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ENERGY BOUNDS FOR MODULAR ROOTS AND

THEIR APPLICATIONS

BRYCE KERR, ILYA D. SHKREDOV, IGOR E. SHPARLINSKI,
AND ALEXANDRU ZAHARESCU

Abstract. We generalise and improve some recent bounds for
additive energies of modular roots. Our arguments use a variety of
techniques, including those from additive combinatorics, algebraic
number theory and the geometry of numbers. We give applications
of these results to new bounds on correlations between Salié sums
and to a new equidistribution estimate for the set of modular roots
of primes.
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1. Introduction

1.1. Background. For a prime q we use Fq to denote the finite field
of q elements. Given a set N ⊆ Fq and an integer k > 1, let Tν,k(N ; q)
be the number of solutions to the equation (in Fq),

b1 + . . .+ bν = bν+1 + . . .+ b2ν , bki ∈ N , i = 1, . . . , 2ν.

For ν = 2 we also denote

Tν,k(N ; q) = Ek(N ; q).

When k = 1, this is the well-known in additive combinatorics quantity
called the additive energy of N . More generally, Ek(N ; q) is the addi-
tive energy of the set of k-th roots of elements of N (of those which
are k-th power residues).
In the special case N = {1, . . . , N} for an integer 1 6 N < q, we

also write

Tν,k (jN ; q) = Tν,k(N ; j, q), Ek (jN ; q) = Ek(N ; j, q),

where the set jN = {j, . . . , jN} is embedded in Fq in a natural way.
The quantity E2(N ; j, q). has been introduced and estimated in [10].

In particular, for any j ∈ F∗
q , by [10, Lemmas 6.4 and 6.6] we have

(1.1) E2(N ; j, q) 6 min
{
N4/q +N5/2, N7/2/q1/2 +N7/3

}
qo(1),

which has been used in [10, Theorem 1.7] to estimate certain bilin-
ear sums and thus improve some results of [11] on correlations be-
tween Salié sums, which is important for applications to moments of
L-functions attached to some modular forms. Furthermore, bounds
of such bilinear sums have applications to the distribution of modular
square roots of primes, see [10, 21] for details.
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This line of research has been continued in [20] where it is shown
that for almost all primes q, for all N < q and j ∈ F∗

q one has an
essentially optimal bound

(1.2) E2(N ; j, q) 6
(
N4/q +N2

)
qo(1).

As an application of the bound (1.2), it has been show in [20] that
on average over q one can significantly improve the error term in the
asymptotic formula for twisted second moments of L-functions of half
integral weight modular forms.
Furthermore, it is shown in [20] that methods of additive combina-

torics can be used to estimate E2(N ; q) for sets N with small doubling.
Namely, for an arbitrary set N (of any algebraic domain equipped with
addition), as usual, we denote

N +N = {n1 + n2 : n1, n2 ∈ N}.
Then it is shown in [20], in particular, that if N ⊆ Zq is a set of
cardinality N such that # (N +N ) 6 LN for some real L, then

(1.3) E2(N ; q) 6 qo(1)
(
L4N4

q
+ L2N11/4

)
.

Here we extend and improve these results in several directions and
obtain upper bounds on Tν,k(N ; q) and Tν,k(N ; j, q) for other choices
of (ν, k) besides (ν, k) = (2, 2) along with improving the bound of [10,
Lemma 6.6] for T2,2(N ; j, q).
Our estimate for T2,2(N ; j, q) gives some improvement on exponential

sums bounds from [10]. Obtaining nontrivial bounds on Tν,k(N ; j, q)
with ν > 2 have a potential to to obtain further improvements and
extend the region in which there are non-trivial bounds of bilinear
sums from [10, 20]. In turn this can lead to further advances in their
applications.
One such application is to bilinear sums with some multidimen-

sional Salié sum which by a result of Duke [9] can be reduced to
one dimensional sums over k-th roots (generalising the case of k = 2,
see [15][Lemma 12.4] or [18][Lemma 4.4]). This result of Duke [9] com-
bined with our present results and also the approach of [10,11,20], may
have a potential to lead to new asymptotic formulas for moments of
L-functions with Fourier coefficients of automorphic forms over GL(k)
with k > 3.

1.2. Notation. Throughout the paper, the notation U = O(V ), U ≪
V and V ≫ U are equivalent to |U | 6 cV for some positive constant
c, which throughout the paper may depend on the integer k.
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For any quantity V > 1 we write U = V o(1) (as V → ∞) to indicate
a function of V which satisfies |U | 6 V ε for any ε > 0, provided V is
large enough.
For complex weights β = {βn}n∈N , supported on a finite set N , we

define the norms

‖β‖∞ = max
n∈N

|βn| and ‖β‖σ =

(
∑

n∈N

|αn|σ
)1/σ

,

where σ > 1, and similarly for other weights.
For a real A > 0, we write a ∼ A to indicate that a is in the dyadic

interval A/2 6 a < A.
We use #A for the cardinality of a finite set A.
Given two functions f, g on some algebraic domain D equipped with

addition, we define the convolution

(f ◦ g)(d) =
∑

x∈D

f(x)g(d− x).

We can then recursively define longer convolutions (f1 ◦ . . . ◦ fs)(d).
If f is the indicator function of a set A then we write

(f ◦ f)(d) = (A ◦ A) (d).

In fact, we often use A(a) for the indicator function of a set A, that
is, A(a) = 1 if a ∈ A and A(a) = 0 otherwise.
Note that (A ◦ A) (d) counts the number of the solutions to the equa-

tion d = a1 − a2, where a1, a2 run over A, that is

(1.4) (A ◦ A) (d) = #{(a1, a2) ∈ A2 : d = a1 − a2}.
As usual, we also write

A+A = {a1 + a2 : a1, a2 ∈ A}.
Finally, we follow the convention that in summation symbols

∑
a6A

the sum is over positive integers a 6 A.

1.3. New results. We start with a new bound on T2,2(N ; j, q) =
E2(N ; j, q) which improves (1.1).

Theorem 1.1. Let q be prime. For any j ∈ F∗
q and integer N 6 q we

have

T2,2(N ; j, q) ≪
(
N3/2

q1/2
+ 1

)
N2+o(1).

Note it is easy to show the following trivial inequality

T4,2(N ; j, q) 6 N4
T2,2(N ; j, q),
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which combined with Theorem 1.1 implies that

(1.5) T4,2(N ; j, q) 6

(
N3/2

q1/2
+ 1

)
N6+o(1).

We now obtain a stronger bound for short intervals.

Theorem 1.2. Let q be prime. For any j ∈ F∗
q and integer N 6 q we

have

T4,2(N ; j, q) 6

(
N5/8

q1/8
+

N8

q1/2

)
N6+o(1) +N5+o(1).

We see that Theorem 1.2 is sharper than (1.5) provided N 6 q1/16.
The proofs of Theorem 1.1 and Theorem 1.2 are based on the geometry
of numbers and in particular on some properties of lattices.
Next we generalise (1.2) to higher order roots. In fact, as in [20] the

methods allow us to also treat the natural extension of Ek(N ; j, q) to
composite moduli q, for which we consider equations in the residue ring
Zq modulo q, and estimate Ek(N ; j, q) for almost all positive integers
q. We however restrict ourselves to the case of prime moduli q.

Theorem 1.3. For a fixed k > 3 and any positive integers Q > N > 1,
we have

logQ

Q

∑

q∼Q
q prime

max
j∈F∗

q

Ek(N ; j, q) ≪ N2 +N4Q−1+o(1).

To establish Theorem 1.3 we use some arguments related to norms
of algebraic integers.
We now extend the bound (1.3) to other values of k as follows.

Theorem 1.4. Let N ⊆ Fq be a set of cardinality #N = N 6 q2/3

such that #(N +N ) 6 LN for some real L. Then for k > 3 we have

Ek(N ; q) 6 LϑkN3−ρkqo(1) ,

where

ρk = 1/(7 · 2k−1 − 9) and ϑk =

{
2k+2ρk, for k = 3 and k > 5;

48/47, for k = 4.

We remark that the exponent of L in Theorem 1.4 is ϑ3 = 32/19 and

ϑk =
2k+2

7 · 2k−1 − 9
6

128

103

for k > 5. For k = 4 the exponent of L is better than generic because of
some additional saving in our application of the Plünnecke inequality,
see [24, Corollary 6.29].
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The proof is based on some ideas of Gowers [12, 13], in particular
on the notion of the Gowers norm. Finally, we remark that it is easy
to see that, actually, our method works for any polynomial not only
for monomials. Also, it is possible, in principle, to insert the general
weight β but the induction procedure requires complex calculations to
estimate this more general quantity

Ek(N ;β, q) =
∑

u,v,x,y∈Fq

uk,vk,xk,yk∈N
u+v=x+y

βuβvβxβy.

Nevertheless, we record a simple consequence of Theorem 1.4 with
weights β, which follows from the pigeonhole principle.

Corollary 1.5. Let N ⊆ Fq be a set of cardinality #N = N such that
#(N +N ) 6 LN for some real L. Then for any weights β supported
on N , and with ‖β‖∞ 6 1 Then

Ek(N ;β, q) 6 Lϑk‖β‖2−2ρk
1 ‖β‖2+2ρk

2 qo(1) ,

where ϑk and ρk are as in Theorem 1.4.

