
Clustering Cluster Algebras with Clusters

Man-Wai Cheung∗a, Pierre-Philippe Dechant†b,c,d, Yang-Hui He‡e,f,g,h, Elli
Heyes§f,e, Edward Hirst¶f,e, Jian-Rong Li‖i

aSchool of Mathematics, Kavli IPMU (WPI), UTIAS, The University of
Tokyo,, Kashiwa, Japan, 277-8583,

bSchool of Mathematics, University of Leeds, Leeds, LS2 9JT,
cDepartment of Mathematics, University of York, York, YO10 5DD,

dYork Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10
5DD,

eLondon Institute for Mathematical Sciences, Royal Institution, London, W1S 4BS,
fDepartment of Mathematics, City, University of London, Northampton

Square, London, EC1V 0HB,
gMerton College, University of Oxford, Merton Street, Oxford, OX1 4JD

hSchool of Physics, NanKai University, 94 Weijin Road, Tianjin, 300071,
iFaculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz

1, Vienna, 1090,

Abstract

Classification of cluster variables in cluster algebras (in particular, Grassman-
nian cluster algebras) is an important problem, which has direct application
to computations of scattering amplitudes in physics. In this paper, we apply
the tableaux method to classify cluster variables in Grassmannian cluster
algebras C[Gr(k, n)] up to (k, n) = (3, 12), (4, 10), or (4, 12) up to a certain
number of columns of tableaux, using HPC clusters. These datasets are
made available on GitHub. Supervised and unsupervised machine learning
methods are used to analyse this data and identify structures associated to
tableaux corresponding to cluster variables. Conjectures are raised associ-
ated to the enumeration of tableaux at each rank and the tableaux structure
which creates a cluster variable, with the aid of machine learning.

∗manwai.cheung@ipmu.jp
†p.p.dechant@leeds.ac.uk
‡hey@maths.ox.ac.uk
§elli.heyes@city.ac.uk
¶edward.hirst@city.ac.uk
‖lijr07@gmail.com (corresponding)

Preprint submitted to Journal of Symbolic Computation December 21, 2022

ar
X

iv
:2

21
2.

09
77

1v
1

 [
he

p-
th

]
 1

9
D

ec
 2

02
2

Keywords: Grassmannian cluster algebras, cluster variables, machine
learning
2020 MSC: 13F60, 05E10
Report Number: LIMS-2022-025

1. Introduction

Cluster algebras were first introduced by Fomin and Zelevinsky in 2000
[1] in the context of Lie theory but have since been applied to many other
areas of mathematics and physics, such as in integrable systems, tropical
geometry, and scattering amplitudes. Classification of cluster variables (in
particular cluster variables in Grassmannian cluster algebras) is important
in mathematics [2, 3] and scattering amplitudes in physics [4, 5, 6, 7, 8, 9,
10, 11, 12].

For example, in mathematics, cluster variables in Grassmannian clus-
ter algebras C[Gr(k, n)] correspond to real prime modules of the quantum

affine algebra Uq(ŝlk), [2, 13]. They also correspond to rigid indecomposable
modules in Grassmannian cluster categories [14]. In physics, some particu-
lar scattering amplitudes in N = 4 super Yang-Mills theory can be written
as sums of polylogarithms in variables with a cluster algebra structure, [8].
Remainder functions of MHV scattering amplitudes in the planar limit of
N = 4 super Yang-Mills theory tend to be linear combinations of general-
ized polylogarithms whose symbols are composed of X-coordinates of the the
cluster algebra C[Gr(4, n)], [8]. Cluster X-coordinates can be obtained from
cluster A-coordinates. In this paper, cluster A-coordinates are called cluster
variables.

In short, a cluster algebra is a commutative ring generated inside an
ambient field. It is defined iteratively from an initial seed, consisting of a set
of variables, called a cluster, and a quiver, via a procedure called mutation.
The mutation process produces further seeds, which consist of clusters and
quivers. The cluster algebra is the algebra generated by all cluster variables
(including frozen variables); see §2.1 for more details.

As a set, for integers k ≤ n, the Grassmannian variety Gr(k, n) is the set
of all k-dimensional subspaces of the n dimensional vector space Cn. Scott
[15] proved that there is a cluster algebra structure in the coordinate ring
C[Gr(k, n)]. The ring C[Gr(k, n)] is called a Grassmannian cluster algebra.

Hernandez and Leclerc [2] showed that there is a cluster algebra structure

2

on the Grothendieck ring K0(C`) of a certain subcategory C` of the category
of finite-dimensional modules of a quantum affine algebra Uq(ĝ). In the case
when g = slk, the cluster algebra K0(C`) is isomorphic to the cluster alge-
bra C[Gr(k, n,∼)], where C[Gr(k, n,∼)] is the quotient of the Grassmannian
cluster algebra C[Gr(k, n)] by identifying certain frozen variables with 1, cf.
[2, 15].

Simple modules of Uq(ĝ) are parametrized by dominant monomials in for-
mal variables Yi,s, i ∈ I, s ∈ Z, where I is the set of vertices of the Dynkin
diagram of g, cf. [16]. It is shown in [13] that, in the case of g = slk, the
monoid of dominant monomials is isomorphic to the monoid SSYT(k, [n],∼),
where SSYT(k, [n],∼) is a quotient of the monoid SSYT(k, [n]) of semistan-
dard tableaux (SSYT) of rectangular shape with k rows and with entries in

[n] = {1, . . . , n}, cf. §2.2. Therefore, every simple module of Uq(ŝlk) cor-
responds to a semistandard Young tableau in SSYT(k, [n],∼). It follows,
that the dual canonical basis of C[Gr(k, n,∼)] is in one-to-one correspon-
dence with tableaux in SSYT(k, [n],∼). In particular, cluster variables in
C[Gr(k, n,∼)] correspond to a tableau in SSYT(k, [n],∼).

The set of cluster variables in C[Gr(k, n)] is the union of the set of cluster
variables in C[Gr(k, n,∼)] and the frozen variables in C[Gr(k, n)]. There-
fore, in order to classify cluster variables in C[Gr(k, n)], it suffices to classify
cluster variables in C[Gr(k, n,∼)]. We say that a tableau in SSYT(k, [n],∼)
(resp. SSYT(k, [n])) is a cluster variable if the dual canonical basis element
corresponding to it is a cluster variable in C[Gr(k, n,∼)] (resp. C[Gr(k, n)]).
Up to frozen variables, cluster variables in SSYT(k, [n],∼) and SSYT(k, [n])
are the same.

A simple Uq(ĝ)-module M is called real if M ⊗M is simple, cf. [17]. A
simple Uq(ĝ)-module M is called prime if M is not isomorphic to M1 ⊗M2

for any non-trivial modules M1,M2, cf. [18]. Hernandez and Leclerc [2] con-
jectured that real prime modules of Uq(ĝ) are in one-to-one correspondence
to cluster variables in K0(C`). Therefore it is important to classify cluster
variables in K0(C`), and equivalently in C[Gr(k, n)].

In the context of planar N = 4 super Yang-Mills theory, the cluster
variables in C[Gr(k, n)] appear as symbol letters of scattering amplitudes,
[5, 6, 7, 8, 9, 19]. Therefore classification of cluster variables in C[Gr(k, n)]
is also important in physics.

For T ∈ SSYT(k, [n]), we say that T is of rank d if T has d columns. We
say that a cluster monomial (in particular, a cluster variable) is of rank r

3

if the corresponding tableau has rank r. For general k ≤ n, the number of
cluster variables in C[Gr(k, n)] is infinite. On the other hand, if we count
cluster variables in C[Gr(k, n)] with a given rank, then the number is finite.
This is because the number of semistandard Young tableaux with a given
rank is finite.

In this paper, we apply high-performance computing (HPC) clusters to
compute cluster variables in C[Gr(k, n)]. Our method of computing cluster
variables is to use mutation of tableaux introduced in [13], cf. Formula
(2). We compute the cluster variables in the Grassmannian cluster algebras
C[Gr(3, 12)] up to rank 6, C[Gr(4, 12)] up to rank 4, and C[Gr(4, 10)] up to
rank 6, cf. Table 1. The datasets produced amount to ∼ 0.75Gb of data and
took ∼ 0.5 million CPU hours to compute.

