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Devising strategies for economic development in a globally competitive landscape requires a solid and unbiased
understanding of countries’ technological advancements and similarities among export products. Both can be
addressed through the bipartite representation of the International Trade Network. In this paper, we apply the
recently proposed grand canonical projection algorithm to uncover country and product communities. Contrary
to past endeavors, our methodology, based on information theory, creates monopartite projections in an unbiased
and analytically tractable way. Single links between countries or products represent statistically significant
signals, which are not accounted for by null models such as the bipartite configuration model. We find stable
country communities reflecting the socioeconomic distinction in developed, newly industrialized, and developing
countries. Furthermore, we observe product clusters based on the aforementioned country groups. Our analysis
reveals the existence of a complicated structure in the bipartite International Trade Network: apart from the
diversification of export baskets from the most basic to the most exclusive products, we observe a statistically
significant signal of an export specialization mechanism towards more sophisticated products.
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I. INTRODUCTION

The application of the network formalism in the field of
socioeconomic science has seen an unprecedented growth
in the last decades [1–3]. Most of our actions take place
in network environments, and neglecting such structures can
lead to insufficient interaction models [4,5] and poor policy
regulation [6].

On the global scale, the analysis of the International Trade
Network (ITN), also known as the World Trade Web, has taken
a prominent role in the study of economic systems [7–10]
motivated by the ongoing process of globalization. The ITN
can be represented by a bipartite network in which the two
layers are, respectively, countries and products [11,12]: a link
between the two layers is present if the selected country is able
to export the chosen item. In this framework, [13,14] proposed
an algorithm that uncovers productive capabilities of countries,
as well as the complexity of products.

Several works [15–17] proposed different approaches to
infer relations among products from this bipartite network.
However, very often they are either too tailored to the problem
at hand and therefore lack generalizability, or the observed
similarity between products neglects the validation by a
statistical null model so that the signal is indistinguishable
from the noise.

Surprisingly, few general methods for projecting bipartite
networks are present in literature, among which the seminal
algorithm proposed in [18]. Call, respectively, L and ! the
two layers and suppose we want to project the bipartite
network on the layer L; the original bipartite network is
divided into slices that are homogeneous in the degree of
nodes of the opposite layer !. Comparing the presence of
actual links with uniform distributions in each slice permits
to establish the statistical significance of the observation and
validate the co-occurrence of links between node pairs in the
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layer L. Even though this approach is poorly effective due
to the high number of hypotheses to be tested (one for every
couple of nodes in L for every slice), [18] defines a controlled
framework in which a statistical analysis can be performed.

Recently, many efforts have been spent in providing
an unbiased monopartite projection for bipartite networks
[19–21]. Summarizing, through the comparison of the actual
measurements with the expectations of the bipartite config-
uration model (BiCM, [22]), it is possible to state if nodes
belonging to the same layer share a statistically significant
fraction of their connections. In this process the BiCM may be
too “strict” and could account for all the observations in the
data [21]: otherwise stated, the method may be too effective
in reproducing original data. Although the original proposal
embeds the BiCM [19–21], the framework is very general and
nothing prevents from using “weaker” null models [21].

In this paper, we apply the aforementioned approach
(discussed in details in [21]) to the International Trade
Network. The configuration model class is essentially obtained
from entropy maximization and, since their derivation follows
the general approach of [23], we will refer to this method as
the grand canonical projection algorithm. We observe that the
BiCM induces a community structure which largely agrees
with the socioeconomic distinction between developed, newly
industrialized, developing, and mainly raw material exporting
countries. Our analysis reveals a division within the group of
developed countries around year 2000 into a core (Germany,
USA, Japan, France, etc.) and a periphery (Austria, Italy,
Spain, Eastern European countries, etc.), with the latter acting
as a bridge to developing countries.

The grand canonical projection shows also the presence
of communities of products, which essentially reflect the
development of their exporters. In particular, technological
chemistry products cluster together because they are exported
by the same developed countries, whereas electronic devices,
textiles, and textiles form communities since they represent
the typical exports of newly industrialized and developing
countries. Each community of countries occupies the projected
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network of products in a particular way, focusing their efforts
on few product communities, thus implying the presence of
a statistically significant signal of specialization. Note that,
usually, the picture arising from the analysis of the bipartite
ITN is interpreted as the fact that the most developed countries
export literally all possible products. In this article, we refine
this picture by highlighting that developed countries focus
more on the most complex, i.e., technologically advanced,
goods. A similar signal was already mentioned in the Sup-
plemental Material of [22], though not discussed in details:
the observed network appeared much more disassortative than
the randomization, implying that countries with the largest
export baskets link more than expected to products with the
highest complexities, i.e., with the lowest degrees. These new
results put in relation the topological network structure with
economical meaning of the case study considered.

The paper is organized as follows. First, we briefly
introduce the ingredients of the grand canonical projection
algorithm in Sec. II; more details on the BiCM and on the
projection technique of the original article [21] are provided
in Appendix A. The trade data set and the bipartite ITN are
described in Sec. III. Section IV presents the monopartite
projections obtained from different null models and their
composition in terms of country communities, which reflect
their stages in economic development, as well as product
communities, based on their technological sophistication.
Finally, we comment on the results and the performance of
the methodology in the Conclusions (Sec. V).

II. METHODS

We consider a binary bipartite network composed of two
distinct node sets and a collection E of undirected and
unweighted edges. In the following, we distinguish the node
sets by using Latin and Greek indices. The bipartite network
is described by a binary biadjacency matrix M of dimension
Ni × Nα , where Ni and Nα are the dimensions, respectively,
of the Latin and the Greek layers and an edge between node
couples (i,α) is represented by the matrix entry Miα = 1.