We also remark that Theorem 1.4 can be reformulated as a statement
that for any set A ⊆ Fq either the additive energy #{a1 + a2 = a3 +
a4 : a1, a2, a3, a4 ∈ A} of A is small or Ak has large doubling set
Ak +Ak = {ak1 + ak2 : a1, a2 ∈ A}.

2. Applications

Given weights α,β we define bilinear forms over modular square
roots as in [10, Equation (1.6)]

(2.1) Wa,q(α,β; h,M,N) =
∑

m∼M

∑

n∼N

αmβn

∑

x∈Fq

x2=amn

eq(hx).

Using Theorem 1.1 we obtain a new estimate for Wa,q(α,β; h,M,N)
which improves on [10, Theorem 1.7]. Assuming

‖α‖∞, ‖β‖∞ 6 1,

it follows from the proof of [10, Theorem 1.7] that

|Wa,q(α,β; h,M,N)|8 6 q1+o(1)(NM)4T2,2(N ; b, q)T2,2(M ; 1, q),

for some b with gcd(b, q) = 1.
Applying Theorem 1.1, we obtain the following bound.
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Corollary 2.1. For any positive integers M,N 6 q/2 and any weights
α and β satisfying

‖α‖∞, ‖β‖∞ 6 1,

we have

|Wa,q(α,β; h,M,N)| 6 q1/8+o(1)(NM)3/4
(
N3/16

q1/16
+ 1

)(
M3/16

q1/16
+ 1

)
.

If the sequence β corresponds to values of a smooth function ϕ whose
derivatives and support suppϕ satisfy

(2.2) ϕ(j)(x) ≪ 1

xj
and suppϕ ⊆ [N, 2N ],

then we write

(2.3) Va,q(α, ϕ; h,M,N) =
∑

m∼M

∑

n∈Z

αmϕ(n)
∑

x∈Fq

x2=amn

eq(hx).

We now give a new bound for Va,q(α; h,M,N). This does not rely
on energy estimates although may be of independent interest. It is also
used in a combination with Corollary 2.1 to derive Theorem 2.3 below.

Theorem 2.2. For any positive integers M,N satisfying MN ≪ q
and M < N , any weight α satisfying

‖α‖∞ 6 1,

and a function ϕ satisfying (2.2), we have

|Va,q(α, ϕ; h,M,N)| 6 q1/2−1/4r+o(1)N1/2rM1−1/2r

(
1 +

(MN)1/2

q1/2−1/4r

)
.

Corollary 2.1 may be used to improve various results from [10, Sec-
tions 1.3-1.4]. We present once such improvement to the distribution
of modular roots of primes. Recall that the discrepancy D(N) of a
sequence in ξ1, . . . , ξN ∈ [0, 1) is defined as

DN = sup
06α<β61

|#{1 6 n 6 N : ξn ∈ [α, β)} − (β − α)N | .

For a positive integer P we denote the discrepancy of the sequence
(multiset) of points

{x/q : x2 ≡ p mod q for some prime p 6 P}
by Γq(P ). Combining the Erdös-Turán inequality with the Heath-
Brown identity reduces estimating Γq(P ) to sums of the form (2.1)
and (2.3). Combining, Corollary 2.1 with Theorem 2.2, we obtain an
improvement on [10, Theorem 1.10].
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Theorem 2.3. For any P 6 q10/11 we have

Γq(P ) 6
(
P 15/16 + q1/8P 3/4 + q1/16P 69/80 + q13/88P 3/4

)
qo(1).

Note that Theorem 2.3 is nontrivial provided P > q13/22 and im-
proves on the range P > q13/20 from [10, Theorem 1.10].

3. Proof of Theorem 1.1

3.1. Lattices. We use Vol(B) to denote the volume of a body B ⊆ Rd.
For a lattice Γ ⊆ Rd we recall that the quotient space Rd/Γ (called the
fundamental domain) is compact and so Vol(Rd/Γ) is correctly defined,
see also [24, Sections 3.1 and 3.5] for basic definitions and properties of
lattices. In particular, we define the successive minima λj, j = 1, . . . , d,
of B with respect to Γ as

λj = inf{λ > 0 : λB contains j linearly independent elements of Γ},
where λB is the homothetic image of B with the coefficient λ.
The following is Minkowski’s second theorem, for a proof see [24,

Theorem 3.30].

Lemma 3.1. Suppose Γ ⊆ Rd is a lattice of rank d, B ⊆ Rd a sym-
metric convex body and let λ1, . . . , λd denote the successive minima of
Γ with respect to B. Then we have

1

λ1 . . . λd

6
d!

2d
Vol(B)

Vol(Rd/Γ)
.

For a proof of the following, see [3, Proposition 2.1].

Lemma 3.2. Suppose Γ ⊆ Rd is a lattice, B ⊆ Rd a symmetric convex
body and let λ1, . . . , λd denote the successive minima of Γ with respect
to B. Then we have

#(Γ ∩ B) 6
d∏

j=1

(
2j

λj

+ 1

)
.

3.2. Reduction to counting points in lattices. Let A denote the
set

A = {x ∈ F∗
q : jx2 ∈ {1, . . . , N}},

so that

(3.1) T2,2(N ; j, q) =
∑

d∈Fq

(A ◦ A)(d)2.

where (A ◦ A)(d) is defined by (1.4).
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If a1, a2 ∈ A satisfy

a1 − a2 = d,

then elementary algebraic manipulations imply

(a21 − a22 − d2)2 = 4d2a22.

We have

ja21 − ja22, ja
2
2 ∈ {−N, . . . , N}.

Since for any λ, µ ∈ Fq the number of solutions to

ja21 − ja22 = λ, ja22 = µ, a1, a2 ∈ A,

is O(1), we derive from (3.1)

T2,2(N ; j, q) ≪
∑

d∈Fq

J0(d)
2,

where

J0(d) = #{|m|, |n| 6 N : (n− jd2)2 ≡ 4jd2m mod q}.
If n,m satisfy

(n− jd2)2 ≡ 4jd2m mod q,

then

n2 + j2d4 ≡ 2jd2(2m+ n) mod q.

This implies

(3.2) T2,2(N ; j, q) ≪
∑

d∈Fq

J(d)2,

where

(3.3) J(d) = #{|m|, |n| 6 6N : n2 + j2d4 ≡ jd2m mod q}.
Let L(d) denote the lattice

L(d) = {(x, y) ∈ Z2 : x ≡ jd2y mod q},
B the convex body

B = {(x, y) ∈ R2 : |x| 6 72N2, |y| 6 12N},
and let λ1(d), λ2(d) denote the first and second successive minima of
L(d) with respect to B.
We now partition summation in (3.2) according to the size of λ1(d)

and λ2(d) to get

(3.4) T2,2(N ; j, q) ≪ S0 + S1 + S2,
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where

S0 =
∑

d∈Fq

λ1(d)>1

J(d)2, S1 =
∑

d∈Fq

λ1(d)61
λ2(d)>1

J(d)2, S2 =
∑

d∈Fq

λ1(d),λ2(d)61

J(d)2.

3.3. Concluding the proof. Consider first S0. If λ1(d) > 1 then

J(d) 6 1,

which follows from the fact that for any distinct points (n0, m0), (n1.m1)
satisfying the conditions in (3.3) we have

(n2
0 − n2

1, m0 −m1) ∈ L(d) ∩ B.

This implies that J(d)2 = J(d) and we derive

(3.5) S0 =
∑

d∈Fq

λ1(d)>1

J(d) ≪ N2.

Consider next S1. Suppose d satisfies λ1(d) 6 1 and λ2(d) > 1.
There exists nd, md satisfying the conditions given in (3.3) such that

J(d) 6 #
{
|m|, |n| 6 6N : (n2 − n2

d, m−md) ∈ L(d) ∩B
}
.

Since λ2(d) > 1, there exists a unique point (ad, bd) ∈ L(d) ∩ B satis-
fying

gcd(ad, bd) = 1, |ad| 6 72N2, |bd| 6 12N,

such that

J(d) 6 #

{
|m|, |n| 6 6N :

n2 − n2
d

m−md
=

ad
bd

}
.

This implies

S1 6
∑

d∈Fq

(
#

{
|m|, |n| 6 6N :

n2 − n2
d

m−md

=
ad
bd

})2

6
∑

|a|672N2, |b|612N
gcd(a,b)=1

K(a, b)2,
(3.6)

where

K(a, b) = #

{
|m|, |n| 6 6N :

n2 − n2
a,b

m−ma,b
=

a

b

}
,

for some choice of integers ma,b, na,b satisfying |ma,b|, |na,b| 6 6N . Fix
some a, b as in the sum in (3.6) and consider K(a, b). If n,m satisfy

n2 − n2
a,b

m−ma,b
=

a

b
, |m|, |n| 6 6N,
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then, since gcd(a, b) = 1, we have

(3.7) n2 − n2
a,b ≡ 0 mod |a|,

and

(3.8) m−ma,b ≡ 0 mod |b|.

Furthermore, if one out of m or n is fixed then the the other number
is defined in no more than two ways.
Write (3.7) as

(n− na,b)(n+ na,b) ≡ 0 mod |a|.

