
Exactly solvable model of memristive circuits:
Lyapunov functional and mean field theory

F. Caravelli
Theoretical Division and Center for Nonlinear Studies,

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

P. Barucca
University of Zurich, Rämistrasse 71, 8006 Zürich, Switzerland and
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We construct an exactly solvable circuit of interacting memristors and study its dynamics and fixed
points. This simple circuit model interpolates between decoupled circuits of isolated memristors,
and memristors in series for which exact fixed points can be obtained. We introduce a Lyapunov
functional that is found to be minimized along the non-equilibrium dynamics and which resembles
a long-range Ising model with non-linear self-interactions. We use the Lyapunov function as an
Hamiltonian to calculate, in the mean field theory approximation, the average asymptotic behavior
of the circuit given a random initialization, yielding exact predictions for the case of decay to the
lower resistance state, and reasonable predictions for the case of a decay to the higher resistance
state.
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INTRODUCTION

Neuromorphic circuits are a promising technology to
implement at the hardware level the computational power
of analog computation inspired by the mammal brain.
As for the case of neural networks, the amount and the
type of computation performed by neuromorphic circuits
requires a still lacking general theoretical framework to
allow controllability and interpretability as well as per-
formance. Memristors are becoming the most promising
technology for the analogue implementation of artificial
intelligence, and their dynamics is known to display mem-
ory effects [1–7] being very sensible to initial conditions
and, more generally, path-dependent [8–11]. Memristive
circuits are also a new direction of study [12, 13] from a
statistical physics standpoint, as these show critical be-
havior [14, 15] and can be connected to the solution of
optimization problems [16–18]. A memristor is a 2-port
device behaving as a resistance that changes its value as a
function of the passing current. In this paper we restrict
to ideal memristors with zero-crossing in the Voltage-
Current diagram [20–22], though more recently RRAM
devices have further generalized this type of behavior [23].

In the paper we study the non-equilibrium properties of
a specific memristive circuit, sketching a general method-
ology for studying its simple phase diagram. This analy-
sis could constitute a baseline for modelling and analysing
more complex interacting memristive circuits. We intro-
duce a simple circuit whose asymptotic dynamics we show
to be governed by a Lyapunov functional. As for the case
of the Hopfield Hamiltonian, such a functional can be
casted into a spin-like model with long range interactions
but with non-linear self-energy. The model we introduce
interpolates in fact between a set of non-interacting mem-
ristive circuits and a single mesh memristive models. In
a recent paper [24], it has been shown however the in-
teraction strength between memristors is controlled by

the Hamming distance on the dual graph of the circuit.
In this paper we consider instead the case in which the
Hamming distance between the memristors is one, and
thus it represents a long-range model.

The present paper is structured as follows: in section
two we revise the standard model of a simple circuit with
one memristor, in section three we define the model of
interacting memristors where many a memristor are cou-
pled with a central loop characterized by a given conduc-
tance regulating the coupling between memristors. In
section four we analytically and numerically characterize
the circuit both in the case of deterministic and random
initializations. Finally, in section five we discuss the re-
sults and their implications both on real implementations
of memristive circuits and on their theoretical modelling.

THE SINGLE MEMRISTOR MODEL

As first observed in [25], physical memristors slowly
relax to a limiting resistance even when a voltage is not
applied. This observation is key to understand the be-
havior of the circuit as the physical parameters change.

Let us consider the time evolution of a simple Ag+
memristor (atomic switch)[26]:

∂tw(t) = αw(t)− Ron
γ
I = αw(t)− Ron

γ

S

R(w)
(1)

where 0 ≤ w(t) ≤ 1 is the internal memory parameter of
the memristor, R(w) = Ron(1− w) +Roffw is the resis-
tance and I and S are the current and applied voltage
respectively. Using this parametrization, Ron and Roff
are the limiting resistances for w = 0 and w = 1 respec-
tively, and α and γ are constants which set the timescales
for the relaxation and excitation of the memristor respec-
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FIG. 1: More general case with n memristors arranged on a
loop. Since the circuit is planar, all the loops can be chosen
with the same orientation.

tively1. The fixed points w∗ can be obtained by setting
∂tw = 0, from which we find the equation

R(w∗)

Ron
w∗ =

(
(1− w∗) +

Roff
Ron

w∗
)
w∗ =

S

αγ
. (2)

We immediately observe that this equation is quadratic
in w∗ and that none, one or two solutions can be ob-
tained depending on the values of the parameters. Phys-
ical memristors relax to the state of highest resistance
Roff at zero voltage, i.e. α > 0.

THE INTERACTING MODEL

Here we generalize the dynamic model in the case of a
circuit composed of N memristors in series to a voltage
source, as in Fig. 1: this is a simple modification of
the one studied in [27] for machine learning purposes.
We introduce control resistances to introduce long range
interaction between memristors.