In a bipartite network, the similarity between two nodes
of the same layer is usually measured by the number of
nearest neighbors in the opposite layer. Even though this
method is direct and intuitive, it neglects the crucial problem
of determining which edges contain statistically relevant
information and which do not. To address this question, in this
paper we employ the grand canonical projection methodology
proposed in Ref. [21] since it provides exact results and a
coherent formalism. In the following, we will briefly review
the method, inviting the interested reader to the original article.

Grand canonical projection

The grand canonical projection algorithm proposed in
Ref. [21] yields a statistically validated monopartite projection
of a bipartite network by comparing the observed node
similarities with the expectations from a suitable null model.

a. Bipartite motifs as a measure of similarity. The number
of common neighbors shared by two nodes of the same Latin
(Greek) layer can be used as a measure of similarity. In the
literature, this quantity is known as the number of K2,1 (K1,2)
bicliques [24] or, following the formalism of [22], as the
number of V motifs (# motifs).

Nα

Ni

i j

α β

FIG. 1. The V ij
α motif is illustrated by the bold black edges

between node couples (i,α) and (j,α). Analogously, the edges
between (j,α) and (j,β) describe the #

j
αβ motif. The top layer

contains the “Latin” nodes, the bottom the “Greek” nodes. Other
edges are indicated by dotted gray lines.

Figure 1 illustrates the V motifs between nodes i and j .
The total number of V motifs between these nodes is

V ij =
∑

α

V ij
α =

∑

α

MiαMjα. (1)

b. Bipartite configuration model and bipartite partial
configuration models. In order to establish whether two
nodes are similar in a statistical sense, we compare the
V -motif abundances with their expectations from the bipartite
configuration model (BiCM [22]). The BiCM is an entropy
based null model in which the information of the degree
sequence of both layers is discounted. It has been shown
[11–17,22] that the degree sequence is able to capture much
of the structure of the bipartite international trade, such as
the triangular nested shape of the biadjacency matrix. Hence,
discounting the degree sequence with a null model allows
to uncover more detailed substructures, which are otherwise
hardly observable. The method is composed of two main steps:
entropy maximization and likelihood maximization. In the first
step, we define GB , an ensemble of bipartite graphs in which
the number of links can vary and the number of nodes per layer
is fixed to the value of the network under analysis. We define
the Shannon entropy of the ensemble as

S = −
∑

GB∈GB

P (GB) ln P (GB),

where P (GB) is the probability of observing graph GB ∈ GB .
The choice of the Shannon entropy is standard in in-

formation theory and implicitly assumes that the system is
ergodic, i.e., that all link configurations are theoretically
possible. For nonergodic or non-Markovian systems, the use
of a nonadditive entropy definition is recommended [25,26].
In principle, different entropies could also be implemented
in our case, although is has been shown that the Shannon
entropy outperforms other entropy functionals in the context
of behavioral networks [27] in recovering missing information.
In the BiCM, we want to maximize the entropy constraining the
degree sequence of both layers. Call ki and kα the degrees of the
nodes i and α, defined respectively on the Latin and the Greek
layers, and θi and θα their relative Lagrangian multipliers. After
the entropy maximization, the probability per graph reads as

P (GB |θi ,θα) =
∏

i,α

e−(θi+θα)

1 + e−(θi+θα )
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(see Appendix A for more details). The graph probability is a
function of the unknown Lagrangian multipliers θi and θα .
They can be estimated by maximizing the likelihood L =
ln P (GB |θ⃗ ) of observing the real network. It is possible to
show that this approach is equivalent to imposing that the
expectation values over the ensemble of the degree sequences
are equal to those of the real network:

⟨ki⟩ =
∑

α

e−(θi+θα )

1 + e−(θi+θα)
= k∗

i ;

⟨kα⟩ =
∑

i

e−(θi+θα )

1 + e−(θi+θα )
= k∗

α.

The values measured on the real network are marked with
asterisks. By solving the previous equations for θi and θα , it
is possible to obtain the explicit value of the probability per
graph in the ensemble. One of the most powerful properties
of the BiCM is that it provides independent probabilities per
link, which in turn permits to readily calculate the expectation
values of more complicated quantities. For instance, the
average number of V motifs between i and j is

⟨V ij ⟩BiCM =
∑

α

pBiCM
iα pBiCM

jα , (2)

where pBiCM
iα is the probability of observing a link between

nodes i and α according to the BiCM.
Note that we could also impose nonlinear constraints,

such as the degree variance of each node. However, this
would lead to nonindependent link probabilities and compli-
cate expressions such as Eq. (2) significantly. Nevertheless,
discounting the information of more elaborate constraints, for
example the bipartite clustering, may reveal other nontrivial
structures. Constraining the degree sequence thus represents
a tradeoff between discounting nontrivial information and
providing transparent and easy-to-use tools for the analysis of
bipartite networks. In the following, we compute the expected
values of the bipartite motifs presented in the previous
paragraph according to the BiCM. For the present objective,
the constraints may turn out to be too strict, meaning that
they capture the main information contained in the network
and no statistical significant signal can be seen. In this case,
it is opportune to relax the constraints and fix the degrees
of just a single layer. This model has been proposed as the
bipartite partial configuration model (BiPCM [21]). Implicitly,
the BiPCMi, i.e., the one in which only the degree sequence of
the Latin layer is captured, is equivalent to a BiCM in which all
nodes in the Greek layer have degrees equal to their mean. The
BiPCMi is more effective in reproducing the observed number
of V motifs rather than the number of # motifs. Intuitively,
the degrees of the nodes i and j carry more information about
V ij than the node degrees of the opposite layer. Analogously,
the BIPCMα reproduces # motifs better than V motifs.