From our results, we obtain conjectural formulas for numbers of cluster
variables of certain ranks in C[Gr(3, n)] and C[Gr(4, n)], cf. Conjecture 3.1:

N3,n,3 = 24

(
n

8

)
+ 9

(
n

9

)
,

N3,n,4 = 288

(
n

9

)
+ 400

(
n

10

)
+ 264

(
n

11

)
+ 48

(
n

12

)
,

N4,n,3 = 174

(
n

8

)
+ 855

(
n

9

)
+ 1285

(
n

10

)
+ 693

(
n

11

)
+ 123

(
n

12

)
,

where Nk,n,r is the number of cluster variables of rank r in C[Gr(k, n)].
We also conjecture that when one replaces a set of numbers a1 < . . . < am

appearing in a cluster variable (tableau) with another set of numbers a′1 <
. . . < a′m, one will obtain another cluster variable, cf. Conjecture 3.2.

Grassmannian cluster algebras have many cluster variables, forming large
datasets with rich structure. Therefore, in addition to computing this data
and making it readily available for physical and mathematical application,
we also turn to techniques from data science and machine learning (ML) to
analyse these datasets of variables and extract some of this structure.

More specifically, we would like to study the following problems:

Problem 1.1. Can machine learning methods identify whether a given semi-
standard Young tableau corresponds to a cluster variable?

Problem 1.2. What structure of these tableaux can be extracted by machine
learning techniques which identifies the tableau as corresponding to a cluster
variable?

4

https://github.com/edhirst/GrassmanniansML.git
https://github.com/edhirst/GrassmanniansML.git

The machine learning methods we employ include both supervised and
unsupervised methods. Support Vector Machines and Neural Networks both
learn to distinguish – with strong performance – tableaux from different al-
gebras, and also learn to distinguish those tableaux that are cluster variables
from those that are not. Principal Component Analysis and K-Means Clus-
tering, also highlight to us the key features in the tableau data.

This paper is structured as follows: In §2 we establish the relevant math-
ematical background surrounding Grassmannian cluster algebra cluster vari-
ables and their representation as semistandard Young tableaux. In §3 we
provide information regarding the computation of cluster variables in Grass-
mannian cluster algebras. In §4 we analyse the generated data using tech-
niques from supervised and unsupervised machine learning. Conclusions are
presented in §5.

Coding scripts, and data used in this work are available at the respective
GitHub repository: https://github.com/edhirst/GrassmanniansML.git

2. Grassmannian cluster algebras

In this section, we recall results in [1, 13, 15] about cluster algebras and
Grassmannian cluster algebras.

2.1. Cluster algebras

We begin by recalling the definition of cluster algebras given by Fomin
and Zelevinsky [1].

A quiver Q = (Q0, Q1, s, t) is a directed graph without loops or 2-cycles
that can be described by a vertex set Q0, an arrow set Q1, and maps s, t :
Q1 → Q0 that take an arrow to its source and target, respectively. We
identify Q0 = [m] = {1, . . . ,m} and declare vertices 1, . . . , r as mutable
vertices and vertices r + 1, . . . ,m as frozen vertices.

For k ∈ [r], the mutated quiver µk(Q) is a quiver obtained from Q by:

(i) for each sub-quiver i→ k → j, add a new arrow i→ j,

(ii) reverse the orientation of every arrow with target or source equal to k,

(iii) remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Let F be an ambient field abstractly isomorphic to a field of rational
functions in m independent variables. A seed in F is a pair (x, Q), where
x = (x1, . . . , xm) is a free generating set of F , called a cluster, and Q is a

5

https://github.com/edhirst/GrassmanniansML.git

quiver. The variables x1, . . . , xr are called cluster variables, and the variables
xr+1, . . . , xm are called frozen variables.

For a seed (x, Q) and k ∈ [r], the mutated seed µk(x, Q) is (x′, µk(Q)),
where x′ = (x′1, . . . , x

′
m) with x′j = xj for j 6= k and x′k ∈ F determined by

x′kxk =
∏

α∈Q1,s(α)=k

xt(α) +
∏

α∈Q1,t(α)=k

xs(α).

After making a choice of an initial labeled seed, we say that a seed is
reachable if it can be obtained from the initial seed by a finite sequence
of mutations. One defines the clusters (resp. cluster variables) to be the
clusters (resp. cluster variables) appearing in all reachable seeds. Two cluster
variables are called compatible if they appear together in a cluster. A cluster
monomial is a product of compatible cluster variables. The cluster algebra
is the C-algebra generated by all cluster variables and frozen variables.

2.2. Grassmannian cluster algebras and semistandard Young tableaux

We denote by Gr(k, n) the Grassmannian of k-planes in Cn and C[Gr(k, n)]
its homogeneous coordinate ring. It was shown by Scott [15] that the ring
C[Gr(k, n)] has a cluster algebra structure. Furthermore, it was shown in
[13] that every cluster monomial (in particular, every cluster variable) in
C[Gr(k, n)] corresponds to a semistandard Young tableau. This was achieved
by using the isomorphism between two cluster algebras: one cluster algebra
is the Grothendieck ring of a certain subcategory of the category of finite-
dimensional modules of the quantum affine algebra Uq(ŝlk); the other cluster
algebra is C[Gr(k, n,∼)], where C[Gr(k, n,∼)] is the quotient of C[Gr(k, n)]
by the ideal 〈Pi,i+1,...,i+k−1 − 1, i ∈ [n− k + 1]〉.

For k ≤ n, we denote by SSYT(k, [n]) the set of all semistandard Young
tableaux of rectangular shape with k rows and with entries in [n] = {1, . . . , n}.

For S, T ∈ SSYT(k, [n]), we denote by S ∪ T the row-increasing tableau
whose ith row is the union of the ith rows of S and T (as multisets). It was
shown in [13] that for any S, T ∈ SSYT(k, [n]), S ∪ T is in SSYT(k, [n]).

We call S a factor of T , and write S ⊂ T , if the ith row of S is contained in
that of T (as multisets), for i ∈ [k]. In this case, we define T

S
= S−1T = TS−1

to be the row-increasing tableau whose ith row is obtained by removing that
of S from that of T (as multisets), for i ∈ [k].

A tableau T ∈ SSYT(k, [n]) is trivial if each entry of T is one less than
the entry below it.

6

For any T ∈ SSYT(k, [n]), we denote by Tred ⊂ T the semistandard
tableau obtained by removing a maximal trivial factor from T . That is, Tred
is the tableau with the minimal number of columns such that T = Tred ∪ S
for a trivial tableau S. For trivial T , one has Tred = 1 (the empty tableau).
For S, T ∈ SSYT(k, [n]), we define S ∼ T if Sred = Tred. The reduction
relation “∼” is an equivalence relation. We denote by SSYT(k, [n],∼) the
set of ∼-equivalence classes.

We use the same notation for a tableau T and its equivalence class, writing
either T ∈ SSYT(k, [n]) or T ∈ SSYT(k, [n],∼) when it is important to
distinguish these.

Example 2.1. We illustrate the operations ∪ and ∼:

1 3

2 7

6 11

∪ 1 7

2 9

8 10

= 1 1 3 7

2 2 7 9

6 8 10 11

and 1

3

6

∼ 1 2 3

3 3 4

4 5 6

.

A one-column tableau is called a fundamental tableau if its content is
[i, i + k] \ {r} for r ∈ {i + 1, . . . , i + k − 1}. A tableau T is said to have
small gaps if each of its columns is a fundamental tableau. Any tableau in
SSYT(k, [n]) is ∼-equivalent to a unique small gap tableau.

2.3. Dominance order

Let λ = (λ1, . . . , λ`) with λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 0 and µ = (µ1, . . . , µ`)
with µ1 ≥ µ2 ≥ · · · ≥ µ` ≥ 0 be partitions. Then λ ≥ µ in dominance order if∑

j≤i λj ≥
∑

j≤i µj for i = 1, . . . , `. For a tableau T (, not necessarily rectan-
gular shape), let sh(T) denote the shape of T . That is, sh(T) = (λ1, . . . , λr),
where λi is the number of boxes of T in the ith row. For i ∈ [n], let T [i]
denote the restriction of T ∈ SSYT(k, [n]) to the entries in [i]. That is, T [i]
is the tableau obtained from T by removing all boxes which have numbers
greater than i.

For a tableau T , we call the multi-set of numbers appearing (count mul-
tiplicities) in T the content of T . For T, T ′ ∈ SSYT(k, [n]) with the same
content, we say that T ≥ T ′ if sh(T [i]) ≥ sh(T ′[i]) in the dominance order
on partitions, for i = 1, . . . , n.

2.4. Cluster variables in C[Gr(k, n)]

Recall that C[Gr(k, n,∼)] is the quotient of C[Gr(k, n)] by the ideal
〈Pi,i+1,...,i+k−1 − 1, i ∈ [n− k + 1]〉.

