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We adapt a recent theory for the random close packing of polydisperse spheres in three dimensions �R. S.
Farr and R. D. Groot, J. Chem. Phys. 131, 244104 �2009�� in order to predict the Hausdorff dimension dA of
the Apollonian gasket in dimensions 2 and above. Our approximate results agree with published values in two
and three dimensions to within 0.05% and 0.6%, respectively, and we provide predictions for dimensions 4–8.
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Leibniz �1� first suggested that a plane area can be com-
pletely covered with disks, in an approximately self-similar
manner, through a construction which involves starting with
three equal touching disks and then repeatedly adding the
largest possible disk which touches three neighbors, but does
not overlap with any disk already in the packing. The result
is illustrated in Fig. 1. According to Pappus of Alexandria,
the problem of finding such osculating circles was first stud-
ied by Apollonius of Perga, in whose honor this “Apollonian
packing” is named. A similar construction can be envisaged
for spheres �where each added sphere touches four neighbors
�2��. In higher dimensions, a construction based on iterating
the analog of Soddy’s formula �3� or applying iterated inver-
sions �4� to hyperspheres will lead to overlaps �5�. Therefore,
in this paper we use the term Apollonian packing to refer to
an “osculatory packing” �2�, which starts from d+1 equal
touching hyperspheres at the vertices of a regular d simplex,
and where repeatedly the largest possible d-dimensional hy-
persphere is added to the existing packing that does not over-
lap any already present. The added hypersphere touches d
+1 others at this stage �although this fact is not needed for
the subsequent argument�.

Apollonian networks �6�, which are graphs derived from
Apollonian packings, have been suggested as models for
real-world networks, such as social networks and hierarchi-
cal road systems �7�. In these contexts, networks based on
Apollonian packings with any dimension, including d�3
may be of practical relevance �8�.

In lower dimensions �d=2,3�, the physical significance of
Apollonian packings is that they can be used as idealized
models of high-density granular materials, for example, in
high strength concrete �9�. Furthermore, related construc-
tions, such as space-filling bearings in two dimensions �2d�
�10� and three dimensions �3d� �11�, and random space-
filling bearings �12� have been proposed as simplified mod-
els for the geometry of turbulence �13� or the broken material
near a geological fault. Random Apollonian packings of
shapes other than hyperspheres have also been studied �14�.
In all these cases, the method of adding spheres is modified,

so that it is no longer the largest possible nonoverlapping
sphere which is added at each stage; for example, in the case
of bearings an additional constraint is needed to ensure a
bichromatic coloring �11�. These modifications all have the
effect of reducing the rapidity with which the packing ap-
proaches a volume fraction of unity as spheres are added and
also alter the fractal dimension of their residual sets. In re-
cent work on random bearings �15� the fractal dimension can
even be varied continuously by choice of parameters.

The residual set or “Apollonian gasket” of such structures
is of practical relevance since its surface area and volume
�for the three-dimensional case� are related to solvent adsorp-
tion and permeability to flow through the packing. These
geometrical properties of the residual set are finite, provided
the packing contains only spheres larger than a certain cutoff
diameter. However, in the limit where spheres of arbitrarily
small size are included, the residual set is fractal in nature,
and its Hausdorff dimension captures the essential geometric
information �4�. Recent high-precision calculations have
shown that, in 2d, the dimension of the Apollonian gasket is
dA,2�1.305 68 �16�, while in 3d it is dA,3�2.473 946 5 �2�.

Since the Apollonian packing is a special kind of sphere
packing in three dimensions, then it is interesting to investi-
gate whether the recent approximate theory for the volume
fraction of random close packings of polydisperse spheres,
presented in Ref. �17� may shed some light on this problem
also. The hope is that the essential geometric features of

*robert.farr@unilever.com FIG. 1. Apollonian packing of disks.
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sphere packings captured in Ref. �17� might apply to nonran-
dom cases also. In the theory of Ref. �17�, we start with a
known distribution of sphere diameters P3d�D�, where
P3d�D�dD is the number fraction of the spheres with diam-
eters in the range �D ,D+dD�, and we ask what is the maxi-
mum random packing density which can be obtained?

The procedure consists of several stages. First, P3d�D� is
converted into a number distribution of one-dimensional
rods, P1d�L�, by imagining a random nonoverlapping �but
not necessarily close-packed� distribution of spheres, passing
a straight line through this distribution and counting each
portion of the line within a sphere to be a rod. The resulting
distribution of rod lengths is given �17� by

P1d�L� = 2L

�
L

�

P3d�D�dD

�
0

�

P3d�D�D2dD

. �1�

In order to simulate packing, we then imagine that this
collection of rods interacts on a line through a hard pair
potential which acts between each pair of rods Li and Lj
through

V�h� = �� if h � min�fLi, fLj�
0 if h � min�fLi, fLj� .