In some cases, the projection of the real bipartite network
can be completely reconstructed from its (bipartite) degree
sequence, which means that the BiCM would be too strict to
validate any links in the projection algorithm. The use of the
BiPCM is thus recommended. By neglecting the information
contained in the degree sequence of the layer opposite to
the one of the projection, the BiPCM allows for stronger

fluctuations stemming from the heterogeneity of the degrees
which can be captured by the projection. A unique criterion
for deciding a priori which null model is more effective is
currently missing as we are examining the limits of the differ-
ent projections. This notwithstanding, as a rule of thumb we
suggest that the BiPCM should be used when one deals with bi-
partite layers of very different lengths ( longer layer

shorter layer ≫ 1) and one
intends to project on the longer layer. Since the variability of
the bipartite motifs is determined by the opposite layer, which
is much shorter in this case, the BiCM is likely not to validate
any links. In all other cases, the BiCM should be preferred.

In the literature, the recent Curveball algorithm offers
another way to discount the degree-sequence information
in an unbiased null model for bipartite networks [28]. The
authors implement a degree-sequence-preserving rewiring
algorithm in order to build the ensemble of networks explicitly.
Remarkably, the method is ergodic, i.e., it explores the phase
space uniformly [29] (note that the ergodicity of BiCM is auto-
matically obtained by construction). Although the algorithm is
relatively fast, the fact that it is microcanonical does not permit
to calculate the expectation values of different quantities, thus
preventing the possibility of writing an expression like Eq. (2).
In fact, ⟨V ij ⟩Curveball can be estimated as the average over
a sample of the original ensemble defined by the Curveball
algorithm. However, this sample has to be big enough in order
to provide a sufficient statistics, i.e., to represent at best the
whole ensemble without losing its statistical properties. For
big networks, this procedure implies the presence of a large
sample, which is hard to handle and increases the calculation
times dramatically.

c. Statistical significance of node similarities: p values and
false discovery rate. Both the BiCM and the BiPCM provide
closed forms for the probability distributions of the # and V
motifs. In the case of the BiCM, they follow a generalization of
the binomial distribution, called Poisson-binomial distribution
[30–32], for each node couple. Depending on the constrained
layer, the BiPCMs provide different distributions: for BiPCMi,
V motifs follow a different binomial distribution for each
couple (i,j ), whereas the #-motif distribution is the same
Poisson-binomial distribution for every couple (α,β). The
contrary happens for BiPCMα .

By comparing the observed bipartite motifs with their null-
model expectations, it is possible to calculate their associated
p values, i.e., the cumulative probability of observing a value
greater than or equal to the one actually observed. In a nutshell,
the smaller the p value, the larger the similarity between the
respective nodes compared to the null-model expectation. In
order to validate the links between all the node couples in the
same layer, a multiple hypotheses testing procedure should
be adopted. In this framework, it is common to control the
false discovery rate (FDR), i.e., the rate of falsely rejected
null hypotheses [33]. Finally, the projection network can be
obtained by drawing links whose p values are statistically
significant according to the FDR test. In the following, the
significance level of all validated networks is α = 0.01.

We created an open-source implementation of the null
models and the calculation of the p values in Python, which
are freely available on the web [34]. More details on the
bipartite configuration models, the similarity measures, and
their distributions can be found in Appendix A.
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III. DATA

We use the BACI HS 2007 database from CEPII [35] to
construct the bipartite network, which comprises the export
data for the years 1995–2010. Products are identified according
to the Harmonized System and organized in hierarchical
categories at different aggregation levels, which are captured
by two, four, or six digit product codes. Here, we adopt the
2007 code revision (HS 2007) with four digit codes describing
1131 different products.

In order to binarize trade data, it is customary to apply
the revealed comparative advantage (RCA), also referred to as
Balassa index [36], which describes whether a specific country
is a relevant exporter of a product (RCA ! 1) or not (RCA < 1)
by comparing the relative monetary importance of the product
in the country’s export basket to the global average. The RCA
is defined as

RCAc,p = e(c,p)∑
p′ e(c,p′)

/ ∑
c′ e(c′,p)∑

c′,p′ e(c′,p′)
, (3)

where e(c,p) denotes the export value of product p in country
c’s export basket.

Basic properties of the binary biadjacency matrix of the ITN

In the bipartite ITN, the degree distributions resemble a
power law for the countries and a Gaussian for the products.
The degree heterogeneity can be approximately captured by
the coefficient of variation (CV), i.e., the standard deviation
over the mean σ

µ
. As a rule of thumb, the larger the CV the

less informative is the mean about the whole distribution. The
probabilities per link of the partial model BiPCMi (BiPCMα)
are those of the BiCM in which the degree sequence of
the opposite layer is approximated by its mean, i.e., ⟨kα⟩ =
|E|
Nα

,∀ α (⟨ki⟩ = |E|
Ni

,∀ i), where |E| is the total number of
edges. Since the CV varies between 0.5 and 0.55 for the pro-
ducts and between 0.82 and 0.89 for the countries, the BiPCMi

will reproduce the V motifs better between the countries than
the BiPCMα the # motifs between the products. Generally
speaking, the approximation implied by the partial null models
will work best for small CV and will lose accuracy as the CV
increases.

In the trade data set we examine, the number of products is
almost 10 times the number of countries and the biadjacency
matrix is hence strongly rectangular. The connectance varies
during the years between 0.09 and almost 0.13. This feature
is related to the division of products in categories (see, for
instance, [37]).