7

Theorem 3.25 in [13] states that every cluster variable in the cluster alge-
bra C[Gr(k, n,∼)] is of the form ch(T) (see Equation (1); the notation ch(T)
is used because it corresponds to the q-character of a module of the quantum
affine algebra Uq(ŝlk)) for some real prime T ∈ SSYT(k, [n]) (a tableau is
called real (resp. prime) if the corresponding quantum affine algebra module
is real (resp. prime), [13]). An explicit formula of ch(T) is given in Theorem
5.8 of [13]:

ch(T) =
∑
u∈Sk

(−1)`(uwT)puw0,wTw0(1)Pu;T ′ ∈ C[Gr(k, n,∼)] (1)

where T ′ is the small gap tableau such that T ∼ T ′, Pu;T ′ is some monomial of
Plücker coordinates, wT is some permutation in Sk, and pu,v(q) is a Kazhdan-
Lusztig polynomial. When ch(T) is a cluster variable, we also call T itself a
cluster variable.

Remark 2.2. The set of cluster variables in C[Gr(k, n)] is the union of the
set of cluster variables in C[Gr(k, n,∼)] and frozen variables in C[Gr(k, n)].
The frozen variables (up to sign) in C[Gr(k, n)] are Pi,i+1,...,i+k−1, i ∈ [n],
where i + n are identified with i. The frozen variables correspond to one-
column tableaux with consecutive entries or with entries {1, 2, . . . , r, n− k+
r + 1, . . . , n− 1, n}, r ∈ [k − 1].

We compute cluster variables in C[Gr(k, n)] in the following way [13,
Section 4]: Starting from the initial seed of C[Gr(k, n)], each time we perform
a mutation at the cluster variable ch(Tr), we obtain a cluster variable ch(T ′r)
defined recursively by

ch(T ′r)ch(Tr) =
∏
i→r

ch(Ti) +
∏
r→i

ch(Ti),

with ch(Ti) the cluster variable at the vertex i. Denote by max{∪i→rTi,∪r→iTi}
the tableau which is larger in the dominance order. The tableau T ′ corre-
sponding to the new cluster variable ch(T ′r) can be computed by the following
formula:

T ′r = T−1r max{∪i→rTi,∪r→iTi}. (2)

8

The following are some examples of mutations in C[Gr(3, 8)]:

ch(1

3

4

)ch(2

3

5

) = ch(1

3

5

)ch(2

3

4

) + ch(1

2

3

)ch(3

4

5

),

ch(2

3

8

)ch(1 3 4

2 5 6

4 7 8

) = ch(1

2

8

)ch(3 4

5 6

7 8

)ch(2

3

4

) + ch(3

4

8

)ch(2 4

5 6

7 8

)ch(1

2

3

).

3. Cluster variables in Grassmannian cluster algebras

In this section, we describe the result of our computations of cluster
variables in C[Gr(k, n)], giving rise to our dataset.

We generate cluster variables by performing random mutations and fol-
lowing formula (2). When we compute cluster variables with ranks less than
or equal to a given number r, if we see a cluster variable (tableau) with rank
greater than r, we mutate at that vertex again so that the cluster variable
with rank greater than r does not appear. In this way, the cluster variables
we generate are always with ranks less or equal to r. In practice, we perform
sufficiently many mutations and when we see that no new cluster variables
appear after ∼ 10000 CPU hours on the HPC cluster, we conjecture that we
have obtained all cluster variables with ranks less than or equal to r.

3.1. Some finite-type cluster algebras

The cluster algebra C[Gr(3, 3)] has only one frozen variable

1

2

3

,

and no mutable cluster variables.

There are 4 frozen variables in C[Gr(3, 4)]:

1

2

3

, 1

2

4

, 1

3

4

, 2

3

4

and no mutable cluster variables.

9

https://github.com/edhirst/GrassmanniansML.git

In C[Gr(3, 5)], there are 5 cluster variables:

1

3

5

, 2

3

5

, 2

4

5

, 1

2

4

, 1

3

4

,

and 5 frozen variables:

1

2

3

, 2

3

4

, 3

4

5

, 1

2

5

, 1

4

5

.

In C[Gr(3, 6)], there are 16 cluster variables:

1

4

6

, 3

4

6

, 2

4

6

, 2

3

6

, 2

5

6

, 2

4

5

, 2

3

5

, 1

2

5

, 1

4

5

, 1

3

5

, 1

3

4

, 1

3

6

, 3

5

6

, 1

2

4

, 1 3

2 5

4 6

, 1 2

3 4

5 6

,

and 6 frozen variables:

In C[Gr(3, 7)], there are 28 one-column tableaux which are cluster vari-
ables and 7 one-column tableaux which are frozen variables. There are 14
rank 2 cluster variables which are obtained by sending i 7→ ai in

1 3

2 5

4 6

, 1 2

3 4

5 6

,

where a1 < · · · < a6 ∈ {1, . . . , 7}.

In C[Gr(3, 8)], there are 48 one-column tableaux which are cluster vari-
ables and 8 one-column tableaux which are frozen variables. There are 56
rank 2 cluster variables which are obtained by sending i 7→ ai in the tableaux

1 3

2 5

4 6

, 1 2

3 4

5 6

,

10

where a1 < · · · < a6 ∈ {1, . . . , 8}. There are 24 rank 3 cluster variables:

1 3 4

2 5 6

4 7 8

, 1 2 4

2 3 7

5 6 8

, 1 2 3

4 5 6

6 7 8

, 1 1 3

2 5 6

4 7 8

, 1 3 4

2 6 7

5 7 8

, 1 2 3

3 4 5

6 7 8

, 1 2 5

3 4 7

6 8 8

, 1 2 5

3 4 7

5 6 8

,

1 2 3

4 4 5

6 7 8

, 1 3 4

2 6 7

5 8 8

, 1 3 4

2 5 6

5 7 8

, 1 2 5

3 4 7

6 6 8

, 1 2 3

2 5 6

4 7 8

, 1 2 3

4 5 6

7 7 8

, 1 1 2

3 4 5

6 7 8

, 1 2 4

3 3 7

5 6 8

,

1 2 4

3 4 7

5 6 8

, 1 2 5

3 4 7

6 7 8

, 1 2 3

4 5 5

6 7 8

, 1 2 2

3 4 5

6 7 8

, 1 3 4

2 6 6

5 7 8

, 1 2 3

4 5 6

7 8 8

, 1 1 4

2 3 7

5 6 8

, 1 3 3

2 5 6

4 7 8

.

For general k ≤ n, there are infinitely many cluster variables in C[Gr(k, n)].
On the other hand, there are finitely many cluster variables in C[Gr(k, n)]
with a fixed rank. For example, there are 168 rank 2 cluster variables and
225 rank 3 cluster variables in C[Gr(3, 9)], [14].

As a core part of the work in this project, we have computed databases
which contain all cluster variables with certain ranks in C[Gr(k, n)] for se-
lected k, n (noting these naturally contain all lower ns). Specifically, we
compute the cluster variables as semistandard Young tableaux in the Grass-
mannian cluster algebras C[Gr(3, 12)] up to rank 6, C[Gr(4, 12)] up to rank
4, and C[Gr(4, 10)] up to rank 6, totaling 2656212, 3089105, and 6346878
tableaux respectively. All datasets are available on GitHub.

3.2. Numbers of cluster variables with given ranks

We denote by Nk,n,r, the number of cluster variables (including frozen
variables) of rank r in C[Gr(k, n)]. Using high-performance computing, we
stochastically compute all cluster variables with certain rank in C[Gr(k, n)].
Since the process is stochastic we cannot explicitly verify this is an exhaustive
list, however we note that in each case the last ∼10% of runs did not generate
any new variables. Therefore, the numbers Nk,n,r in Table 1 provide at the
very least lower bounds on the true number of cluster variables, and likely,
equality.