Then we see that there are two integers a1, a2 satisfying

a1a2 = a, |a1|, |a2| 6 12N,

such that

n ≡ na,b mod |a1|, n ≡ −na,b mod |a2|.

Hence for each fixed pair (a1, a2) there are at most

N

lcm[a1, a2]
+ 1 ≪ N

|a| gcd(a1, a2).

possibilities for n. Hence

K(a, b) ≪
∑

a1a2=a

N

lcm(a1, a2)
≪ N

|a|
∑

a1a2=a

gcd(a1, a2).

By the Cauchy-Schwarz inequality and a well-known bound on the
divisor function, see [15, Equation (1.81)], we now derive

(3.9) K(a, b)2 ≪ N2+o(1)
∑

a1a2=a

gcd(a1, a2)
2

|a|2 .

Similarly, using (3.8) we obtain

(3.10) K(a, b) ≪ N

|b| .
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Combining (3.9) and (3.10) and substituting into (3.6), we see that

S1 6 N2+o(1)
∑

|a|672N2, |b|612N

∑

a1a2=a
|a1|,|a2|612N

min

{
1

b2
,
gcd(a1, a2)

2

a2

}

6 N2+o(1)
∑

a1,a2,b612N

min

{
1

b2
,
gcd(a1, a2)

2

a21a
2
2

}

6 N2+o(1)
∑

e612N

∑

b612N

∑

a1,a2612N
gcd(a1,a2)=e

min

{
1

b2
,

e2

a21a
2
2

}

6 N2+o(1)
∑

e612N

∑

b612N

∑

a1,a2612N/e

min

{
1

b2
,

1

a21a
2
2e

2

}

Using the bound on the divisor function again we obtain

S1 6 N2+o(1)
∑

b612N

∑

a6124N2

min

{
1

b2
,
1

a2

}

6 N2+o(1)


 ∑

b612N

∑

a6b

1

b2
+

∑

a6124N2

∑

b6a

1

a2


 6 N2+o(1).

(3.11)

Finally consider S2. If d satisfies λ2(d) 6 1 then by Lemma 3.1 and
Lemma 3.2

(3.12) # (L(d) ∩B) ≪ N3

q
.

For each |n| 6 6N there exists at most one value of m satisfying (3.3)
and for any two pairs (n1, m1), (n2, m2) satisfying (3.3) we have

n2
1 − n2

2 ≡ 2jd2(m1 −m2) mod q.

This implies

J(d)2 ≪ #{|n1|, |n2|, |m| 6 6N, n1 6= ±n2 : n2
1 − n2

2 ≡ 2jd2m mod q}.
Since for any integer r 6= 0 the bound on the divisor function implies

#{|n1|, |n2| 6 8N : n2
1 − n2

2 = r} 6 No(1),

we obtain

J(d)2 6 #(L(d) ∩ B)No(1).

By (3.12)

J(d) ≪ N3/2+o(1)

q1/2
,
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which implies

S2 =
∑

d∈Fq

λ1(d),λ2(d)61

J(d)2 ≪ N3/2

q1/2

∑

d∈Fq

λ1(d),λ2(d)61

J(d) ≪ N7/2+o(1)

q1/2
.

(3.13)

Combining (3.5), (3.11) and (3.13) with (3.4), we derive the desired
bound on T2,2(N ; j, q).

4. Proof of Theorem 1.2

4.1. Lattices. For a lattice Γ and a convex body B we define the dual
lattice Γ∗ and dual body B∗ by

Γ∗ = {x ∈ Rd : 〈x, y〉 ∈ Z for all y ∈ Γ},
and

B∗ = {x ∈ Rd : 〈x, y〉 6 1 for all y ∈ B},
respectively.
The following is known as a transference theorem and is due to

Mahler [16] which we present in a form given by Cassels [7, Chap-
ter VIII, Theorem VI].

Lemma 4.1. Let Γ ⊆ Rd be a lattice, B ⊆ Rd a symmetric convex body
and let Γ∗ and B∗ denote the dual lattice and dual body. Let λ1, . . . , λd

denote the successive minima of Γ with respect to B and λ∗
1, . . . , λ

∗
d the

successive minima of Γ∗ with respect to B∗. For each 1 6 j 6 d we
have

λjλ
∗
d−j+1 6 d!.

We apply Lemma 4.1 to lattices of a specific type whose dual may
be easily calculated. For a proof of the following, see [5, Lemma 15].

Lemma 4.2. Let a1, . . . , ad and q > 1 be integers satisfying gcd(ai, q) =
1 and let L denote the lattice

L = {(n1, . . . , nd) ∈ Zd : a1n1 + . . .+ adnd ≡ 0 mod q}.
Then we have

L∗ =

{(
m1

q
, . . . ,

md

q

)
∈ Zd/q :

∃ λ ∈ Z such that ajλ ≡ mj mod q

}
.

Our next result should be compared with the case ν = 3 of [6,
Lemma 17]. It is possible to give a more direct variant of [6, Lemma 17]
to estimate higher order energies of modular square roots (see the proof
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of Corollary 4.4 below) although this seems to put tighter restrictions
on the size of the parameter N .

Lemma 4.3. Let q be prime, a, b, c 6≡ 0 mod q and L,M,N integers.
Let L denote the lattice

L = {(ℓ,m, n) ∈ Z3 : aℓ+ bm+ cn ≡ 0 mod q},
and let B be the convex body

B = {(x, y, z) ∈ R3 : |x| 6 N, |y| 6 M, |z| 6 L}.
Let

K = #(L ∩ B) ,

and λ1, λ2 denote the first and second successive minima of L with
respect to B. Then at least one of the following holds:

(i)

K < max

{
640LMN

q
, 1

}
.

(ii) λ1 6 1 and λ2 > 1.
(iii) There exists some λ 6≡ 0 mod q and ℓ,m, n ∈ Z satisfying

|ℓ| 6 4320MN

K
, |m| 6 4320LN

K
, |n| 6 4320LM

K
and

aλ ≡ ℓ mod q, bλ ≡ m mod q, cλ ≡ n mod q.

Proof. Assume that (i) fails. Thus we have

(4.1) K > max

{
640LMN

q
, 1

}
.

Then K > 1. Hence, if λ1 6 λ2 6 λ3 denote the successive minima of
L with respect to B, then λ1 6 1. We first show (4.1) implies

λ3 > 1.

Indeed, otherwise by Lemma 3.2

(4.2) K 6

(
2

λ1

+ 1

)(
4

λ2

+ 1

)(
6

λ3

+ 1

)
6

3

λ1

5

λ2

7

λ3

=
105

λ1λ2λ3

.

Since
Vol(R3/L) = q and Vol(B) = 8LMN,

we see from Lemma 3.1 that

(4.3)
1

λ1λ2λ3
6

3!

8

8LMM

q
=

6LMN

q
,

which together with (4.2) contradicts (4.1).
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Hence we have either

(4.4) λ1 6 1, λ2, λ3 > 1,

or

(4.5) λ1, λ2 6 1, λ3 > 1.

Clearly (4.4) is the same as (ii).
Next suppose that we have (4.5). By Lemma 3.2, a similar calcula-

tion as before, together with (4.3) gives,

(4.6) K 6 6
15

λ1λ2
=

90λ3

λ1λ2λ3
.

Applying Lemma 3.1 and using

Vol(B) = 8NML, Vol(R3/L) = q,

we derive from (4.6) that

K 6
90 · 3! Vol(B)λ3

23Vol(R3/L) =
720NMLλ3

q
.

Let λ∗
1 denote the first successive minima of the dual lattice L∗ with

respect to the dual body B∗. By Lemma 4.1

λ3 6
6

λ∗
1

.

The above estimates combined with (4.6) implies

λ∗
1 6

4320NML

qK
.

Hence, by the definition of λ∗
1

(4.7) L∗ ∩ 4320NML

qK
B∗ 6= {(0, 0, 0)}.

Its remains to recall that by Lemma 4.2

L∗ =

{(
ℓ

q
,
m

q
,
n

q

)
∈ Z3/q : ∃ λ ∈ Z such that

aλ ≡ ℓ mod q, bλ ≡ m mod q, cλ ≡ n mod q

}
,

and also it is obvious that

B∗ = {(x, y, z) ∈ R3 : L|x| +M |y|+N |z| 6 1}.
By (4.7), this implies there exists some λ 6≡ 0 mod q and ℓ,m, n satis-
fying (iii), which completes the proof. �
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Corollary 4.4. Let ε > 0 be a fixed real number. For j ∈ F∗
q and

integer N ≪ p, let A,D ⊆ Fq denote the sets

A = {x ∈ F∗
q : jx2 ∈ [1, N ]}.

and

D = {d ∈ F∗
q : (A ◦ A)(d) > ∆}.

Let K be sufficiently large and suppose K and ∆ satisfy

(4.8) K >

(
N6

∆10q1/2
+

N15/2

∆12q1/2
+

N10

∆16q1/2

)
N ε

and

(4.9) ∆ >

(
N3/2

q1/2
+

N5/8

q1/8

)
N ε.

Let F ⊆ F∗
q denote the set of f satisfying

(4.10) (D ◦ D)(f) > K.

Then either

(4.11) K ≪ 1,

or

K#F ≪ N3+o(1)

∆4
.