IV. RESULTS

The degree sequences of the binary bipartite trade network
represent the sizes of country export baskets and the number
of exporters of products, respectively. Implementing a null
model which discounts the information from the degree
sequence (e.g., BiCM and BiPCM) implies focusing on
structures that are not already contained in the heterogeneity
of the degree distribution. For instance, in the BiCM the USA
export basket keeps its size while the composition of export
products within the basket is randomized. In the following,

FIG. 2. Communities of countries based on the BiCM projection
for the years 1995, 2001, 2010. Even though the division in
communities shows some noise, the partition in the following
communities is stable: developed countries [blue (dark gray), see
central Europe], newly industrialized and developing countries [light
purple (lighter gray), see China], developing countries [green (darker
gray), see central Africa], and countries whose exports rely on raw
materials, e.g. oil [orange (light gray), see Russia].

we shall observe effects in the structure of the international
trade that are not explainable from dishomogeneities of the
degree sequences alone.

A. Country layer projection

The projection on the country layer induced by the BiCM
reveals important information on different levels of economic
development and the roles played by various countries in the
globalization process.

As shown in Fig. 2, an enhanced version of the Louvain
community detection algorithm [38] applied for the various
years produces four stable clusters: developed countries [blue
(dark gray)], newly industrialized countries [light purple
(lighter gray)], African and South American developing coun-
tries [green (darker gray)], and developing countries exporting
mainly raw materials such as oil [orange (light gray)]. Despite
some noise from year to year, major representatives of the
blue community are Germany, USA, Japan, UK, and other
European countries, while the purple community comprises
China, India, Turkey, Southeast Asia, and some Central Amer-
ican countries; in the cluster of raw material exporters Russia,
Saudi Arabia, Venezuela, post-Soviet states, and North African
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countries can be found. Furthermore, we discern a fifth group
whose composition fluctuates strongly during the considered
time interval. It is mainly composed of countries with large
coastal regions, which have little access to neighboring coun-
tries via continental trade routes. The community includes,
among others, Australia, New Zealand, Canada, Chile, and
Argentina. Much of their industrial output is aimed at internal
markets and exports are strong in the fishing sector, especially
for Canada and Chile. This explains why they are loosely
linked to poorly industrialized nations like Mauritania, whose
most important trade goods derive from fishing activities. As
a result of the weak connectivity within the group, countries
oscillate between different communities, which can clearly be
seen, for example, for Australia and Canada in Fig. 2.

Relaxing the conditions of the null model to just the degree
sequence of the country layer leads to the BiPCMc-induced
projection. The community structure is more stable than for
the BiCM. In particular, note in Fig. 3 that the fluctuating
community disappears and the division of countries is more
static. Weakening the constraints of the null model thus reduces
the noise in the projection. As a matter of fact, neglecting the
constraints on the product layer means considering just the
mean of the product degree sequence. The approximation is
more accurate the smaller the relative dispersion of the product
degrees, which is captured by the coefficient of variation and
amounts to CV ∼ 0.5 in the present case (see Sec. III).

The downside of the stability of the BiPCMc projection
is that it covers small, but insightful, structural changes. For

FIG. 3. Country communities based on the BiPCMc projection
for the years 1995, 2001, 2010. Compared to the BiCM communities
of Fig. 2, the partition here is more stable.

FIG. 4. Structure of the projected country network obtained with
the BiCM and the BiPCMc for the year 2001. Note that in weakening
the constraints, i.e., passing from BiCM to BiPCMc, the connectance
increases. The node colors correspond to those in Figs. 2 and 3.

instance, the BiCM manages to capture the split-off of Italy and
Spain from the developed countries, as well as the separation of
the developed European countries in an Eastern and a Western
part during the years 1997–2002. As can be seen in Fig. 4,
Germany and Austria form a bridge between the Western
and Eastern nations, with the latter themselves connecting to
developing countries.

Another striking result of the analysis of the country
projection is the fact that many post-Soviet states still share
a similar economic development years after the dissolution of
the Soviet Union. A similar signal was detected in [39].

B. Product layer projection

The BiCM-induced projection of the bipartite ITN network
on the product layer does not reveal any statistically significant
links, as already mentioned in [21]. In other words, the total
degree sequence of both countries and products contains
enough information to account for the observed product
similarities in terms of the # motifs.

This observation stands in stark contrast to the country
projection and is mainly due to two reasons connected to
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the different cardinalities of the layers. First, the effective
p-value threshold for the validation procedure is proportional
to the ratio of the significance level α over the number of
tests that have to be performed, i.e., ∝ α/(N2 ) for N nodes, as
shown in Appendix A. Hence, the statistical validation is more
restrictive on “longer” layers. In our case, the product layer is
almost 10 times larger than the country layer, which leads to a
comparatively smaller effective threshold level.

Second, the variability of node degrees depends on the
length of the opposite layer, as mentioned in Sec. II, since the
degree of each node stays in the interval between one and the
dimension of the opposite layer. The degree heterogeneity of
the longer layer is thus generally more limited than the one of
the shorter layer, which reduces the set of possible values of
the bipartite motifs between products in the present case.

Due to the behavior of the BiCM, we implemented the
BiPCMp to perform the validation procedure for product
similarities. As mentioned in the Methods section, constrain-
ing product degrees is more effective in reproducing the #-
motif distribution than constraining country degrees. However,
BiPCMp is going to be less effective in reproducing # motifs
than BiPCMc in reproducing V motifs since the coefficient of
variation for the countries CV ≃ 0.8 indicates a higher loss of
information when approximating the country degree sequence
by its mean.

The BiPCMp-induced product networks are sparse with
connectances in the range of 0.009–0.013 and highly frag-
mented for the years 1995–2010. As shown by the Jaccard
indices of the edge sets in Fig. 5, they are quite dissimilar
from year to year. In the country networks, on the contrary,
the value never falls below 0.75 and 0.8 for the BiCM and
BiPCMc, respectively. Nevertheless, the signal of product
similarity persists: in fact, the enhanced Louvain community
detection algorithm discovers a community structure that is
stable throughout the years. The projection pinpoints evidently
close relationships and captures broad communities, which
remain constant, although the single links do not.

