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Abstract

A major limitation for the broader scope of problems solvable by transformers is1

the quadratic scaling of computational complexity with input size. In this study, we2

investigate the recurrent memory augmentation of pre-trained transformer models3

to extend input context length while linearly scaling compute. Our approach4

demonstrates the capability to store information in memory for sequences of up5

to an unprecedented two million tokens while maintaining high retrieval accuracy.6

Experiments with language modeling tasks show perplexity improvement as the7

number of processed input segments increases. These results underscore the8

effectiveness of our method, which has significant potential to enhance long-term9

dependency handling in natural language understanding and generation tasks, as10

well as enable large-scale context processing for memory-intensive applications.11

1 Introduction12

Transformer-based models show their effectiveness across multiple domains and tasks. The self-13

attention allows to combine information from all sequence elements into context-aware represen-14

tations. However, global and local information has to be stored mostly in the same element-wise15

representations. Moreover, the length of an input sequence is limited by quadratic computational16

complexity of self-attention. In this work, we propose and study a memory-augmented segment-level17

recurrent Transformer (Recurrent Memory Transformer). Memory allows to store and process local18

and global information as well as to pass information between segments of the long sequence with19

the help of recurrence. We implement a memory mechanism with no changes to Transformer model20

by adding special memory tokens to the input or output sequence. Then Transformer is trained to21

control both memory operations and sequence representations processing.22

This study we show that by using simple token-based memory mechanism introduced in [Bulatov23

et al., 2022] can be combined with pretrained transformer models like BERT [Devlin et al., 2019]24

and GPT-2 [Radford et al., 2019] with full attention and full precision operations.25

Contributions26

1. We enhance both encoder-only and decoder-only pre-trained Transformer language models by27

incorporating token-based memory storage and segment-level recurrence with recurrent memory28

(RMT).29

2. We demonstrate that language models pre-trained on much shorter lengths can be trained with30

RMT approach to tackle tasks on sequences many times longer than its originally designed input31

length.32

3. We discovered the trained RMT’s capacity to successfully extrapolate to tasks of varying lengths,33

including those exceeding 1 million tokens with linear scaling of computations required.34
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4. Through attention pattern analysis, we found the operations RMT employs with memory, enabling35

its success in handling exceptionally long sequences.36

2 Related work37

Our work revolves around the concept of memory in neural architectures. Memory has been a38

recurrent theme in neural network research, dating back to early works [McCulloch and Pitts, 1943,39

Stephen, 1956] and significantly advancing in the 1990s with the introduction of the Backpropagation40

Through Time learning algorithm [Werbos, 1990] and Long-Short Term Memory (LSTM) neural41

architecture [Hochreiter and Schmidhuber, 1997]. Contemporary memory-augmented neural net-42

works (MANNs) typically utilize some form of recurrent external memory separate from the model’s43

parameters. Neural Turing Machines (NTMs) [Graves et al., 2014] and Memory Networks [Weston44

et al., 2015] are equipped with storage for vector representations accessible through an attention45

mechanism. Memory Networks [Weston et al., 2015, Sukhbaatar et al., 2015] were designed to enable46

reasoning through sequential attention over memory content.47

NTMs, followed by Differentiable Neural Computer (DNC) [Graves et al., 2016] and Sparse DNC48

[Rae et al., 2016], are implemented as recurrent neural networks capable of writing to memory49

storage over time. All these models are differentiable and trainable via backpropagation through50

time (BPTT). Parallel research lines extend recurrent neural networks, such as LSTM, with data51

structures like stacks, lists, or queues [Joulin and Mikolov, 2015, Grefenstette et al., 2015]. MANN52

architectures with more advanced addressing mechanisms, such as address-content separation and53

multi-step addressing, have been proposed in [Gulcehre et al., 2016, 2017, Meng and Rumshisky,54

2018]. The Global Context Layer model [Meng and Rumshisky, 2018] employs address-content55

separation to address the challenge of training content-based addressing in canonical NTMs.56

Memory is often combined with Transformers in a recurrent approach. Long inputs are divided into57

smaller segments, processed sequentially with memory to access information from past segments.58

Transformer-XL [Dai et al., 2019] preserves previous hidden states for reuse in subsequent segments,59

while Compressive Transformer [Rae et al., 2020] adds new compressed memory. Ernie-Doc [Ding60

et al., 2021] enhances contextual information flow by employing same-layer recurrence instead of61

attending to previous layer outputs of preceding segments. Memformer [Wu et al., 2022a] introduces62

a dedicated memory module to store previous hidden states in summarized representations. Using a63

similar approach to Memformer, MART [Lei et al., 2020] and Block-Recurrent Transformer [Hutchins64

et al., 2022] adopt memory update rules analogous to LSTM [Hochreiter and Schmidhuber, 1997]65

and GRU [Cho et al., 2014]. FeedBack Transformer [Fan et al., 2020] implements full recurrence66

beyond the segment level and merges low and high layers representations into a memory state.67