Proof. From (4.10)

(4.12) K 6 #{(d1, d2) ∈ D : d1 − d2 = f}.
If d1, d2 ∈ D satisfy d1 − d2 = f , then

d21 − d22 − f 2 = (d1 − d2)
2 + 2d1d2 − 2d22 − f 2 = 2d2(d1 − d2) = 2d2f

and some algebraic manipulations show

(2jd21 − 2jd22 − 2jf 2)2 = 8jf 2(2jd22).

Since 0 6∈ D, for each d ∈ D, by (4.9) and [10, Lemma 6.4] there exists
md, nd satisfying

2jd2 ≡ m−1
d nd mod q, |nd| ≪

N2

∆2
,

|md| ≪
N

∆2
, gcd(md, nd) = 1.

(4.13)

Let I(f) count the number of solutions to the congruence

(4.14)
(
nd1m

−1
d1

− nd2m
−1
d2

− 2jf 2
)2 ≡ 8jf 2nd2m

−1
d2

mod q,
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with d1, d2 ∈ D. The above and (4.12) imply

(4.15) K 6 I(f).

Rearranging (4.14) we obtain

(
md2nd1 −md1nd2 − 2jf 2md1md2

)2 ≡ 8jf 2m2
d1md2nd2 mod q.

This implies that I(f) is bounded by the number of solutions to

(nd1md2 − nd2md1)
2 − 4jf 2md1md2(nd1md2 + nd2md1)

+ 4j2f 4(md1md2)
2 ≡ 0 mod q,

(4.16)

with d1, d2 ∈ D. Let L denote the lattice

L = {(m,n, ℓ) ∈ Z3 : m+ njf 2 + ℓj2f 4 ≡ 0 mod q},

and B the convex body

B =

{
(x, y, z) ∈ R3 : |x| 6 CN6

∆8
, |y| 6 CN5

∆8
, |z| 6 CN4

∆8

}
.

for a suitable absolute constant C. By (4.13) and (4.16)
(
(nd1md2 − nd2md1)

2,−4md1md2(nd1md2 + nd2md1),

4(md1md2)
2
)
∈ L ∩ B.

(4.17)

Let λ1, λ2 denote the first and second successive minima of L with
respect to B. Assuming that K > 1 we have λ1 6 1.
Suppose that

λ1 6 1, λ2 > 1.

Then there exists some (a0, b0, c0) ∈ L∩B such that for any d1, d2 ∈ D
satisfying (4.17) we have
(
(nd1md2 − nd2md1)

2,−4md1md2(nd1md2 + nd2md1), (md1md2)
2
)

= m(a0, b0,c0),

for some m ∈ Z. Note from (4.13) for each d1, d2 ∈ D we have
md1md2 6= 0 and hence c0 6= 0. This implies

(
nd1

md1

− nd2

md2

)2

=
a0
c0
,

nd1

md1

+
nd2

md2

=
b0
c0
.
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Hence

K 6 #

{
(d1, d2) ∈ D ×D :

nd1

md1

− nd2

md2

= ±
(
a0
c0

)1/2

,

nd1

md1

+
nd2

md2

=
b0
c0

}
6 4,

since once nd1/md1 is fixed, due to the coprimality condition in (4.13),
d21 is uniquely defined, and similarly for d22. This implies (4.11).
Suppose next that

(4.18) λ1 6 1, λ2 6 1.

Let J(ℓ,m, n) count the number of solutions to

m1m2 = ℓ, n1m2 + n2m1 = m, n1m2 − n2m1 = n,

with

(4.19) |m1|, |m2| ≪
N

∆2
, |n1|, |n2| ≪

N2

∆2
, m1m2n1n2 6= 0,

so that

(4.20) I(f) ≪
∑

|m|,|n|6CN3/∆4

|ℓ|6CN2/∆4

4j2f4ℓ2−4jf2ℓm+n2≡0 mod q

J(ℓ,m, n),

for some absolute constant C. We next show that

(4.21) J(ℓ,m, n) = No(1).

Estimates for the divisor function imply the number of solutions to

m1m2 = ℓ, m1, m2 satisfying (4.19),

is at most No(1). For each such m1, m2 there exists at most one solution
to the system

n1m2 − n2m1 = n, n1m2 + n2m1 = m, n1, n2 satisfying (4.19),

which establishes (4.21). By (4.15) and (4.20)

K 6 #{(ℓ,m, n) ∈ Z3 : |ℓ| 6 CN2/∆4, |m|, |n| 6 CN3/∆4,

n2 − 4jf 2ℓm+ 4j2f 4ℓ2 ≡ 0 mod q}No(1),

and hence

K 6 #
{
(ℓ,m, n) ∈ Z3 :

|ℓ| 6 2CN2/∆4, |m| 6 4C2N5/∆8, |n| 6 CN3/∆4,

n2 + jf 2m+ j2f 4ℓ2 ≡ 0 mod q
}
No(1).

(4.22)
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By (4.9), for each ℓ, n ∈ Z, there exists at most one value of |m| ≪
N5/∆8 satisfying

n2 + jf 2m+ j2f 4ℓ2 ≡ 0 mod q.

For any (ℓ1, m1, n1) and (ℓ2, m2, n2) satisfying the conditions of (4.22),
there exists some |m| ≪ N5/∆8 such that

(4.23) n2
1 + n2

2 − 2jf 2m+ j2f 4(ℓ21 + ℓ22) ≡ 0 mod q.

Define the lattice

L = {(n,m, ℓ) ∈ Z3 : n+ jf 2m+ j2f 4ℓ ≡ 0 mod q},
and the convex body

B = {(n,m, ℓ) ∈ R3 : |n| 6 C0N
6/∆4,

|m| 6 C0N
5/∆8, |ℓ| 6 C0N

4/∆8},
for a suitable constant C0. Since for any integer r

#{n1, n2 ∈ Z : n2
1 + n2

2 = r} 6 ro(1),

we see that (4.23) implies

K2
6 #(L ∩ B)No(1).

By (4.8), (4.18) and Lemma 4.3, there exists (ℓ,m, n) 6= (0, 0, 0) satis-
fying

(4.24) |ℓ| 6 N11+o(1)

∆16K2
, |m| 6 N10+o(1)

∆16K2
, |n| 6 N9+o(1)

∆16K2
,

and

(4.25) jf 2n ≡ m mod q, j2f 4n ≡ ℓ mod q.

Note we may assume

(4.26) gcd(ℓ,m, n) = 1.

Recall (4.16)

I(f) 6 #{(d1, d2) ∈ D2 : (nd1md2 − nd2md1)
2

− 4jf 2md1md2(nd1md2 + nd2md1)

+ 4j2f 4(md1md2)
2 ≡ 0 mod q}.

(4.27)

If d1, d2 satisfy the conditions in (4.27), then by (4.25)

n(nd1md2 − nd2md1)
2 − 4mmd1md2(nd1md2 + nd2md1)

+ 4ℓ(md1md2)
2 ≡ 0 mod q,



20 B. KERR, I. D. SHKREDOV, I. E. SHPARLINSKI, AND A. ZAHARESCU

and hence from (4.8), assuming that N is large enough, we derive

n(nd1md2 − nd2md1)
2 − 4mmd1md2(nd1md2 + nd2md1)

+ 4ℓ(md1md2)
2 = 0.

(4.28)

Similarly by (4.24) and (4.25) we have m2 ≡ nℓ mod q and again (4.8)
ensures that

m2 = nℓ.

Therefore (4.28) implies the following equation

(
nd1

md1

− nd2

md2

)2

− 4

(
nd1

md1

+
nd2

md2

)(m
n

)
+ 4

(m
n

)2
= 0.

We see that

(4.29)
m

n
=

1

2

(
nd1

md1

+
nd2

md2

)
±

√
nd1md1nd2md2

md1md2

.

Hence from (4.13) and (4.27), there exists some constant C such that

I(f) 6 #

{
(md1 , md2 , nd1 , nd2) ∈ Z4 :

|md1 |, |md2| 6
CN

∆2
, |nd1|, |nd2 | 6

CN2

∆2
,

md1md2nd1nd2 6= 0, and (4.29) holds

}
.

Summing the above over f ∈ F , using (4.15) and noting that for each
ℓ,m, n satisfying (4.26) there exists O(1) values of f satisfying (4.25),
we see that K#F is bounded by the number of solutions to the equa-
tion (4.29) with integer variables satisfying

|md1 |, |md2| 6
CN

∆2
, |nd1 |, |nd2| 6

CN2

∆2
, nd1nd2md1md2 6= 0.

We see from (4.29) that nd1md1nd2md2 = r2 for some r ∈ Z and hence
a bound on the divisor function, see [15, Equation (1.81)], implies

K#F 6 No(1)#

{
ℓ 6 C4N

6

∆8
: ℓ = r2 for some r ∈ Z

}
6

N3+o(1)

∆4
,

which completes the proof. �
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4.2. Concluding the proof. Let notation be as in Corollary 4.4, so
that

T4,2(N ; j, q) =
∑

x∈Fq

(A ◦ A ◦ A ◦ A)(x)2.