FIG. 5. Comparison of the product networks for the years 1995–
2010. The Jaccard index measures the similarity between their edge
sets E and is defined as |Eyeari ∩ Eyearj |/|Eyeari ∪ Eyearj |. The values
fall very quickly below 0.5 for |yeari − yearj | > 2.

Going into detail, the BiPCMp network consists of many
small clusters surrounding the largest connected component
(LCC) (see Fig. 6 [40] for the year 2000). Most of the
isolated clusters are composed of vegetables, fruits, and their
derivatives, such as lettuce and cabbage, soybeans and soybean
oil, or fruit juice and jams. Other connections are less trivial:
lead ores and zinc ores, for instance, are typically present in
the same geological rock formations and appear as an isolated
component in the network.

The community detection algorithm uncovers a rich com-
munity structure inside the LCC, as shown in Fig. 6 for the year
2000. In the outer regions of the LCC we observe well-defined
clusters, the most prominent of them being the garment
and textile cluster that contains clothes and shoe products.
Furthermore, one can discern a distinct community containing
electrical equipment, such as circuits, diodes, telephones, and
electrical instruments. Other clusters comprise bovine and fish
products, yarns and fabrics, and goods made out of wood, such
as planks, tool handles, etc.

The core of the LCC, on the other hand, hosts several
overlapping communities containing mostly more sophisti-
cated products, such as motors and generators, machines,
cars, turbines, arms, chemical products, antibiotics, and other
industrial products. The community compositions are subject
to fluctuations and include also, for example, agriculture and
dairy products. The fuzziness of the core communities is due to
the fact that they are typically exported by developed countries,
which have large exportation baskets [11–14].

Note that the product communities do not follow necessarily
the HS 2007 categorization, which is evident for the core
communities where commodities of different origins can
be found. As depicted in Fig. 6, the green community on
the bottom, for example, is formed by milk, heavy-duty
vehicles, and metal pipes. Although this may seem confusing
at first sight, it is largely due to the fact that the projection
derives originally from the exportation network and should
reflect the different levels of industrialization of the exporting
countries. This behavior is shown in Fig. 7: different country
communities occupy mostly different product communities, as
is captured by the index ICP =

∑
i∈C,α∈P Miα

|C||P | , i.e., the density of
links between country community C and product community
P [21]. Developed countries focus on the core communities
and export, for instance, highly technological machinery
and sophisticated chemical products. At the same time,
however, their export baskets encompass also products of low
complexity such as milk and pipes, which are also exported,
in fact, by newly industrialized countries next to textile
products, garments, etc. In other words, the communities we
observe, both on the product and the country layer, are derived
from the way items interact: similar exports define countries
with similar industrial development and, on the other hand,
similar exporters define product communities of comparable
technological level.

The relative focus of country communities on specific
product groups has strong implications. Evidence presented
in studies on the bipartite representation of international
trade [11–17,41] connect productive capabilities to the tri-
angular shape of the country-product biadjacency matrix,
advocating that the most developed countries export even the
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FIG. 6. BiPCMp product network spanned by FDR validated edges for α = 10−2 in the year 2000. The communities have been obtained
using the enhanced Louvain algorithm and include, among others, the following products, starting on the top and going clockwise: fabrics and
yarn; clothes and shoes; sugar and yeast; wooden materials; animal products; heavy machines; basic electronics; heavy-duty vehicles, pipes,
dairy products; wood pulp; chemical products; machines, motors, tools; flat iron products; metal products, tramway locomotives, tires, and
turbines.

least complex products. This stands in contrast to standard
economic theories expressed by Ricardo [42]: according to his
hypothesis, countries should specialize on products for which
they show a higher comparative advantage, even if they would
be able to export other items as well.

In past studies, the configuration models demonstrated their
ability to uncover substructures and less evident information
[39,43]. Already in [22] it was mentioned that the actual trade
network is more disassortative than expected from the BiCM,
implying that high degree countries (i.e., the ones with the
largest export baskets) tend to export low degree products (i.e.,
the most exclusive and sophisticated ones) more than expected
from the randomization.

Figure 7 explicitly shows that different countries, based on
their technological level, tend to focus of different areas of the
product network. Otherwise stated, even if the biadjacency
matrix is triangular, still, once discounted the contribution of
the dimension of export baskets and the number of exporters, a
statistically significant signal shows the presence of industrial
specialization. In order to highlight this phenomenon, we
compare the link densities in the biadjacency matrix with the
expectations from the BiCM null model. For every entry in the
matrix, we consider a box of 21 countries × 81 products that
surrounds it [44]. We quantify the discrepancies between the
observed number of links in the boxes and their expectations
from the BiCM using z scores, i.e., zBiCM(x) = x−⟨x⟩BiCM

σBiCM(x) . The

z scores express the difference between the real value and
the expectation in terms of the standard deviation: z ≪ −3
indicates that the observation is (significantly) less than the
null-model expectation, whereas z ≫ 3 is (significantly)
more. In Fig. 8 we represent the z scores as a heat map on
top of the country-product biadjacency matrix. Links are
shown as white dots. “Hotter” (lighter) areas are those where
the actual number of links significantly exceeds the BiCM
expectation, whereas “colder” (darker) areas are those with
less links than expected. It is possible to observe two hot
areas in the top left and bottom right corners. The former
shows that low fitness countries export basic products much
more than expected (z ∼ 30), whereas the latter highlights
the tendency of developed countries to export sophisticated
products (z ∼ 25). Contrary to that, the bottom left corner
illustrates that high fitness countries export basic products
much less than expected (z ∼ −20). It is possible to observe
a “hot” area stretching from the top left to the bottom right
just below the diagonal of the matrix and a “cold” one just
below that, highlighting the tendency of countries to focus on
the most sophisticated products they are able to export.