A drawback of most existing recurrent methods is the need for architectural modifications that68

complicate their application to various pre-trained models. In contrast, the Recurrent Memory69

Transformer can be built upon any model that uses a common supported interface.70

Some approaches redesign the self-attention mechanism to reduce computational complexity while71

minimizing input coverage loss. Star-Transformer [Guo et al., 2019], Longformer [Beltagy et al.,72

2020], GMAT [Gupta and Berant, 2020], Extended Transformer Construction (ETC) [Ainslie et al.,73

2020], and Big Bird [Zaheer et al., 2020] limit attention distance and employ techniques such as74

global representations to preserve long-range dependencies. Memory Transformer [Burtsev et al.,75

2020] introduces memory by extending the unchanged model input with special memory tokens.76

A common constraint of these methods is that memory requirements grow with input size during77

both training and inference, inevitably limiting input scaling due to hardware constraints. The longest78

Longformer, Big Bird, and Long T5 [Guo et al., 2022] models reported in their respective papers79

have a maximum length of less than 33,000 tokens. CoLT5 [Ainslie et al., 2023] can handle up to80

64,000 tokens before running out of memory, and Memorizing Transformers [Wu et al., 2022b] and81

Unlimiformer [Bertsch et al., 2023] further extend memory through k-NN.82

3 Recurrent Memory Transformer83

Starting from the initial Recurrent Memory Transformer [Bulatov et al., 2022] (RMT), we adapted it84

for a plug-and-play approach as a wrapper for a range of popular Transformers.85
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Figure 1: Recurrent memory mechanism. Memory
is passed to Transformer along input sequence embed-
dings, and memory output is passed to the next segment.
During training gradients flow from the current segment
through memory to the previous segment.

This adaptation augments its backbone with86

memory, composed of m real-valued trainable87

vectors (Figure 1). The lengthy input is di-88

vided into segments, and memory vectors are89

prepended to the first segment embeddings and90

processed alongside the segment tokens. For91

encoder-only models like BERT, memory is92

added only once at the beginning of the segment,93

unlike [Bulatov et al., 2022], where decoder-94

only models separate memory into read and95

write sections. For the time step τ and segment96

H0
τ , the recurrent step is performed as follows:97

H̃0
τ = [Hmem

τ ◦H0
τ ], H̄

N
τ = Transformer(H̃0

τ ), [H̄
mem
τ ◦HN

τ ] := H̄N
τ ,

here N is a number of Transformer layers.98

After the forward pass, H̄mem
τ contains updated memory tokens for the segment τ .99

Segments of the input sequence are processed sequentially. To enable the recurrent connection, we100

pass the outputs of the memory tokens from the current segment to the input of the next one:101

Hmem
τ+1 := H̄mem

τ , H̃0
τ+1 = [Hmem

τ+1 ◦H0
τ+1].

Both memory and recurrence in the RMT are based only on global memory tokens. This allows the102

backbone Transformer to remain unchanged, making the RMT memory augmentation compatible103

with any model from the Transformer family.104

3.1 Computational efficiency105

We can estimate the required FLOPs for RMT and Transformer models of different sizes and sequence106

lengths. We took configurations (vocabulary size, number of layers, hidden size, intermediate hidden107

size, and number of attention heads) for the OPT model family [Zhang et al., 2022] and computed the108

number of FLOPs for the forward pass following [Hoffmann et al., 2022]. We also modified FLOP109

estimates to account for the effect of RMT recurrence.110

Figure 2 shows that RMT scales linearly for any model size if the segment length is fixed. We achieve111