By (1.5) we may assume that

(4.30) N 6 q1/3,

Applying the dyadic pigeonhole principle, there exist ∆1,∆2 > 1 and
D1,D2 ⊆ Fq given by

Dj = {x ∈ Fq : ∆j 6 (A ◦A)(x) < 2∆j}, j = 1, 2,

such that
T4,2(N ; j, q) 6 No(1)(∆1∆2)

2E(D1,D2),

where
E(D1,D2) =

∑

x∈Fq

(D1 ◦ D2)(x)
2.

By the Cauchy-Schwarz inequality

E(D1,D2) 6 E(D1)
1/2E(D2)

1/2,

and hence there exists some ∆ and D given by

D = {x ∈ Fq : ∆ 6 (A ◦ A)(x) < 2∆},
such that

(4.31) T4,2(N ; j, q) 6 No(1)∆4E(D).

It is also obvious from (3.1) that

(4.32) ∆2 (#D) 6 T2,2(N ; j, q),

and

(4.33) #D 6 ∆#D ≪ N2.

Isolating the diagonal contribution in E(D), we write

E(D) = (#D)2 +
∑

f∈F∗

q

(D ◦ D)(f)2.

We may assume

(4.34) E(D) 6 2
∑

f∈F∗

q

(D ◦ D)(f)2,

since otherwise we have E(D) 6 2(#D)2 and it follows from the
bounds (4.31) and (4.32) that

T4,2(N ; j, q) 6 ∆4(#D)2No(1)
6 T2,2(N ; j, q)2No(1).
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Now, recalling the condition (4.30) and using Theorem 1.1, we derive

T4,2(N ; j, q) 6 N4+o(1).

By (4.34) and the dyadic pigeonhole principle there exists some K
and a set F ⊆ F∗

q given by

F = {f ∈ F∗
q : K 6 (D ◦ D)(f) < 2K},

such that

(4.35) E(D) 6 K2#FNo(1).

Combining with (4.31) and (4.35) gives

(4.36) T4,2(N ; j, q) 6 ∆4K2#FNo(1).

We apply Corollary 4.4 to estimate the right hand side of (4.36).
We now fix some ε > 0 and suppose first that one of (4.8) or (4.9)

does not hold. In particular, assume

(4.37) K <

(
N6

∆10q1/2
+

N15/2

∆12q1/2
+

N10

∆16q1/2

)
N ε

or

(4.38) ∆ <

(
N3/2

q1/2
+

N5/8

q1/8

)
N ε.

If (4.37) holds, then using the trivial bounds

K#F 6 (#D)2 and ∆#D ≪ N2 ,

we derive from (4.36)

T4,2(N ; j, q) 6 ∆4(#D)2KNo(1) 6 ∆2KN4+o(1)

6

(
N6

∆8q1/2
+

N15/2

∆10q1/2
+

N10

∆14q1/2

)
N4+ε+o(1)

6

(
N6

q1/2
+

N15/2

q1/2
+

N10

q1/2

)
N4+ε+o(1)

6
N10

q1/2
N4+ε+o(1) =

N8

q1/2
N6+ε+o(1).

(4.39)

If (4.38) holds, then from (4.36)

T4,2(N ; j, q) 6 No(1)∆4(#D)3 6 N6+o(1)∆

6

(
N3/2

q1/2
+

N5/8

q1/8

)
N6+o(1).

(4.40)
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Hence if one of the conditions (4.8) or (4.9) does not hold then com-
bining (4.39) and (4.40) we obtain

(4.41) T4,2(N ; j, q) 6

(
N5/8

q1/8
+

N8

q1/2

)
N6+ε+o(1).

Suppose next that (4.37) and (4.38) both fail and thus both (4.8)
and (4.9) hold. By Corollary 4.4 we have either

(4.42) K ≪ 1,

or

(4.43) K#F 6
N3+o(1)

∆4
.

If (4.42) holds then from (4.36) and the trivial bound K#F 6

(#D)2, we derive

T4,2(N ; j, q) 6 ∆4K2#FNo(1) 6 ∆4K#FNo(1) 6 ∆4(#D)2No(1).

Now the bound (4.32) and Theorem 1.1 (under the condition (4.30)),
yield

T4,2(N ; j, q) 6 T2,2(N ; j, q)2No(1) 6 N4+o(1).

If (4.43) holds then using (4.33)

(4.44) T4,2(N ; j, q) 6 N3+o(1)K 6 N3+o(1)#D 6 N5+o(1).

Combining (4.41) and (4.44), since ε > 0 is arbitrary, we complete
the proof.

5. Proof of Theorem 1.3

5.1. Product polynomials. In the proof of [20, Lemma 5.1], a certain
polynomial in four variables with integer coefficients played a key role.
More precisely, it has been found in [20] that the polynomial

F (U, V,X, Y ) = 64UV XY

−
(
4UV + 4XY − (X + Y − U − V )2

)2
,

has the following property. Letting U = u2, V = v2, X = x2, and
Y = y2, one has that F (u2, v2, x2, y2) = 0 for any u, v, x, y for which
u+ v = x+y (over any commutative ring). We now proceed to discuss
this property in a more general context.
Denote Uk = {ω ∈ C : ωk = 1} and consider the polynomial

Gk(X1, X2, X3, X4) =
∏

ω1,ω2,ω3∈Uk

(ω1X1 + ω2X2 − ω3X3 −X4)
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defined over the cyclotomic fieldKk = Q (exp(2πi/k)). Since the Galois
group Gal(Kk/Q) of K is cyclic and any automorphism σ of Kk over
Q is a multiplication by some ω ∈ Uk, we see that

σ (Gk(X1, X2, X3, X4))

=
∏

ω1,ω2,ω3∈Uk

(σ (ω1)X1 + σ (ω2)X2 − σ (ω3)X3 − σ (1)X4)

=
∏

ω1,ω2,ω3∈Uk

(ωω1X1 + ωω2X2 − ωω3X3 − ωX4)

= ωk3
∏

ω1,ω2,ω3∈Uk

(ω1X1 + ω2X2 − ω3X3 −X4)

= Gk(X1, X2, X3, X4).

Hence Gk has rational coefficients. Since obviously these coefficients are
algebraic integers, we see that Gk (X1, X2, X3, X4) ∈ Z[X1, X2, X3, X4].
We also see that

∏

ω1,ω2,ω3∈Uk

(ω1X1 + ω2X2 − ω3X3 −X4)

=
∏

ω1,ω2,ω3∈Uk

(ω1X1 + ω1ω2X2 − ω1ω3X3 −X4)

=
∏

ω2,ω3∈Uk

∏

ω1∈Uk

(ω1 (X1 + ω2X2 − ω3X3)−X4)

= (−1)k
∏

ω2,ω3∈Uk

(
(X1 + ω2X2 − ω3X3)

k −Xk
4

)

Therefore Gk(X1, X2, X3, X4) is a polynomial in Xk
4 . Similarly,

∏

ω1,ω2,ω3∈Uk

(ω1X1 + ω2X2 − ω3X3 −X4)

=
∏

ω2,ω3∈Uk

∏

ω1∈Uk

(
X1 + ω−1

1 (ω2X2 − ω3X3 −X4)
)

=
∏

ω2,ω3∈Uk

(
Xk

1 + (ω3X3 +X4 − ω2X2)
k
)

Thus, it is also a polynomial in Xk
1 and of course also in Xk

2 and Xk
3 .

Hence we can write

Gk(X1, X2, X3, X4) = Fk

(
Xk

1 , X
k
2 , X

k
3 , X

k
4

)

for some polynomial Fk (X1, X2, X3, X4) ∈ Z[X1, X2, X3, X4].
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Remark 5.1. It is clear that this construction can be extended in sev-
eral directions, in particular to polynomials Fν,k ∈ Z[X1, . . . , X2ν ] such
that

Fν,k

(
xk
1, . . . , x

k
2ν

)
= 0

whenever x1 + . . .+ xν = xν+1 + . . .+ x2ν .

5.2. The zero set of Fk(X1, X2, X3, X4). We now need the following
bound on the number of integer zeros of Fk in a box. Denote by Tk(N)
the number of solution to the equation

#{(n1, n2, n3, n4) ∈ Z4 : 1 6 n1, n2, n3, n4 6 N,

Fk(n1, n2, n3, n4) = 0} ≪ N2.

Lemma 5.2. Fix an integer k > 3. For any positive integer N , we
have Tk(N) ≪ N2.

Proof. Take a solution (n1, n2, n3, n4) to Fk(n1, n2, n3, n4) = 0 satisfying
1 6 n1, n2, n3, n4 6 N . Denote by t1, t2, t3, t4 the positive real numbers
that are roots of order d of n1, n2, n3, n4 respectively.
Therefore there exist roots of unity ω1, ω2, ω3 ∈ Ud such that

(5.1) ω1t1 + ω2t2 − ω3t3 − t4 = 0.

We now distinguish two cases.
Case 1. At least one of the roots of unity ω1, ω2, ω3 is not real.

Complex conjugation then provides a second linear equation,

(5.2) ω̄1t1 + ω̄2t2 − ω̄3t3 − t4 = 0.

which is different from (5.1). Then using (5.1) and (5.2) to eliminate t4
one obtains a nontrivial linear equation in t1, t2 and t3 which obviously
has at most O(N2) solutions, after which t4 is uniquely defined.
Thus the total number of solutions in Case 1 is O(N2).
Case 2. All three of ω1, ω2, ω3 are real, that is, ω1, ω2, ω3 ∈ {−1, 1},

and the equation (5.1) reduces to

(5.3) t1 ± t2 ± t3 ± t4 = 0.