It was proved in [14], that the number of rank 2 cluster variables in
C[Gr(k, n)] (k ≤ n/2) is at least

Nk,n,2 =
k∑
r=3

(
2r

3
· p1(r) + 2r · p2(r) + 4r · p3(r)

)
·
(
n

2r

)(
n− 2r

k − r

)
, (3)

11

https://github.com/edhirst/GrassmanniansML.git

r 1 2 3 4 5 6 7 8 9 10
N3,3,r 1 0 0 0 0 0 0 0 0 0
N3,4,r 4 0 0 0 0 0 0 0 0 0
N3,5,r 10 0 0 0 0 0 0 0 0 0
N3,6,r 20 2 0 0 0 0 0 0 0 0
N3,7,r 35 14 0 0 0 0 0 0 0 0
N3,8,r 56 56 24 0 0 0 0 0 0 0
N3,9,r 84 168 225 288 372 414 522 594 612 744
N3,10,r 120 420 1170 3280 8200 19140
N3,11,r 165 924 4455 20504 77957 256553
N3,12,r 220 1848 13860 92980 486172 2061132

N4,4,r 1 0 0 0 0 0 0 0 0 0
N4,5,r 5 0 0 0 0 0 0 0 0 0
N4,6,r 15 0 0 0 0 0 0 0 0 0
N4,7,r 35 14 0 0 0 0 0 0 0 0
N4,8,r 70 120 174 208 296 304 420 416 536 480
N4,9,r 126 576 2421 8622 27054 69390
N4,10,r 210 2040 17665 117930 597500 2353760
N4,11,r 330 5940 90563 980100
N4,12,r 495 15048 367479 5963856

Table 1: Number of cluster variables in C[Gr(k, n)] of rank r. Note each Nn,k,r contains all
those in Nn,k−1,r by definition, so there are (Nn,k,r−Nn,k−1,r) new SSYT cluster variables
for each box. Empty box entries denote variables to be computed in future work, and were
beyond reasonable means for current computation.

where pi(r) is the number of partitions r = r1 + r2 + r3 such that r1, r2, r3 ∈
Z≥1 and |{r1, r2, r3}| = i. According to our computation results, we expect
that the number of rank 2 cluster variables in C[Gr(k, n)] (k ≤ n/2) is exactly
given by formula (3).

According to our computation results, we also have the following conjec-
tures:

Conjecture 3.1. The corresponding number of cluster variables is given by
the following expressions

N3,n,3 = 24

(
n

8

)
+ 9

(
n

9

)
,

N3,n,4 = 288

(
n

9

)
+ 400

(
n

10

)
+ 264

(
n

11

)
+ 48

(
n

12

)
,

N4,n,3 = 174

(
n

8

)
+ 855

(
n

9

)
+ 1285

(
n

10

)
+ 693

(
n

11

)
+ 123

(
n

12

)
.

12

Conjecture 3.2. For any tableau T ∈ SSYT(k, [n]) with entries a1 < . . . <
ar and any function f : {a1, . . . , ar} → [n′], n′ ≥ n, such that f(a1) < . . . <
f(ar), we have that T is a cluster variable in C[Gr(k, n)] if and only if f(T)
is a cluster variable in C[Gr(k, n′)].

4. Machine Learning

With the increase in computational power over the preceding decades,
the ability to generate large amounts of mathematical data has become far
more manageable. Where past mathematical work has focused on conjec-
ture formulation from computation by hand on smaller samples of selected
examples, now with larger datasets and algorithms to perform analysis com-
putationally, data science is steadily becoming a key player in mathematical
research.

Machine learning (ML), an umbrella field encompassing a large range of
techniques from supervised, unsupervised, and reinforcement learning, has
already seen a large amount of success in mathematics and related areas
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]. Of particular
relevance here, is past work on the use of ML to examine exchange graphs
describing cluster seed interrelations [36, 37], built on [38].

With the 3 large datasets of cluster variables represented as SSYT, specif-
ically {C[Gr(3, 12)] r6, C[Gr(4, 10)] r6, C[Gr(4, 12)] r4} where r# denotes
the maximum rank (number of tableau columns) considered, we now apply
a variety of techniques from ML to analyse them.

4.1. Data Formatting

To ensure consistent formatting for data processing, all the SSYT were
formatted as numpy arrays in python, padded with zeros up to the maximum
size, such that they all had shape (4,6).

Examples of these arrays represented as images are shown in Figure 1,
where the clear padding of the k = 3 cases (bottom row all zeros) and r = 4
cases (right two columns all zeros) are shown for the C[Gr(3, 12)] r6 and
C[Gr(4, 12)] r4 datasets respectively. The lighter box in the C[Gr(4, 12)]
r4 example indicates the higher maximum entry than C[Gr(4, 10)] r6 as
n = 12 > 10.

These images just represent single examples from these Grassmannian
cluster algebras. In each case lower rank SSYT are included (with more

13

https://github.com/edhirst/GrassmanniansML.git

columns padded), as well as those with a smaller range of entries (where the
colours are darker throughout the image).

(a) C[Gr(3, 12)], r ≤ 6 (b) C[Gr(4, 10)], r ≤ 6 (c) C[Gr(4, 12)], r ≤ 4

Figure 1: Example images produced from the padded versions of the SSYT representing
cluster variables in the respective Grassmannians. Note that for C[Gr(k, n)] k represents
the number of rows, n the maximum entry, and r the rank and hence the number of
columns. These example images have the maximum rank in each case.

4.1.1. NCV Data Generation

A point of key importance is that not all SSYT represent cluster variables
in Grassmannian cluster algebras. Therefore one can create tableaux that
increase along the k rows, strictly increase down the r columns, and with
maximum entry n, which do not correspond to a cluster variable in the
Grassmannian C[Gr(k, n)] with rank up to r.

Therefore, we refer back to Problem 1.1: can ML techniques discover a
relation that allows them to identify this? However, prior to applying ML
methods, non-cluster-variable data, which we denote ‘NCV’, corresponding
to SSYT which are not cluster variables must be generated. Conversely, we
denote the dataset of SSYT which are cluster variables as ‘CV’.

For each Grassmannian CV dataset an equivalent NCV dataset was gen-
erated, such that the number of rows, maximum entry, and maximum number
of columns matched the Grassmannian’s k, n, r respectively. Before gener-
ating each tableau, the number of columns was sampled from [1, r]. The
NCV SSYTs were then initialised as random arrays of entries in the range
[1, n], which were sorted (enforcing an increase along the rows), then columns
were checked and entries regenerated until the condition of strictly increas-
ing down columns was met. Exhaustive checks were then applied to ensure
each NCV SSYT was: 1) not in the respective Grassmannian CV dataset;
2) not already generated. These exhaustive checks ensure that the data is
truly an NCV SSYT. We generate 10,000 tableaux for each NCV dataset, to

14

be compared with a random sample of 10,000 tableaux from each respective
Grassmannian.

4.2. Supervised Classification

In this subsection the content of Problem 1.1 is addressed, namely: how
well can ML architectures learn to distinguish SSYT from different Grass-
mannian cluster algebras, or SSYT which are cluster variables from those
which are not?

The ML architectures considered in this work are Support Vector Ma-
chines (SVM) and dense feed-forward Neural Networks (NN).

The goal of SVMs is to find p − 1-dimensional hypersurfaces that best
separate data points of different classes in Rp, where in our case p = 24 for
the 24 entries of the SSYT. The shape of the hypersurface is dictated by the
kernel style, and a regularisation parameter adds a cost to each parameter
used to define the hypersurface – discouraging them from overfitting and
becoming too complicated. The hypersurfaces are fitted using training data
and later performance-tested with test data. The SVM we use here has
regularisation parameter of 1.0 uses a Gaussian ‘rbf’ kernel. We train until
we reach a tolerance of 0.001 for fractional improvement in the proportion of
correct classifications.

NNs are designed for complex non-linear function fitting. They are built
out of perceptrons which take a vector as input, then output a number via lin-
ear action followed by non-linear activation: output = act

(∑
i(wi·inputi)+b

)
for weights wi and bias b. Layers of these perceptrons all connected to the
subsequent layer make the NN dense, and feed-forward, as data flows through
the network from initial input, through the layers, to final output. The opti-
miser algorithm updates the weights and biases (by amounts proportional to
the learning rate) during training to minimise the loss function, which is a
measure of the difference between the NN predicted and the real output for
each specific input, over batches of input data. The NN architecture we use
consists of three layers of size 16, 32 and 16, the perceptrons in each layer
use ReLU activation, and the network is trained to minimise log-loss using
the Adam optimisation algorithm, with batch size 200 and a learning rate of
0.001 until convergence below a tolerance of 0.0001.

Both these architectures take the sklearn default hyperparameter values
[39].

The learning performance is measured using accuracy and Matthew’s
correlation coefficient (MCC) on the test set predictions. These metrics may

15

be described as functions on the confusion matrix (CM). Accuracy is the
proportion of predictions that are correctly classified (i.e., the normalised
sum of the diagonal of the confusion matrix). MCC is an analogue of this
that accounts for off-diagonal terms, such that dataset bias is avoided in
altering the validity of the measure. The learning is carried out using 5-fold
cross-validation, meaning that we train and test the network on 5 different
partitions of the data, such that the union of the test sets equals the full
dataset. This produces a set of 5 results for each learning measure, from
which we compute an average and the standard error.