V. CONCLUSIONS

In this paper we analyze the relations among countries
and among products in the bipartite representation of the
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FIG. 7. The images show the relative focus of the country
communities’ exportation on different product cluster of the BiPCMp

product network for the year 2000. Top: developed countries occupy
the central communities of highly technological and chemical
products. Middle: developing countries focus on peripheral commu-
nities with relatively low complexity [13,14]. Bottom: raw material
exporters are comparatively less focused, as shown in the link
densities.

International Trade Network (ITN) [11–16] by implementing
a recently proposed strategy for the projection of bipartite
networks [19–21]. The method is based on the bipartite config-
uration model [22], an entropy-based null model discounting
the information of node degrees. As a matter of fact, it has been
shown that the degree sequence is responsible for the main
characteristics of the trade network, such as the triangular
structure of the biadjacency matrix between countries and
products (see Fig. 8) [11–17,41]. Using the BiCM as a filter
permits to uncover structures of the network not explained by
node degrees.

FIG. 8. Representation of the biadjacency matrix for the year
2000 with countries along the rows and products along the columns.
Fitness and complexity increase from top to bottom and left to
right, respectively [13,14]. Links are shown as white dots. The
superimposed colors (gray shading) correspond to the z scores of the
connectivity with respect to the BiCM. The z scores are calculated for
boxes containing 21 countries and 81 products which are centered on
the respective matrix entry. Lighter colors indicate a higher presence
of links than in the random null model, darker shades a lower one. As
can be seen in the lower right corner, the most developed countries
(i.e., the bottom rows in the figure with the largest export baskets) have
higher densities that exceed the expectations from the null model for
the most sophisticated products, i.e., those with the fewest exporters
(z ∼ 25). On the other hand, the least developed countries with the
smallest export baskets focus their exports on basic products (z ∼ 30),
as shown in the upper left corner. In addition, the lower left part of
the matrix shows that high fitness countries export low complexity
products much less than would be expected from the BiCM. This
indicates that countries export as many products as they are capable
of while focusing their efforts on the most sophisticated commodities
at the same time.

The application of the BiCM to the ITN as a statistical null
model reveals communities of countries with similar economic
development, namely, developed, newly industrialized, and
developing countries, and raw material (e.g., oil) exporters.
These groups are stable throughout the years 1995–2010
except for some small deviations due to different progress in
the ongoing globalization process. The communities become
even more stable using the BiPCM (a weaker version of
BiCM in which the degree sequence of only a single layer
is constrained) for the monopartite projection. At the same
time, however, the BiPCM is not able to detect smaller details
like, for example, the post-Soviet state community, which is
instead captured by the BiCM.

Regarding the product layer, the BiCM turns out to be
too restrictive to uncover any significant product similarities.
In other words, the information contained in the degree
sequence of both layers is enough to account for the observed
product relations in the data. Investigating the similarity among
products therefore requires a relaxation of the constraints,
logically leading to the application of the BiPCM. Such a
phenomenon is essentially due to the rectangularity of the
biadjacency matrix, i.e., to the dimension of the support of the
distribution of bipartite motifs (for details see Sec. II).
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Using the BiPCM, we find product communities which
define different industrialization levels and reflect the eco-
nomic stages of their exporting countries. Highly sophisti-
cated chemical products distinguish developed from newly
industrialized and developing countries, whose exports focus
mainly on electronic articles such as diodes and telephones,
or textiles and garments. It is worth pointing out that the
communities are generally not due to productive chains,
which should be reflected in a treelike organization of
the network. Observed clusters suggest that they are rather
defined by the way countries organize their export baskets.
Remarkably, our methods reveal a deeper structure than those
discussed in [11–17,41]. As already observed in previous
studies, the biadjacency matrix of the country-product ITN
is approximately triangular, which highlights the tendency of
developed countries to export all possible products and not
just the most exclusive ones. This observation conflicts with
the Ricardo hypothesis, according to which countries should
specialize their production, in accordance with their resources.
However, as already mentioned, but not fully discussed, in
the Supplemental Material of [22], the real network appears
more disassortative than expected by discounting the degree
sequence. Otherwise stated, countries with a larger export bas-
ket tend to export more sophisticated products than expected.
In this paper we fully observe such a phenomenon through the
different occupation patterns of the product networks: different
country communities with different technological levels tend
to organize their export baskets differently, as shown in Fig. 7.
The heat map in Fig. 8 shows this phenomenon directly on the
biadjacency matrix. The colors represent the z scores encoding
the discrepancy between the number of observed links in boxes
drawn around the matrix entries and their expectations derived
from the BiCM null model (results are independent on the
dimension of the box). Lighter colors represent abundances
of links that are not explained by the null model, whereas
darker colors illustrate a lack in the links. Figure 8 shows
that countries do not abandon the production of the most
basic products, although they focus their exports on the most
exclusive products. This can be seen by the “hotter” areas
close to the diagonal, i.e., for the most exclusive products in the
countries’ export baskets. One can argue that the specialization
process appears as a sort of second order effect: at first order,
the structure of the biadjacency matrix shows that the most
developed countries are those with the largest export baskets
(not those focused on most exclusive ones); at the second order
a tendency to specialization is visible through a denser area
for the most sophisticated products in the export basket.

In summary, the grand canonical projection algorithm
uncovers subtle structures in the network under analysis: in
the case of the World Trade Web, it reveals an industrial
specialization effect of country exports which is not appre-
ciable without the implementation of a null model. This
observation reconciles the apparent contrast between recent
studies that describe the development of national productive
capabilities in terms of the size of the export baskets on the
one hand, and classical economics and the Ricardo hypothesis
expecting an industrial specialization on the other hand. From
our analysis we can conclude that the degree sequence of
the bipartite network is responsible for the triangular shape
of the country-product biadjacency matrix, and thus for the

former, whereas the specialization effect is uncovered only
once this information is discounted with the help of an
appropriately defined null models. It is worth mentioning that
both the differentiation and specialization of countries are
global and present throughout the whole period of the analyzed
data set. As shown in Fig. 2, local dynamics are observed
through changes in the community compositions depending on
different local economic developments and responses to global
challenges. Nevertheless, the structure of the International
Trade Network as a whole remains constant over the years.

We expect that the application of the grand canonical
projection algorithm may reveal deeper structures even in other
fields in which bipartite networks are heavily used. In biology,
for example, statistically validated projections of mutualisitic
network of pollinators and plants could uncover interaction
patterns among pollinator species due to competition, for
which measurements are rarely available and which remain
generally unknown [45,46].
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APPENDIX A: GRAND CANONICAL NULL MODELS
AND NODE SIMILARITY

In this Appendix we revise briefly the methods of [21,22],
making use of the formalism introduced in Sec. II.

1. Bipartite null models

All configuration models of [21,22] are based on the
statistical mechanics approach to complex networks [48–50];
in this framework, the Shannon entropy per graph is defined
as

S = −
∑

GB∈GB

P (GB) ln P (GB). (A1)

Here, GB denotes the ensemble of bipartite graphs in which
the number of nodes is constant, while the number of links
can vary; P is the probability of the bipartite graph GB

belonging to ensembleGB . The entropy (A1) can be maximized
subjected to the vector of constraints C⃗(GB). Solving the
entropy maximization in terms of the probability per graph
returns

P (GB |θ⃗) = e−H(C⃗(GB ),θ⃗ )

Z
(
θ⃗
) , (A2)

where H(C⃗(GB),θ⃗ ) is the Hamiltonian of the system, encod-
ing the constraints. The partition function reads as Z(θ⃗ ) =∑

GB∈GB
e−H(C⃗(GB ),θ⃗ ) and θ⃗ is the vector of Lagrangian multi-

pliers associated to the entropy maximization.
Different types of null models can be obtained by modifying

the constraints in the Hamiltonian. For instance, by fixing
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the total number of edges C =
∑

i,α Miα = E, we obtain the
bipartite random graph (BiRG), a bipartite version of the well-
known Erdős-Rényi model [51]. In accordance with the
constraints, its Hamiltonian is given by

HBiRG = θE. (A3)

In this case, both C⃗ and θ⃗ are scalars since there is just one
condition. In the BiRG model, all edges are equally probable,
with probability

pBiRG
iα = e−θ

1 + e−θ
∀ i,α. (A4)

In the so-called bipartite configuration model (BiCM) [22],
the degrees of the nodes in both layers are constrained. If ki

and kα are the degrees, respectively, for the node i in the Latin
layer and for the node α in the Greek layer and θi and θα the
relative Lagrangian multipliers, the Hamiltonian reads thus as

HBiCM =
∑

i

θiki +
∑

α

θαkα, (A5)

such that the probability is

pBiCM
iα = e−(θi+θα )

1 + e−(θi+θα )
. (A6)

Relaxing the constraints of the BiCM yields the par-
tial bipartite configuration models (BiPCMs) introduced in
Ref. [21]. In particular, we constrain only the degrees of nodes
in one layer. The corresponding Hamiltonians read as

pBiPCMi
iα = e−θi

1 + e−θi
∀ α, (A7)

p
BiPCMα

iα = e−θα

1 + e−θα
∀ i. (A8)

It is worth pointing out that the Hamiltonians for the null
models defined above are all linear in the constraints. In fact,
the linearity of the constraints permits to express the graph
probability P (GB) in terms of the single link probabilities,
i.e., as

P (GB) =
Ni,Nα∏

i,α

p
miα

iα (1 − piα)1−miα , (A9)

for any one of the null models considered in this section.
So far, Eqs. (A4), (A6), and (A7) are just formal, in the sense

that the explicit values of the Lagrangian multipliers θi and θα

are unknown. In order to estimate them, following the strategy
of [52,53], we maximize the likelihood of the ensemble on the
real network. It can be shown that for the BiCM, it reads as

⟨ki⟩ =
∑

α

e−(θi+θα )

1 + e−(θi+θα )
= k∗

i ;

⟨kα⟩ =
∑

i

e−(θi+θα )

1 + e−(θi+θα )
= k∗

α (A10)

(quantities with asterisks refer to the real network), such that
the likelihood maximization is equivalent to imposing that the
degree sequence expectation values are equal to the values

measured on the real network. The expressions for other null
models are analogous. Solving the system of equations (A10)
allows to calculate the values for all θi and θα and explicitly
obtain the probability per link.