We observe that Case 2 also covers the 2N2+O(N) diagonal solutions.
To treat the non-diagonal solutions, one can now apply results of

Besicovitch [2], Mordell [17], Siegel [22], or the more recent results of
Carr and O’Sullivan [8]. For instance, [8, Theorem 1.1] shows that a
set of real k-th roots of integers that are pairwise linearly independent
over the rationals must also be linearly independent. Applying this to
the set t1, t2, t3, t4, which by (5.3) is not linearly independent over Q, it
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follows that two of them, for example, t1 and t2, are linearly dependent
over Q. We derive that there are positive integers a1, a2, b such that

tk1 = n1 = bak1 and tk2 = n2 = bak2.

where b is not divisible by a k-th power of a prime. That is, ak1 is the
largest k-th power that divides n1, and ak2 is the largest k-th power
that divides n2.
Then letting t5 denote the positive k-th root of b, the equation (5.3)

becomes

(5.4) (a1 ± a2)t5 ± t3 ± t4 = 0.

Without loss of generality, we can assume that a1 > a2. Hence for
any fixed 1 6 a2 6 a1 6 N1/k there are at most N/ak1 possible values
for b and thus for t5. After a1, a2 and t5 are fixed, there are obviously
at most N pairs (t3, t4) satisfying (5.4). Hence the total contribution
from such solutions is

∑

16a26a16N1/k

N2/ak1 6
∑

16a16N1/k

N2/ak−1
1 ≪ N2

which concludes the proof. �

We remark that the case of k = 2 can also be included in Lemma 5.2
however this case is already fully covered by the results of [20].

5.3. Concluding the proof. Clearly the congruence

u+ v ≡ x+ y mod q, juk, jvk, jxk, jyk ∈ [1, N ]

implies that

Fk(u
k, vk, xk, yk) ≡ 0 mod q

for the above polynomial Fk. Since Fk is homogenous this implies that

Fk(ju
k, jvk, jxk, jyk) ≡ 0 mod q.

Since for a prime q ∼ Q, a ∈ Fq and j ∈ F∗
q, there are at most k

solutions to the congruence jzk ≡ a mod q in variable z ∈ Fq, and thus
at most 2k solution in variable z ∈ [1, N ] (since N 6 Q 6 2q) we have

∑

q∼Q
q prime

max
j∈F∗

q

Ek(N ; j, q) 6 16k4
∑

q∼Q
q prime

∑
. . .
∑

U,V,X,Y ∈[1,N ]
Fk(U,V,X,Y )≡0 mod q

1.

Changing the order of summation and separating the sum over the vari-
ables U, V,X, Y into two parts depending on whether F (U, V,X, Y ) = 0
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or not, we derive
∑

q∼Q
q prime

max
j∈F∗

q

Ek(N ; j, q) ≪
∑

. . .
∑

U,V,X,Y ∈[1,N ]

∑

q∼Q
q prime

q|Fk(U,V,X,Y )

1

≪ Q

logQ

∑
. . .
∑

U,V,X,Y ∈[1,N ]
Fk(U,V,X,Y )=0

1 +
∑

. . .
∑

U,V,X,Y ∈[1,N ]
Fk(U,V,X,Y )6=0

∑

q∼Q
q prime

q|Fk(U,V,X,Y )

1.

Recall that Fk is a polynomial with constant coefficients of degree k3.
Hence Fk(U, V,X, Y ) ≪ Nk3 , and thus trivially has at most O (logN)
prime divisors. Hence, we derive

∑

q∼Q
q prime

max
j∈F∗

q

Ek(N ; j, q) ≪ Q

logQ
Tk(N) +N4+o(1),

and applying Lemma 5.2 we conclude the proof.

Remark 5.3. Furthermore it is easy to see that there is a constant
C > 0 such that if N 6 q1/k

3

then Fk(n1, n2, n3, n4) ≡ 0 mod q with
1 6 n1, n2, n3, n4 6 N implies Fk(n1, n2, n3, n4) = 0. Hence in this
range of N , using Lemma 5.2, we obtain Ek(N ; j, q) ≪ N2 for every q.

6. Proof of Theorem 1.4

6.1. Preliminary discussion. We need some facts about the Gowers
norms , introduced in the celebrated work of Gowers [12, 13] on the
first quantitative bound for the famous Szemerédi Theorem [23] about
sets avoiding arithmetic progressions of length four and longer. As an
important step in the proof, Gowers [12,13] observes that there are very
random sets having an unexpected number of arithmetic progressions
of length l > 4. An example is, basically, the set

(6.1) A(k) =
{
x ∈ ZN : xk ∈ {1, . . . , ckN}

}
,

where ck > 0 is an appropriate constant, depending on k > 2 only (see
the beginning of [13, Section 4] and also [14]). Then the set A(k) has
an enormous number of arithmetic progressions of length k+2 but the
expected number of shorter progressions. In Theorem 1.4 we consider
the sets N 1/k, where N is a set with small doubling. Clearly, such sets
generalise the construction (6.1). Below we show that these sets are
random in the sense, that they all have small additive energy. Actually,
we obtain a stronger property that Gowers norms of its characteristic
functions are small and thus this has even more parallels to the Gowers
construction (6.1). On the other hand, sets N 1/k preserve all essential
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combinatorial properties of the sets A(k). For example, for k = 2
and any s 6= 0 we have for an arbitrary x ∈ N 1/2 ∩ (N 1/2 + s) that
x ∈ (N − N − s2)/2s and hence all intersections N 1/2 ∩ (N 1/2 + s)
are additively rich sets exactly as in construction (6.1) (we literally use
such facts in the proof of Theorem 1.4 below).

6.2. Gowers norms. Now we are ready to give general definitions.
Suppose that G is an abelian group with the group operation + and
A ⊆ G is a finite set. Having a sequence of elements s1, . . . , sl ∈ G we
define the set

As1,...,sl = A ∩ (A− s1) ∩ . . . ∩ (A− sl).

Let ‖A‖Uk be the Gowers non-normalised kth-norm [13] of the charac-
teristic function ofA (in additive form). We have, see, for example, [19]:

‖A‖Uk =
∑

x0,x1,...,xk∈G

∏

ε∈{0,1}k

A
(
x0 +

k∑

j=1

εjxj

)
,

where ε = (ε1, . . . , εk) (we also recall that we use A(a) for the indicator
function of A). In particular,

‖A‖U2 =
∑

x0,x1,x2∈G

A(x0)A(x0 + x1)A(x0 + x2)A(x0 + x1 + x2) = E(A)

is the additive energy of A, that is

E(A) = #{(a1, a2, a3, a4) ∈ A4 : a1 + a2 = a3 + a4},
and

‖A‖U3 =
∑

s∈A−A

E(As) .

Moreover, the induction property for Gowers norms holds, see [13]

‖A‖Uk+1 =
∑

s∈A−A

‖As‖Uk

and

(6.2) ‖A‖Uk =
∑

s1,...,sk∈G

#Aπ(s1,...,sk) ,

where π(s1, . . . , sk) is a vector with 2k components, namely,

π(s1, . . . , sk) =

(
k∑

j=1

sjεj

)

(ε1,...,εk)∈{0,1}k

.
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Notice also

(6.3) ‖A‖Uk+1 =
∑

s1,...,sk∈G

(
#Aπ(s1,...,sk)

)2
.

It is proved in [13] that kth–norms of the characteristic function
of any set are connected to each other. It is shown in [19] that the
connection for the non-normalised norms does not depend on size of
the group G. Here we formulate a particular case of [19, Proposition
35], which relates ‖A‖Uk and ‖A‖U2.

Lemma 6.1. Let A be a finite subset of an abelian group G with the
group operation +. Then for any integer k > 1, we have

‖A‖Uk+1 >
‖A‖(3k−2)/(k−1)

Uk

‖A‖2k/(k−1)

Uk−1

.

Next we have to relate ‖A‖Uk and E(A), see [19, Remark 36].

Lemma 6.2. Let A be a finite subset of an abelian group G with the
group operation +. Then for any integer k > 1, we have

‖A‖Uk > E(A)2
k−k−1 (#A)−(3·2k−4k−4) .

6.3. Concluding the proof. Let A = N 1/k.

6.3.1. Case k = 3. Let us start with the case k = 3. Below we can
assume that the quantity L is sufficiently small because otherwise the
result is trivial.
For any s 6= 0 consider the set As = A ∩ (A − s) and let x ∈ As.

Then x3, (x+ s)3 ∈ N and hence

3s(x+ s/2)2 − 3s3/4 = 3sx2 + 3s2x+ s3 ∈ N −N .

Put Bs = As + s/2, so #Bs = #As. Furthermore, let Cs = {x2 : x ∈
Bs}. Clearly, by the Plünnecke inequality, see [24, Corollary 6.29],

#(Cs + Cs) 6 #(2N − 2N ) 6 L4N = Ls#As ,

where

Ls =
L4N

#As

.

Then, after that applying estimate (1.3) with our restriction N 6 q2/3,
we obtain

E(As) = E(Bs) ≪ E2(Cs; q)
6

(
L4
s (#As)

4 /q + L2
s (#As)

11/4
)
qo(1) .