� �2�

In Eq. �2�, h is the closest approach of the two ends of the
rods, f �0 is a free parameter in the theory �which we ex-
plain later�, and the potential is able to reach through smaller
rods which may be in the gap between the two rods under
consideration.

Finally, we search over all orderings of the rods and find
the ordering which occupies the maximum length fraction on
the line. This search can be accomplished by a simple greedy
algorithm �17�, and the final length fraction occupied by the
rods is our estimate for the maximum random packing frac-
tion of the spheres in 3d.

As described, the theory depends on a free parameter f ,
which in Ref. �17� is fixed by ensuring that the predicted
close packing density for monodisperse spheres matches the
known random close packing density �RCP�0.6435. With
this calibration, f �0.7654 and the theory can be applied to
arbitrary sphere size distributions.

For the further development of this paper, we require the
generalization of this model to other dimensions. Therefore,
consider a polydisperse collection of d-dimensional hyper-
spheres, where Pdd�D�dD is the number fraction of hyper-
spheres with diameters in the range �D ,D+dD�, and d�2. If
we consider passing a straight line at random through a
single hypersphere of diameter D, then we will generate a
collection of rods with a normalized length distribution given
by

p̂1d�L;D� = �d − 1�LD1−d�D2 − L2��d−3�/2��D − L� , �3�

where ��x� is the Heaviside step function.
The distribution of rod lengths generated from passing a

line through a random distribution of d-dimensional hyper-
spheres will therefore be given by a convolution with Pdd,

but also taking into account that the collision cross section
for the line with a hypersphere of diameter D scales as Dd−1.
The result is

P1d�x� � �
D=L

�

Dd−1Pdd�D�p̂1d�L;D�dD , �4�

which with the correct normalization �obtained by reversing
the order of integration over D and L� gives the appropriate
generalization of Eq. �1�, namely,

P1d�L� = �d − 1�L
�

L

�

�D2 − L2��d−3�/2Pdd�D�dD

�
0

�

Dd−1Pdd�D�dD

. �5�

Now, consider the analog of the Apollonian packing for
rods on a line subject to the potential of Eq. �2�. This consists
of starting with a set of equal large rods and then placing the
largest possible rods into the gaps between them, which do
not require the large rods to move. This process is then re-
peated iteratively, as in Fig. 2.

In one unit cell of this structure, there is one rod of the
longest length �which we take as unity�, which leaves a gap
of size f to be filled by the smaller rods. In choosing and
placing these smaller rods, we need 20 rods of length f�1
+2f�−1, then in the remaining gaps, which are of length
f2�1+2f�−1, we place 21 rods of length f2�1+2f�−2. Repeat-
ing this process, we have at iteration number j, 2 j rods of
length f j+1�1+2f�−�j+1�.

This implies that asymptotically, as L→0, the total num-
ber of rods of size greater than L behaves as

�
L

�

P1d�L��dL� � 1 + 	
i=0

j

2i, �6�

where L= f j+1�1+2f�−�j+1�. Therefore

�
L

�

P1d�L��dL� � Lx, where x =
ln 2

ln
 f

1 + 2f
� . �7�

Now, the distribution P1d�L� in Eq. �7� has a corresponding
distribution Pdd�D� of hyperspheres, which from Eq. �5� is
given asymptotically in the limit D→0 by

�
D

�

Pdd�D��dD� � Dy, where y = x − d + 1. �8�

We now link these results back to the dimension dA of the
Apollonian gasket in d dimensions in the following manner:

1 1/3 1/9
1/9

FIG. 2. Analog of Apollonian packing for rods on a line, using
the potential of Eq. �2� in the text with f =1, and two iterations of
fitting small rods into the gaps between large rods.
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According to Refs. �2,18,19�, the cardinality of the set of
spheres in an Apollonian packing, with curvature not exceed-
ing �, is given by

N��� � �dA. �9�

Combining Eqs. �7�–�9�, we therefore obtain our estimate for
the Hausdorff dimension dA of the residual set of the pack-
ing,

dA � − y = d − 1 −
ln 2

ln
 f

1 + 2f
� , �10�

where f is the appropriate value for each dimension d of
space.

To complete the calculation, we need a value for the free
parameter f in the theory. This will be done �as in the analy-
sis of random close packing �17�� by calibrating the theory
for the monodisperse case. To obtain the rod distribution cor-
responding to monodisperse hyperspheres, we use a collec-
tion of n=50 000 rods sampled uniformly from the distribu-
tion of Eq. �3�. To do this, we take equal points on the
inverse function of the integral of Eq. �3�, so that our rod
lengths are given by

Li = D�1 − 
 i

n
−

1

2n
�2/�d−1�
1/2

, �11�

where i=1, . . . ,n.
Applying the greedy one-dimensional packing algorithm

described in Ref. �17�, we calculate numerically the packing
density of monodisperse hyperspheres as a function of the
parameter f , for each dimension d of space. The resulting
curves for d=2–6 are shown in Fig. 3.

In order to apply the packing theory, we need the value of
f for each dimension d. When applying the theory to random
close packing in 3d, the calibration used was to ensure that
the prediction for random close packing of monodisperse
spheres was correct �17�

.
For the Apollonian packing each hypersphere is added in

such a way as to optimally fill the remaining available space,
and so the local geometry of packing will always be as effi-
cient as possible. In order to capture this property, we choose
f to give the maximum possible local packing fraction of
equal hyperspheres. This corresponds to placing equal oscu-
lating hyperspheres at the vertices of a regular d simplex and
calculating the volume fraction occupied inside the simplex.
We refer to this packing fraction as �simp, and it is illustrated
for the cases d=2 and 3 in Fig. 4. An alternative argument
for this choice is that we are calibrating f by using the true
packing fraction of the first few hyperspheres in the Apollo-
nian packing. In general, these will be of different sizes, but
by taking the first d+1, we again only need to consider equal
spheres at the vertices of a simplex.

In 2d, this construction gives the same area fraction as a
hexagonal packing, so �simp=	 / �2�3��0.9069. In three di-
mensions, we find �simp=3�2�cos−1�1 /3�−	 /3��0.7796,
which is higher than can be achieved for any global packing
of spheres in 3d �this limit is �fcc=	 /�18�0.74, achieved
for the face-centered-cubic or hexagonal-close-packed ar-
rangement �20��.

For higher dimensions, we calculate the simplex packing
fraction using a Monte Carlo integration, noting that if one
vertex of a regular simplex lies at the origin of d-dimensional
Cartesian coordinates, then the other vertices can be chosen
at the positions �s j�, where

TABLE I. Predictions for the Hausdorff dimension of the Apol-
lonian gasket in d dimensions. The close packing density of spheres
with centers at the vertices of a regular d simplex is �simp. The
corresponding value of f from the packing theory is shown, along
with the predicted Hausdorff dimension dA

pred, and the actual Haus-
dorff dimension dA

act if known �2,16�.

d �simp f dA
pred dA

act

2 0.906900 0.131025 1.3060 1.3057

3 0.779636 0.394834 2.4586 2.4739

4 0.6478 0.7864 3.5848

5 0.5257 1.325 4.6840

6 0.4195 2.047 5.7603

7 0.330 3.02 6.8189

8 0.255 4.35 7.864
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FIG. 3. Plot of the maximum packing fraction �pack of
d-dimensional hyperspheres as a function of the parameter f . The
curves from bottom to top correspond to d=2, 3, 4, 5, and 6.

(a) (b)

FIG. 4. �Color online� �a� The maximum packing fraction �simp

for d=2 is the ratio of the shaded area to that inside the complete
regular 2–simplex �equilateral triangle�. �b� The same construction
for d=3.
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si
j = �2d + 4 + 4�1 + d�−1/2��1 + �1 + d�
i,j + 1� . �12�

A point p chosen randomly �and uniformly� in �0,1�d can be
expanded as p=	 jqjs

j, where qj =	itj
ipi and

tj
i =

�2d + 4 + 4�1 + d�1/2

1 + �1 + d
�
i,j −

1

1 + d + �1 + d

 . �13�

The point p lies within the simplex if all the qj’s are positive
and their sum does not exceed unity. We denote the volume
of this simplex by Vsimp, which can thus be obtained by a
Monte Carlo integration or from the analytical expression
Vsimp=2−d/2��1+d� /d!. Furthermore, consider the volume
Vsph of that portion of a unit radius hypersphere lying within
a large regular d simplex, when the hypersphere has its cen-
ter at one of the vertices of the simplex. The point p lies
within this volume if all the qj’s are positive and 	 j�qj�2

�1. Again, this allows us to calculate Vsph stochastically.
From these two quantities, the maximum packing fraction

in a simplex is given by

�simp = �d + 1�Vsph/�2dVsimp� , �14�

which is shown in Table I, alongside the predicted values of
dA �from Eq. �10�� and the actual values �where known�.
From Table I, we see that the predictions from this model in
two and three dimensions agree with the known values to
within 0.05% and 0.6%, respectively, and predictions for
higher values of d may be readily obtained.

In conclusion, the packing theory of Ref. �17�, which was
designed to abstract the essential geometric features of ran-
dom close packing, also appears to contain enough informa-
tion to predict important features of the hierarchical Apollo-
nian packing. The extension of these arguments to more
general Apollonian-type packings �such as space-filling bear-
ings �11� or random Apollonian packings �14�� will require
further work, because the objects inserted into the packing
are no longer maximal, which implies that both Eq. �7� and
the calibration of f will need to be modified. Nevertheless,
we hope that further study of this or related theories will lead
to more insights and further analytical results on both pack-
ings and granular materials.
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