The first investigation uses NNs to perform multiclassification between
the SSYT of the 3 Grassmannian CV datasets, whilst the second uses both
SVMs and NNs to perform binary classification between the CV and NCV
SSYT for each dataset. Due to the computational demands of training,
random samples of 10,000 tableaux were taken from each Grassmannian CV
dataset, to match the sizes of the generated NCV datasets.

4.2.1. Grassmannian Multiclassification

For the NN supervised multiclassification between the 3 Grassmannian
CV databases, the learning measures, with standard error over the cross-
validation, to 3 decimal places were:

Accuracy = 0.991± 0.000 , (4)

MCC = 0.986± 0.000 , (5)

CM =

0.333± 0.002 0.000± 0.000 0.000± 0.000
0.000± 0.000 0.331± 0.004 0.002± 0.000
0.000± 0.000 0.007± 0.001 0.326± 0.003

 , (6)

where in the confusion matrix entries CMij have i index as the true class
and j index as the predicted class. The three Grassmannian classes are
(1, 2, 3) = (C[Gr(3, 12)]r6,C[Gr(4, 10)]r6,C[Gr(4, 12)]r4) respectively.

These results show near-perfect performance in identifying the Grassman-
nian a tableau belongs to. This is reassuring behaviour as already by eye one
can distinguish the C[Gr(3, 12)] tableaux by the number of rows, as well as
a majority of the tableaux from the two k = 4 databases due to the number
of columns (i.e. rank) or maximum entry.

It is interesting to note that the only misclassifications are between the
C[Gr(4, 10)] r6 and C[Gr(4, 12)] r4 databases – which have natural over-
lap of tableaux in C[Gr(4, 10)] r4. Using Table 1, the two Grassmanni-
ans have 137845 variables in common; hence 137845/3089105 ∼ 0.04 of the

16

C[Gr(4, 10)] r6 data is in C[Gr(4, 12)] r4 and 137845/6346878 ∼ 0.02 of the
C[Gr(4, 12)] r4 data is in C[Gr(4, 10)] r6. Although the proportions don’t
exactly match the misclassifications (which we would expect a random pre-
dictor to get half correct), the off-diagonal entry that is larger reflects a
greater proportion that can be misclassified, as the C[Gr(4, 10)] r6 dataset is
smaller. In fact, repeating the investigation where tableaux in the overlap are
removed leads to perfect learning with measures of 1 and diagonal confusion
matrices.

4.2.2. Binary Classification of Cluster Variables from SSYT

Learning measures for both SVM and NN architectures performing binary
classification between the Grassmannian CV data and respective NCV data
are shown in Table 2.

Architecture
Learning
Measure

Grassmannian
C[Gr(3,12)] r6 C[Gr(4,10)] r6 C[Gr(4,12)] r4

SVM
Accuracy

0.913
± 0.002

0.928
± 0.001

0.925
± 0.001

MCC
0.830
± 0.004

0.867
± 0.004

0.852
± 0.002

NN
Accuracy

0.938
± 0.002

0.946
± 0.002

0.941
± 0.002

MCC
0.878
± 0.003

0.893
± 0.005

0.885
± 0.004

Table 2: Supervised binary classification between CV SSYT representing cluster variables
in the respective Grassmannians, and NCV generated matrices designed to mimic them.

Both architecture styles are incredibly successful at determining the clus-
ter variables from the full sets of SSYT. However, the still exceptional per-
formance of the SVMs indicates that there is likely some unknown implicit
structure in the SSYT entries that make them cluster variables.

In each case the NN architecture performs better, as may be expected
since the architecture is more general. The MCC scores correlate with accu-
racy, which is reassuring that the data is representative and unbiased, whilst
the better performance for C[Gr(4, 10)] r6 over C[Gr(4, 12)] r4 implies that
rank is a more important feature for determining the cluster variable prop-
erty. Explicit analysis of the misclassified SSYT in each case show no dis-

17

cernible pattern in the tableaux, confirming that the architectures are picking
up on a more subtle structure for their learning.

These results confidently answer Problem 1.1 affirmatively: ML can pick
up on the underlying structure that makes a SSYT a cluster variable.

4.3. Principal Component Analysis

While supervised learning methods are better adapted to address the
classification-style of Problem 1.1, techniques from the ML subfield of unsu-
pervised learning are better suited to extracting such underlying structure in
the data as desired for Problem 1.2.

The first of the techniques we consider is Principal Component Analy-
sis (PCA). As a technique, PCA extracts the most important features of a
dataset through diagonalisation of the covariance matrix between the data
dimensions across the dataset. Identifying the eigenvectors of the covariance
matrix and sorting them by decreasing eigenvalue, the data points can be pro-
jected onto their most significant principal components which best describe
the most variance – and hence structure – in the data.

Traditional PCA, as just described, may be generalised to kernel PCA.
There, the data points are conceptually mapped to a higher-dimensional
space where distinguishing them becomes substantially easier due to the
larger number of degrees of freedom. Then the principal components in this
space can be computed, the transformed data points projected onto them,
and mapped back to the original space. However, these higher-dimensional
computations are costly and can in fact be avoided altogether by using the
‘kernel trick’. The trick combines the above steps by defining a kernel that
represents this mapping and projection, circumventing the need to actually
compute in the higher-dimensional space in practice.

Whereas traditional PCA acts effectively with a linear mapping and hence
linear kernel, kernel PCA can introduce non-linearity into the principal com-
ponents, and hence identify non-linear structure in the data.

As a testing ground, we perform PCA (i.e. linear kernel PCA) on the
Grassmannian CV data and equivalent NCV datasets. In each case the 24
eigenvalues over this 24-dimensional data have largest 2 normalised values

C[Gr(3, 12)] r6 =⇒ (0.592, 0.138) ,

C[Gr(4, 10)] r6 =⇒ (0.631, 0.139) ,

C[Gr(4, 12)] r4 =⇒ (0.488, 0.179) ,

18

(a) C[Gr(3, 12)] r6 (b) C[Gr(4, 10)] r6

(c) C[Gr(4, 12)] r4

Figure 2: PCA decomposition (linear kernel) of the SSYT CV Grassmannian and NCV
data for each of the respective datasets. The PCA shows that the NCV data generation
is representative in the principal components.

respectively. These clearly dominate the data structure (other eigenvalues
are all at least an order of magnitude smaller), and are respectively plotted
as 2-dimensional plots in Figure 2.

As shown in each of these plots the NCV data (10,000 tableaux) sits
nicely within the projections of the much larger Grassmannian CV datasets.
This again emphasises that the NCV data is representative in the principal
components, and hence there is no significant linear structure that the su-
pervised architectures can take advantage of in order to learn to distinguish
the NCV data. It also further supports the point that the property that
distinguishes cluster from NCV SSYT is more subtle, and hence it is even
more impressive that the ML methods can pick up on it so successfully.

The clear clustering of each dataset is intriguing behaviour in itself – one
we will further analyse in the following subsections.

19

(a) Linear kernel (b) Gaussian kernel

Figure 3: PCA decomposition of the SSYT data for the 3 Grassmannians, using (a)
linear and (b) Gaussian kernels respectively. Note there is significant overlap between
C[Gr(4, 10)] r6 and C[Gr(4, 12)] r4 as expected, and cluster separation is largely due to
padding – hence correctly clustering according to rank. The Gaussian kernel PCA was
computed over a sample of 10,000 CV SSYT from each Grassmannian due to memory
limits with the full datasets.

4.3.1. PCA Clustering

Performing PCA on all the Grassmannian CV datasets together produces
an amalgamation of the aforeseen individual PCA plots for each dataset.
This PCA had dominant two eigenvalues (0.592, 0.214), again reinforcing
the 2D plotting of the two most significant principal components. These two
components are shown in Figure 3a, and the equivalent two for a Gaussian
‘rbf’ kernel in Figure 3b. The Gaussian kernel PCA was performed over
samples of 10,000 SSYT per dataset to allow feasible computation.

The linear PCA shows a clear separation of the C[Gr(3, 12)] r6 data, and
a majority of the C[Gr(4, 10)] r6 data separating from the C[Gr(4, 12)] r4
data. This behaviour indicates simple structure differentiating the SSYT in
each Grassmannian, which we may expect since the padding of the bottom
row of C[Gr(3, 12)] r6 data clearly separates it, whilst equally padding of
the rightmost two columns for the majority of the C[Gr(4, 12)] r4 data helps
identify that data (where the maximum entry > 10). There is overlap in
the leftmost part of the linear PCA plot, where the two k = 4 Grassmanni-
ans have common data. This was computationally confirmed to be exactly
and exclusively the overlap data C[Gr(4, 10)] r4. This separation supports
the exceptional results in §4.2.1 where the Grassmannians could be easily
distinguished.