linear scaling by dividing an input sequence into segments and computing the full attention matrix112
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Figure 2: RMT inference scales linearly with respect to the input sequence length. We estimate the required
FLOP increase for the forward pass compared to running models on sequences with 512 tokens. a: lengths
from 512 to 32,000 tokens, b: lengths from 32,000 to 2,048,000 tokens. The RMT segment length is fixed
at 512 tokens. While larger models (OPT-30B, OPT-175B) tend to exhibit near-linear scaling on relatively
short sequences up to 32,000, they reach quadratic scaling on longer sequences. Smaller models (OPT-125M,
OPT-1.3B) demonstrate quadratic scaling even on shorter sequences. On sequences with 2,048,000 tokens,
RMT can run OPT-175B with ×29 fewer FLOPs and with ×295 fewer FLOPs than OPT-135M.
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Figure 3: Memory-intensive synthetic tasks. Synthetic tasks and the required RMT operations to solve them
are presented. In the Memorize task, a fact statement is placed at the start of the sequence. In the Detect and
Memorize task, a fact is randomly placed within a text sequence, making its detection more challenging. In
the Reasoning task, two facts required to provide an answer are randomly placed within the text. For all tasks,
the question is at the end of the sequence. ’mem’ denotes memory tokens, ’Q’ represents the question, and ’A’
signifies the answer.

only within segment boundaries. Larger Transformer models tend to exhibit slower quadratic scaling113

with respect to sequence length because of compute-heavy FFN layers (which scale quadratically114

with respect to hidden size). However, on extremely long sequences > 32,000, they fall back to115

quadratic scaling. RMT requires fewer FLOPs than non-recurrent models for sequences with more116

than one segment (> 512 in this study) and can reduce the number of FLOPs by up to ×295 times.117

RMT provides a larger relative reduction in FLOPs for smaller models, but in absolute numbers, a118

×29 times reduction for OPT-175B models is highly significant.119

4 Memorization Tasks120

To test memorization abilities, we constructed synthetic datasets that require memorization of simple121

facts and basic reasoning. The task input consists of one or several facts and a question that can be122

answered only by using all of these facts. To increase the task difficulty, we added natural language123

text unrelated to the questions or answers. This text acts as noise, so the model’s task is to separate124

facts from irrelevant text and use them to answer the questions. The task is formulated as a 6-class125

classification, with each class representing a separate answer option.126

Facts are generated using the bAbI dataset [Weston et al., 2016], while the background text is sourced127

from questions in the QuALITY [Pang et al., 2022] long QA dataset.128

Background text: ... He was a big man, broad-shouldered and still thin-waisted.129

Eddie found it easy to believe the stories he had heard about his father ...130

The first task tests the ability of RMT to write and store information in memory for an extended time131

(Figure 3, top). In the simplest case, the fact is always located at the beginning of the input, and132

the question is always at the end. The amount of irrelevant text between the question and answer is133

gradually increased, so that the entire input does not fit into a single model input.134

Fact: Daniel went back to the hallway.135

Question: Where is Daniel?136

Answer: hallway137

Fact detection increases the task difficulty by moving the fact to a random position in the input138

(Figure 3, middle). This requires the model to first distinguish the fact from irrelevant text, write it to139

memory, and later use it to answer the question located at the end.140

Another important operation with memory is being able to operate with several facts and current141

context. To evaluate this function, we use a more complicated task, called "reasoning", where two142
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Figure 4: Generalization of memory retrieval. Evaluation of checkpoints trained on 1-7 segment tasks with
memory size 10 on varying input lengths. a: Memorization task, b: Detection & memorization, c: Reasoning.
Models trained on more than 5 segments generalize well on longer tasks.

facts are generated and positioned randomly within the input sequence (Figure 3, bottom). The143

question posed at the end of the sequence is formulated in a way that any of the facts must be used to144

answer the question correctly (i.e., the Two Argument Relation bAbI task).145

Fact1: The hallway is east of the bathroom.146

Fact2: The bedroom is west of the bathroom.147

Question: What is the bathroom east of?148

Answer: bedroom149

5 Learning Memory Operations150

We use the pretrained models from Hugging Face Transformers [Wolf et al., 2020] as backbones for151

RMT in our experiments. All models are augmented with memory and trained using the AdamW152

optimizer [Loshchilov and Hutter, 2019] with linear learning rate scheduling and warmup. Technical153

details of training and full set of hyperparameters will be available in the Appendix and training154

scripts in the GitHub repository.Memorization task experiments were conducted using 4-8 Nvidia155

1080ti GPUs. For longer sequences, we speed up evaluation by switching to a single 40GB Nvidia156

A100.157

5.1 Curriculum Learning158

We observe that using a training schedule greatly improves solution accuracy and stability. Initially,159

RMT is trained on shorter versions of the task, and upon training convergence, the task length is160

increased by adding one more segment. The curriculum learning process continues until the desired161

input length is reached.162
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Figure 5: Recurrent Memory Transformer retains information across up to 2×106 tokens. By augmenting
a pre-trained BERT model with recurrent memory [Bulatov et al., 2022], we enabled it to store task-specific
information across 7 segments of 512 tokens each. During inference, the model effectively utilized memory
for up to 4,096 segments with a total length of 2,048,000 tokens—significantly exceeding the largest input
size reported for transformer models (64K tokens for CoLT5 [Ainslie et al., 2023], and 32K tokens for GPT-
4 [OpenAI, 2023], and 100K tokens for Claude). This augmentation maintains the base model’s memory size at
3.6 GB in our experiments.