For the derivation of the equations for the circuit of Fig.
1, we first apply the mesh current method, in which we
assign to each memristive loop a current ik, k = 1, · · · , n,
and we define the central loop current i0. By construc-
tion, in the central loop there are no memristors but only
resistances. Once we have assigned an orientation to the
mesh current, the current on each resistance is clear: on
the Rref in parallel to the kth memristor, we will have a
current i0− ik, meanwhile in any Rint resistance will flow
a current i0.
On each kth memristor the current is given simply by ik.
The final step is to write the Kirchhoff voltage conserva-
tion law for each mesh. Since we have n+ 1 currents and
n+ 1 meshes, we have a complete set of equations given

1 In particular, meanwhile α has the dimension of an inverse time,
γ has the dimension of time and voltage. In previous papers γ
was called β, which in the present one could be confused with an
inverse temperature.

by:

Central loop equation:

nRinti0(t) +

n∑
k=1

Rref (i0(t)− ik(t)) = 0, (3)

Memristive loop:

R(wk(t))ik +Rref (ik(t)− i0(t)) = Sk(t), (4)

Memory evolution:

kTξi(t) + αwk(t)− Ron
γ
ik(t) =

d

dt
wk. (5)

This set of equations completely determines the circuit
dynamics and can be used to explicitly derive (see the
Appendix) the memristors’s dynamics:

dwk
dt

= αwk −
n∑
j=1

Ron
γ

(I − 1

n
MJ )−1kj

Sj
Rref +R(wj)

(6)

Let us note that the dynamics of the circuit is of the
form:

∂twi = αwi − fi(~w). (7)

and a direct calculation of the partial derivatives, it is
easy to see that the dynamics does not derive from a
potential, as ∂wifj(~w) 6= ∂wjfi(~w). Both this and the
fact that the asymptotic fixed point for α > 0 is unstable
means that we cannot strictly interpret the behavior of
memristive circuits as an Hamiltonian dynamics. The
problem can be rather stated in non-equilibrium terms,
i.e.:

Given a probability distribution P (wi(t = 0)), is it
possible to estimate P (wi(t =∞)) ?

Mean field theory

The two control resistances are Rint and Rref , and in-
tuitively one should expect the ratio Rref/Rint to control
the interaction: if Rref is zero, the current will prefer to
short-circuit and close on its own generator, thus having
decoupled memristive circuits. On the other hand, if we
consider the case

Rref
Rint

→∞, the circuit is a unique mesh,
with all the memristors in series: the current flowing in

each memristor is given by i =
∑n
i=1 Si∑n

i=1 R(wi)
which if Si ≡ S

can be written as i = S∑n
i=1 R(〈w〉) , with 〈w〉 = 1

n

∑n
i=1 wi,

assuming that the resistance is linear in w. Thus we have
an exact equation for the mean memory of the circuit
〈w〉:

d

dt
〈w〉 = α〈w〉 − Ron

γ

S

R(〈w〉)
(8)

which is the one of a simple memristic circuit with only
one internal memory parameter given by the mean field.
The circuit interpolates, through the ratio Rref/Rint, be-
tween a mean field interaction and the case of simple
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decoupled memristive circuits. We note that the fixed
points for the general case of this circuit can be obtained
from eqns. (5) if we set d

dtwk = 0. We derive in fact a
direct relationship between equilibrium currents and the
internal memory wk:

ik =
αγ

Ron
wk

i0 =
αγ

Ron

Rref
Rint +Rref

1

n

n∑
k=1

wk ≡
αγ

Ron

Rref
Rint +Rref

〈wk〉

(9)

and then find a fixed point equation for the internal mem-
ory parameters, which are the solution of the following
fixed point equations:

Sk
αγ

=
R(wk) +Rref

Ron
wk −

R2
ref

Ron(Rint +Rref )
〈wk〉.

Considering that for an ideal memristor R(wk) =
Roffwk + (1−wk)Ron = Ron + (Roff −Ron)wk, we can
rewrite this equation in terms of adimensional quantities
only:

Sk
αγ

=
Roff −Ron

Ron
w2
k

+
Ron +Rref

Ron
wk −

R2
ref

Ron(Rint +Rref )
〈wk〉

= ξw2
k + χwk − ρ〈w〉, (10)

where we defined ξ =
Roff−Ron

Ron
, χ =

Ron+Rref
Ron

and

ρ =
R2
ref

Ron(Rint+Rref )
. We note that the mean internal

memory 〈wk〉 acts as an effective voltage source for the
circuit. We see that already for this rather simple circuit,
long range interactions can affect the position of the fixed
points. In the mean field case, in which ~w(t) = w(t)~1, a
solution of the differential equations of eqn. (5) can be
formally found as a function inverse. This allows to cal-
culate exactly formal derivatives of the function w(t) as
a function of the external mean field parameter 〈S(t)〉 if
this is piecewise linear. In the present paper we are in-
terested in calculating the equilibrium properties of the
circuit, and for case in which the memristances have dif-
ferent initial conditions it is necessary to use a different
approach.

