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The Kauffman model is a model of genetic computation that highlights the importance of criticality
at the border of order and chaos. But our understanding of its behavior is incomplete, and much of
what we do know relies on intricate arguments. We give a simple proof that the number of attractors
for the critical Kauffman model with connectivity one grows faster than previously believed. Our
approach relies on a link between the critical dynamics and number theory.

The Kauffman model is a simplified model of genetic net-
works that has been widely studied [1–6]. It highlights
the importance of criticality—the border between frozen
and chaotic dynamics—at which many biological systems
seem poised [7, 8].

The Kauffman model with connectivity one plays a
special role because it is exactly solvable [1]. At the same
time, new approaches to solving it reveal additional in-
sights [2], suggesting techniques for more realistic models
which cannot be solved exactly. If, as is widely believed
[2], all critical Kauffman models behave in a similar way,
our results for the connectivity one model should apply
to other critical versions, too.

In a Kauffman model with connectivity one, N nodes
form a random directed network such that each node has
one input, but any number of outputs. Thus the network
is composed of loops and trees branching off the loops.
Because the nodes in the trees are slaves to the loops,
they do not contribute to the number or length of attrac-
tors, which are set solely by the m nodes in the loops.
Each node is randomly assigned one of four Boolean func-
tions: on, off, copy or invert.

In a critical Kauffman model, a perturbation to one
node propagates to, on average, one other node. So in the
critical model with connectivity one, all of the Boolean
functions must be copy or invert [2]. Because of this, all
of the 2m states of the m nodes in loops are part of cy-
cles; there are no transients.

We use the words cycle and attractor interchangeably,
and we use the word dynamics to refer to the number and
length of cycles in the state space. For a loop of size l,
the dynamics depends only on the parity of the number
of inverts in the loop. If the number of inverts is even, it
is called an even loop, and it has cycles of length k if k di-
vides l. If the number of inverts is odd, it is called an odd
loop, and it has cycles of length k if k divides 2l but not l.
We use the shorthand {l} and {l} for even and odd loops
of length l. Let g ◦x denote g copies of a cycle of length
x. We can write the dynamics as d = g1◦x1+g2◦x2+ . . .,
where “+” means “and”. Table I shows some examples.

Multiple loops can give rise to more complicated dy-
namics, where the cycle lengths of the network are the
least common multiples of the cycle lengths of individ-
ual loops. We denote a collection of loops by {l1, l2, . . .},

where m = l1 + l2 + . . . is the number of nodes in loops.
The dynamics of multiple loops can be deduced from the
dynamics of individual loops by defining a product be-
tween them, first introduced in [3]:

(g1 ◦x1 + g2 ◦x2 + . . .)(h1 ◦ y1 + h2 ◦ y2 + . . .)

=
∑
i,j

gihj gcd(xi, yj) ◦ lcm(xi, yj). (1)

Examples are given in the right of Table I.
A lower bound on the number of attractors can be

got from an upper bound on the mean attractor length.
Writing d(l1, l2, . . .) = ν1 ◦A1 + ν2 ◦A2 + . . ., where there
are νi cycles of length Ai, the mean attractor length is

A =
∑
i

νiAi

/∑
i

νi.

Since all 2m states of the loop nodes belong to attractors,∑
i νiAi = 2m. So we have

c(m) =
∑
i

νi = 2m
/
A. (2)

We can bound the mean attractor length from above
by calculating the largest attractor length. In the pres-
ence of odd loops, the largest attractor length is double
the least common multiple of the individual loop sizes.
Consider all ways of partitioning some number m into
l1, l2, . . .. For m = 8, some of the 22 partitions are shown
in the right of Table I. What is the maximum value
of the lcm of the partitions? This is precisely Landau’s
function g(m). Its first ten values are 1, 2, 3, 4, 6, 6,
12, 15, 20, 30 (OEIS A000793 [9]). When m is the sum
of the first s primes, for s ∈ [1, 8] g(m) is the prod-
uct of the primes: g(2) = 2, g(5) = 6, g(10) = 30,
and so on. But this is not true in general: for s = 9,
lcm(2, 3, . . . , 19, 23) < lcm(9, 3, . . . , 19, 16), where we re-
placed 2 and 23 with 9 and 16.
Landau proved ln g(m) asymptotically approaches√
m lnm. More recently, Massias [10] proved

g(m) ≤ 21.52
√
m lnm,

with equality at m = 1,319,766. Therefore the mean at-
tractor length A satisfies

A(l1, l2, . . .) < 2 · 21.52
√
m lnm. (3)
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Even loops Odd loops Multiple even loops
d(1) = 2 ◦ 1 d(1) = 1 ◦ 2 d(1, 7) = 4 ◦ 1 + 36 ◦ 7
d(2) = 2 ◦ 1 + 1 ◦ 2 d(2) = 1 ◦ 4 d(2, 6) = 4 ◦ 1 + 6 ◦ 2 + 4 ◦ 3 + 38 ◦ 6
d(3) = 2 ◦ 1 + 2 ◦ 3 d(3) = 1 ◦ 2 + 1 ◦ 6 d(3, 5) = 4 ◦ 1 + 4 ◦ 3 + 12 ◦ 5 + 12 ◦ 15
d(4) = 2 ◦ 1 + 1 ◦ 2 + 3 ◦ 4 d(4) = 2 ◦ 8 d(4, 4) = 4 ◦ 1 + 6 ◦ 2 + 60 ◦ 4
d(5) = 2 ◦ 1 + 6 ◦ 5 d(5) = 1 ◦ 2 + 3 ◦ 10 d(2, 3, 3) = 8 ◦ 1 + 4 ◦ 2 + 40 ◦ 3 + 20 ◦ 6
d(6) = 2 ◦ 1 + 1 ◦ 2 + 2 ◦ 3 + 9 ◦ 6 d(6) = 1 ◦ 4 + 5 ◦ 12 d(2, 2, 4) = 8 ◦ 1 + 28 ◦ 2 + 48 ◦ 4
d(7) = 2 ◦ 1 + 18 ◦ 7 d(7) = 1 ◦ 2 + 9 ◦ 14 d(2, 2, 2, 2) = 16 ◦ 1 + 120 ◦ 2
d(8) = 2 ◦ 1 + 1 ◦ 2 + 3 ◦ 4 + 30 ◦ 8 d(8) = 16 ◦ 16 d(1, 1, 1, 1, 1, 1, 1, 1) = 256 ◦ 1

TABLE I: Number and length of cycles for single and multiple loops. For example, d(3), the dynamics of a loop of
size 3, reads as 2 cycles of length 1 and 2 cycles of length 3. The cycle lengths of multiple loops are the least common multiples
of those of the individual loops.

We can now write down our lower bound on the num-
ber of attractors. