
LIMS-2022-011

Cluster Algebras: Network Science and

Machine Learning

Pierre-Philippe Dechant,a,b,c Yang-Hui He,d,e,f,g Elli Heyes,e,d Edward Hirste,d

aSchool of Science, Health and Technology, York St John University, YO31 7EX, UK
bDepartment of Mathematics, University of York, YO10 5DD, UK
cYork Cross-disciplinary Centre for Systems Analysis, University of York, YO10 5DD, UK
dLondon Institute for Mathematical Sciences, Royal Institution, London W1S 4BS, UK
eDepartment of Mathematics, City, University of London, EC1V 0HB, UK
fMerton College, University of Oxford, OX1 4JD, UK
gSchool of Physics, NanKai University, Tianjin, 300071, P.R. China

E-mail: ppd22@cantab.net, hey@maths.ox.ac.uk,

elli.heyes@city.ac.uk, edward.hirst@city.ac.uk

Abstract: Cluster algebras have recently become an important player in mathe-

matics and physics. In this work, we investigate them through the lens of modern

data science, specifically with techniques from network science and machine-learning.

Network analysis methods are applied to the exchange graphs for cluster algebras of

varying mutation types. The analysis indicates that when the graphs are represented

without identifying by permutation equivalence between clusters an elegant symmetry

emerges in the quiver exchange graph embedding. The ratio between number of seeds

and number of quivers associated to this symmetry is computed for finite Dynkin type

algebras up to rank 5, and conjectured for higher ranks. Simple machine learning tech-

niques successfully learn to differentiate cluster algebras from their seeds. The learning

performance exceeds 0.9 accuracies between algebras of the same mutation type and

between types, as well as relative to artificially generated data.

ar
X

iv
:2

20
3.

13
84

7v
1

 [
m

at
h.

C
O

]
 2

5
M

ar
 2

02
2

mailto:ppd22@cantab.net
mailto:hey@maths.ox.ac.uk
mailto:elli.heyes@city.ac.uk
mailto:edward.hirst@city.ac.uk

Contents

1 Introduction 1

2 Cluster Algebras Review 2

2.1 Exchange Graphs 4

2.2 Cluster Algebra Types 6

3 Exchange Graph Data 7

3.1 Network Analysis 11

3.2 Generalised Associahedra & Seed Equivalence 15

3.3 Quiver Exchange Graphs 20

3.3.1 All Types to Depth 4 20

3.3.2 Quiver Generalised Associahedra 22

4 Machine Learning 25

4.1 Distinguishing Cluster Algebra Types 27

4.2 Learning at Varying Depths 30

4.3 Identifying Cluster Algebras 30

5 Summary & Outlook 32

References 32

1 Introduction

Cluster algebras [1–6], have seen an exponential growth in interest over recent years.

As objects which take root in combinatorics, geometry, and number theory, their mu-

tation structure connecting sets of algebra generators is arising in more and more new

contexts. Of these contexts, physics has offered a significant number. Beyond an in-

terpretation of the exchange graph mutation process as the action of Seiberg duality

[7] in connecting IR equivalent 4d N = 1 gauge theories [8–12], there are even exten-

sions of these algebras to incorporate more general quantum field theory symmetries

[13]. Cluster algebras have led to a variety of results in higher Toda theories [14–16],

and provided new methods of looking at wall crossing [17, 18]. Moreover, a particu-

larly fruitful application has been to the computation of scattering amplitudes [19–21].

– 1 –

Furthermore, the perturbative and computationally demanding approach of computing

Feynman integrals order by order can in some cases be replaced through consideration

of amplituhedra and positive Grassmannians [22, 23].

As the theory develops and computations require knowledge of larger and larger

cluster algebras, the field of their physical application becomes better and better suited

for ‘big data’ techniques. Machine learning (ML) is a topical and equally fast-developing

new field of techniques suited for learning properties of large datasets, especially in

theoretical physics and pure mathematics. The techniques for ML range from non-

linear function fitting and landscape searching, to clustering and pattern recognition;

and in [24–28] they were first introduced to the string landscape. Further to their

success in the algebraic geometry sector of string theory [29–40] and the related high-

energy physics [41–46], strong results from ML application have also been seen in

various fields of mathematics [38, 47–55]. Particularly relevant to the present context

are [56] where the study of ML on algebraic structures was initiated, [57] where ML

was applied to quiver mutation, as well as [58] where ML was utilized in classification

problems in commutative algebra and [59] where learning strategies were imposed in

the key step of Buchberger algorithm in algebraic geometry.

In this work, we initiate the application of ML techniques to the theory of cluster

algebras, with the hope that as they develop they will offer insight beyond the successes

here. We begin in section §2 with a brief review of cluster algebras, the relevant

terminology, and how they naturally fall into classification types. A key point of focus

is the exchange graph, which dictates the structure of the mutation action, and in

section §3 we examine these for a variety of cluster algebras using a range of techniques

from the network analysis toolbox. In section §4 the prototypical supervised machine

learning architecture of feed-forward neural networks is used to learn structures inherent

in seeds and clusters. Binary as well as multi-class classifications between the different

algebras considered show very strong performance. Summary comments and outlook

are provided in section §5.

The coding scripts and datasets associated to this work are available at the respec-

tive GitHub: https://github.com/edhirst/ClusterAlgebrasML.git.

2 Cluster Algebras Review

A Cluster Algebra of rank r is a commutative subring of an ambient field of rational

functions in r variables [1–3]. Each algebra is constructively defined through some size

r subset of the algebra’s generators {xi} known as a cluster (where each generator is

a cluster variable), along with an r × r exchange matrix. Together, the cluster and

– 2 –

https://github.com/edhirst/ClusterAlgebrasML.git

the exchange matrix form a seed, from which all cluster variables can be generated via

mutation, thus providing the full set of generators to define the algebra.

From an initial seed, action of the mutation process on a chosen cluster variable in

a cluster exchanges it for another cluster variable not contained in that cluster. The

exchange matrix also gets mutated. Mutation hence changes the seed to another one,

different from the original. Continuing this, repeated action of the mutation process

would produce all the seeds (of which there may be infinite) and the union of all the

clusters from all the seeds is the algebra’s complete set of generators. Hence any seed

can be validly used to generate all other seeds via mutation.

The exchange matrix associated to each seed may be defined via the signed adja-

cency matrix of a quiver, making it a skew-symmetric matrix, bij. Note that this does

restrict the cluster algebra definition to skew-symmetric cluster algebras of geometric

type. These quivers are weighted directed graphs on r vertices with no loops or 2-cycles

such that ` arrows exist from vertex i to vertex j if bij = −bji = ` in the exchange ma-

trix. Extension can be made to skew-symmetrizable but not skew-symmetric matrices,

drawing the respective quiver edges with a double weighting (bij, bji) where bij 6= −bji.
Given a seed, one can mutate about each of the r cluster variables, each choice

producing a different seed. For mutation about variable xk the cluster {xi} updates its

variables via

xi 7−→ x′i =

{(∏
bµi>0 x

bµi
µ +

∏
bνi<0 x

−bνi
ν

)
/xi

∣∣ i = k

xi
∣∣ i 6= k

(2.1)

such that only the chosen cluster variable updates, and it does so based on which

variables’ vertices are connected by inward (bµk > 0) or outward (bνk < 0) edges to the

mutated vertex in the exchange matrix’s quiver. This process produces a new cluster

variable which is a Laurent polynomial in the initial seed’s variables, and this Laurent

phenomenon is preserved such that all cluster variables after any number of mutations

can be expressed as Laurent polynomials of these initial cluster variables.

Further to changing the cluster, mutation of a seed about a chosen cluster variable,

xk, also mutates the seed’s exchange matrix

bij 7−→ b′ij =


−bij

∣∣ k = i or j

bij + bikbkj
∣∣ bik > 0 and bkj > 0

bij − bikbkj
∣∣ bik < 0 and bkj < 0

bij
∣∣ otherwise

(2.2)

This in the language of the quiver amounts to reversing the direction of all arrows

incident to vertex k associated to variable xk, then for all 2-paths through the vertex

– 3 –

µ → k → ν adding an arrow ν → µ (closing the 2-path into a 3-cycle), and finally

removing all arrows that form 2-cycles in the quiver.

In the physical interpretation, quivers may be used to represent the particle con-

tent of supersymmetric gauge theories [60, 61]. Here quiver vertices dictate the gauge

groups of the theory (which has 4 supercharges when a directed graph) along with the

respective vector multiplets, whilst arrows represent chiral multiplets in bifundamental

representations of the gauge groups from the vertices that they connect. The mutation

process on the quivers then is equivalent to Seiberg duality [7, 12, 62–64], such that

the gauge theories of all quivers that are related via mutation have the same IR fixed

point. The reader is referred to [12, 63] for the duality trees in gauge theory.

2.1 Exchange Graphs

Since an initial seed can be mutated on each of its r cluster variables, each seed can

mutate to r different seeds. Iterating this mutation produces all possible seeds; each

may be used to define the entire cluster algebra (hence the name). This mutation pro-

cess between seeds may also be represented in the language of graph theory. Here each

seed is associated to a vertex, and an edge exists between any two vertices if mutation

takes either of the vertices’ seeds to the other vertex’s seed. Since the mutation process

is an involution (such that mutating on a variable just produced via mutation reverts

it back to the original variable) all the edges are undirected.

The exchange graph of a cluster algebra is the graph representing the relationships

between all the seeds, where connectivity is given by mutation. It is generated by

inputting an initial seed, mutating this on all r of its variables to give all the ‘depth

1’ seeds (i.e. 1 mutation away from the initial seed), then mutating each of these new

seeds on each of their r− 1 variables that weren’t mutated on from the previous depth

to give the depth 2 seeds, then iterating this process either infinitely or until no new

seeds are generated. Note that the exchange graph is not the graph formed from an

exchange matrix; this would be a quiver.

One may also construct another graph representing connectivity under mutation by

considering only the quiver part of the seeds, i.e. the exchange matrix. This exchange

graph represents how all the possible exchange matrices are connected via mutation

action. This in turn is called the quiver exchange graph, and is often significantly

smaller than the exchange graph with cluster information at any depth. This is because

many seeds may have the same exchange matrix but different clusters, making them

the same vertex in the quiver exchange graph but different vertices in the exchange

graph. To make clear the differentiation between these types of exchange graph we will

call the graph where the seeds include the cluster information the seed exchange graph.

– 4 –

0

1

(a) A2 quiver

[0]

[1]

[1
]

[0]

[0]

[1]

[1]

[0
]

[0]

[1]

0

1

2

3

4

5

6

7

8

9

(b) A2 seed exchange graph

Figure 2.1: The quiver for the A2 example cluster algebra (a), as well as its exchange graph (b) where

permutation equivalence is not applied. The respective clusters for each vertex in the exchange graph

are: {0 : [x1, x2], 1 : [(x2 + 1)/x1, x2], 2 : [x1, (x1 + 1)/x2], 3 : [(x2 + 1)/x1, (x1 + x2 + 1)/(x1x2)], 4 :

[(x1+x2+1)/(x1x2), (x1+1)/x2], 5 : [(x1+1)/x2, (x1+x2+1)/(x1x2)], 6 : [(x1+x2+1)/(x1x2), (x2+

1)/x1], 7 : [(x1 + 1)/x2, x1], 8 : [x2, (x2 + 1)/x1, 9 : [x2, x1]}, and the vertex mutated on to connect

each seed is given as the respective edge feature.

In both cases, as the seed exchange graph / quiver exchange graph is generated,

seeds / quivers produced at the next depth may have already occurred at previous

depths. These vertices are then combined; that way cycles can be formed in the ex-

change graph. The frequency of encountering previous seeds strongly depends on the

cluster algebra type, and analysis of the occurrence of these cycles for all types will be

a central theme to this work.

Example: A2 The prototypical example for cluster algebras is the finite-type rank 2

algebra: A2. This has quiver given by the directed A2 Dynkin diagram shown in Figure

2.1a.

Starting with the initial seed {x1, x2}, one can mutate about either of the vertices.

With each mutation, since the rank is too small for the quiver to include 2-paths, the

only change to the quiver is a reversal of the single edge’s orientation. Therefore in this

simple A2 case the quiver exchange graph is just 2 vertices connected by an edge to

represent both these quivers (which we consider not equivalent via permutation), the

second quiver exchange matrix being just the transpose of the first. Furthermore in

the seed exchange graph, Figure 2.1b, the quiver alternates between these two forms

around the exchange graph’s loop.

To exemplify the mutation process, consider for this A2 algebra the mutation of

the seed associated to vertex 4 in the exchange graph on the quiver vertex labelled

1 (associated to the second variable), which mutates the seed to the seed labelled 6

in the seed exchange graph. The quiver associated to this seed is the same as for

– 5 –

the initial seed, as shown in Figure 2.1a. Therefore the exchange matrix is
(

0 1

−1 0

)
,

which updates to its transpose under the process in equation (2.2). The cluster [(x1 +

x2 + 1)/(x1x2), (x1 + 1)/x2] is respectively mutated on its second variable following

the process in equation (2.1) with k = 2. The process hence keeps the first variable

unchanged and updates the second variable where the first numerator term in (2.1) is

just the first variable (as EM12 = 1) and second numerator term is just 1 (since there

are no negative entries in the second column). Therefore (x1 + x2 + 1)/(x1x2) 7−→
(x1+x2+1)/(x1x2)+1

(x1+1)/x2
= (x2+1)

x1
, matching the expected cluster for seed 6.

2.2 Cluster Algebra Types

Cluster algebras can be classified into 3 distinct types:

1) Finite type: These are defined by having finite numbers of seeds and thus finitely

many clusters, exchange matrices, and also cluster variables. All cluster algebras of

this type are formed from quivers which take the form of oriented ADE Dynkin dia-

grams [2, 65]. Since there are finitely many seeds and exchange matrices both the seed

exchange graph and the quiver exchange graph form finite compact polytopes. These

polytopes are called generalised associahedra (for this finite case). This algebra type

may also be identified by the condition that |bijbji| ≤ 3 ∀ i, j in all exchange matrices

in all cluster algebra seeds.

2) Finite-mutation type: Since the quiver exchange graph is strictly smaller than the

seed exchange graph, it can be finite even if the seed exchange graph is infinite. There-

fore finite-mutation type cluster algebras are defined by having finitely many exchange

matrices but may have infinitely many cluster variables, and hence also infinitely many

clusters/seeds (i.e. there may be infinitely many seeds with the same exchange matrix

but with different cluster variables). Therefore whilst the seed exchange graph may

be infinite, the quiver exchange graph is finite. These cluster algebras thus naturally

include finite type but also others; in particular, the classification consists of cluster

algebras formed from rank 2 quivers, from triangulations of marked surfaces, and a set

of exceptional cases [66, 67]. Extending the finite type condition, finite-mutation type

may also be identified by |bijbji| ≤ 4 ∀ i, j in all exchange matrices in all the seeds [68].

3) Infinite type: These encompass the remaining cases, with infinitely many clusters

and exchange matrices leading to infinitely many cluster variables. Therefore both the

seed exchange graph and quiver exchange graph are infinite and non-compact.

As can be seen from the exchange matrix condition, our example A2 cluster algebra

is of finite type as there are only 2 exchange matrices both with |bij| ≤ 1 ∀ i, j =⇒
|bijbji| ≤ 3.

– 6 –

3 Exchange Graph Data

In this work, we focus on the exchange graphs of cluster algebras, considering a selection

that spans the possible types discussed in §2.2. We analyse how these graphs take

shape as they are generated and introduce the application of ML techniques to study

their respective cluster algebras. In spirit this extends the work in [57] where ML was

applied to quiver exchange graphs to learn the underlying Seiberg duality. In order to

perform the cluster mutation, and keep track of the seeds computationally, the sage

‘Cluster Algebra and Quiver’ package was used [69, 70]; the exchange graphs were then

represented and analysed with use of the python package networkx [71]; and finally

completion of the ML investigations made use of the scikit-learn library [72].

The cluster algebras considered in these investigations are denoted by the respec-

tive initial seeds used to generate them. These are hence defined by a choice of exchange

matrix, each paired with the initial cluster {x1, x2, ..., xr}. For the purposes of consid-

ering a consistent rank with enough interesting structure but not too large so as to

require excessive computational resources all these algebras are of rank r = 4. Across

the 3 types, 7 specific algebras were selected.

These included 3 finite type algebras, generated from orientations of the A4, D4,

and F4 Dynkin diagrams (denoted A4, D4, F4 respectively). Note the F4 algebra does

not lie in the skew-symmetric classification, but is a skew-symmetrizable finite type.

Next, 2 orientations of the affine Ã3 type were used as finite-mutation type algebras

which are specifically not finite type; such that one had 1 anticlockwise 3-path and 1

clockwise arrow (denoted A13), whilst the other had a 2-path in each direction (denoted

A22). Lastly, 2 infinite type algebras (denoted I1 and I2 respectively) were generated

from the exchange matrices

EMI1 =


0 2 0 0

−2 0 1 0

0 −1 0 1

0 0 −1 0

 , EMI2 =


0 2 0 −2

−2 0 2 0

0 −2 0 1

2 0 −1 0

 . (3.1)

The quivers for each of these initial seed exchange matrices are shown in Figure 3.1.

– 7 –

0
1

2 3

(a) A4 (finite)

0

1

2

3

(b) D4 (finite)

(2, -1)

0

1

2 3

(c) F4 (finite)

0

1

2

3

(d) A13 (finite-mutation)

0

1

2

3

(e) A22 (finite-mutation)

2

0

1

2

3

(f) I1 (infinite)

2

2

2

0

1

2

3

(g) I2 (infinite)

Figure 3.1: Quivers defining the exchange matrices for the initial seeds. They are all rank 4, and

generate cluster algebras of finite type (a), (b), (c); finite-mutation type that are not finite type (d),

(e); and infinite type (f), (g). Vertices are labelled with respect to the row/column number in the

exchange matrix; the double edge multiplicity in F4 indicates it is not skew-symmetric.

– 8 –

Beyond the choice of Dynkin or affine Dynkin type, an orientation to each quiver

must be prescribed. The sage package initiates the finite type quivers with bipartite

orientations, such that each node is either a source or a sink as shown. Whilst the

ambiguity to select an orientation may appear to lose generality, where the quiver’s

underlying graph is a tree (as for our finite types) any orientation is mutation equiv-

alent to any other orientation [2]. Therefore for finite types, a choice of orientation

is effectively a choice of initial point to expand around in the same exchange graph.

Note this does not apply for the other mutation types, hence choosing any 2 differ-

ent orientations produces 2 different cluster algebras and 2 different exchange graphs

(as exemplified by the 2 chosen orientations of Ã3 giving the 2 different A13 & A22

algebras). These cluster algebras were chosen such that under mutation similar Lau-

rent polynomial styles (in particular monomial coefficients) were occurring so it was

non-trivial to differentiate the seed representations by eye ahead of ML.

Due to the significant growth of complexity in the infinite type Laurent polynomials

with depth, especially I2 where depth 5 could not be computed in reasonable time,

the core focus of the exchange graph analysis and subsequent ML was chosen to be

up to and including depth 4. In building the seed exchange graphs, clusters were

not considered equivalent if their variables were the same but in a different order.

As we see in later analysis identifying by this permutation equivalence loses some

elegant symmetric structure in the exchange graphs. We account for the possibility

of this causing some degeneracy in cycles on a case by case basis and mention where

that happens explicitly. Also, when defining an algebra only the cluster variables are

important and hence taking the union of all clusters still produces the same generating

set with or without application of this equivalence. Exchange graphs up to depth 4 are

given for each of the considered cluster algebras in Figure 3.2.

Prior to any thorough data analysis of these exchange graphs, the types can begin

to be distinguished by the number of seeds at each depth, as shown in Figure 3.3,

although it can be seen already that this information is not sufficient for classification:

as more seeds are generated the finite type algebras are more likely to be reproducing

previous seeds. We believe that there is a similar behaviour where finite-mutation types

(that are not finite) are also more likely to reproduce seeds than infinite types, as they

are on the boundary between finite and infinite.

– 9 –

0

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23 24

25

26 27

28

29

30
31

32
33 34

35
36

37

38

39
40

41
42

43 44

45

46

47

48
49

50

51
52 53 54 55

56
57

58 59

60

61
62

63

64

65

66

67
68

69
70

71

(a) A4 (finite)

0

1

2 3

4

5

6

7

8

9
10 11

12

13

14
15

16

17
18

19

20

21
22

23 24

25 26 27
28

29

30

31

32

33343536
37

3839

40

41
42

43

44

45
4647

48
49
50

51

5253
54

55
56 57

58 59 60 61 62

63

64 65
66

67
68

69
70

71
72

73
74

75
76

77
7879

(b) D4 (finite)

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23
24

25

26

27

28

29

30

31
32

33

34

35
36

37

38

39
40

41 42

43

44

45

46
47

48

49 50
51 52

53

54

55
56

57
58

59

60

61
62

63
64

(c) F4 (finite)

0

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18
19

20
21

22

23

24

25
26

27
28

29
30 31 32

33
34

35

36

37

38
3940

41
4243444546

4748

49
5051

52
53

54

55

56
57

58
59

60
61
62

63
64

65
66
67

68
69 70

71 72

73 74
75

76
77

78

79
80 8182 83

84
85

86 87

88

89
90

91
92

93

94
95
96
97
98

99
100

101
102

103104
105

106107
108

(d) A13 (finite-mutation)

0

1

2
3

4

5

6

7

8

9

10

11
12

13

14

1516
17

18
19

20

21

22

23

24

25
26

27 28

29 30

31 32

33

34

35
36

37
38

39
4041424344

4546

47
48

49
50

51

52
53

54
55

56
57

58
59
60

61
62

63
64
65

66
67

6869
70 71

72 73
74

75

76

77
78 7980 81 82

83 84 85
86

87
88

89
90

91
92
93

94
95

96
97

98

99
100

101102
103104

(e) A22 (finite-mutation)

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23 24 25

26

27
28

29

30

31

32
33

34

35 36
37

38

39

4041
42

43
44

45 46

47

48

49

50
51

52

53

54
55

56
57

58
59

60

61
62
63

64
65

66
67

68 69

70

71

72
73

74

75
7677

78

(f) I1 (infinite)

0

1

2 3

4

5

6

7

8

9

10

11

12

13

14

151617

18

19

20

21
22

23

24

25

26
27 28

29 30

31 32 33

34
35
36

37
38

39

40
4142

4344
4546474849

50

51

5253

54
55

56

57

58
59

60
61
62

63

64

65
66

67

68
69

70

71
72

73
74

75
76

77
78
79 80

81
82 83 84

85

86

87 88
89 90 9192 93

9495

96

97
98

99

100
101

102
103

104
105
106

107
108

109
110

111112
113

114115
116

(g) I2 (infinite)

Figure 3.2: The seed exchange graphs generated to depth 4 for each of the considered cluster algebras.

Types are labelled, where finite-mutation are specifically not finite type so are infinite for these seed

exchange graphs but finite for the respective quiver exchange graphs (not shown). Vertices are labelled

in the order they are generated starting from the initial seed ‘0’.

– 10 –

0 1 2 3 4
Depth

0

20

40

60

80

100

120

Nu
m

be
r o

f S
ee

ds

A4
D4
F4
A13
A22
I1
I2

Figure 3.3: The number of seeds in the seed exchange graphs as depth varies for each of the considered

cluster algebras, labelled by their respective initial seeds. Each type is depicted with a different

linestyle.

To give an example for typical seed information we arbitrarily select seed 30 from

the A4 seed exchange graph in Figure 3.2a, whose exchange matrix and cluster take

the form:

EMA4:30 =


0 −1 1 0

1 0 −1 1

−1 1 0 0

0 −1 0 0

 , (3.2)

{
x1,

(x1x
2
3 + x1x3 + x2x4 + x3 + 1)

x2x3x4

,
(x2x4 + x3 + 1)

x3x4

,
(x3 + 1)

x4

}
. (3.3)

3.1 Network Analysis

The intricate tree structure of the exchange graphs exemplified by Fig. 3.2 is suggestive

for a treatment from network science. For each of the cluster algebras considered

the seed exchange graphs generated to depth 4 were thus compared with a variety of

network analysis techniques. The results of the analysis are provided in Table 3.1,

and use a range of assessment techniques across the core themes of network analysis,

including: clustering analysis, shortest path analysis, centrality analysis, and cycle

basis analysis.

For each exchange graph (sometimes denoted EG) the number of distinct seeds

(i.e. vertices in the EG) up to depth 4 is given. As expected the infinite cluster alge-

bras (including A13 and A22 which are distinctly not finite) have more total vertices,

– 11 –

Cluster

Algebra

Seed Exchange Graph Analysis (depth 4)

Number

of Vertices
Density

Clustering

(tri, squ)

Wiener Index

(full, norm)

Centrality

(centre, diff)

Min cycle basis

([length, freq])

A4 72 0.034 (0, 0.058) (13968, 5.46) (0, 0.029) [4,17]

D4 80 0.029 (0, 0.037) (17941, 5.68) (0, 0.037) [4,13]

F4 65 0.040 (0, 0.064) (10700, 5.14) (0, 0.031) [4,17], [6,3]

A13 109 0.020 (0, 0.034) (35284, 5.99) (0, 0.054) [4,12]

A22 105 0.021 (0, 0.016) (32664, 5.98) (0, 0.061) [4,8]

I1 79 0.031 (0, 0.065) (17174, 5.57) (0, 0.015) [4,18]

I2 117 0.019 (0, 0.037) (41160, 6.07) (0, 0.063) [4,12]

Table 3.1: Network analysis of the seed exchange graphs (EGs) generated to depth 4 for the 7

cluster algebras considered. The first 3 algebras are finite type, the latter 2 are infinite type, and

the remaining 2 are finite-mutation type but not finite type (hence having infinite seed EGs). The

analysis lists: the number of vertices in the EG; the density of the EG; the triangle and square

average clustering coefficients; the Wiener index (both full form and normalised form); the eigenvector

centrality analysis listing the central vertex and then the size of the smallest difference in centrality

from the initial seed “0” to the clusters at depth 1; and finally the information on the minimum cycle

basis showing the length of the basis cycles and the frequency of those lengths in the basis.

except for I1 which is surprisingly low. This is due to the finite type algebras usually

reproducing more previously generated seeds as mutation continues to higher depths.

Further vertex analysis usually considers the degree distribution, but due to the

construction process for seed exchange graphs all vertices will have degree 4, except

those truncated from further mutation by the depth limit. Therefore this would provide

little insightful analysis for this graph style.

The exchange graph density then considers the number of edges, as opposed to the

number of vertices. Here, the total number of edges in the graph is divided by the total

number of possible edges (i.e. the number of edges in a complete graph with the same

number of vertices). Due to there being 4 edges per vertex in the depths up to 3, as

each cluster has 4 variables to mutate, these density scores correlate with the number

of vertices. The finite types have higher densities as they are more tightly-knit graphs

and are further from the more tree-like structure of the infinite types, as can be seen in

the graphs of Figure 3.2. In addition, the finite-mutation types with infinite exchange

graphs have a slightly higher density than most infinite types (better represented by

I2), supporting that they are on this border of the seed exchange graphs closing up

from infinite to finite. Although I1 has a higher density, closer to the finite types at

this depth, as can be seen in its seed exchange graph, it does show the typical tree-like

substructure of infinite types, with an unusual star-pattern of lines of 4-cycles forming

a net-like structure between the tree subgraphs coming off them.

– 12 –

Clustering Analysis Clustering coefficients give information about how vertices

cluster within graphs. The two styles of coefficient considered here are both global in

nature, and consider the number of triangles (3-cycles) or squares (4-cycles) that exist

in the graph relative to the total number of possible triangles or squares that could

exist.

For all the algebras there were no triangles in the seed exchange graphs. This

is expected since it would require seeds to either jump mutation depths or connect

the same depth. Both these scenarios are not possible since any 2-path of connected

vertices either spans 3 depths so closing this 2-path into a 3-cycle would require the

mutation that this closing edge represents to jump a depth (i.e. mutating two variables

simultaneously), or the 2-path has the initial seed as its centre vertex and hence the

vertices which need to connect would both be depth 1 and unable to mutate to each

other, as they are both a different mutated-variable from the initial seed, hence again

requiring a double mutation.

This idea generalises to all odd size cycles. Since each mutation changes the depth

of seed under consideration, for any sequence of mutations to close into a cycle the

number of mutations increasing depth must equal the number reducing the depth.

Therefore all cycles must be of even length.

However all the algebras have a non-zero square clustering coefficient. Squares, or

4-cycles, in a seed exchange graph indicate the scenario where two mutation actions

commute; i.e. a seed can have two variables mutated in either order to produce the

same seed. The frequency of this commutative action interestingly does not appear to

correlate with the algebra type, exemplified by D4 having the same coefficient as I2

and A13 having over double the coefficient value of A22.

Shortest Path Analysis The shortest path analysis carried out comes in the form of

the Wiener index. This index computes the sum of the shortest paths between all pairs

of vertices (the full form), which we also normalise by the number of pairs of vertices,

nC2, to give an average shortest path between vertices. The normalised form is more

useful for comparison and indicates that infinite types (excluding I1) have vertices

further separated on average. This measure provides an indication of the frequency of

cycles, and also the placement of them. If they are more spread over the graph (as for

F4) they are more useful in shortening the shortest paths between outer vertices.

Centrality Analysis Centrality of a network determines the natural centre vertex.

Due to the generation process being from an initial seed to some depth, this would

make the initial seed (labelled 0) the logical choice. However, experimentation with

some lower rank algebras showed this was not always the case so it is good to confirm

– 13 –

for these algebras considered. The centrality measure used was eigenvector centrality,

which performs eigendecomposition of the graph’s adjacency matrix, then taking the

eigenvector with the largest eigenvalue, whose entries indicate the relative importance

of each vertex in the network. In addition to the computed centre vertex (highest

respective entry), the difference in centrality between the centre initial seed and the

most central seed at depth 1 is given. Where this difference is large, as for most of

the infinite types, the initial seed is a more obvious centre. However, the difference is

remarkably small for I1, which we believe to be attributed to the symmetry of 4-cycles

surrounding the centre cycle with vertices labelled from [0,4,7,1].

Cycle Basis Analysis Where the exchange graphs diverge from the limiting case

of an infinite tree, cycles are introduced to the graph as seeds are reproduced through

mutation. As more cycles are added the graph begins to close, becoming ‘more finite’ in

the process with less new seeds produced per mutation. It is hence this cycle structure

we believe to be key to what dictates the cluster algebra behaviour, correlating loosely

with the algebra type. Not only the frequency of cycles, but their distribution of sizes

is an area of particular interest.

To analyse the cycle structure of each seed exchange graph, the minimum cycle

basis for each was computed. The minimum cycle basis puts emphasis on selecting basis

cycles with the lowest lengths, which can then be summed by symmetric difference in

the cycle vector space over the finite field of 2 elements, Z/2Z, to produce any cycle

in the graph. Since the symmetric difference of any 2 even cycles is also even (s-cycle

+ t-cycle with u overlapping edges = (s + t − 2u)-cycle), this corroborates the idea

that all cycles being even is self-consistent. A corollary of this is that all cycles in any

basis will be even also. In Table 3.1, the structure of the minimum cycle bases for each

algebra is given. Since each cycle space can have many legitimate bases, the actual

basis content was not of focus; instead the number of cycles required (‘freq’) and of

what sizes (‘length’) provide the interesting information for analysis.

It turns out for most of these algebras, that the cycle spaces at this depth can be

constructed from exclusively 4-cycles (this does not hold in general at higher depths).

4-cycles are the natural lower bound of cycle sizes in seed exchange graphs. This is

because any mutation sequence (longer than the trivial involution 2-cycle for all edges)

has to mutate on any vertex at least twice to change it back, hence 4-cycles being the

minimum where two mutations on different vertices commute. However, F4 requires

3 6-cycles to define the cycle space up to depth 4, implying that its exchange graph

structure is distinct from the others with a more subtle design. This may be related to

the skew-symmetrizable vs skew-symmetric style of the exchange matrices, but more

investigation into this would be required for a range of skew-symmetrizable matrices

– 14 –

before concluding any particular pattern.

Interestingly the finite-mutation types A13 & A22 have the smallest frequency of 4-

cycles in their basis: expectedly less than the finite type, since their graphs are compact,

however also less than the infinite types. This may be due to a more systematic

occurrence of cycles, which are further apart and hence fewer are visible at this depth;

whereas the infinite graphs have a skewed distribution of cycles where there is some

iterative commutativity via 4-cycles.

How the lengths of the cycle bases vary with depth (up to the computable depth

4 for infinite type, and beyond for the finite types) is given in Figure 3.4. Since all

basis cycles were of length 4 except for 3 6-cycles in the F4 case, the total number of

cycles in the basis is plotted instead of differentiating these cycle lengths. It shows that

there is some noise of basis length growth at these lower depths for the algebras, and

thus particularly for the infinite types it would be useful to find more efficient ways of

computing the seed exchange graphs to probe higher depths. The basis length with

respect to the number of seeds is also shown; since behaviour is similar to without this

normalisation it indicates that there is some correlation described by more seeds at a

certain depth indicating the seeds are less connected leading to a smaller relative basis

size.

Interestingly, the A4 and D4 finite type algebras have similar behaviour up to depth

5. This is the depth at which 10-cycles are permitted, and beyond this depth the be-

haviour diverges with D4 having consistently more total cycles due to the considerably

larger number of 10-cycles. This indicates that these algebras have fundamentally dif-

ferent construction; A4’s more significant structural reliance on 4-cycles may be due to

more mutation operations commuting which in turn is likely due to the lower connec-

tivity of the original A4 quiver, translating to subsequent quivers also. We note there

is an anomalous 15 14-cycles occurring for D4 at depth 7: an artefact of the depth

truncation that immediately splits into 4- and 10-cycles at the next depth.

Additionally, dual to the cycle vector space is the cut vector space; and although an

interesting alternative method of network analysis, we leave its application to exchange

graphs to future work.

3.2 Generalised Associahedra & Seed Equivalence

The cluster variables for the infinite type algebras quickly become highly complex

with mutation – this prevents generation of the seed exchange graphs to large depths.

However the finite type algebras do not suffer as severely from this behaviour, and due

to their finite-ness their entire exchange graphs (‘generalised associahedra’) of all seeds

can be completely generated.

– 15 –

0 1 2 3 4
Depth

0

5

10

15

20

Cy
cle

 B
as

is
Le

ng
th

A4
D4
F4
A13
A22
I1
I2

(a) Cycle basis size

0 1 2 3 4
Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cy
cle

 B
as

is
Le

ng
th

 /
Nu

m
be

r o
f S

ee
ds

A4
D4
F4
A13
A22
I1
I2

(b) Relative cycle basis size

2 4 6 8 10 12
Depth

0

200

400

600

800

1000

1200
Cy

cle
 F

re
qu

en
cy

A4 total
A4 - 4
A4 - 10
D4 total
D4 - 4
D4 - 10
D4 - 14

(c) A4 & D4 cycle bases sizes

Figure 3.4: The size of the minimum cycle basis for each of the considered cluster algebra’s seed

exchange graphs as depth varies is plotted directly in (a), and the cycle basis length relative to the

number of seeds is plotted in (b). Moreover, (c) focuses on the finite type A4 and D4 algebras with

seed exchange graphs generated to their maximum depths; beyond depth 4 10-cycles are introduced

so each cycle length frequency is denoted separately, as well as the total frequencies.