First order phase transition

We now can solve the dynamical system for the case
Sk = S and initial condition wi(0) = 1, i.e. switched off
memristors. The critical value for the voltage S can be
worked out and reads:

Sc = αγ

(
Roff +Rref

Ron
−

R2
ref

Ron(Rint +Rref )

)
. (11)

We can also derive the asymptotic susceptibility from the
mean field exact solution in the approximation that S(t)
is stepwise constant. The result is given by:

∂sw(t� 1) ≈ Ron

2γ
√
α(Roff −Ron)

e−αt (12)
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FIG. 2: Critical line of eqn. (11) of the non-equilibrium dy-
namics starting from switched off memristors, wi(0) = 1. Pa-
rameters of the model: Rref = 1000, Ron = 100, Roff = 1600,
and α = γ = 1.

The case in which the initial state of the system is not
homogeneous will be studied in the next section.

Let us consider first with the approximation in which
the memristors are non-interacting, i.e. we assume that
ρ = 0. Using this parametrization, the non-interacting
estimate (NIE) becomes:

Sk
αγ

= ξw2
k + χwk (13)

where ξ is a adimensional parameter dependent on the
physical properties of the memristors, S

αγ can be tuned
using the external voltage sources, and χ depends on the
interaction between the memristive loops. We note that
ξ is typically positive as Roff � Ron, meanwhile it is
important to note that χ cannot be negative for any pos-
itive values of the resistances. Let us thus consider for
simplicity ρ = 0 (in which χ = 1). The solution of this
equation is:

w∗k± = − χ

2ξ
±

√
χ2

4ξ2
+

Sk
ξαγ

= − 1

2ξ

(
1±

√
1 + 4

Skξ

αγ

)
(14)

We observe that necessarily one root of eqn. (14) falls be-
low zero, and thus only one solution is feasible. In Fig. 3
(top) we plot the numerical solutions obtained for α < 0
and α > 0. One important fact that we need to stress
is that the dynamics of the circuits greatly depends on
the signs of Si and α. The case in which S and α have
identical signs is, as the fixed points will not fall in the
interval [0, 1], and thus the asymptotic state for memris-
tors is binary, either {0, 1}. We observe that meanwhile
for α < 0 the asymptotic fixed point is stable, in the case
α > 0 (which is the physical case) it is unstable. A sim-
ple calculation of the Jacobian confirms this fact. Fig.
3 (bottom) shows the position of the fixed points as a
function of α and S for both values of α.
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FIG. 3: Top: Dynamics for the interacting case in the case
Rref = 100 = Rint = 100, Ron = 100, Roff = 16000, γ =
10. The case of S = 20 and α = 1 is shown with black
curves, meanwhwile S = −20, α = −1 in red. These equations
have been obtained solving numerically eqns. (5) with an
integration step dt = 0.1 and n = 1000 memristors. The
green dashed line is the threshold calculated from eqn. (13).
We note that the same fixed point can describe an attractive
or a repelling fixed point, depending on the signs of S and α.
Bottom: Fixed points as functions of α, S > 0 are dashed
curves (unstable) and α, S < 0 are continuous curves (stable).

In the case α < 0, S > 0, the asymptotic fixed point
can be described as the minimum of a functional. In fact,
eqn. (10) can be obtained from ∂wiH = 0, where H is
given by:

H(wi) =
ρ

2n

∑
i

w2
i −

ρ

n

∑
i,j

wiwj−
∑
i

Si
αγ

wi+
∑
i

E(wi)

(15)
and where Ei(wi) = ξ

3w
3
i + χ

2w
2
i .

It is important to note that the functional in eqn. (15)
is a Lyapunov function, i.e. as we show in the Supple-
mentary Material, d

dtH(wi) < 0 for α < 0. Thus, for
α < 0 the asymptotic states 〈w(t =∞)〉 are directly con-
nected to fixed points of a functional which can serve as
a Hamiltonian. For α > 0 the Lyapunov functional is
given by L = −H in eqn. (15); in which the evolution
of the Lyapunov functional is shown in Fig. 4. A sta-
tistical mechanics interpretation is viable, as for instance
in the case of neural networks with temporal delays [28].
Although, the Hamiltonian of eqn. (15) is reminiscent
of an Ising model with long-range interactions but with

FIG. 4: The evolution over time of the Lyapunov function as
the memristors converge to their asymptotic values.

non-linear self-energy [29, 30], it is worth to mention that
here the parameters wi take values in [0, 1]. We perform
all the calculations for a non-zero temperature, but then
take the limit T → 0 at the end.