In our experiments, we begin with sequences that fit in a single segment. The practical segment size163

is 499, as 3 special tokens of BERT and 10 placeholders for memory are reserved from the model164

input, sized 512. We notice that after training on shorter tasks, it is easier for RMT to solve longer165

versions as it converges to the perfect solution using fewer training steps.166

5.2 Extrapolation Abilities167

How well does RMT generalize to different sequence lengths? To answer this question, we evaluate168

models trained on a varying number of segments to solve tasks of larger lengths (Figure 4). We169

observe that most models tend to perform well on shorter tasks. The only exception is the single-170

segment reasoning task, which becomes hard to solve once the model is trained on longer sequences.171

One possible explanation is that since the task size exceeds one segment, the model stops expecting172

the question in the first segment, leading to quality degradation.173

Interestingly, the ability of RMT to generalize to longer sequences also emerges with a growing174

number of training segments. After being trained on 5 or more segments, RMT can generalize nearly175

perfectly for tasks twice as long. To test the limits of generalization, we increase the validation task176

size up to 4096 segments or 2,043,904 tokens (Figure 5). RMT holds up surprisingly well on such177

long sequences, with Detect & memorize being the easiest and Reasoning task the most complex.178
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Figure 6: Attention maps for operations with memory. These heatmaps show operations performed during
specific moments of a 4-segment reasoning task. The darkness of each pixel depends on the attention value
between the corresponding key and value. From left to right: RMT detects the first fact and writes its content
to memory ([mem] tokens); the second segment contains no information, so the memory keeps the content
unchanged; RMT detects the second fact in reasoning tasks and appends it to memory; CLS reads information
from the memory to answer the question.
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Figure 7: Generalization of memory on language modeling task. Models with input sizes a: 128 and b:
1024 trained with RMT show better performance and generalization across longer sizes of context. Perplexity
improvement from training RMT with memory size 2 compared to training the baseline GPT-2 for same number
of steps.

By examining the RMT attention on specific segments, as shown in Figure 6, we observe that179

memory operations correspond to particular patterns in attention. Furthermore, the high extrapolation180

performance on extremely long sequences, as presented in Section 5.2, demonstrates the effectiveness181

of learned memory operations, even when used thousands of times. The RMT does not have any182

specific memory read/write modules and Transformer learns how to operate with memory recurrently.183

This is particularly impressive, considering that these operations were not explicitly motivated by the184

task loss.185

6 Language Modeling186

To study the impact of memory on long text understanding, we focus on the long text language187

modeling task conducted using the recurrent approach. To capture long-term dependencies in text,188

memory is required to find and store various type of information between segments. We train the189

GPT-2 Hugging Face checkpoint with 2 memory tokens using the recurrent memory approach on190

the ArXiv documents from The Pile [Gao et al., 2020]. The dataset is preprocessed by splitting each191

document into non-overlapping segments of fixed length, which are prepended with their respective192

histories that consist of several segments. During both training and evaluation we process history193

and target segments one by one and calculate loss and perplexity only on the last target segment.194

Similarly to memorization tasks, we employ curriculum learning for training, starting without history195

and then gradually increasing context size. Language modeling experiments were done on 1-4 A100196

GPUs with single curriculum stage taking up to 2 GPU-days.197

As expected, increasing the effective context size leads to an improvement in perplexity (Figure198

7). RMT trained for an equal number of steps as the baseline GPT-2 displays substantially lower199

perplexity values. With increasing number of segments in train RMT starts exhibiting better tolerance200

to higher history sizes. Performance of memory models trained without history suffers when applied201

to long contexts, but improves after multi-segment training.202

We explore the limits of generalization using two tactics. First, we extend the context to contain up to203

1024 segments and run RMT trained on constant number of segments, which is shown in Figure 8204

(a). After a certain context size the perplexity stops changing, remaining stable even when handling205

sequences with more than 1M tokens. Next we test robustness of RMT by introducing noise from206

another distribution in its context. Instead of containing relevant history, a fixed number of input207

segments is sampled using articles from Wikitext-2 dataset, introduced in [Merity et al., 2017]. Figure208