Therefore for the rank 4 finite type cases we generate their generalised associahe-

dra, and perform similar network analysis on them all. Beyond the A4, D4, F4 cases

considered previously, we also introduce the B4 and C4 cluster algebras. These are

also finite type, and as they arise from non-simply laced Dynkin orientations, they are

not skew-symmetric but skew-symmetrizable. This Dynkin terminology means simply-

laced edges have weight one, whilst the non-simply laced edges have a double weighting

given by the non-skew-symmetric exchange matrix components. Their respective quiv-

ers are shown in Figure 3.5, and their network analysis along with A4, D4, & F4 in

Table 3.2.

Interestingly, all the skew-symmetrizable quivers generated algebras with the same

number of seeds and density at the same depth. Further to this, B4 and C4 have

identical analysis values for all measures, indicating the swap of quiver edge weighting

separating them has no effect on the seed exchange graph. F4 has some differences,

with slightly fewer squares but a better connectivity (via Wiener index), supported by

– 16 –

(1, -2)

0

1

2

3

(a) B4

(2, -1)

0

1

2

3

(b) C4

Figure 3.5: Quivers defining the exchange matrices for the remaining rank 4 finite type cluster algebra

initial seeds. Both (a) B4 and (b) C4 are skew-symmetrizable, shown by the non-simply laced, double

weighted, edges of opposite weighting.

more 6-cycles and fewer 4-cycles in the basis. The B4 and C4 algebras actually have

the same seed exchange graph; however the Laurent polynomials of the variables take

different values and hence the seeds at each vertex are very different [70, 73].

Conversely, the A4 and D4 algebras have similar numbers of clusters and densities,

despite D4 having far fewer 4-cycles and many more 10-cycles in its basis. Since D4’s

fundamental structure relies more on 10-cycles, these provide quicker paths between

components of the generalised associahedra leading to a smaller normalised Wiener

index.

Gratifyingly, all these generalised associahedra have no discernible centre via eigen-

vector centrality, such that the dominant eigenvector has all its entries equal for each

algebra. This supports that any seed may be used to generate each algebra symmetri-

cally, as these generalised associahedra form complicated polytopes built from 4- and

10-cycles; and in the skew-symmetrizable cases 6-cycles become a necessity too.

Seed Equivalence Since only the cluster variables are required to define a cluster

algebra, once all variables have been generated the quivers and clusters themselves

become superfluous information. Therefore usually when one considers clusters one

considers them equivalent up to permutation of the variables within the cluster, where

the exchange matrix (and hence quiver) must be permuted in the same way. However,

we find from some testing that different numbers (i.e. ≤ r!) of permutations of clusters

are produced within each algebra. Therefore by identifying under the full permutation

group some combinatorial structure of the generation process is lost.

For example, for the generalised associahedra considered here, which the entire

seed exchange graphs can be generated for, one expects the number of clusters (up to

– 17 –

Cluster

Algebra

Generalised Associahedra Analysis

Number

of Vertices
Density

Clustering

(tri, squ)

Wiener Index

(full, norm)

Centrality

(centre vertex)

Min cycle basis

([length, freq])

A4 1008 (13) 0.0040 (0, 0.080) (3881976, 7.65) *no centre* [4,672], [10,337]

B4 420 (10) 0.0095 (0, 0.077) (542400, 6.16) *no centre* [4,270], [6,60], [10,91]

C4 420 (10) 0.0095 (0, 0.077) (542400, 6.16) *no centre* [4,270], [6,60], [10,91]

D4 1200 (12) 0.0033 (0, 0.072) (5150592, 7.16) *no centre* [4,624], [10,577]

F4 420 (10) 0.0095 (0, 0.072) (536816, 6.10) *no centre* [4,252], [6,111], [10,58]

Table 3.2: Network analysis of the generalised associahedra for the finite type cluster algebras,

labelled by their respective initial seeds. The analysis lists: the number of vertices in the EG (with

depth to generate these in brackets); the density of the EG; the triangle and square average clustering

coefficients; the Wiener index (both full form and normalised form); the eigenvector centrality analysis

listing the central vertex (or lack of); and finally the information on the minimum cycle basis showing

the length of the basis cycles and the frequency of those lengths in the basis.

Cluster Algebra A4 B4 C4 D4 F4

N 42 70 70 50 105

N ′ 1008 420 420 1200 420

N ′/N 24 6 6 24 4

Table 3.3: The rank 4 finite type cluster algebras considered whose generalised associahedra are

generated in full. N is the number of seeds up to identification by the permutation equivalence, N ′

the number of seeds generated without the permutation equivalence, and the final row the factor

between them.

permutation equivalence), N , to follow the relation

N =
n∏
i=1

ei + h+ 1

ei + 1
=

n∏
i=1

di + h

di
, (3.4)

for ei the exponents and di the degrees (of polynomial invariants) of the considered

Dynkin type’s root system (of which there are n), and h the Coxeter number [74–

76]. For each of the rank 4 finite type algebras considered, the number of clusters up

to permutation equivalence, N , is given in Table 3.3. One may then naively expect

all permutations of the seeds to occur in the exchange graphs generated when this

permutation equivalence is not identified by. However, although the A4 and D4 algebras

do have all 4! = 24 permutations, the non-simply laced types do not. The number of

seeds without identification by permutation equivalence that we generate in the full

generalised associahedra, denoted N ′, are repeated in Table 3.3 also for reference.

As exemplified by the rank 4 cases, the non-simply laced cluster algebras (B4,

C4, F4) do not generate all permutations of seeds from mutation about an initial

– 18 –

seed. In fact all permutations are allowed amongst the simply-laced components,

where components are defined to be the sets of quiver nodes (and hence cluster posi-

tions) only connected by simply-laced edges, i.e. components are connected by non-

simply laced edges. Therefore any cluster {x1, x2, x3, x4} will be mutation equivalent

to {x1, x3, x2, x4}, {x2, x1, x3, x4}, {x2, x3, x1, x4}, {x3, x1, x2, x4}, {x3, x2, x1, x4} for the

B4 and C4 algebras; whilst mutation equivalent to {x1, x2, x4, x3}, {x2, x1, x3, x4},
{x2, x1, x4, x3} for the F4 algebra. We emphasise here that this behaviour holds for

all clusters of any variables (i.e. including those which are Laurent polynomials of the

initial variables), hence occurring with permutation frequencies given by the relevant

factor.

Beyond the rank 4 cases considered we find through experimentation up to rank 5

that the factor N ′/N is r! for the Ar and Dr types, (r − 1)! for the Br and Cr types

(anticipating these to also hold ∀ r), and 1 for G2 (where all 8 clusters are different

combinations of cluster variables). We therefore predict due to the lack of non-simply

laced edges that the Er types have an r! factor too (for r ∈ {6, 7, 8}), despite them

being too large to computationally generate in full.

This factor for the non-simply laced types is related to their skew-symmetrizable ex-

change matrices. Since the skew-symmetrizer diagonal matrix in the skew-symmetrization

process will have a non-unit factor associated to the non-simply laced edge, and since

the skew-symmetrizer matrix is preserved under mutation [77], any mutation involving

a non-simply laced edge will cause the variables crossing it to pick up some non-trivial

power that cannot be cancelled in this other component. Therefore any cluster variable

is restricted in its current form to only appear in its current component (separated by

a non-simply laced edge to other components). We also note that whilst mutation may

introduce more non-simply laced edges, these will only ever connect nodes across the

different components, and hence the above reasoning still applies for permutations of

clusters within the components, which are dictated by the initial seed.

This subtle combinatorial structure of cluster mutation and the algebra generation

process is lost under the identification by permutation equivalence. Since our primary

focus here is the exchange graphs built from these clusters, we think it best to consider

the full structure for each algebra without the permutation equivalence applied, with

the idea that once this full exchange graph is generated one can then still take all

independent variables from all clusters (which already have a lot of overlap) to retrieve

the algebra’s generators. This viewpoint also reveals other unanticipated structure in

the exchange graphs as detailed in the following section.

– 19 –

0 1 2 3 4
Depth

0.0

0.2

0.4

0.6

0.8

1.0

Qu

iv
er

s /
 #

 C
lu

st
er

s

A4
D4
F4
A13
A22
I1
I2

Figure 3.6: The relative number of quivers to clusters in the respective exchange graphs as depth

varies up to depth 4 for each of the considered cluster algebras, labelled by their respective initial

seeds. Each type is depicted with a different linestyle.

3.3 Quiver Exchange Graphs

Whilst the previous subsection analysed the seed exchange graphs, this subsection shifts

focus to the smaller quiver exchange graphs, with hope of uncovering the embedding

structure into the seed exchange graph form (where the cluster information is included).

3.3.1 All Types to Depth 4

Any embedding fundamentally depends on the number of vertices in each graph. There-

fore the number of vertices in each algebra’s quiver exchange graph relative to the

number in the seed exchange graph is plotted in Figure 3.6. The figure shows that up

to depth one there is an isomorphism between each considered algebra’s quiver/seed

exchange graphs, since all initial mutations will change the cluster; they hence here also

always change the exchange matrix such that there are 5 distinct seeds (with distinct

quivers) up to depth 1 in each case. Since all vertices are connected, the mutated vertex

will always have an orientation flip of its connected arrows, hence always changing the

exchange matrix by this at least.

Beyond depth 1 the ratios drop off below 1, with the pure infinite cases dropping

off the least. These infinite cases therefore have far more distinct quivers, as may

be expected since different quivers lead to different mutation processes and are hence

more likely to produce new cluster variables, a defining feature of infinite type. For

comparison the same network analysis methods were applied to the considered algebra’s

quiver exchange graphs up to depth 4, as shown in Table 3.4.

– 20 –

Cluster

Algebra

Quiver Exchange Graph Analysis (depth 4)

Number

of Vertices
Density

Clustering

(tri, squ)

Wiener Index

(full, norm)

Centrality

(centre, diff)

Min cycle basis

([length, freq])

A4 52 0.048 (0, 0.066) (6870, 5.18) (0, 0.036) [4,13]

D4 41 0.071 (0, 0.251) (3463, 4.22) (0, 0.001) [4,15], [7,3]

F4 40 0.072 (0, 0.098) (3334, 4.27) (0, 0.030) [4,14], [6,2], [8,1]

A13 70 0.036 (0, 0.041) (12826, 5.31) (0, 0.020) [4,9], [6,8]

A22 50 0.067 (0.080, 0.108) (4780, 3.90) (0, 0.029) [3,8], [4,15], [7,2], [8,8]

I1 61 0.044 (0, 0.134) (9456, 5.17) (1, -) [4,18], [6,2]

I2 107 0.020 (0, 0.040) (33900, 5.98) (0, 0.061) [4,10]

Table 3.4: Network analysis of the quiver exchange graphs generated to depth 4 for the 7 cluster

algebras considered, labelled by their respective initial seeds. The analysis lists: the number of vertices

in the EG; the density of the EG; the triangle and square average clustering coefficients; the Wiener

index (both full form and normalised form); the eigenvector centrality analysis listing the central

vertex and then the size of the smallest difference in centrality from the initial seed “0” to the clusters

at depth 1 (when the initial seed is the centre); and finally the information on the minimum cycle

basis showing the length of the basis cycles and the frequency of those lengths in the basis.

We can see that for all algebras there are fewer vertices and a higher density (despite

I2 being very similar); this represents the expected behaviour from multiple seeds with

different clusters having the same quivers. Importantly, whereas where clusters are

present no triangle 3-cycles can occur, when considering only quivers these triangles

are possible, shown by a non-zero triangle clustering coefficient for A22. Additionally

there are more 4-cycles shown by consistently higher square clustering coefficients,

which are likely used to provide alternative routes and cause the consistently smaller

Wiener indices. It is worth emphasising also that D4 has a considerably higher square

clustering coefficient.

Most interestingly about the centrality analysis is that for the I1 algebra, the centre

is no longer the initial seed! This indicates that the extra quiver identification when the

cluster information is omitted is not symmetric about the centre, and this behaviour

is reflected in some of the other algebras too where the smallest difference to depth 1

is usually lower without the cluster information.

Finally, the minimum cycle bases have quite non-trivial changes. Most notably, the

cycles are no longer always even, as there is extra redundancy where mutating quivers

can produce another quiver in the same depth. In some cases the cycle bases have

more cycles (D4, A13, A22, I1), and sometimes fewer (A4, F4, I2). This behaviour is

curious and highlights the subtleties of the quiver exchange graph’s embedding in the

seed exchange graph. To probe this further we wish to lose the limiting behaviour of

the depth truncation, and for that we return to the finite type generalised associahedra.

– 21 –

3.3.2 Quiver Generalised Associahedra

After first generating the quiver generalised associahedra, our first clue about the em-

bedding structure comes from the number of vertices. Whereas when identifying by

the permutation-equivalence there isn’t a consistent pattern, when instead one does

not identify in this way, some beautiful structure emerges.

To illustrate this we show the number of vertices in the seed and quiver generalised

associahedra, as well as the ratios between these numbers, for the rank 4 algebras

considered here in Table 3.5.

Cluster Algebra A4 B4 C4 D4 F4

Number of Quivers 144 84 84 50 60

Number of Seeds 1008 420 420 1200 420

Ratio 7 5 5 24 7

Table 3.5: The number of vertices in the quiver exchange graph and seed exchange graph for the

rank 4 finite type algebras considered. Their ratios are also listed, all taking integer values.

A priori, one may not expect all these ratios to be integer. When each seed in

the seed generalised associahedra has its cluster information removed to leave just the

quiver, there are additional identifications to be made amongst vertices where seeds

with different clusters have the same quiver. However, there is no requirement for all

the quivers to occur the same number of times (which is what we see and leads to

the concurrent identification of each set of the ‘ratio’ number of quivers and hence an

integer ratio overall).

These ratios take somewhat surprising and perhaps unintuitive numbers, with no

obvious foundation in the Dynkin construction. To further probe this behaviour, these

ratios were also computed for the finite type algebras (arising from the 4 Dynkin series)

for all ranks up to rank 5 in Table 3.6, and show signs of further extraordinary structure.

Conjectured natural continuations of these observed ratios are provided for higher ranks

also, noting that D4 appears to be anomalous in its series, likely related to triality of

its initial quiver. For completeness, we provide the G2 ratio: 4, reiterate that the F4

ratio is 7, and note that the remaining E6, E7, E8 exceptional cases are too high a rank

to be feasibly computed with current resources (leaving this to future work).

We finally reemphasise that if one identifies via the permutation equivalence some

of this alluring behaviour is lost. If one does identify in this way, some integer ratios

do occur sporadically for the Ar and Dr series (A4 : 7, D5 : 7) beyond the trivial

rank 2 cases where there is only one quiver. We believe this to be a probabilistic

artefact occasionally carried over through the permutation identification, where there

– 22 –

Cluster

Algebra

Rank

1 2 3 4 5 r ≥ 6

Ar 2 5 6 7 8 r + 3

Br - 3 4 5 6 r + 1

Cr - 3 4 5 6 r + 1

Dr - 4 6 24 10 2r

Table 3.6: The ratios between number of seeds in the seed exchange graph and number of quivers

in the quiver exchange graph for the finite type cluster algebras, not applying permutation equiva-

lence between seeds/quivers. Conjectured relationships are shown for higher ranks, r, beyond feasible

computation at present.

are few factors to choose from when dividing the number of seeds in these smaller rank

algebras under permutation equivalence identification, so maintaining the integer ratio

is more likely. The F4 and G2 ratios remain 7 and 4 respectively after the permutation

equivalence identification; and for the Br/Cr series all the ratios stay the same!

Cycle Embedding Already the vertex embedding of the quiver exchange graph into

the seed exchange graph reveals an intriguing structure. As motivated when examining

all algebra types at depths up to 4, the cycle space also acts as a foundation of the

graph structure and an important tool for analysing these embeddings.

Let us consider an s-cycle of quivers in a quiver exchange graph, i.e. there is a

sequence of s mutations connecting each quiver vertex to the next, eventually repro-

ducing the quiver one started with. Then considering the same algebra’s seed exchange

graph and taking the subgraph of seeds which have the same quivers as in the s-cycle

produces a subgraph built out of q t-cycles, where t = ps and p, q, s, t ∈ Z+. We call p

the scale factor, as it describes how the size of the cycle scales, and q the copy factor,

as it dictates how many copies of the cycle are produced.

Looking at all the algebras we consider, the values of p and q change depending

on the cycle in the quiver exchange graph considered. To best illustrate this we again

focus on the generalised associahedra of the finite type rank 4 algebras, where the

entire subgraph corresponding to the chosen cycle can be computed, and the value of

pq remains constant, equalling the respective ‘ratio’ values calculated previously.

The embedding of each quiver exchange graph cycle can be considered by taking

the subgraph of all seeds in the seed exchange graph that have a quiver from the cycle

under consideration. For all the rank 3 and 4 finite type cluster algebras the distribution

of p and q values for the cycles in each algebra’s minimum cycle basis are given in Table

3.7. The minimum cycle basis was used here as it is a sensible set of independent cycles

of different sizes to probe the embedding behaviour.

– 23 –

Cluster Algebra
QEG MCB

[[len,freq]]

Cycle scale factor p

[[value,freq]]

Cycle copy factor q

[[value,freq]]

A4 [[4,108],[6,8],[10,29]] [[1,90],[7,55]] [[1,55],[7,90]]

B4=C4 [[4,60],[6,15],[8,6],[10,4]] [[1,49],[5,36]] [[1,36],[5,49]]

D4 [[4,33],[7,12],[8,6]] [[1,15],[2,2],[4,25],[6,6],[12,3]] [[2,3],[4,6],[6,25],[12,2],[24,15]]

F4 [[4,42],[6,14],[8,4],[10,1]] [[1,31],[7,30]] [[1,30],[7,31]]

A3=D3 [[3,6],[8,2]] [[3,2],[6,6]] [[1,6],[2,2]]

B3=C3 [[3,4],[5,2]] [[4,6]] [[1,6]]

Table 3.7: The embedding of the quiver exchange graph minimum cycle basis (QEG MCB) into

the respective seed exchange graph for the rank 3 & 4 finite type cluster algebras. The embedding

information is listed as the p & q values and frequencies that dictate how each cycle scales in size and

copies respectively.

As can be seen, the p and q values are not constant for each algebra, but matching

up the frequencies (and computationally confirmed explicitly) shows that the pq ratio

is always constant at the value listed in Table 3.6. Due to the requirement that all

cycles in the seed exchange graph are even, if the quiver cycle being embedded is odd

then p has to be even, which is well exemplified with the rank 3 cases where for A3

the 6 3-cycles have p = 6, and all the B3 cycles have p = 4 (i.e. p = 1 cannot occur).

Note this breaks the symmetry of the ratio being split into its factors where p and q

can take either factor’s value, as seen for the even cycles in the table.

To provide some explicit example of the embedding we focus on the D4 algebra.

The embedding of 3 different quiver cycles in the seed exchange graph are given in

Figure 3.7. As can be seen, the two 4-cycles have different (p, q) values, and the larger

7-cycle has an even p value.

Of particular note is the quiver 4-cycle with seed exchange graph embedding shown

in Figure 3.7a. This quiver 4-cycle comes from commuting action of mutation on two

different vertices, which in the quiver happens when the vertices mutated about are

not connected. When any 4-cycle (in any cluster algebra) is built from commuting

action on disconnected vertices, the respective embedding in the seed exchange graph

always has p = 1, such that the mutation remains a commuting relation with the

cluster information added for all clusters with those quivers. Since the two mutated

quiver vertices are not connected, then no edge connecting them is introduced, and in

the cluster each new variable from a mutation will not include the variable from the

unconnected vertex. This does not hold for all generic 4-cycles, as exemplified in Figure

3.7b where the quiver 4-cycle comes from mutation on different vertices and has p > 1;

therefore only when the cycle is from commuting action will p = 1.

In addition, whilst the finite type cases have constant pq, putting an upper-bound

– 24 –

[0]

[2]

[2]

[2]
[0][0]

[0]

[2]

[0]

[2]

[0]

[2]

[2]

[0]

[0][2]

[2]
[0] [2]

[0]

[0]

[2]

[0][2]

[2]
[0] [2]

[0]

[2]

[0]

[0]

[2]

[2]

[0]

[2]

[0]

[2]

[2]

[0][2]

[2]
[0]

[0][2]

[2]

[0]

[2]

[2]

[0]

[2]
[0]

[0]

[2]

[0]

[0][2]

[2]
[0]

[2]

[0]

[0]

[2]

[2]

[0]

[2]

[2]

[0]

[0]

[2]

[0]

[2]

[2][0]

[0]

[2]

[0]

[2]

[2]

[2]

[0]

[0]

[2]

[0]
[2]

[0]

[2]

[0]

[2]

[0]

[0]

[0] [0]

[2]

[0]

[0]

[2]

(a) Quiver 4-cycle (p = 1, q = 24)

[3
]

[1]

[0]

[1
]

[3
]

[1
]

[1]

[0]

[2][3]
[0]

[1
]

[0][2]

[0]

[1
]

[0][2]

[0]
[2]

[1] [3]

[2]

[3
]

[0][1]

[2
]

[0]
[1]

[3]

[0]

[2
]

[3][2]

[0]

[2
]

[1]

[3]

[2]

[3]

[2
]

[0]
[1]

[3]

[3
]

[0] [1]

[0]

[2]

[2]

[2]

[3]
[2][0]

[3]

[1]
[0][2]

[3]

[3]

[1]

[2
]

[0]

[3]
[2]

[1]

[3
][1]

[1]

[3
]

[1]

[3
]

[1]

[0]

[1
]

[1
]

[3
]

[0]

[3
]

[2]

[0]

[2
]

[2]

[3
]

[0]
[1]

[0]

[3
]

[1]

[1]

[0]
[2]

[3
]

[0] [2]

[2]
(b) Quiver 4-cycle (p = 4, q = 6)

[3] [0]

[0][1]

[0] [2]

[1][3]

[0]
[3]

[0] [3]
[3][1]

[0]
[1]

[0][2]

[1] [2]

[1][3]

[1]
[0]

[2]
[0]

[0][1]

[1] [2]

[1] [3]

[3][0]

[0][2]
[1]

[3]

[1] [3]

[1][2]

[0] [2]

[3] [1]

[1]

[3]

[0][3]

[0][2]

[3][1]

[3]
[0]

[3]

[0][0]

[0]
[3]

[0] [1]

[2][1]

[2] [1]

[0]

[3]

[0][2]
[3] [1]

[1]

[3]

[0]

[0]

[3]

[0]

[0] [1]

[0]
[0]

[0][3]

[3][0]

[0]

[3]

[0] [3][3][1]

[2]

[1]

[3]

[1][3]

[1]
[3]

[0] [1]

[0]

[0]

[0] [2]

[0] [1]

[3]

[3]

[0]

[2]

[1]

[3]

[3] [0]

[2]

[1][3]

[2]
[0]

[0]
[3]

[0] [2]

[1]

[3]
[1]

[2]

[2]

[0][3]

[3]

[0][1]

[0] [3]

[1]

[1]

[1][3]

[3]

[0]

[1]

[2]

[1]

[3]

[2]

[0]

[3]

[1]

[1]

[3]
[1][2]

[1]

[1]

[3]

[3]

[3]

[1]

[1]

[1]

[1]

[2]

[3]

[1]

[0]

(c) Quiver 7-cycle (p = 4, q = 6)

Figure 3.7: The seed exchange graph embedding of 3 selected cycles from the quiver exchange graph

for the D4 cluster algebra. (a) & (b) are 4-cycles, which when embedded become 24 4-cycles and six 16-

cycles respectively; whilst (c) is a 7-cycle which becomes 6 28-cycles. Each embedded cycle subgraph

has edge features indicating the respective mutating quiver vertex, which connects the seeds, forming

multiples of the quiver 4 and 7-cycles respectively.

on the p and q values for all cycles in the quiver exchange graph, in the finite-mutation

but not finite and infinite types there is no such upper bound. In fact, particularly

for the finite-mutation but not finite cases, since there are finitely many quivers but

infinitely many seeds, for some cycles either (or both) of the p or q values must be

infinite.

From examining these finite type cluster algebras we have seen that the pq value

remains constant for all cycles; where the quiver cycle is odd then p must be even, and

where a quiver 4-cycle is from commuting action of mutation then p = 1. How the p

and q values are determined more generally for each cycle in each algebra is left open

for future exploratory work.

4 Machine Learning

Given two seeds it is unclear as to whether a sequence of mutations exists which connects

them, i.e. whether they belong to the same cluster algebra. Beyond simple checks for

– 25 –

the mutation type (a necessary but not sufficient condition), brute force computation

of all mutations is the usual method for checking this equivalence. However, brute

force mutation is extremely computationally expensive, as particularly emphasised by

the infeasibility of computing the exchange graph for I2 beyond depth 4.

To speed up this process of checking mutation equivalence, here machine learning

methods are applied to this problem, with the idea they may be able to find invariants in

the variables’ Laurent polynomial structure under mutation and use it for this speeding

up of equivalence computation.

In this work, dense feed-forward neural networks were used – as the prototypical

supervised machine learning classifier architecture [72]. The neural networks had 3

layers of 256 neurons with ReLU activation, learning the binary cross-entropy loss with

the Adam optimiser [78] on these binary classification problems. Learning performance

was measured with the accuracy and Matthew’s correlation coefficient (MCC) metrics,

to determine the proportion of correctly classified seeds (where MCC also accounts for

data bias). Furthermore, 5-fold cross-validation was performed, training 5 independent

neural networks on 5 different 80% partitions of the dataset, such that the metrics

could be averaged and standard error calculated to provide confidence in the results.

Data Representation In order to be used as input to a neural network the seed

information needs to be represented by a tensor. Before representing a seed as a

tensor, each cluster variable first needs to be represented, which requires encoding

each Laurent polynomial’s information. The information is split into numerator and

denominator, noting that the denominator will always be a single monomial term due

to the Laurent phenomenon (even if it is trivially 1), whilst the numerator will be a

positive1 sum of monomials. Each monomial, xα1x
β
2x

γ
3x

δ
4, is represented in a rank 4

tensor as the entry Tαβγδ, with value equal to the monomial’s coefficient. Then the full

variable is represented with two tensors (that are flattened and concatenated): one for

all numerator monomials and one for the denominator monomial.

However, this representation is excessively sparse, for example with a proportion

of non-zero entries ∼ 0.000008 for the I1 dataset. Since this representation has an

excessive redundancy in information, we turn to a sparse data representation, based on

the ‘coo’ style. Here each monomial is represented as a 5-vector of entries [c, α, β, γ, δ]

for monomial with coefficient c. Then all the monomial entries are concatenated with

the denominator monomial at the end. For comparison the sparsity proportion of the

I1 data with this style was ∼ 0.02, a significant improvement for ML implementation.

After all tensors are generated for each variable in a cluster, they are flattened and

concatenated across the cluster with the flattened exchange matrix also, to produce

1All cluster variables of all algebras considered in this study have exclusively positive coefficients.

– 26 –

a single data vector per seed. Note that sometimes the exchange matrix was omitted

from the representation in order to examine the ML performance based on only the

clusters, i.e. can the neural networks distinguish the cluster algebra from just sets of

generators (or is the exchange matrix needed as well in order to learn the full generator

set structure). Note, however, that the initial seed’s cluster is the same for all the alge-

bras, and there is further repetition also; this leads to some redundancy in information

where the same tensor may be affiliated to multiple algebras. This should make the

learning noticeably harder without the exchange matrix information, as some data will

mislead the learning.

Since different variables have different numbers of monomial terms, the length of

the seeds’ vectors varies substantially. To create a consistent input length for all vectors

in an investigation the tensors were post-padded with zeros such that all vectors were

the same length as the longest in that investigation. As the infinite type mutations lead

to more complex Laurent polynomials with far higher degrees, the respective vectors for

these higher-depth outer seeds are much longer than all others across all the algebras.

Therefore in order to stop this dilution of the information for ML comparison between

non-infinite algebras, the investigations were designed to be binary classifications.

For all ML investigations seeds in the same algebra were not considered identical if

they were related via a permutation of variables in the cluster. Due to the systematic

vector generation procedure these lead to different vectors, and one may consider this

process as the common practice of data augmentation on the permutation-invariant

algebra seeds if preference is to consider these over those where different permutations

are unique. The data, as well as data generation scripts, are available with this work’s

respective GitHub.

4.1 Distinguishing Cluster Algebra Types

The first investigation uses the above-described neural network architecture to classify

seeds coming from different cluster algebras. The algebras considered in this work

amount to 3 finite type, 2 finite-mutation but not finite type, and 2 infinite type.

These numbers were selected such that binary classifications could be performed for all

combinations of types, and in particular the additional F4 finite type was introduced, as

its tensor data is closer in form to the infinite types (with more larger-than-unit entries,

due to the initial quiver’s non-simply laced edge double multiplicity). Furthermore, as

there are many infinite-type initial seeds, I1 was also specifically chosen due to its

lower quiver edge multiplicities, making it more similar to the finite type cases.

These selections of the algebras considered were all made such that the tensor

representations of each algebra could not be distinguished by eye; one may look at

– 27 –

https://github.com/edhirst/ClusterAlgebrasML.git

Investigation Class Sizes
Tensor

Length

Tensor

Sparsity

ML Performance

with EM no EM

Accuracy MCC Accuracy MCC

A4 vs D4 (72, 80) 180 0.120
0.867

± 0.021

0.741

± 0.036

0.893

± 0.026

0.788

± 0.053

A4 vs A13 (72, 109) 280 0.088
0.944

± 0.011

0.886

± 0.023

0.878

± 0.022

0.743

± 0.047

F4 vs I1 (65, 79) 2320 0.015
0.950

± 0.013

0.903

± 0.024

0.936

± 0.012

0.875

± 0.024

A13 vs A22 (109, 105) 280 0.091
0.810

± 0.028

0.630

0.050

0.810

± 0.024

0.633

± 0.049

A13 vs I1 (109, 79) 2320 0.015
0.930

± 0.021

0.855

± 0.048

0.914

± 0.021

0.801

± 0.059

I1 vs I2 (79, 117) 94280 0.008
0.918

± 0.023

0.830

± 0.047

0.923

± 0.021

0.840

± 0.043

Table 4.1: Machine learning results for NN binary classification between clusters generated by the

respective initial seeds. The sizes of each class are listed, along with the tensor length used to represent

them, and the sparsity of those tensors (proportion of non-zero entries). The investigations are carried

out with and without the exchange matrix (EM) information for each cluster. The performance is

measured by accuracy and MCC with 5-fold cross-validation to provide standard error confidence on

the measures.

this data directly in the respective GitHub. Therefore any learning results would be

non-trivial and constitute some true learning of the algebra structure.

For all pairs selected for binary classification, both algebras were generated to depth

4, their seeds converted to vectors, both sets of vectors shuffled together, and the 5-fold

cross-validation ML performed. Learning results for each of these investigations are

provided in Table 4.1, where each investigation is repeated both with and without the

exchange matrix information (removal reducing the vector length by 16 each time).

For each investigation the algebras considered are labelled by their initial seeds;

the respective class sizes are given, with the full tensor length into which all the seeds

are embedded (based on the largest seed in that investigation). In order to compare

investigations the tensor sparsity is also given. As can be seen from this meta-data, the

data size for training is very small relative to usual ML investigations, and especially

with the low proportion of non-zero terms there is little information for a neural network

to learn any relationship between seeds from the same cluster algebra.

It is therefore evermore surprising that the architecture learns so well in all investi-

gations, with accuracies and MCC scores > 90% in some investigations. It can therefore

be confidently concluded that machine learning can identify structure inherent to each

algebra, and learn the cluster mutation process.

– 28 –

https://github.com/edhirst/ClusterAlgebrasML.git

Interestingly, the inclusion of the exchange matrix information only improves learn-

ing for classifications between algebras of different type. This may be due to the quivers

for algebras of the same type looking more similar and therefore diluting the already

sparse information in the tensors, hindering the learning performance. This is also sur-

prising since removal of the exchange matrix information makes some seeds in different

algebras identical (for example the initial seeds); hence one would expect performance

to always be worse without it. It must therefore be the case that the dilution of relevant

information is a more substantial factor than occasional misleading of the learning for

same type classifications.

Distinguishing Generalised Associahedra Whereas the previous investigations

focused on all types with data generated to depth 4, here we learn only the finite types

– but generated to their maximum depth to include all seeds in the algebras.

Since these all have similar complexity cluster variables we embed them all in the

same size tensors of length 1576 (with the exchange matrix information), and perform

multiclassification between all of them (including B4 and C4 also). The neural network

architecture is the same except now cross-entropy loss must be used instead of binary

cross-entropy.

The 5-fold cross-validation results give averaged performance measures:

Accuracy = 0.989± 0.003 , (4.1)

MCC = 0.985± 0.004 , (4.2)

CM =


0.289 0.003 0.000 0.001 0.000

0.001 0.120 0.000 0.000 0.000

0.002 0.000 0.119 0.000 0.000

0.002 0.000 0.000 0.344 0.000

0.004 0.001 0.000 0.000 0.117

 . (4.3)

The learning performance is exceptionally strong, despite now demanding multiclassi-

fication from the architecture.

The averaged confusion matrix, CM , shows the proportion of truly class A4:B4:

C4:D4:F4 (given by the row) classified into class A4:B4:C4:D4:F4 (given by the col-

umn). Perfect learning produces a diagonal matrix, and here the learning is very close to

that, with off-diagonal components two orders of magnitude smaller than the diagonal

components. The larger diagonal entries of A4 and D4 reflect their larger frequencies in

the dataset. The most frequent non-zero off-diagonals occur where the other algebras

are more likely to misclassify as A4 (larger first column entries), potentially due to

lower depth seeds all being exceptionally similar across the algebras which the neural

network then arbitrarily assumes to all be A4. Surprisingly, the matrix shows that

– 29 –

the architecture can distinguish well between the B4 and C4 architectures, despite the

analysis showing that they have identical generalised associahedra structure.

4.2 Learning at Varying Depths

In order to connect these results of learning at depth 4 and at the maximum depth for

the finite-type full algebras, we examine the A4:D4 binary classification performance

as depth increases from the minimum possible depth 1 (such that enough data to train

& test) up to depth 13 (where both algebras have all their seeds generated). Here we

consider the ML investigation without the exchange matrix information, as the results

in the previous section suggested it was in some sense superfluous for the learning.

As the depth increases not only do the cluster variables become more complex

and hence represented by longer and sparser vectors, there are more variables to train

with too. This investigation aims to probe these competing effects of longer, more

complicated vectors to learn from, against the benefit of more data to learn with. The

information regarding the tensor length needed for embedding, and the respective A4

and D4 class sizes at each depth are given in Table 4.2.

The cross-validation learning results are this time plotted as depth varies in Figure

4.1, with the performance measures’ standard errors given as error bounds.

Depth 1 2 3 4 5 6 7 8 9 10 11 12 13

Class Sizes
5

5

14

14

32

33

72

80

151

180

283

372

462

658

653

928

815

1091

927

1167

988

1195

1007

1200

1008

1200

Lengths 76 96 136 196 196 196 196 196 196 196 196 196 196

Table 4.2: Data information for the binary classification between A4 clusters and D4 clusters gener-

ated for depths 1-13 (such that all clusters were generated). The class sizes for A4 are shown above

those for D4 respectively, as well as the lengths of the flattened tensors that the clusters are embedded

in.

4.3 Identifying Cluster Algebras

Whereas preceding investigations used ML to differentiate which cluster algebra a spe-

cific seed generates, it is also interesting to see if neural networks can identify tensor

representations which represent sensible seeds altogether. An easy example would be

representations whose exchange matrices are not skew-symmetrizable, or have diagonal

elements; but beyond these there are many ways the encoding could define nonsensical

seeds (especially if adding non-zeroes deep into the padding).

In order to explore this learning we first generate suitable fake data. To ensure the

fake data is representative, and not trivially distinguishable by eye, the true seed data

for each cluster variable is analysed. Each algebra is generated on its own to depth 4,

– 30 –

0 2 4 6 8 10 12 14
Depth

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 P
er

fo
rm

an
ce

Accuracy
MCC

Figure 4.1: ML results for binary classification between A4 and D4 clusters with data generated

from the respective initial seeds up to the given depths. Performance is measured with accuracy and

MCC, and over the 5-fold cross-validation the measures are averaged and standard error calculated

giving the shown error bounds.

Performance

Measure

Cluster Algebra

A4 D4 F4 A13 A22 I1 I2

(196) (136) (336) (296) (176) (2336) (94296)

Accuracy
1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

0.819

± 0.0488

0.800

± 0.028

MCC
1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

1.000

± 0.000

0.671

± 0.078

0.640

± 0.044

Table 4.3: Binary classification results for differentiating tensors representing cluster algebras gener-

ated to depth 4 from the respective listed initial seeds, against fake tensors generated to mimic them.

The respective tensor lengths are listed beneath the initial seeds in brackets. Performance is measured

with accuracy and MCC across the 5-fold cross-validation runs.

reformulated as a vector, and padded to the maximum vector length for that algebra.

The set of vectors for each algebra is then assessed to give a discrete distribution of

frequencies of all integer entries that occur in all seed vectors across the algebra.

Then as many fake vectors are generated as there are true vectors, generated to be

the same lengths as the true, with each entry’s value drawn from the respective discrete

distribution of possible values. All the fake vectors were checked to not overlap with

the true vectors, despite a highly improbable chance of this occurring. For each algebra

considered the datasets of true and fake vectors were shuffled and binary classification

performed, with results shown in Table 4.3.

The results show perfect classification for all except the infinite types. This indi-

cates that the neural networks can learn some non-trivial structure in the finite and

– 31 –

finite-mutation types which it can use to effectively differentiate from fake data. How-

ever, for the infinite types the poorer performance suggests that the tensor structure is

perhaps more erratic and hence harder to differentiate from the simple random uniform

model for its fake data. This infinite data may be expected to span a larger proportion

of the possible tensors generated since there are infinitely many of them in the algebra,

and hence it may also be the case that these fake tensors are related to seeds at higher

depths.

5 Summary & Outlook

Network analysis methods uncovered patterns in the cluster algebra exchange graphs

unique to each type. In particular, a symmetric behaviour for quiver exchange graph

embedding in the seed exchange graph showed constant integer ratios between respec-

tive numbers of graph vertices, which we conjecture for Dynkin types of any rank. This

behaviour is made manifest by omitting the permutation-equivalence identification in

the exchange graphs, since certain established sets of permutations are not mutation

equivalent to the initial seed.

Simple machine learning architectures could successfully learn to differentiate clus-

ter algebras from their seeds, especially well between algebras of different types. In

these investigations we choose to use the cluster algebra seeds as inputs, as opposed

to individual cluster variables, since there is such a large amount of repetition of in-

dividual variables between algebras. However, further work may wish to examine the

cluster variables as direct inputs also.

Other further work would naturally extend exchange graph structure analysis to

different algebras of different ranks, and to higher depths where appropriate. One may

also be interested to analyse and ML the cluster complexes (dual to the generalised

associahedra). Finally, since the exchange graphs and quivers take a graphical form,

graph neural networks may be a sensible more sophisticated architecture to implement

next.

Acknowledgement

The authors wish to thank Gregg Musiker for invaluable insight and inspiring dis-

cussion. PPD would like to thank the LMS for grants 42035 and 42111, and York

St John University for grant QR21-22-63. YHH would like to thank STFC for grant

ST/J00037X/2. E. Heyes would like to thank SMCSE at City, University of London

for the PhD studentship, as well as the Jersey Government for a postgraduate grant.

E. Hirst would like to thank STFC for a PhD studentship.

– 32 –

References

[1] S. Fomin and A. Zelevinsky, “Cluster algebras i: Foundations,” Journal of the

American Mathematical Society 15 no. 2, (2002) 497–529.

http://www.jstor.org/stable/827129.

[2] S. Fomin and A. Zelevinsky, “Cluster algebras ii: Finite type classification,”

Inventiones mathematicae 154 (01, 2003) 63–121.

[3] L. Williams, “Cluster algebras: an introduction,” Bulletin of the American

Mathematical Society 51 no. 1, (2014) 1–26.

[4] R. Marsh, Lecture Notes on Cluster Algebras. Zurich lectures in advanced

mathematics. European Mathematical Society, 2013.

https://books.google.co.uk/books?id=ZmsdMj958ZcC.

[5] M.-W. Cheung, E. Kelley, and G. Musiker, “Cluster scattering diagrams and theta

basis for reciprocal generalized cluster algebras,” Séminaire Lotharingien

Combinatoire: FPSAC 21 (2021) .

[6] B. Duan, J.-R. Li, and Y.-F. Luo, “Quiver mutations and boolean reflection monoids,”

Journal of Algebra 544 (2020) 417–453.

https://www.sciencedirect.com/science/article/pii/S002186931930554X.

[7] N. Seiberg, “Electric-magnetic duality in supersymmetric non-abelian gauge theories,”

Nuclear Physics B 435 no. 1-2, (Feb, 1995) 129–146.

http://dx.doi.org/10.1016/0550-3213(94)00023-8.

[8] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seiberg duality

and brane diamonds,” JHEP 12 (2001) 035, arXiv:hep-th/0109063.

[9] A. P. Fordy and R. J. Marsh, “Cluster mutation-periodic quivers and associated

Laurent sequences,” J. Algebr. Comb. 34 (2011) 19–66, arXiv:0904.0200 [math.CO].

[10] F. Benini, D. S. Park, and P. Zhao, “Cluster Algebras from Dualities of 2d N = (2, 2)

Quiver Gauge Theories,” Commun. Math. Phys. 340 (2015) 47–104, arXiv:1406.2699

[hep-th].

[11] S. Franco, D. Galloni, and A. Mariotti, “Bipartite Field Theories, Cluster Algebras and

the Grassmannian,” J. Phys. A 47 no. 47, (2014) 474004, arXiv:1404.3752 [hep-th].

[12] S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos, “Duality walls, duality trees

and fractional branes,” arXiv:hep-th/0306092.

[13] S. Franco and G. Musiker, “Higher Cluster Categories and QFT Dualities,” Phys. Rev.

D 98 no. 4, (2018) 046021, arXiv:1711.01270 [hep-th].

[14] V. V. Fock and A. B. Goncharov, “Moduli spaces of local systems and higher

– 33 –

http://www.jstor.org/stable/827129
http://dx.doi.org/10.1007/s00222-003-0302-y
https://books.google.co.uk/books?id=ZmsdMj958ZcC
http://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2019.09.027
https://www.sciencedirect.com/science/article/pii/S002186931930554X
http://dx.doi.org/10.1016/0550-3213(94)00023-8
http://dx.doi.org/10.1016/0550-3213(94)00023-8
http://dx.doi.org/10.1088/1126-6708/2001/12/035
http://arxiv.org/abs/hep-th/0109063
http://dx.doi.org/10.1007/s10801-010-0262-4
http://arxiv.org/abs/0904.0200
http://dx.doi.org/10.1007/s00220-015-2452-3
http://arxiv.org/abs/1406.2699
http://arxiv.org/abs/1406.2699
http://dx.doi.org/10.1088/1751-8113/47/47/474004
http://arxiv.org/abs/1404.3752
http://arxiv.org/abs/hep-th/0306092
http://dx.doi.org/10.1103/PhysRevD.98.046021
http://dx.doi.org/10.1103/PhysRevD.98.046021
http://arxiv.org/abs/1711.01270

Teichmüller theory,” Publications Mathématiques de l’Institut des Hautes Études

Scientifiques 103 (2003) 1–211.

[15] V. Fock and A. Goncharov, “The quantum dilogarithm and representations of

quantum cluster varieties,” Inventiones mathematicae 175 (02, 2009) 223–286.

[16] H. Williams, “Toda Systems, Cluster Characters, and Spectral Networks,” Commun.

Math. Phys. 348 no. 1, (2016) 145–184, arXiv:1411.3692 [math.RT].

[17] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-Crossing in Coupled 2d-4d Systems,”

JHEP 12 (2012) 082, arXiv:1103.2598 [hep-th].

[18] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas

invariants and cluster transformations,” arXiv:0811.2435 [math.AG].

[19] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, “Motivic

Amplitudes and Cluster Coordinates,” JHEP 01 (2014) 091, arXiv:1305.1617

[hep-th].

[20] J. Golden, M. F. Paulos, M. Spradlin, and A. Volovich, “Cluster polylogarithms for

scattering amplitudes,” Journal of Physics A: Mathematical and Theoretical 47 no. 47,

(Nov, 2014) 474005.

[21] S. He, Z. Li, and Q. Yang, “Notes on cluster algebras and some all-loop Feynman

integrals,” Journal of High Energy Physics 2021 (06, 2021) .

[22] N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP 10 (2014) 030,

arXiv:1312.2007 [hep-th].

[23] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and

J. Trnka, Grassmannian Geometry of Scattering Amplitudes. Cambridge University

Press, 4, 2016. arXiv:1212.5605 [hep-th].

[24] Y.-H. He, “Deep-Learning the Landscape,” arXiv:1706.02714 [hep-th].

[25] Y.-H. He, “Machine-learning the string landscape,” Phys. Lett. B 774 (2017) 564–568.

[26] J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson, “Machine Learning in the

String Landscape,” JHEP 09 (2017) 157, arXiv:1707.00655 [hep-th].

[27] D. Krefl and R.-K. Seong, “Machine Learning of Calabi-Yau Volumes,” Phys. Rev. D

96 no. 6, (2017) 066014, arXiv:1706.03346 [hep-th].

[28] F. Ruehle, “Evolving neural networks with genetic algorithms to study the String

Landscape,” JHEP 08 (2017) 038, arXiv:1706.07024 [hep-th].

[29] K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Machine Learning CICY Threefolds,”

Phys. Lett. B 785 (2018) 65–72, arXiv:1806.03121 [hep-th].

[30] Y.-H. He and A. Lukas, “Machine Learning Calabi-Yau Four-folds,” Phys. Lett. B 815

(2021) 136139, arXiv:2009.02544 [hep-th].

– 34 –

http://dx.doi.org/10.1007/s00222-008-0149-3
http://dx.doi.org/10.1007/s00220-016-2692-x
http://dx.doi.org/10.1007/s00220-016-2692-x
http://arxiv.org/abs/1411.3692
http://dx.doi.org/10.1007/JHEP12(2012)082
http://arxiv.org/abs/1103.2598
http://arxiv.org/abs/0811.2435
http://dx.doi.org/10.1007/JHEP01(2014)091
http://arxiv.org/abs/1305.1617
http://arxiv.org/abs/1305.1617
http://dx.doi.org/10.1088/1751-8113/47/47/474005
http://dx.doi.org/10.1088/1751-8113/47/47/474005
http://dx.doi.org/10.1007/JHEP06(2021)119
http://dx.doi.org/10.1007/JHEP10(2014)030
http://arxiv.org/abs/1312.2007
http://dx.doi.org/10.1017/CBO9781316091548
http://arxiv.org/abs/1212.5605
http://arxiv.org/abs/1706.02714
http://dx.doi.org/10.1016/j.physletb.2017.10.024
http://dx.doi.org/10.1007/JHEP09(2017)157
http://arxiv.org/abs/1707.00655
http://arxiv.org/abs/1706.03346
http://arxiv.org/abs/1706.07024
http://arxiv.org/abs/1806.03121
http://arxiv.org/abs/2009.02544

[31] V. Jejjala, D. K. Mayorga Pena, and C. Mishra, “Neural Network Approximations for

Calabi-Yau Metrics,” arXiv:2012.15821 [hep-th].

[32] L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram, and F. Ruehle,

“Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,”

JHEP 05 (2021) 013, arXiv:2012.04656 [hep-th].

[33] A. Ashmore, R. Deen, Y.-H. He, and B. A. Ovrut, “Machine learning line bundle

connections,” 2021.

[34] A. Cole, S. Krippendorf, A. Schachner, and G. Shiu, “Probing the Structure of String

Theory Vacua with Genetic Algorithms and Reinforcement Learning,” in 35th

Conference on Neural Information Processing Systems. 11, 2021. arXiv:2111.11466

[hep-th].

[35] X. Gao and H. Zou, “Machine learning to the orientifold Calabi-Yau with string

vacua,” 2021.

[36] P. Berglund, B. Campbell, and V. Jejjala, “Machine Learning Kreuzer-Skarke

Calabi-Yau Threefolds,” arXiv:2112.09117 [hep-th].

[37] D. S. Berman, Y.-H. He, and E. Hirst, “Machine Learning Calabi-Yau Hypersurfaces,”

arXiv:2112.06350 [hep-th].

[38] Y.-H. He, The Calabi–Yau Landscape: From Geometry, to Physics, to Machine

Learning. Lecture Notes in Mathematics. 5, 2021. arXiv:1812.02893 [hep-th].

[39] S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “String Model Building,

Reinforcement Learning and Genetic Algorithms,” in Nankai Symposium on

Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 11, 2021.

arXiv:2111.07333 [hep-th].

[40] V. Jejjala, W. Taylor, and A. Turner, “Identifying equivalent Calabi–Yau topologies: A

discrete challenge from math and physics for machine learning,” in Nankai Symposium

on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 2, 2022.

arXiv:2202.07590 [hep-th].

[41] S. Krippendorf and M. Syvaeri, “Detecting Symmetries with Neural Networks,”

arXiv:2003.13679 [physics.comp-ph].

[42] J. Halverson, “Building Quantum Field Theories Out of Neurons,” arXiv:2112.04527

[hep-th].

[43] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Hilbert

series, machine learning, and applications to physics,” Phys. Lett. B 827 (2022)

136966, arXiv:2103.13436 [hep-th].

[44] J. Bao, Y.-H. He, and E. Hirst, “Neurons on Amoebae,” arXiv:2106.03695

[math.AG].

– 35 –

http://arxiv.org/abs/2012.15821
http://dx.doi.org/10.1007/JHEP05(2021)013
http://arxiv.org/abs/2012.04656
http://arxiv.org/abs/2111.11466
http://arxiv.org/abs/2111.11466
http://arxiv.org/abs/2112.09117
http://arxiv.org/abs/2112.06350
http://dx.doi.org/10.1007/978-3-030-77562-9
http://dx.doi.org/10.1007/978-3-030-77562-9
http://arxiv.org/abs/1812.02893
http://arxiv.org/abs/2111.07333
http://arxiv.org/abs/2202.07590
http://arxiv.org/abs/2003.13679
http://arxiv.org/abs/2112.04527
http://arxiv.org/abs/2112.04527
http://dx.doi.org/10.1016/j.physletb.2022.136966
http://dx.doi.org/10.1016/j.physletb.2022.136966
http://arxiv.org/abs/2103.13436
http://arxiv.org/abs/2106.03695
http://arxiv.org/abs/2106.03695

[45] G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, and D. Rodriguez-Gomez, “Brain

Webs for Brane Webs,” arXiv:2202.05845 [hep-th].

[46] E. Hirst, “Machine Learning for Hilbert Series,” 3, 2022. arXiv:2203.06073

[hep-th].

[47] V. Jejjala, A. Kar, and O. Parrikar, “Deep Learning the Hyperbolic Volume of a

Knot,” Phys. Lett. B 799 (2019) 135033, arXiv:1902.05547 [hep-th].

[48] S. Gukov, J. Halverson, F. Ruehle, and P. Su lkowski, “Learning to Unknot,” Mach.

Learn. Sci. Tech. 2 no. 2, (2021) 025035, arXiv:2010.16263 [math.GT].

[49] Y.-H. He and S.-T. Yau, “Graph Laplacians, Riemannian Manifolds and their

Machine-Learning,” arXiv:2006.16619 [math.CO].

[50] Y.-H. He, E. Hirst, and T. Peterken, “Machine-learning dessins d’enfants: explorations

via modular and Seiberg–Witten curves,” J. Phys. A 54 no. 7, (2021) 075401,

arXiv:2004.05218 [hep-th].

[51] Y.-H. He, “Machine-Learning Mathematical Structures,” arXiv:2101.06317 [cs.LG].

[52] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Polytopes

and Machine Learning,” arXiv:2109.09602 [math.CO].

[53] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn,

P. Battaglia, C. Blundell, A. Juhász, et al., “Advancing mathematics by guiding

human intuition with AI,” Nature 600 no. 7887, (2021) 70–74.

[54] K. Heal, A. Kulkarni, and E. Sertöz, “Deep learning gauss–manin connections,”

Advances in Applied Clifford Algebras 32 (04, 2022) .

[55] I. Bena, J. Bl̊abäck, M. Graña, and S. Lüst, “Algorithmically Solving the Tadpole

Problem,” Adv. Appl. Clifford Algebras 32 no. 1, (2022) 7, arXiv:2103.03250

[hep-th].

[56] Y.-H. He and M. Kim, “Learning Algebraic Structures: Preliminary Investigations,”

arXiv:1905.02263 [cs.LG].

[57] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, and Y. Xiao, “Quiver Mutations,

Seiberg Duality and Machine Learning,” Phys. Rev. D 102 no. 8, (2020) 086013,

arXiv:2006.10783 [hep-th].

[58] L. Amorós, O. Gasanova, and L. Jakobsson, “A machine learning approach to

commutative algebra: Distinguishing table vs non-table ideals,” arXiv:2109.11417

[math.AC].

[59] D. Peifer, M. Stillman, and D. Halpern-Leistner, “Learning selection strategies in

Buchberger’s algorithm,” Proceedings of the 37th International Conference on Machine

Learning 119 . https://par.nsf.gov/biblio/10276457.

– 36 –

http://arxiv.org/abs/2202.05845
http://arxiv.org/abs/2203.06073
http://arxiv.org/abs/2203.06073
http://dx.doi.org/10.1016/j.physletb.2019.135033
http://arxiv.org/abs/1902.05547
http://dx.doi.org/10.1088/2632-2153/abe91f
http://dx.doi.org/10.1088/2632-2153/abe91f
http://arxiv.org/abs/2010.16263
http://arxiv.org/abs/2006.16619
http://dx.doi.org/10.1088/1751-8121/abbc4f
http://arxiv.org/abs/2004.05218
http://arxiv.org/abs/2101.06317
http://arxiv.org/abs/2109.09602
http://dx.doi.org/10.1007/s00006-022-01207-1
http://dx.doi.org/10.1007/s00006-021-01189-6
http://arxiv.org/abs/2103.03250
http://arxiv.org/abs/2103.03250
http://arxiv.org/abs/1905.02263
http://dx.doi.org/10.1103/PhysRevD.102.086013
http://arxiv.org/abs/2006.10783
http://arxiv.org/abs/2109.11417
http://arxiv.org/abs/2109.11417
https://par.nsf.gov/biblio/10276457

[60] M. R. Douglas and G. W. Moore, “D-branes, quivers, and ALE instantons,”

arXiv:hep-th/9603167.

[61] J. Bao, A. Hanany, Y.-H. He, and E. Hirst, “Some Open Questions in Quiver Gauge

Theory,” arXiv:2108.05167 [hep-th].

[62] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seiberg duality

and brane diamonds,” Journal of High Energy Physics 2001 no. 12, (Dec, 2001)

035–035. http://dx.doi.org/10.1088/1126-6708/2001/12/035.

[63] S. Franco, A. Hanany, and Y.-H. He, “A trio of dualities: walls, trees and cascades,”

Fortschritte der Physik 52 no. 67, (Jun, 2004) 540–547.

http://dx.doi.org/10.1002/prop.200310142.

[64] M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi, and C. Vafa, “BPS quivers

and spectra of complete N = 2 quantum field theories,” Comm. Math. Phys. 323

no. 3, (2013) 1185–1227.

https://doi-org.ezp2.lib.umn.edu/10.1007/s00220-013-1789-8.

[65] P. Gabriel, “Unzerlegbare Darstellungen. I” Manuscripta Math. 6 (1972) 71–103;

correction, ibid. 6 (1972), 309.

https://doi-org.ezp2.lib.umn.edu/10.1007/BF01298413.

[66] A. Felikson, M. Shapiro, and P. Tumarkin, “Skew-symmetric cluster algebras of finite

mutation type,” Journal of the European Mathematical Society (2012) 1135–1180.

http://dx.doi.org/10.4171/jems/329.

[67] H. Derksen and T. Owen, “New graphs of finite mutation type,” Electron. J. Combin.

15 no. 1, (2008) Research Paper 139, 15.

http://www.combinatorics.org/Volume_15/Abstracts/v15i1r139.html.

[68] A. Felikson, M. Shapiro, and P. Tumarkin, “Cluster algebras of finite mutation type

via unfoldings,” International Mathematics Research Notices 2012 (06, 2010) .

[69] W. Stein et al., Sage Mathematics Software (Version 9.4.0). The Sage Development

Team, 2021. http://www.sagemath.org.

[70] G. Musiker and C. Stump, “A compendium on the cluster algebra and quiver package

in sage,” 2011.

[71] A. A. Hagberg, D. A. Schult, and P. Swart, “Exploring network structure, dynamics,

and function using networkx,” 2008.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research 12 (2011) 2825–2830.

– 37 –

http://arxiv.org/abs/hep-th/9603167
http://arxiv.org/abs/2108.05167
http://dx.doi.org/10.1088/1126-6708/2001/12/035
http://dx.doi.org/10.1088/1126-6708/2001/12/035
http://dx.doi.org/10.1088/1126-6708/2001/12/035
http://dx.doi.org/10.1002/prop.200310142
http://dx.doi.org/10.1002/prop.200310142
http://dx.doi.org/10.1007/s00220-013-1789-8
http://dx.doi.org/10.1007/s00220-013-1789-8
https://doi-org.ezp2.lib.umn.edu/10.1007/s00220-013-1789-8
http://dx.doi.org/10.1007/BF01298413
http://dx.doi.org/10.1007/BF01298413
https://doi-org.ezp2.lib.umn.edu/10.1007/BF01298413
http://dx.doi.org/10.4171/jems/329
http://dx.doi.org/10.4171/jems/329
http://www.combinatorics.org/Volume_15/Abstracts/v15i1r139.html
http://dx.doi.org/10.1093/imrn/rnr072

[73] A. Felikson, M. Shapiro, and P. Tumarkin, “Cluster algebras of finite mutation type

via unfoldings,” International Mathematics Research Notices 2012 (06, 2010) .

[74] S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra,” Annals of

Mathematics 158 no. 3, (2003) 977–1018.

[75] S. Fomin and N. Reading, “Root systems and generalized associahedra,” 2008.

[76] P.-P. Dechant, “From the Trinity (A3, B3, H3) to an ADE correspondence,”

Proceedings of the Royal Society A 474 no. 2220, (2018) 20180034.

[77] T. Nakanishi, “Cluster algebras and scattering diagrams, part i. basics in cluster

algebras,” arXiv:2201.11371 [math.CO].

[78] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

– 38 –

http://dx.doi.org/10.1093/imrn/rnr072
http://arxiv.org/abs/2201.11371

	1 Introduction
	2 Cluster Algebras Review
	2.1 Exchange Graphs
	2.2 Cluster Algebra Types

	3 Exchange Graph Data
	3.1 Network Analysis
	3.2 Generalised Associahedra & Seed Equivalence
	3.3 Quiver Exchange Graphs
	3.3.1 All Types to Depth 4
	3.3.2 Quiver Generalised Associahedra

	4 Machine Learning
	4.1 Distinguishing Cluster Algebra Types
	4.2 Learning at Varying Depths
	4.3 Identifying Cluster Algebras

	5 Summary & Outlook
	References