The first question we aim to answer is whether we
can use the calculation for S > 0, α < 0 to make
any statement regarding the behavior of the system for
S < 0, α > 0. As mentioned before, α > 0 corresponds to
a relaxation into an insulating phase, which is the phys-
ical case observed in Ag+ memristors [25, 26]. We note
however that we can use a simple approximation: we can
use the position of the unstable fixed point to determine
which fixed point each memristor will reach. For instance,
in Fig. 3 (top), if win > w∗, the derivative is posi-
tive, which implies w(t = ∞) = 1; if on the other hand
win < w∗, then w(t = ∞) = 0, up to a set of measure
zero, win = w∗. This also shows that there is a duality
between the cases S < 0, α > 0, and S > 0, α < 0, which
is also evident by the fact that since the fixed points de-
pend only on the ratio S/α, the position of the fixed point
will be unaffected. We can then use the following rule of
thumb which connects the probability on the asymptotic
states for α < 0 to the ones of the initial states for α > 0:

P (w(t =∞) = 1) = P (win > w∗)

P (w(t =∞) = 0) = P (win < w∗)

P (win < w∗) = 1− P (win > w∗). (16)

The Hamiltonian of eqn. (15) can in fact be used to
predict ψ = 〈w(t = ∞)〉 with the assumption of random
initialized memristors, by using a Curie-Weiß approach.
Using standard mean field theory techniques and after
some straightforward calculations, we find the following
mean field theory equation at zero temperature:

ψ = arg supw∈[0,1]

((
ρψ +

S

αγ

)
w − E(w)

)
. (17)

Eqn. (17) can be exactly inverted as a function of
ψ = 〈w〉. This gives the same result as the one we
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FIG. 5: Asymptotic fixed points as a function of S for α = ±1,
γ = 1, Rref = Rint = Ron = 100, Roff = 16000 and n = 1000
memristors. We compare the numerical results obtained by
simulating the system and the theoretical estimate from the
non-interacting assumption and the mean field theory, using
the relation of eqn. (16). This figure has been obtained with-
out averaging over the inital condition. For each point, the
memristor memories were initiated randomly in [0, 1].

would obtain if we substituted wk → 〈w〉 in eqn. (10).
This is simply a correction to the physical parameter
χ, as in fact we obtain the same effective equation as
the non-interacting approximation with the substitution
χ→ χ− ρ, which is the correction due to the interaction
between the memristors. Since the memristor memory
is bounded between 0 and 1, we consider the function
〈w〉 = max (0,max (ψ(S), 1)).

In Fig. 5 we plot the numerical results on the mean
field 〈w(t =∞)〉 for α > 0 and compare these, as a func-
tion of S, to the non-interacting estimate obtained using
eqn. (16). We observe that such approximation fails for
larger values of S, but yet it provides nonetheless a good
estimate for the asymptotic dynamics. Few comments
are in order. First we note that for α = −1 the mean
field theory calculation exactly reproduces the behavior
of 〈w〉. This approximation suggest a second order phase
transition at S = 0, as in fact one has ∂S〈w〉 given by

∂S (max (0, w∗(S))) =


1
ξαγ

1

2

√
(χ−ρ)2

4ξ2
+ S
ξαγ

S < 0

0 S > 0

(18)

which is not a differentiable function.
For α > 0 we use the approximation of eqns. (16) to

calculate the behavior of the system. The validity of this
approximation is shown on the right hand side of Fig. 5.
We observe that for S ≈ 0 this approximation is valid.
For larger values of S however, such approximation is
less valid. We also observe stronger fluctuations around
the mean field theory calculation, which we attribute to
the effective instability of the fixed point. Nonetheless,
such simple approximation provides a good estimate of
the mean value of the behavior of the internal memory
also for larger values of the external applied voltage. The
discrepancy is due to the fact that for larger values of S,

because of the instability aforementioned, there can be
trajectories which can invert. Since we observe that the
real curve lies below the one obtained from the mean field
theory, this implies that some memristors whose initial
condition lies above the fixed point can invert and reach
the asymptotic state w = 0, rather than w = 1. Since
the approximation is valid for S ≈ 0, we observe that the
discontinuity of eqn. (18) applies also for α > 0, but is
inverted. Also, we note that possibily a divergence would
occur if χ = ρ in eqn.(18), but this does not happen for
any positive values of the resistances.