We delay the analysis of the separation and shapes of the clusters within

20

each Grassmannian until the next subsection. Having tried other kernels
for all the Grassmannian data, the pattern appeared most striking for a
Gaussian kernel. In this kernel PCA the Grassmannians are clearly separated
into symmetrically distributed lines, with some overlap of the low n and low
rank tableaux where k = 4, and additionally some surprising overlap with
the C[Gr(3, 12)] r6 data. Since the kernel was Gaussian this indicates the
patches in Figure 3a were approximately Gaussian distributed, which reduce
to a linear parameter in each case for each dataset’s line.

4.3.2. Dissecting the Clusters

The clear separation of the individual clusters for each Grassmannian CV
dataset emblematises significant data structure. The cause of this cluster-
ing should be simple, and is well shown by the linear PCA plots for the
rank-partitioning of the C[Gr(3, 12)] data in Figure 4a: namely, each clus-
ter corresponds to a different rank of the data, simply identifiable by the
padding, and hence easily leading to cluster separation.

The cluster relative sizes and shapes are more interesting, and are mani-
festly represented by the n-partitioning of the data in Figure 4b, which gives
the clusters a mussel-like appearance. These plots show that all the clusters
exhibit higher n ≥ 9 tableaux; however, only the smallest cluster has data
for n ≤ 8. This is likely due to the fact that as one goes to larger ranks there
are more tableau boxes to fill which require a higher maximum number to
satisfy the SSYT conditions. This split can be attributed to the fact that
many more ranks can be used to construct tableaux when n > 8, as shown
in Table 1. This table also shows why no n ≤ 8 tableaux appear in the larger
clusters, as these exclusively correspond to higher rank data.

The cluster sizes correlate with the rank; this may be expected since
higher rank tableaux have more entries and thus more combinations of num-
bers are available. However a priori, since we know that not all SSYT are
cluster variables one may not expect – although we can build more SSYT at
higher rank – that there would also be more cluster variables; this analysis
shows that this is the case.

The cluster shapes show large amounts of overlap between n-partitions in
the data, where each tableau appears to have a counterpart with a higher n;
one may imagine this to be due to each tableau with maximum entry (say 9)
being mapped on top of an identical tableau with all the same entries except
that the final largest box has entry 10, 11, or 12. As the n value increases
by one there is also a large number of new tableaux that can be created by

21

(a) C[Gr(3, 12)] partitioned according to r ∈ [1, 6]
(b) C[Gr(3, n)] r6 partitioned according to n ∈
[3, 12]

Figure 4: PCA decomposition (linear kernel) of the C[Gr(3, 12)] SSYT data, plotted with
partitions according to the rank r or maximum entry n. The PCA shows that the clusters
separate according to rank, whilst the differing values of n expand the cluster sizes, akin
to a mussel. Equivalent behaviour also holds for the other Grassmannians considered.

increasing the largest entry to this new value, then trialing all combinations
of increasing preceding entries by 1. This is what causes the clusters to grow
as n is increased.

This clustering behaviour is repeated in the other two datasets also, with
near-identical appearance, indicative of the structure being relevant to all
Grassmannian CV data, and not specifically the C[Gr(3, 12)] data shown in
Figure 4.

Therefore we can conclude that linear PCA can be used to distinguish
clusters of Grassmannian cluster variables as SSYT according to their rank
and k values, and gives an indication of the correlations with n. However, it
cannot distinguish the NCV SSYT data from the CV SSYT data.

4.4. K-Means Clustering

An alternative unsupervised ML technique used for clustering is K-Means.
This takes initialised centres for a preset number of clusters and aims to
minimise the squared distance between each data point and its nearest cluster
(whose sum is the inertia I). It does this by iteratively allocating all data
points to their nearest cluster, then replacing that cluster centre with the
centroid of the cluster, then reallocating closest clusters for each data point.

Clustering performance is measured with inertia I, which is the total
Euclidean squared distance between each point and its closest cluster centre.
Further to the full sum, inertia may also be normalised in various ways to

22

improve interpretability. The two normalisation methods considered were:
(1) divide by the total number of points and dimensions to give the average
squared distance that a datapoint was from its closest cluster centre in a
single dimension Î; and (2) divide by total number of points and dimensions,
and the range of data entries Î ′ to give a more relative version of (1).

The K-Means clustering algorithm used the sci-kit learn standard hy-
perparameters [39], such that 10 random initialisations are run to a conver-
gence of 0.0001 tolerance in the inertia update or for a maximum of 300
iteration steps, with the best initialisation run selected.

To determine the optimal number of clusters to use, an elbow method
is applied which reruns the clustering algorithm for a range of numbers of
clusters and plots the inertia relative to the final inertia using just one cluster,
and adding 0.01 × the number of clusters (so as to penalise using too many
clusters). The lowest value across this range gives the optimal number of
clusters.

4.4.1. Distinguishing Grassmannians

Whereas the PCA shows that the Grassmannian CV datasets can be well
distinguished with simple linear structure using only a few components, we
now investigate the use of K-Means on the full 24-dimensional tableaux vec-
tors to further probe this observed clustering in the full-dimensional space.
To first exemplify the utility of K-Means, we perform clustering for a con-
catenated list of all the tableaux across the three datasets, with a preset
number of clusters of 3.

The K-Means algorithm converges, giving inertia measures:

I = 672000000, Î = 2.32, Î ′ = 0.193, (7)

to three significant figures. Dissecting how each of the datasets split between
the clusters leads to the distributions shown in Table 3.

The inertia results are best interpreted using Î ′, where after clustering has
converged, each datapoint is on average < 20% of the range of tableaux en-
tries away from its closest cluster centre in each dimension. Since it has been
established that there is already a noticeable overlap between the datasets
this clustering is quite strong, and exemplifies the power of this technique in
high-dimensional clustering.

The distributions of the cluster allocations for tableaux in each dataset,
as shown in Table 3, solidify the algorithm’s ability to distinguish tableaux

23

Cluster
Grassmannian

C[Gr(3, 12)] r6 C[Gr(4, 10)] r6 C[Gr(4, 12)] r4
1 2656042 0 0
2 0 2951260 0
3 170 137845 6346878

Table 3: The distributions of the three Grassmannian CV datasets between the 3 clusters
generated through the K-Means process.

according to the Grassmannian they relate to. The misclassifications where
tableaux in the same Grassmannian were put in a different cluster happened
with proportions 0.00006, 0.045, 0 for each of the C[Gr(3, 12)] r6, C[Gr(4, 10)]
r6, C[Gr(4, 12)] r4 datasets respectively. Further explicit analysis shows
those misclassified for C[Gr(3, 12)] r6 all had rank ≤ 2 and likely the large
number of zeros for these padded tableaux threw off the clustering, whilst
those misclassified for C[Gr(4, 10)] r6 all had rank ≤ 4 and were exactly the
137845 tableaux in the overlap with C[Gr(4, 12)] r4.

4.4.2. Distinguishing Cluster Tableaux

Now using the K-Means clustering method to probe the structure differ-
entiating SSYT which are cluster variables from those which are not, each
Grassmannian CV dataset is compared against its respective NCV dataset.

Manually setting 2 clusters did not partition as well the full list of all
SSYT (both cluster variables, and non-cluster variables) into their respective
classes for each of the Grassmannians. Although relatively more weight was
put into one of the clusters for each case. These partitions are shown in Table
4, and show that ∼ 20% of the data is misclassified under the clustering
in each case. Explicit analysis for each of the Grassmannians (where rmax
indicates the maximum rank in the dataset) shows that the misclassified
NCV tableaux were all of rank rmax, which were actually all of the NCV
tableaux with rank rmax in the NCV datasets, whilst the misclassified CV
tableaux were all rank < rmax, being all the rank < rmax tableaux in the
respective datasets. Therefore although Table 4 appears to show clustering
performance related to this property, it is only an artefact of the clustering
algorithm partitioning off the largest rank.

To further investigate this K-Means on the clustering behaviour the elbow
method was applied to identify the optimum number of clusters for partition-
ing the CV from NCV tableaux for the C[Gr(3, 12)] r6 dataset. The scaled

24

Cluster
Grassmannian

C[Gr(3, 12)] r6 C[Gr(4, 10)] r6 C[Gr(4, 12)] r4
CV NCV CV NCV CV NCV

1 2061132 595080 2352760 735345 5963856 383022
2 1969 8031 2311 7689 3254 6746

Table 4: The distributions of the ‘CV’ cluster variable SSYT and the ‘NCV’ non-cluster
variable SSYT between the 2 clusters generated through the K-Means process, for each of
the Grassmannian datasets respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 In

er
tia

Figure 5: The elbow method for determining the optimum number of K-Means clusters
when clustering the C[Gr(3, 12)] r6 dataset with penalty factor of 0.01, discouraging too
many clusters.

inertia (relative to inertia with 1 cluster) is plotted for varying numbers of
clusters in Figure 5.