2. Node similarity

In Ref. [21] the similarity measure implemented is just the
number of bicliques K2,1 or K1,2 [24] (or V and # motifs, using
the terminology of Ref. [22]) existing between two nodes of the
same layer. For instance, the number of all V motifs between
i and j , V ij , in the binary bipartite network is therefore given
by

V ij =
∑

α∈Nα

MiαMjα. (A11)

The “standard” approach is to consider the V motifs as
the quantity to analyze; in the approach of Ref. [21], the
statistical significance of every V ij is stated with reference
to the aforementioned null models in order to reveal relevant
node similarities. The monopartite projection includes thus
only edges (i,j ) whose relative V ij are statistically significant.
Since edges are independent [see Eq. (A9)], the probability of
measuring a V motif consisting of (i,j ) on the Latin layer and
α on the Greek layer is

P
(
V ij

α

)
= piαpjα. (A12)

In the case of the random graph model, for instance,
P (V ij

α )BiRG ≡ (pBiRG)2 ∀ i,j ∈ Ni,∀ α ∈ Nα , since the edge
probability is independent of the couple (i,α) and uniform in
the network. In this sense, the probability distribution of V ij =∑

α V
ij
α is the sum of independent Bernoulli events, all with the

same probability (pBiRG)2, i.e., a binomial distribution. In the
configuration model, on the other hand, piα differs from couple
to couple: V ij is thus the sum of independent Bernoulli random
variables, in general with different success probabilities. The
probability of observing P (V ij = k) will therefore be given
by

P (V ij = k) =
∑

α̃k∈Ak

∏

α∈α̃k

P
(
V ij

α

) ∏

α′ /∈α̃k

[
1 − P

(
V

ij
α′

)]
, (A13)

where Ak is the set of all possible choices of k elements from
the set {1,2, . . . ,Nα} and α̃k is a single realization [32].

The partial configuration models are between BiCM and
BiRG: the distribution for V ij is the same Poisson-binomial
for all couples (i,j ) in the case of BiPCMα , while it is a
binomial distribution with probability p = kikj

N2
α

for BiPCMi .
In fact, in reconstructing the structure of the V -motif network it
is much more effective to know the degrees of the nodes (i,j )
involved in the V motifs than the nodes on the other layer,
such that the BiPCMi results more accurate in the network
reconstruction. The limits of this intuition are currently under
analysis.

3. Statistical hypothesis testing and FDR

Validating the statistical significance of the measured V ij

therefore revolves around the null hypothesis that its observed
value can be explained by the underlying null model, i.e., that it
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FIG. 9. BiRG (top) and BiPCMc (bottom) product networks for
the year 2000. The networks are dominated by the largest connected
components whose cores are composed of high degree nodes. The
degree values refer to the original country-product bipartite network.

is compatible with the corresponding probability distribution.
For this purpose, we calculate the p values for right-tailed tests,
i.e., P (V ij ! V ∗ ij ), where V ∗ ij is the measure on the real
network. Note that the total number of distinct couples (i,j )
and therefore the number of different hypotheses which are
tested simultaneously is Ni(Ni − 1)/2. Among other proposals
for multiple hypotheses testing, the false discovery rate (FDR)
[33] permits a control at each step of the verification procedure.
The p values are ordered according to their values from
smallest to largest and label by k. The largest k̂ that satisfies

pk̂
value " k̂α

Ni(Ni − 1)/2
(A14)

defines the effective threshold pth = k̂α
Ni (Ni−1)/2 : the hypotheses

associated to all p values smaller than or equal to pth are
rejected and are declared as “statistically significant,” i.e., they
cannot be explained by the null model. Once the p value
associated with the couple (i,j ) is rejected, in the projected
network a binary link is drawn between the two nodes.

FIG. 10. Properties of the product networks spanned by the
statistically significant edges according to the respective null models.
The BiPCMp network is highly fragmented, as shown by the
comparatively large number of connected components (top) and the
low connectance (bottom). On the other hand, both BiRG and BiPCMc

are composed of comparatively densely connected clusters. Isolated
nodes are ignored in both figures.

APPENDIX B: LIMITS OF THE BIRG AND THE BiPCMc

PROJECTION ON THE PRODUCTS LAYER

The performance of the grand canonical projection algo-
rithm depends on the choice of the null model, which defines
the information of the original bipartite network to be dis-
counted in the link verification process. As already mentioned
in the main text, the BiCM imposes the most stringent con-
straints. For comparison with the BiPCMp product network,
Fig. 9 illustrates the product networks obtained if the BiPCMc
and the BiRG are applied, i.e., if the nodes of the country
layer or the total number of edges are fixed, respectively. It is
easy to see that the two are topologically very different from
Fig. 6: while the BiPCMp network is highly fragmented, the
BiRG and BiPCMc networks are dominated by the presence
of a large connected component, which contains almost all
the nodes. The few isolated clusters are composed of (“meat
of swine,” “pig fat”) and (“cocoa paste,” “cocoa butter”), and
of (“chromium oxides and hydroxides,” “salts of oxometallic
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or peroxometallic acids”), respectively. These product couples
are thus extraordinarily often exported together compared to
others. The difference between the models is also shown in
Fig. 10. While the BiRG acts as a relatively “coarse” filter,
the statistical verification becomes more strict passing from
the BiPCMc to the BiPCMp and ultimately to the BiCM, for
which no links are verified. This observation is substantially
due to the fact that the node-specific probability distributions
of the V ij motifs collapse into a single distribution for the
BiRG and the BiPCMc, which turn out to be binomial and
Poisson binomial [21]. Consequently, the null models induce
a one-to-one mapping of the V ij measurements onto the p
values. Imposing a significance level for hypothesis testing

amounts therefore to choosing a threshold value V
ij
th and

discarding motifs with V ij < V
ij
th . For the BiRG, V ij

th ∈ {9,10},
whereas for the BiPCMc V

ij
th ∈ {12,13,14}, depending on

the year in the interval 1995–2010. As a consequence, only
products with V ij ! V

ij
th bear significant similarity. The only

difference between the motif validations with BiRG and
BiPCMc is a shift in the p-value threshold. The cores of
the projection networks host almost exclusively nodes with
degrees in the original bipartite network, as one can confirm
by closer inspection of Fig. 9. It is worth pointing out that
several edges in the BiRG model have p values which are
smaller than the machine precision ≃2.22 × 10−16.
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