CONCLUSIONS

The results presented in this paper suggests a connec-
tion between the Hamiltonian of interacting spin systems
with the Lyapunov function of memristive circuits, thus
between the equilibrium states of a statistical system of
spins and the asymptotic states of memristors in a cir-
cuit. It has been insofar hard to obtain an analytical
control of the dynamics of memristive circuits. In this
paper we made the important step of introducing a Lya-
punov functional which can serve as the Hamiltonian of
the system. From the point of view of statistical me-
chanics, the interaction between memristors is long range
as every memristor is interacting with other memristors
through is passing current. This is simply due to the
fact that each memristor is arranged on a large mesh
that couples currents in the circuit. Although simple,
such model interpolates between the case of memristors
in series and the simpler case of non-interacting mem-
ristors and a slight modification has been employed for
machine learning applications in [27]. We introduced a
mean field theory for this non-equilibrium system via a
mapping between the equilibrium states and a suitable
Lyapunov function. Thus, we have shown, both analyt-
ically and numerically, that a first order phase transi-
tion occurs for positive α, when memristors are initial-
ized to the high-resistance state, and that a second order
phase transition occurs when the initial conditions are
chosen uniformly at random between the high and low
resistance states. Our results on the mapping between
non-equilibrium dynamics and equilibrium states could
be extended to the more general case of purely memris-
tive circuits. In future works we will also consider the
case of noisy memristive dynamics and random voltages,
where complex non-equilibrium spin-glass like behaviour
is expected.

Acknowledgements. The work of FC was carried out
under the auspices of the NNSA of the U.S. DoE at LANL
under Contract No. DE-AC52-06NA25396. PB acknowl-
edges support from FET Project DOLFINS nr. 640772
and FET IP Project MULTIPLEX nr. 317532; PB and
FC would like to thank the London Institute for Mathe-
matical Sciences where part of this work was done.



6

[1] M. Di Ventra, Y. V. Pershin, Nature Phys., 9:200 (2013)
[2] Y. V. Pershin, M. Di Ventra. Solving mazes with mem-

ristors: a massively-parallel approach, Phys. Rev. E,
84:046703 (2011)

[3] A. Adamatzky, G. Chen, Chaos, CNN, Memristors and
Beyond, World Scientific (2013)

[4] Y. V. Pershin, M. Di Ventra. Self-organization and so-
lution of shortest-path optimization problems with mem-
ristive networks, Phys. Rev. E, 88:013305 (2013)

[5] Y. V. Pershin, S. La Fontaine, M. Di Ventra. Memristive
model of amoeba learning, Phys. Rev. E, 80:021926
(2009)

[6] D. R. Chialvo, Emergent complex neural dynamics, Na-
ture Physics 6, 744-750 (2010)

[7] Y. V. Pershin, M. Di Ventra. Neural Networks, 23:881
(2010)

[8] G. Indiveri, S.-C. Liu, Proceedings of IEEE, 103:(8) 1379-
1397 (2015)

[9] F. L. Traversa, Y. V. Pershin, M. Di Ventra, IEEE Trans.
Neural Netw. Learn. Syst., 24:1437 – 1448, 2013.

[10] A.V. Avizienis et al., PLoS ONE 7(8): e42772. (2012)
[11] A. Z. Stieg, A. V. Avizienis et al., Adv. Mater., 24: 286-

293 (2012)
[12] F. Caravelli, A. Hamma, M. Di Ventra, Eur. Phys. Lett.

109, 2 (2015)
[13] F. Caravelli, Front. Robot. AI 3, 18 (2016),

arXiv:1511.07135

[14] F. Caravelli, F. L. Traversa, M. Di Ventra, arXiv:
1608:08651, Phys. Rev. E 95, 2 (2017)

[15] F. C. Sheldon, M. Di Ventra, Phys. Rev. E 95, 012305
(2017)

[16] F. L. Traversa, M. Di Ventra. IEEE Trans. Neural Netw.
Learn. Syst., (DOI: 10.1109/TNNLS.2015.2391182,
preprint arXiv:1405.0931) (2015)

[17] F. L. Traversa, C. Ramella, F. Bonani, M. Di Ventra,
Science Advances 1, 6 (2015)

[18] F. Caravelli, IJEPD 1-17 (2017), Advances in Memristive
Networks, ed. Adamatzky et al.

[19] Y. V. Pershin, M. Di Ventra. Advances in Physics,
60:145–227 (2011)

[20] L. O. Chua, S. M. Kang. Proc. IEEE, 64:209–223, 1976.
[21] D.B. Strukov, G. Snider, D.R. Stewart, and R.S.

Williams, Nature 453, pp. 80-83 (2008)
[22] J. J. Yang, D. B. Strukov, D. R. Stewart, Nature Nano.

8 (2013)
[23] I. Valov et al, Nature Comm. 4, 1771 (2013)
[24] F. Caravelli, arXiv:1705.00244 (2017)
[25] Ohno et al., App. Phys. Lett. 99, 203108 (2011);
[26] Wang et al, , Nat. Mat. 16 (2017)
[27] J. P. Carbajal et al., Neur. Comp. 3, vo. 27 (2015)
[28] A. V. M. Herz, Z. Li, J. L. van Hemmen, Phys. Rev. Lett.

66, 10 (1991)
[29] A. Campa, T. Dauxois, S. Ruffo, Physics Reports 480

(2009), pp. 57-159
[30] Campa et al., Phys. Rep. 480 (2009), pp. 57-159
[31] T. Schneider, E. Pytte, Phys. Rev. B 15, 3 (1977)

Supplementary Material

SINGLE MESH TOY MODEL

Simple derivation

From the mesh circuit equations we have:

ik =
Sk

Rref +R(wk)
+

Rref
Rref +R(wk)

i0 (19)

And,

i0 =
Rref

Rref +Rint

1

n

n∑
k

ik (20)

So that we have:

ik =
Sk

Rref +R(wk)
+

Rref
Rref +R(wk)

Rref
Rref +Rint

1

n

n∑
j

ij (21)

That leads to:

ik =

n∑
j=1

(I − 1

n
MJ )−1kj

Sj
Rref +R(wj)

(22)

where J is the all-ones matrix and Mij = δij
Rref

Rref+R(wi)
Rref

Rref+Rint
. And to the dynamics:

dwk
dt

= αwk −
n∑
j=1

Ron
γ

(I − 1

n
MJ )−1kj

Sj
Rref +R(wj)

(23)

http://arxiv.org/abs/1511.07135
http://arxiv.org/abs/1405.0931
http://arxiv.org/abs/1705.00244


7

Alternative derivation and formula

An alternative derivation of the equation above can be obtained via a direct calculation of the inverse. The relation
between currents and voltages can be can be written as:

n(Rint +Rref ) −Rref −Rref · · · −Rref
−Rref R(w1) +Rref 0 · · · 0

−Rref 0 R(w2) +Rref 0
...

...
...

. . .
. . . 0

−Rref 0 · · · 0 R(wn) +Rref





i0
i1
...
...
in

 =



0
S1

...

...
Sn

 (24)

which means we need to invert a matrix of the form:

M =



a0 −b −b · · · −b
−b a1 0 · · · 0

−b 0 a2 0
...

...
...

. . .
. . . 0

−b 0 · · · 0 an

 (25)

which a special case of an arrowhead matrix. The inverse of this matrix is rather complicated, but can be easily
obtained by means of a cofactor formula: (A−1)ij = 1

det(A)Cji where Cij = (−1)i+jdet(Aĩj̃) is the determinant

of the matrix A where the row i and the column j has been removed. We note that because of the properties
of A, C is a symmetric matrix. Let us also note that the determinant of matrices of the form as in eqn. (25),
D = det(M) =

∏n
k=0 ak − b2

∑n
k=1

∏
j 6=k,j>0 aj .

Thus:

(M−1)ij =
Cij
D

(26)

We that the cofactor of the matrix in the case in which i = j > 1 has the same form. We can thus already say that Cij
for i = j > 1 is of the form: Cii = det(M ĩ̃i) =

∏n
k=0,k 6=i ak − b2

∑n
k=1,k 6=i

∏
j 6=k,j>0 aj . The special cases i = 1, j > 1

and j = 1, i > 1, take the form C1j = Cj1 = −b2
∏
k 6=1,k 6=j ak. The case Cij with i 6= j, i, j > 1 has to be calculated

on its own. We note that for instance the matrix C12 is of the form:

C12 = C21 = −det


a0 −b −b −b −b −b
−b 0 0 0 0 0
−b 0 a3 0 0 0
−b 0 0 a4 0 0
−b 0 0 0 a5 0
−b 0 0 0 0 a6

 (27)

and thus introduces a zero on the diagonal. For this reason, the determinant of these matrices are of the form
Cij = −b2

∏
k>0,k 6=i,k 6=j ak. We thus have: 

i0
i1
...
...
in

 =
1

D
C



0
S1

...

...
Sn

 (28)

and thus, since S0 = 0 and we are also interested in ik≥1, we can write the equation directly for the side loop


i1
...
...
in

 =
1

D



q1 b2 c12 b2 c13 · · · b2 c1n

b2 c12 q2 b2 c23
...

b2 c13 b2 c23
. . .

. . .
...

. . . qn−1 b2 c1n−1
b2 c1n · · · b2 c1n−1 qn




S1

...