(6.4)
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We now assume that

(6.5) #As > N4/5L32/5.

We also observe that we can always assume that L 6 N1/32 as otherwise
the result is trivial. Further to show that that the second term in (6.4)
dominates the first one, we need to check that

(6.6) L4
s (#As)

4 /q 6 L2
s (#As)

11/4

or L2
s (#As)

5/4
6 q, which in turn is equivalent to (#As)

3
> L32N8q−4.

Since for L 6 N1/32 and N 6 q2/3 we have

N12/5L96/5 > L32N8q−4

we see that under the assumption (6.5) we have (6.6) and hence the
bound (6.4) becomes

(6.7) E(As) 6 L2
s (#As)

11/4 qo(1) 6 L8N2 (#As)
3/4 qo(1) .

By the definition of the sets As, we have

(6.8)
∑

s∈A−A

#As = (#A)2 .

Furthermore, using the definition of U3–norm we write

(6.9) ‖A‖U3 =
∑

s∈A−A

E(As) =
∑

s:#As6T

E(As) +
∑

s:#As>T

E(As).

First we observe that
∑

s:#As6T

E(As) = #{(a1, a2, a3, a4, s) ∈ A4 × (A−A) :

a1 + a2 = a3 + a4, #As 6 T,

ai − s ∈ A, i = 1, . . . , 4} .
Thus for each of E(A) choices (a1, a2, a3, a4, s) ∈ A4, a1 + a2 = a3 + a4
there are at most T possibilities for s with #As 6 T and we derive

(6.10)
∑

s:#As6T

E(As) 6 TE(A) .

We now choose

(6.11) T = 27E(A)−4/5L32/5N16/5

and note that the trivial upper bound E(A) 6 (#A)3 6 27N3 implies
that T > N4/5L32/5. Hence for any s with #As > T the condition (6.5)
is satisfied and so the bound (6.7) holds.



ENERGY BOUNDS FOR MODULAR ROOTS 31

Hence, by identity (6.8), we obtain
∑

s:#As>T

E(As) 6 L8N2qo(1)
∑

s:#As>T

(#As)
3/4

6 L8N2T−1/4qo(1)
∑

s:#As>T

#As

6 L8N2 ·N2T−1/4qo(1) = L8N4T−1/4qo(1) .

(6.12)

The value of T in (6.11) is chosen to balance the bounds (6.10)
and (6.12) and thus from (6.9) we derive

‖A‖U3 6 E(A)1/5L32/5N16/5qo(1) .

Finally, applying Lemma 6.2, we obtain

E(A) 6 N2‖A‖1/4U3 6 L8/5N14/5E(A)1/20qo(1) ,

and whence
E(A) 6 L32/19N56/19qo(1) ,

which gives the desired result for k = 3.

6.3.2. Case k = 4. Next we consider the case k = 4. Let

As,t = A∩ (A− s) ∩ (A− t) ∩ (A− s− t)

and let x ∈ As,t. Then x4, (x+ s)4, (x+ t)4, (x+ t+ s)4 ∈ N and hence
N −N contains

3ux3 + 6u2x2 + 3u3x+ u4, u ∈ {s, t, s+ t}.
Subtracting the expressions with s and t from the expression with s+t,
we see that 3N −3N contains 12stx2+9(t2s+ ts2)x+(t+ s)4−s4− t4

and we can apply a version of previous arguments. In particular, since
by the Plünnecke inequality, see [24, Corollary 6.29],

#(3N − 3N ) 6 L6N

the role of Ls is now played by

Ls,t =
L6N

#As,t

.

We also set
T = (E(A)N2L12‖A‖−1

U3 )
4/5

and note that we have the trivial bound ‖A‖U3 6 NE(A). We also
have

T > N4/5L48/5.

We now verify that T 3 > L48N8q−4 or

N12/5L144/5
> L48N8q−4
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which is equivalent to N28L96 6 q20. Since we can clearly assume that
L 6 N1/48 as otherwise the result is trivial, the last inequality hold
under our assumption N 6 q2/3.
Hence, similar to the case k = 3 after simple calculations, one ver-

ifies that for #As,t > T , we have L2
s,t (#As,t)

5/4
6 q which in turn is

equivalent to
(#As,t)

3
> T 3 > L48N8q−4.

Hence, by (1.3) we have

E(As,t) 6
(
L4
s,t (#As,t)

4 /q + L2
s,t (#As,t)

11/4
)
qo(1)

6 qo(1)L12N2 (#As,t)
3/4 .

Using (6.2) and (6.3) and the arguments as above, we get

‖A‖U4 =
∑

s,t

E(As,t)

6 T‖A‖U3 + L12N2qo(1)
∑

(s,t):#As,t>T

#(As,t)
3/4

6 T‖A‖U3 + L12N2E(A)T−1/4qo(1)

6 L48N8/5E4/5(A)‖A‖1/5U3 q
o(1)

(6.13)

since again we have chosen T to optimise the above bound.
On the other hand, applying Lemma 6.1 and then Lemma 6.2, we

derive

(6.14) ‖A‖U4 >
‖A‖7/2U3

‖A‖3U2

=
‖A‖7/2U3

E3(A)
> ‖A‖1/5U3 · E

51/5(A)

N132/5
.

Comparing (6.13) and (6.14)

E(A) 6 L48/47N3−1/47qo(1) ,

which gives the desired result for k = 4.

6.3.3. Case k > 5. Finally, consider the general case, which we treat
with a version of Weyl differencing . Now

As = As1,...,sk−2
= Aπ(s1,...,sk−2)

and let x ∈ As1,...,sk−2
. Indeed, we start with As1 and reduce the main

term in xk, (x + s1)
k ∈ N deriving that pk−1(x) ∈ N − N , where

deg pk−1 = k − 1. After that consider (As1)s2 = Aπ(s1,s2) and reduce
degree of the polynomial by one, and so on. We also note that by the
Plünnecke inequality, see [24, Corollary 6.29],

#
(
2k−1N − 2k−1N

)
6 L2kN
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the role of Ls or Ls,t is now played by

Ls =
L2kN

#As

.

We now set

T =
(
N2L12‖A‖Uk−2‖A‖−1

Uk−1

)4/5
.

Using the same arguments as above, after somewhat tedious calcula-
tions to verify all necessary conditions such as

(6.15) N8L2k+2

q−4 6
(
#As1,...,sk−2

)3

to obtain

E(As1,...,sk−2
) 6 L2kN2

(
#As1,...,sk−2

)3/4
qo(1).

In particular to check (6.15) we note that for the above choice of T we
have

T > N4/5L2k+2/5,

and then derive

N8L2k+2

q−4 6 N12/5L3·2k+2/5 6 T 3

which is true because N 6 q2/3 and L 6 N1/2k+2

(which we can assume
as otherwise the bound is trivial).
Using the formula (6.2) and (6.3) we obtain

‖A‖Uk 6 T‖A‖Uk−1 + L2kN2qo(1)
∑

s: #As>T

#(As)
3/4

6 T‖A‖Uk−1 + L2kN2‖A‖Uk−2T−1/4qo(1)

6 L2k ·4/5N8/5‖A‖4/5
Uk−2‖A‖1/5

Uk−1q
o(1)

and hence by induction and Lemma 6.2

E(A)7·2
k−1−9 6 L2k+2

N21·2k−1−28qo(1).

In other words,

E(A) 6 L2k+2/(7·2k−1−9)N3−1/(7·2k−1−9)qo(1) ,

which completes the proof.
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7. Proof of Theorem 2.2

Define

(7.1) fm(n) =
∑

x∈Fq

x2=amn

eq(hx),

so that

Va,q(α, ϕ; h,M,N) =
∑

m∼M

αm

∑

n∈Z

ϕ(n)fm(n).

Recall that ϕ satisfies (2.2).
Applying Poisson summation to the sum over n gives

(7.2) Va,q(α, ϕ; h,M,N) ∼ N

q1/2

∑

m∼M

αm

∑

n∈Z

ϕ̂

(
−n

q

)
f̂m(n),

where

f̂m(n) =
1

q1/2

∑

λ∈Fq

fm(λ)eq(λn).

Using (7.1) and interchanging summation

f̂m(n) =
1

q1/2

∑

x∈Fq

∑

λ∈Fq

x2=amλ

eq(hx)eq(λn)

=
1

q1/2

∑

x∈Fq

eq(hx)eq(amnx2 + hx),

where am denotes multiplicative inverse modulo q. Summation over x
is a quadratic Gauss sum which has evaluation, see [4, Theorem 1.52]

f̂m(n) = εqχ(amn)eq(−am4nh2),

for some |εq| = 1, where χ is the quadratic character mod q. Therefore,
there exists some (c, q) = 1 depending on a, h such that

f̂m(n) = εqχ(amn)eq(cmn).

Substituting into (7.2) and applying the triangle inequality

|Va,q(α, ϕ; h,M,N)| ≪ 1

q1/2

∑

m∼M

∣∣∣∣∣
∑

n∈Z

ϕ̂

(
−n

q

)
χ(n)eq(cmn)

∣∣∣∣∣ .