The optimum produced by this process was 9 clusters, although as can be
seen from the graph there is no obvious optimum as the performance plateaus
such that adding additional clusters does not improve the clustering perfor-
mance. These results clearly show that the K-Means algorithm cannot find
structure in these datasets that leads to an obvious clustering, in particular
one which separates the SSYT which correspond to the cluster variables.

Overall K-Means managed to distinguish Grassmannian CV datasets us-
ing the rank partitioning, corroborating the PCA results, however struggled
to separate the CV and NCV tableaux, further strengthening the successes

25

(a) C[Gr(3, 12)], r ≤ 6 (b) C[Gr(4, 10)], r ≤ 6 (c) C[Gr(4, 12)], r ≤ 4

Figure 6: NN gradient saliency images representing the averaged absolute values of the
classification output gradients with respect to each of the respective tableaux inputs, for
each of the Grassmannians considered. Lighter colours indicate the larger magnitude
gradients, and hence the most dominantly useful entries for learning.

of the supervised ML methods in learning this.

4.5. NN Gradient Saliency

The most promising results of the ML analysis are that simple NN ar-
chitectures were able to determine whether a given SSYT corresponds to a
cluster variable or not. Determining this is not possible directly, and the clus-
ter variable and non-cluster variable datasets are certainly not distinguish-
able by eye. Moreover, unsupervised methods were also unable to identify
simple structure which separates these datasets, strengthening further the
performance of these NNs.

To dissect this exceptional performance, the technique of gradient saliency
was used on the trained NNs to determine which parts of the inputs most sig-
nificantly contributed to the respective classification of a tableaux throughout
the test dataset. In this process, the gradient of the 0-dimensional, single en-
try, binary output is taken with respect to each of the input 24-dimensions,
for all of the tableaux in the test dataset. These gradients are then aver-
aged, absolute values taken, and plotted to provide a visual representation
of the more dominant features used by the NNs to perform the classification.
These images are shown for each of the binary classification investigations
performed between cluster variable and non-cluster variable SSYT for each
dataset in Figure 6. Note that since higher functionality was required for the
NNs to perform the saliency analysis, tensorflow [40] was used to construct
them (with the same hyperparameters as before).

In each of the images the lighter colours indicate the gradients with the
larger average absolute values over the test dataset. Perhaps as expected for
the C[Gr(3, 12)] dataset the bottom row has no dominant features as these

26

entries are all an artefact of padding, as is the same for the C[Gr(4, 12)] rank
4 data where the last two columns are padded. Interestingly though, in all
cases the central columns have equivalently negligible gradients, and hence
negligible effects on the learning.

The most dominant features seem to be the top-right and bottom-left
entries, excluding the C[Gr(4, 12)] rank 4 and C[Gr(3, 12)] rank 6 padding
features. Hence the structure the NNs are using to discern whether a SSYT is
a cluster variable or not is likely almost entirely determined by these entries.
Some symbolic regression methods were implemented, using gplearn, to
attempt to identify an equation that may relate these specific entries to
the cluster variable prediction. However no suitable simple equation could
be found, and hence the NNs use of these entries to determine the cluster
variable nature of a generic tableaux in the Grassmannian is likely highly
complicated.

5. Conclusion

In this paper, high performance computing (HPC) is applied to calculate
cluster variables in Grassmannian cluster algebras C[Gr(k, n)]. We obtained
cluster variables in C[Gr(3, 12)] up to degree 6 (the corresponding semistan-
dard Young tableaux has at most 6 columns), in C[Gr(4, 10)] up to degree
6, and in C[Gr(4, 12)] up to degree 4. These cluster variables are computed
for the first time and they have applications from geometry, to algebra, and
to scattering amplitudes in physics [5, 7, 8, 9, 19]. Using these datasets, we
verified Conjectures 3.1 and 3.2.

Supervised ML methods learnt to classify tableaux into each algebra with
accuracy > 0.99, using the simple rank structure easily extractable from the
data. These architectures then also learnt to identify cluster variable SSYT
from tableaux which were not cluster variables for each algebra to accura-
cies ∼ 0.95. This strong performance was further supported by PCA results
showing the non-cluster variable data was representative of the true clus-
ter variable data in each case. PCA also indicated that rank was the most
dominant feature explaining data variation, due to the padding structure it
requires. Clustering results with K-Means near perfectly separated the Grass-
mannians, but could also not differentiate the NCV tableaux, only clustering
according to the rank information.

The lack of linear (and non-linear) structure in the datasets for the un-
supervised methods to extract makes the supervised architecture even more

27

impressive, confirming the utility of these advanced computational meth-
ods in analysing Grassmannian tableaux. Through methods of NN gradient
saliency the dominant tableaux features used for learning were the last non-
trivial entry of the first column and first entry of the last non-trivial column,
and it is likely there is structure in these entries that strongly correlates with
a SSYT being a cluster variable.

Acknowledgments

MWC would like to thank the Isaac Newton Institute for Mathemati-
cal Sciences, Cambridge, for support and hospitality during the programme
‘Cluster algebras and representation theory’ where work on this paper was
undertaken. This work was supported by EPSRC grant no EP/R014604/1.
PPD is grateful to the London Mathematical Society for grants 42035 and
42111, and to the London Institute for Mathematical Sciences for its hospi-
tality. YHH would like to thank STFC for grant ST/J00037X/2. E. Heyes
would like to thank SMCSE at City, University of London for the PhD stu-
dentship, as well as the Jersey Government for a postgraduate grant. E. Hirst
would like to thank STFC for a PhD studentship. JRL is supported by the
Austrian Science Fund (FWF): Einzelprojekte P34602. The computational
results presented have been achieved in part using the Vienna Scientific Clus-
ter (VSC), and the City, University of London high performance computing
service (hyperion).

References

[1] S. Fomin, A. Zelevinsky, Cluster algebras I: foundations, Journal of the
American Mathematical Society 15 (2) (2002) 497–529.

[2] D. Hernandez, B. Leclerc, Cluster algebras and quantum affine algebras,
Duke Mathematical Journal 154 (2) (2010) 265–341.

[3] B. T. Jensen, A. D. King, X. Su, A categorification of Grassman-
nian cluster algebras, Proceedings of the London Mathematical Society
113 (2) (2016) 185–212.

[4] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, J. Trnka,
A. Postnikov, Grassmannian geometry of scattering amplitudes, Cam-
bridge University Press, 2016.

28

[5] N. Arkani-Hamed, T. Lam, M. Spradlin, Non-perturbative geometries
for planar N = 4 SYM amplitudes, J. High Energ. Phys. (03) (2021) 65.
doi:https://doi.org/10.1007/JHEP03(2021)065.

[6] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Papathana-
siou, S. Marcus, Heptagons from the Steinmann cluster bootstrap, J.
High Energ. Phys. (02) (2017) 137. doi:https://doi.org/10.1007/

JHEP02(2017)137.

[7] J. Drummond, J. Foster, Ö. Gürdoğan, C. Kalousios, Tropical Grass-
mannians, cluster algebras and scattering amplitudes, Journal of High
Energy Physics 2020 (4) (2020) 146. doi:https://doi.org/10.1007/

JHEP04(2020)146.

[8] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Mo-
tivic amplitudes and cluster coordinates, Journal of High Energy Physics
2014 (1) (2014) 91. doi:https://doi.org/10.1007/JHEP01(2014)

091.

[9] N. Henke, G. Papathanasiou, How tropical are seven-and eight-particle
amplitudes, Journal of High Energy Physics 2020 (8) (2020) 1–50.

[10] S. Franco, D. Galloni, A. Mariotti, Bipartite Field Theories, Cluster
Algebras and the Grassmannian, J. Phys. A 47 (47) (2014) 474004.
arXiv:1404.3752, doi:10.1088/1751-8113/47/47/474004.

[11] S. Franco, G. Musiker, Higher Cluster Categories and QFT Dualities,
Phys. Rev. D 98 (4) (2018) 046021. arXiv:1711.01270, doi:10.1103/
PhysRevD.98.046021.