...
Sn

 (29)
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where

D = n(Rint +Rref )

n∏
k=1

(R(wk) +Rref )− b2
n∑
k=1

∏
j 6=k,j>0

(R(wk) +Rref ) (30)

cij =

n∏
k=1,k 6=i,j

(R(wj) +Rref ) (31)

qi = n(Rint +Rref )

n∏
k=1,k 6=i

(R(wk) +Rref )− b2
n∑

k=1,k 6=i

∏
j 6=k,i,j>0

(R(wj) +Rref ) (32)

b = Rref (33)

We are in particular interested in the inverse of the submatrix which acts only on the memristor currents. This can

be easily obtained, and is given by − R2
ref

n(Rint+Rref )
J + (R(~w) +Rref )I, where J is the matrix made of ones and R(~w)

is the diagonal matrix with the resistances of each memristor. This implies the following dynamics:

d

dt
~w = α~w − Ron

γ

(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)−1
~S. (34)

here diag(~x) = δijxj , and which is the equation we find in the paper.

Formal mean field dynamics solution and perturbative expansion

In the mean field approximation, eqn. (34) can be solved. If we use the Sherman-Morrison formula assuming that
all memristors are equal, in such a case the equation becomes:

as

bw(t) + c
+ w′(t)− αw(t) = 0 (35)

with a = Ron
γ , s = 〈~S〉 = 1

n

∑n
i=1 Si, c = Rref +Ron −

R2
ref

Rint+Rref
= Ron +

RrefRint
Rref+Rint

and b = Roff −Ron, and where

we are assuming that Si = 〈Si〉.
An analytical solution for such an equation can be found in terms of an inverse. Let us define:

Q(t) =
c ArcTan

(√
α(2(c1+t)b+c)√
−4abs−αc2

)
√
α
√
−4abs− αc2

+
log(as− (c1 + t)α ((c1 + t)b+ c))

2α
(36)

for an arbitrary integration constant c1 due to time invariance symmetry. Then, the solution of eqn. (35) is given by
the inverse function of Q(t):

w(t) = Q−1(t). (37)

which is not analytical. In order to solve this equation, we use the a perturbative method in ε = c/b, assuming that

Rint � Ron � 1. In fact, 1
2 <

RrefRint
Rref+Rint

< 1 for positive resistances. In this case, the differential equation becomes:

as

bw(t)
+ w′(t)− αw(t) = ε

as

bw(t)2
+O(ε2) (38)

We thus search for perturbative solutions w(t) = w0(t)+ c
b w1(t)+· · · up to the first order. We have the two differential

equations up to the first perturbative order in ε, which are:

O(ε0) :
as

bw0(t)
+ w′0(t)− αw0(t) = 0

O(ε1) :
as

bw2
0(t)

+ w′1(t)−
(
α+

as

bw2
0(t)

)
w1(t) = 0

(39)

The zeroth perturbative order equation has solutions:

w0(t) = ±
√
as+ e2α(bz0+t)
√
α
√
b

(40)
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with z0 associated with the initial condition, and of which we take the positive sign only. For t > 1
2α we have an

exponential function of the form:

w0(t� 2α) =
eαt√
αb

+
ase−2αt

2
√
αb

+O((as)2) (41)

The first perturbative order is of the form:

x′(t) = h(t)x(t) + g(t) (42)

and has a general solution of the form:

x(t) =
(
e−

∫ t h(t′)dt′)(z1 +

∫ t

g(t′)e
∫ t′ h(t′′)dt′′dt′

)
(43)

where we identify h(t) = α+ as
bw2

0(t)
and g(t) = a

bw2
0(t)

. For large times h(t� 2α) ≈ α and g(t� 2α) ≈ a
b

√
αb

2
e−2αt =

aαe−2αt. Thus we have:

w1(t� 2α) ≈ e−αt(z1 +
a

b
e−αt) (44)

We thus obtain the dynamic susceptibility for long times, which is given by:

∂sw(t� 2α) ≈ a

2
√
α
√
b
√
as+ e2α(bc1+t)

→ a

2
√
αb
e−αt =

Ron

2γ
√
α(Roff −Ron)

e−αt (45)

which falls off exponentially in time.

Fixed point structure

Since the interaction matrix is always invertible, we can study the equivalent equation:(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)
d

dt
~w = α

(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)
~w − Ron

γ
~S (46)

which we note we can rewrite the fixed point equation as:

0 =
1

α

d

dt

(
χwi +

ξ

2
w2
i − ρ〈w〉

)
= χwi + ξw2

i − ρ〈w〉 −
Si
αγ

(47)

Fixed points then require that the following two equations are satisfied at the same time:

χwi +
ξ

2
w2
i − ρ〈w〉 = c (48)

χwi + ξw2
i − ρ〈w〉 −

Si
αγ

= 0 (49)

for an arbitrary constant c and with wi ∈ [0, 1].