8 (b) illustrates the ability of RMT to retain its superiority over GPT-2 even with useful context vastly209

outnumbered by noise. To understand how memory utilized during generation of the sequence we210

measured perplexity for every positon in it (see Figure 9). Baseline shows low prediction quality at211

the beginning of the sequence due to short context available to condition generation. On the other212
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context gradually decreases RMT performance. The bits per byte value (BPB) is computed using the mean bits
per token value for the Arxiv set from the Pile [Gao et al., 2020].
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Figure 9: Memory improves prediction at a beginning of a segment. As we can see, there is an increase in
the loss for tokens at the beginning for GPT-2 (context size 0), showing that it struggles to predict the first tokens
since they have no context. The RMT keeps information about previous segments in memory tokens, which
helps it to improve tokens predictions. However, showing the model the exact previous context (context size 128
and 768) allows for larger loss gains, but at a higher inference cost. This also shows the importance of local
context for language modeling.

hand, RMT ensures equally good prediction for all tokens due to carryover of information from the213

previous segment.214

7 Formal Mathematics215

In this section, we fine-tune our model on a complex mathematical task: generating a proof for a given216

mathematical theorem in formal language. For our experiments, we utilized Lean 3 [de Moura et al.,217

2015] and its library, Mathlib [mathlib Community, 2020], which contains a range of formalized218

theories.219

Each proof relies on known results, referred to as lemmas. To ensure an effective model, it must220

accurately assess the relevance of a lemma to the given proof. Subsequently, it should memorize the221

lemma’s name and incorporate it within the proof. To construct our dataset, we organized each sample222

into a sequence format. The sequence comprises the theorem statement at the beginning, followed by223

a randomly ordered list of relevant and irrelevant lemmas, and concludes with the human-written224

proof. By adjusting the presence of irrelevant lemmas, we control the sequence length. We further225

divide the sequence into non-overlapping segments of fixed size.226

For training and evaluation, we calculate the loss and perplexity of the entire sequence. Similar to227

memorization tasks, we train the RMT model and gradually increase size of the sequences. As our228

backbone, we employ GPTNeo [Black et al., 2021] with 1.3B parameters. We incorporate 10 memory229

tokens and set the segment size to 2028.230
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Figure 10: Lemmas memorization for a theorem proving. Evaluation of the RMT model and backbone
model without memory. Two metrics are calculated: perplexity on all tokens of the sequence (left) and perplexity
on the last segment of the sequence (right). RMT model shows better quality.

To assess the performance of the RMT model, we compare it with GPTNeo without memory trained231

on a sequences of 2 segments (first segment always contains the theorem statement and the second232

contains the proof). GPTNeo undergoes fine-tuning using the same number of tokens as RMT with233

2 segments. Figure 10 shows the results of the RMT model. The RMT model improves perplexity234

compared to the memory-less model. However, training with 4 or more segments does not enhance235

predictions for longer sequences. According to how the sequence is constructed and split into236

segments, we hypothesize that the model is more concentrated on learning to remember the beginning237

of the last lemma in the previous segment to predict its end in the subsequent segment. The effect of238

detecting and memorizing relevant lemmas and utilizing them in proof generation is less notable. We239

believe that the results can be improved by more careful loss construction and data preparation.240

8 Conclusions241

The problem of long inputs in Transformers has been extensively studied since the introduction of242

this architecture. Our research has presented a series of significant advancements in augmenting243

and training of Transformer language models. The work expands the conventional capabilities of244

these models through the integration of token-based memory storage and segment-level recurrence245

using recurrent memory (RMT). This mechanism propels the abilities of both encoder-only and246

decoder-only pre-trained Transformers, revealing an unprecedented level of scalability.247

We have shown that by employing the RMT approach, even models pre-trained on shorter sequences248

can be effectively adapted to manage tasks involving significantly longer sequences. This demon-249

strates that the input length originally designed for the model does not necessarily restrict its potential250

capabilities, thus offering a new perspective on the adaptability of Transformer models.251

Our work further uncovered the remarkable adaptability of the trained RMT models in extrapolating252

to tasks of varying lengths. The results obtained showcased the RMT’s ability to handle sequences253

exceeding 1 million tokens. Importantly, the computational requirements scaled linearly, thereby254

maintaining computational efficiency even as task length drastically increased. This is a substantial255

contribution that could lead to broader applications and improved performance in handling large-scale256

data. Through an analysis of attention patterns, we provided insight into the operations RMT engages257

to manipulate memory.258

Overall, our research contributes significantly to the understanding and enhancement of pre-trained259

Transformer language models. It offers a promising direction for future work, particularly in terms of260

handling longer sequences and improving the adaptability of these models.261
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