[12] S. Franco, A. Hanany, Y.-H. He, P. Kazakopoulos, Duality walls, duality
trees and fractional branes (6 2003). arXiv:hep-th/0306092.

[13] W. Chang, B. Duan, C. Fraser, J.-R. Li, Quantum affine algebras and
Grassmannians, Mathematische Zeitschrift 296 (3) (2020) 1539–1583.

[14] K. Baur, D. Bogdanic, A. G. Elsener, J.-R. Li, Rigid indecomposable
modules in grassmannian cluster categories (2020). arXiv:2011.09227.

[15] J. S. Scott, Grassmannians and cluster algebras, Proceedings of the
London Mathematical Society 92 (2) (2006) 345–380.

29

https://doi.org/https://doi.org/10.1007/JHEP03(2021)065
https://doi.org/https://doi.org/10.1007/JHEP02(2017)137
https://doi.org/https://doi.org/10.1007/JHEP02(2017)137
https://doi.org/https://doi.org/10.1007/JHEP04(2020)146
https://doi.org/https://doi.org/10.1007/JHEP04(2020)146
https://doi.org/https://doi.org/10.1007/JHEP01(2014)091
https://doi.org/https://doi.org/10.1007/JHEP01(2014)091
http://arxiv.org/abs/1404.3752
https://doi.org/10.1088/1751-8113/47/47/474004
http://arxiv.org/abs/1711.01270
https://doi.org/10.1103/PhysRevD.98.046021
https://doi.org/10.1103/PhysRevD.98.046021
http://arxiv.org/abs/hep-th/0306092
http://arxiv.org/abs/2011.09227

[16] V. Chari, A. Pressley, et al., A guide to quantum groups, Cambridge
University Press, 1995.

[17] B. Leclerc, Imaginary vectors in the dual canonical basis of Uq(n) (2002).
arXiv:math/0202148.

[18] V. Chari, A. Pressley, Factorization of representations of quantum affine
algebras, Modular interfaces,(Riverside CA 1995), AMS/IP Stud. Adv.
Math 4 (1997) 33–40.

[19] N. Henke, G. Papathanasiou, Singularities of eight- and nine-particle
amplitudes from cluster algebras and tropical geometry, Journal of High
Energy Physics 2021 (7) (2021) 1–60.

[20] Y.-H. He, Deep-Learning the Landscape (6 2017). arXiv:1706.02714.

[21] J. Carifio, J. Halverson, D. Krioukov, B. D. Nelson, Machine Learning
in the String Landscape, JHEP 09 (2017) 157. arXiv:1707.00655, doi:
10.1007/JHEP09(2017)157.

[22] D. Krefl, R.-K. Seong, Machine Learning of Calabi-Yau Volumes, Phys.
Rev. D 96 (6) (2017) 066014. arXiv:1706.03346.

[23] F. Ruehle, Evolving neural networks with genetic algorithms to study
the String Landscape, JHEP 2017 (08) (2017) 038. arXiv:1706.07024.

[24] V. Jejjala, D. K. Mayorga Pena, C. Mishra, Neural Network Approxi-
mations for Calabi-Yau Metrics (12 2020). arXiv:2012.15821.

[25] P. Berglund, B. Campbell, V. Jejjala, Machine Learning Kreuzer-Skarke
Calabi-Yau Threefolds (12 2021). arXiv:2112.09117.

[26] A. Cole, S. Krippendorf, A. Schachner, G. Shiu, Probing the Structure
of String Theory Vacua with Genetic Algorithms and Reinforcement
Learning, in: 35th Conference on Neural Information Processing Sys-
tems, 2021. arXiv:2111.11466.

[27] G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, D. Rodriguez-Gomez,
Brain webs for brane webs, Phys. Lett. B 833 (2022) 137376. arXiv:

2202.05845, doi:10.1016/j.physletb.2022.137376.

30

http://arxiv.org/abs/math/0202148
http://arxiv.org/abs/1706.02714
http://arxiv.org/abs/1707.00655
https://doi.org/10.1007/JHEP09(2017)157
https://doi.org/10.1007/JHEP09(2017)157
http://arxiv.org/abs/1706.03346
http://arxiv.org/abs/1706.07024
http://arxiv.org/abs/2012.15821
http://arxiv.org/abs/2112.09117
http://arxiv.org/abs/2111.11466
http://arxiv.org/abs/2202.05845
http://arxiv.org/abs/2202.05845
https://doi.org/10.1016/j.physletb.2022.137376

[28] D. S. Berman, Y.-H. He, E. Hirst, Machine learning Calabi-Yau hy-
persurfaces, Phys. Rev. D 105 (6) (2022) 066002. arXiv:2112.06350,
doi:10.1103/PhysRevD.105.066002.

[29] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, S. Majumder,
Polytopes and Machine Learning (9 2021). arXiv:2109.09602.

[30] J. Bao, Y.-H. He, E. Hirst, Neurons on Amoebae, J. Symb. Comput. 116
(2022) 1–38. arXiv:2106.03695, doi:10.1016/j.jsc.2022.08.021.

[31] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, S. Majumder,
Hilbert series, machine learning, and applications to physics, Phys. Lett.
B 827 (2022) 136966. arXiv:2103.13436, doi:10.1016/j.physletb.
2022.136966.

[32] E. Hirst, Machine Learning for Hilbert Series, in: Nankai Symposium on
Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniver-
sary, 2022. arXiv:2203.06073.

[33] Y.-H. He, E. Hirst, T. Peterken, Machine-learning dessins d’enfants:
explorations via modular and Seiberg–Witten curves, J. Phys. A 54 (7)
(2021) 075401. arXiv:2004.05218, doi:10.1088/1751-8121/abbc4f.

[34] M. Manko, An Upper Bound on the Critical Volume in a Class of Toric
Sasaki-Einstein Manifolds (9 2022). arXiv:2209.14029.

[35] S. Chen, Y.-H. He, E. Hirst, A. Nestor, A. Zahabi, Mahler Measuring
the Genetic Code of Amoebae (12 2022). arXiv:2212.06553.

[36] P.-P. Dechant, Y.-H. He, E. Heyes, E. Hirst, Cluster Algebras: Network
Science and Machine Learning (3 2022). arXiv:2203.13847.

[37] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, Y. Xiao, Quiver
Mutations, Seiberg Duality and Machine Learning, Phys. Rev. D
102 (8) (2020) 086013. arXiv:2006.10783, doi:10.1103/PhysRevD.

102.086013.

[38] G. Musiker, C. Stump, A compendium on the cluster algebra and quiver
package in Sage (2011). arXiv:1102.4844.

31

http://arxiv.org/abs/2112.06350
https://doi.org/10.1103/PhysRevD.105.066002
http://arxiv.org/abs/2109.09602
http://arxiv.org/abs/2106.03695
https://doi.org/10.1016/j.jsc.2022.08.021
http://arxiv.org/abs/2103.13436
https://doi.org/10.1016/j.physletb.2022.136966
https://doi.org/10.1016/j.physletb.2022.136966
http://arxiv.org/abs/2203.06073
http://arxiv.org/abs/2004.05218
https://doi.org/10.1088/1751-8121/abbc4f
http://arxiv.org/abs/2209.14029
http://arxiv.org/abs/2212.06553
http://arxiv.org/abs/2203.13847
http://arxiv.org/abs/2006.10783
https://doi.org/10.1103/PhysRevD.102.086013
https://doi.org/10.1103/PhysRevD.102.086013
http://arxiv.org/abs/1102.4844

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python, Journal of Machine Learning
Research 12 (2011) 2825–2830.

[40] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, software available from ten-
sorflow.org (2015).
URL https://www.tensorflow.org/

32

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

	1 Introduction
	2 Grassmannian cluster algebras
	2.1 Cluster algebras
	2.2 Grassmannian cluster algebras and semistandard Young tableaux
	2.3 Dominance order
	2.4 Cluster variables in C[`39`42`"613A``45`47`"603AGr(k,n)]

	3 Cluster variables in Grassmannian cluster algebras
	3.1 Some finite-type cluster algebras
	3.2 Numbers of cluster variables with given ranks

	4 Machine Learning
	4.1 Data Formatting
	4.1.1 NCV Data Generation

	4.2 Supervised Classification
	4.2.1 Grassmannian Multiclassification
	4.2.2 Binary Classification of Cluster Variables from SSYT

	4.3 Principal Component Analysis
	4.3.1 PCA Clustering
	4.3.2 Dissecting the Clusters

	4.4 K-Means Clustering
	4.4.1 Distinguishing Grassmannians
	4.4.2 Distinguishing Cluster Tableaux

	4.5 NN Gradient Saliency

	5 Conclusion