Lyapunov function

Let us now consider the function

H(wi) =
ρ

2n

∑
i

w2
i −

ρ

n

∑
i,j

wiwj −
∑
i

Si
αγ

wi +
∑
i

E(wi) (50)

we have

d

dt
H =

∑
i

(∂wiH)
dwi
dt

=
∑
i,j

(
−ρ〈w〉 − Si

αγ
+
∂E

∂wi

)
δij
dwj
dt

(51)

and using the equations of motion we obtain

d

dt
H =

1

α

∑
i,j

dwi
dt

(
(1 +

Rref
Ron

+
Roff −Ron

Ron
wi)δij −

R2
ref

Ron(Rref +Rint)

1

n
Jij

)
dwj
dt

(52)
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Let us define Qij =
(

(1 +
Rref
Ron

+
Roff−Ron

Ron
wi)δij −

R2
ref

Ron(Rref+Rint)
1
nJij

)
. We have:

d

dt
H =

1

α
〈Q d

dt
~w,

d

dt
~w〉 =

1

α
〈 d
dt
~w,

d

dt
~w〉Q =

1

α
|| d
dt
~w||2Q (53)

This quantity is positive or negative depending on the sign of α and the eigenvalues of Q. If Q is positive definite,
then the sign of d

dtH depends only on α. We note that Q is the sum of two Hermitean matrices. Thus the minimum
eigenvalue of Q satisfies the bound λmin(A+B) ≥ λmin(A) + λmin(B) for A and B Hermitean. Thus:

λmin(Q) ≥ λmin
(

(1 +
Rref
Ron

+
Roff −Ron

Ron
wi)δij

)
+ λmin

(
−

R2
ref

Ron(Rref +Rint)

1

n
Jij

)
(54)

Since 1
nJij has maximum eigenvalue 1, we immediately observe that, since Ron is positive by construction:

λmin(Q) ≥ 1 +
Rref
Ron

−
R2
ref

Ron(Rref +Rint)
= 1 +

Rref
Ron

(
1− Rref

Rref +Rint

)
≥ 1 ∀Rint, Rref ≥ 0 (55)

This implies that Q is positive definite. The function H is thus a decreasing function of the dynamics when α < 0.
Since the function is a weighted negative norm of the derivative of the memristor memories, then it is also zero at the
fixed point. For α > 0, it is sufficient to define −H as a Lyapunov function. In this case, the fixed points become
w = 1 and w = 0.

MEAN FIELD THEORY FOR THE FULL MODEL

We are interested in the low temperature regime of this model. Its partition function can be written as:

Z(β, n, S) = Trwe
−βH(w) (56)

with H(w) from eqn. (15), β = 1/T and we have implicitly defined the trace:

Trw (·) ≡
n∏
i=1

∫ 1

0

dwi (·) .

We now use the Hubbard-Stratonovich identity, with m =
∑
i σi
n ,

ebm
2

=

√
b

π

∫ ∞
−∞

dx e−bx
2+2mbx (57)

with b = nρβ
2 . Let us define Ẽ(wi) = E(wi) + ρ

2n

∑
i w

2
i . We write:

Z(β, n, S) = Trwe
−β

∑n
i=1(Ẽ(wi)−wi

Si
αγ )

√
nβρ

2π
·

·
∫ ∞
−∞

dψ e−
nβρ
2 ψ2+mnβρψ

=

√
nβρ

2π

∫ ∞
−∞

dψ e−
nβρ
2 ψ2

Q(β, S, ψ)n

=

√
nβρ

2π

∫ ∞
−∞

dψ e−
nβρ
2 ψ2+n log(Q(β,S,ψ)) (58)

where Q(β, S, ψ) = Trwe
β((ρψ+ S

αγ )w−Ẽ(w)).If we take the limits n→∞ first, for which limn→∞ Ẽ(wi) = E(wi), which
gives

Z ≈ enβf̃(β) (59)

with f(β) = arg minψ

(
1
2ρψ

2 − 1
β log (Q(ψ))

)
.

In turn, f(β) is given by ψ solution of

ρψ = ∂ψ

[
1

β
logQ (β,w(ψ, S))

]
=

1

β

∂ψQ (β,w(ψ, S))

Q (β,w(ψ, S))
(60)
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Now we have

1

β

∂ψQ (β,w(ψ, S))

Q (β,w(ψ, S))
=
ρβ

β

Trwwe
β((ρψ+ S

αγ )w−E(w))

Trwe
β((ρψ+ S

αγ )w−E(w))
= ρ

1
βTrwwe

β((ρψ+ S
αγ )w−E(w))

1
βTrwe

β((ρx+ S
αγ )w−E(w))

(61)

which, in the limit β →∞ is given by the following mean field equation:

ψ = arg supw∈[0,1]

((
ρψ +

S

αγ

)
w − E(w)

)
=

√
χ2

4ξ2
+

S
αγ + ρψ

ξ
− χ

2ξ
(62)

which is the result presented in the paper.
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