3

such that the dependence on rµ and qµ has entirely canceled out due to

(r + q)2dz ∧ dz̄ = −
(
⟨r|+ z⟨q|

)
|q⟩dz ∧

(
[r|+ z̄[q|

)
|q]dz̄ = −⟨λdλ⟩ ∧ [λ̃dλ̃]. (A.16)

Now introducing the second delta function let us fix the energy scale of kµ and get

1
ω

∫
d4kδ+(k2)δ(k ·u− ω) = −i

∫
λ̃=λ̄

⟨λdλ⟩ ∧ [λ̃dλ̃]
⟨λ|u|λ̃]2

, kµ = ω
⟨λ|σµ|λ̃]
⟨λ|u|λ̃]

. (A.17)

This measure allows us to reformulate the orthonormality property (2.15) of the spin-
weighted spherical harmonics in the following way:∫

λ̃=λ̄

⟨λdλ⟩ ∧ [λ̃dλ̃]
⟨λ|u|λ̃]2 hY

∗
j′,m′(λ, λ̃;u) hYj,m(λ, λ̃;u) = i

2δ
j′

j δ
m′
m , (A.18)

where the notation hYj,m(λ, λ̃;u) := hYj,m(k;u) serves to emphasize their independence of
the energy scale. Then the validity of eq. (2.15) for u ̸= 0 follows from the fact that the
entire left-hand side is independent of ω = k · u. Indeed, for any spinor conventions and in
any frame, we can rewrite it as the same integral over the complex plane by parametrizing
|λ⟩ = |u1⟩ + z|u2⟩ and |λ̃] = |u1] + z̄|u2], so that the left-hand side of eq. (A.18) will
exclusively involve the following ingredients:

⟨uaλ⟩ = −δ1
a− δ2

az,

[uaλ̃] = ϵ1a + ϵ2az̄,

⟨λdλ⟩ ∧ [λ̃dλ̃] = −dz ∧ dz̄ := 2i dℜz ∧ dℑz,
⟨λ|u|λ̃] = 1 + zz̄.

(A.19)

Therefore, it only depends on the quantum numbers h, j, j′,m and m′, and may only
produce a combinatorial result, which may as well be fixed at uµ = (1,0).

B Frame transformations of harmonics

Here we derive the spinor transformations (2.17), which induce the relationship between
covariant spin-weighted spherical harmonics hỸj,m(k;u) and hỸj,m(k; v).

These harmonics correspond to two different unit timelike vectors uµ and vµ, with a
relative Lorentz factor

γ := u · v =: 1√
1− ν2

, 0 ≤ ν < 1. (B.1)

These vectors can be Lorentz-transformed into each other using the minimal boost

Lρ
σ(v←u) := δρ

σ + 2vρuσ −
(u+ v)ρ(u+ v)σ

1 + u · v
= exp

(
i log(γ+

√
γ2−1)√

γ2−1
uµvνΣµν

)ρ

σ
, (B.2)

written in terms of the spin-1 Lorentz generators (Σµν)ρ
σ := i[ηµρδν

σ − ηνρδµ
σ ]. The spinors

may be boosted using the corresponding SL(2,C) transformations, namely

Sα
β(v←u) = exp

( i log µ
γν uµvνσµν

)α
β , µ := γ +

√
γ2 − 1, (B.3)
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written in terms of the chiral spin-1/2 generators σµν := i
2σ

[µσ̄ν]. Using the Clifford-algebra
property σ(µσ̄ν) = ηµν , it is easy to derive( i log µ

γν uµvνσµν
)2n|ua⟩ = (log√µ)2n|ua⟩,( i log µ

γν uµvνσµν
)2n+1|ua⟩ = (− log√µ)2n+1

(
1
ν |u

a⟩ − 1
γν |v|u

a]
)
.

(B.4)

This lets us sum the matrix exponent, whose action simplifies to

Sα
β(v←u)|ua⟩ =

√
µ

µ+ 1
(
|ua⟩+ |v|ua]

)
. (B.5)

We thus arrive at the following massive-spinor transformations:

|vb⟩ =
√
µ

µ+ 1U
b
a(v←u)|u+v|ua], |vb] =

√
µ

µ+ 1U
b
a(v←u)|u+v|ua⟩. (B.6)

Here we have allowed for the SU(2) matrix U b
a(v←u). Its purpose is to fix the misalign-

ment between what we get from the minimal boost (B.2) and the desired spin quantization
axis for the resulting time direction, which generically do not coincide:

nµ
v := 1

2(⟨v2|σµ|v2] + [v2|σ̄µ|v2⟩) ̸= Lµ
ν(v←u)nν = nµ − n · v

1 + u · v
(u+ v)µ. (B.7)

In fact, unitary matrices like U b
a(v← u) represent the SO(3) rotations of the spin quan-

tization axis even in the absence of Lorentz-frame boosts. Therefore, the spinor transfor-
mations (B.6) induce the most general frame transformations of the covariant spherical
harmonics.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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