Define

(7.3) U =
q

MN
,
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so by assumption on M,N we have U ≫ 1. For fixed m ∼ M apply
shifts n → n+um to the inner summation over n. Averaging this over
1 6 u 6 U gives

Va,q(α, ϕ; h,M,N)

≪ 1

q1/2N

∑

m∼M

∑

n∈Z∣∣∣∣∣
∑

16u6U

ϕ̂

(
−n +mu

q

)
χ(n+mu)eq(cm(n +mu))

∣∣∣∣∣ .

Let ε > 0 be small. Note by (2.2) and partial integration, for any
m ∼ M , 1 6 u 6 U and constant C > 0 we have

ϕ̂

(
−n +mu

q

)
≪ 1

nC
, provided n >

q1+ε

N
.

Therefore

Va,q(α, ϕ; h,M,N)

≪ 1

q1/2N

∑

m∼M

∑

|n|6q1+ε/N∣∣∣∣∣
∑

16u6U

ϕ̂

(
−n +mu

q

)
χ(n+mu)eq(cm(n +mu))

∣∣∣∣∣ .

Applying partial summation to u and using

∂ϕ
(
−n+mu

q

)

∂u
≪ N

|u| ,

we obtain

Va,q(α, ϕ; h,M,N) ≪ N1+o(1)

q1/2U

∑

m∼M

∑

|n|6q1+ε/N

∣∣∣∣∣
∑

16u6U0

χ(nm+ u)eq(c(nm+ u))

∣∣∣∣∣ ,

for some U0 6 U . Let I(λ) count the number of solutions to

λ ≡ nm−1 mod q, |n| 6 q1+o(1)

N
, m ∼ M,
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so that

Va,q(α, ϕ; h,M,N)

6
N1+o(1)

q1/2U

∑

λ∈Fq

I(λ)

∣∣∣∣∣
∑

16u6U0

χ(λ+ u)eq(c(λ+ u))

∣∣∣∣∣ .
(7.4)

Note

(7.5)
∑

λ∈Fq

I(λ) ≪ qM

N
,

and
∑

λ∈Fq

I(λ)2 = #{(m1, m2, n1, n2) ∈ Z4 : n1m2 ≡ n2m2 mod q,

|n1|, |n2| 6
q1+ε

N
, m1, m2 ∼ M}.

It is known (see, for example, [1]) that

∑

λ∈Fq

I(λ)2 6 q2ε+o(1)

(
1

q

(
qM

N

)2

+
qM

N
+M2

)
,

and by assumptions on M,N the above simplifies to

(7.6)
∑

λ∈Fq

I(λ)2 ≪ q1+2εM

N
.

Applying the Hölder inequality to summation in (7.4) gives

Va,q(α, ϕ; h,M,N)2r ≪ N2r+o(1)

qrU2r


∑

λ∈Fq

I(λ)




2r−2
∑

λ∈Fq

I(λ)2




×
∑

λ∈Fq

∣∣∣∣∣
∑

16u6U0

χ(λ+ u)eq(c(λ+ u))

∣∣∣∣∣

2r

.

Using (7.5) and (7.6)

Va,q(α, ϕ; h,M,N)2r

6 qr−1+4rε+o(1)NM2r−1 1

U2r

∑

λ∈Fq

∣∣∣∣∣
∑

16u6U0

χ(λ+ u)eq(c(λ+ u))

∣∣∣∣∣

2r

.
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Expanding the 2r-th power, interchanging summation, isolating the
diagonal contribution and using the Weil bound gives

∑

λ∈Fq

∣∣∣∣∣
∑

16u6U0

χ(λ+ u)eq(c(λ+ u))

∣∣∣∣∣

2r

≪ q1/2U2r + qU2r.

Using in the above and recalling (7.3), we get

Va,q(α, ϕ; h,M,N)2r ≪ qr−1+4rε+o(1)NM2r−1
(
q1/2 +

q

U r

)

≪ qr−1/2+4rε+o(1)NM2r−1

(
1 +

(MN)r

qr−1/2

)
,

from which the result follows after taking ε sufficiently small.

8. Proof of Theorem 2.3

8.1. Preliminaries. Our argument follows the proof of [10, Theo-
rem 1.10], the only difference being our use of Corollary 2.1 and The-
orem 2.2. We refer the reader to [10, Section 7] for more complete
details.
Let S̃q(h, P ) denote the sum

S̃q(h, P ) =
P∑

k=1

Λ(k)
∑

x∈Fq

x2=k

eq(hx).

By partial summation, it is sufficient to show

S̃q(h, P ) ≪ qo(1)(P 15/16 + q1/8P 3/4 + q1/16P 69/80 + q13/88P 3/4).

Let J > 1 be an integer. Using the Heath-Brown identity and a smooth
partition of unity as in [10, Section 1.7], there exists some

V = (M1, . . . ,MJ , N1, . . . , NJ) ∈ [1/2, 2P ]2J

2J-tuple of parameters satisfying

N1 > . . . > NJ , M1, . . . ,MJ 6 P 1/J , P ≪ Q ≪ P,

(implied constants are allowed to depend on J),

(8.1) Q =

J∏

i=1

Mi

J∏

j=1

Nj,

and

• the arithmetic functions mi 7→ γi(mi) are bounded and sup-
ported in [Mi/2, 2Mi];
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• the smooth functions xi 7→ Vi(x) have support in [1/2, 2] and
satisfy

V (j)(x) ≪ qjε

for all integers j > 0, where the implied constant may depend
on j and ε.

such that defining

Σ(V) =
∞∑

m1,...,mJ=1

γ1(m1) · · ·γJ(mJ)
∞∑

n1,...,nJ=1

V1

(
n1

N1

)
· · ·VJ

(
nJ

NJ

) ∑

x∈Fq

x2=m1···mJn1···nJ

eq(hx),

we have

S̃q(h, P ) ≪ P o(1)Σ(V).

We proceed on a case by case basis depending on the size ofN1. We first
note a general estimate for the multilinear sums. Let I,J ⊆ {1, . . . , J}
and write

M =
∏

i∈I

Mi

∏

j∈J

Nj , N = Q/M.

Grouping variables in Σ(V) according to I,J , there exists α, β satis-
fying

‖α‖∞, ‖β‖∞ = Qo(1),

such that

Σ(V) =
∑

m62JM
n62JN

α(m)β(n)
∑

x∈Fq

x2=mn

eq(hx).

By Corollary 2.1

Σ(V)

6 q1/8+o(1)P 3/4

(
P 3/16

q1/16M3/16
+ 1

)(
M3/16

q1/16
+ 1

)

6 qo(1)
(
P 15/16 +

q1/16P 15/16

M3/16
+ q1/16P 3/4M3/16 + q1/8P 3/4

)
.

(8.2)

We proceed on a case by case basis depending on the size of N1. Let
P 1/2 > H > P ε be some paramters and take

J = ⌈logP/ logH⌉ .
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8.2. Small N1. Suppose first N1 6 H then arguing as in [10, Equa-
tion (7.13)] we can choose two arbitrary sets I,J ⊆ {1, . . . , J} such
that for

M =
∏

i∈I

Mi

∏

j∈J

Nj and N = Q/M,

where Q is given by (8.1) and we have

(8.3) P 1/2 ≪ M ≪ H1/2P 1/2.

Hence by (8.2)

(8.4) Σ(V) 6 qo(1)
(
P 15/16 + q1/16P 27/32H3/32 + q1/8P 3/4

)
.

8.3. Medium N1. Let L be a parameter satisfying H 6 L and suppose
next that

H 6 N1 6 L.

We may also suppose

H 6 N2 6 N1 6 L,

as otherwise we may argue before to obtain the bound (8.4). In this
case we define M,N as

N =

J∏

i=1

J∏

j=3

Nj and M = N1N2,

so that

H2 6 M 6 L2.

By (8.2)

Σ(V) 6 qo(1)
(
P 15/16 +

q1/16P 15/16

H3/8

+ q1/16P 3/4L3/8 + q1/8P 3/4

)
.

(8.5)

8.4. Large N1. Let R be a paramter to be chosen later and satisfying
R > P 1/2. Suppose next that

L2 6 N1 6 R.

Taking M = N1 as above, we derive from (8.2)

Σ(V) 6 qo(1)
(
P 15/16 +

q1/16P 15/16

L3/8

+ q1/16P 3/4R3/16 + q1/8P 3/4

)
.

(8.6)
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8.5. Very large N1. Finally consider when N1 > R. Applying Theo-
rem 2.2 with r = 2, and using the assumptions P 6 q3/4 and R > P 1/2

we obtain

(8.7) Σ(V) 6 q3/8+o(1)P
3/4

R1/2
.

8.6. Optimiziation. Combining all previous bounds (8.4), (8.5), (8.6)
and (8.7) results in

S̃q(h, P ) 6 qo(1)(P 15/16 + q1/8P 3/4)

+ qo(1)
(
q1/16P 27/32H3/32 +

q1/16P 15/16

H3/8

)

+ qo(1)
(
q1/16P 3/4L3/8 +

q1/16P 15/16

L3/8

)

+ qo(1)
(
q1/16P 3/4R3/16 + q3/8+o(1)P

3/4

R1/2

)
.

Taking parameters

H = P 1/5, L = P 1/4, R = q5/11,

gives

S̃q(h, P ) 6 qo(1)(P 15/16 + q1/8P 3/4 + q1/16P 69/80 + q13/88P 3/4),

which completes the proof.
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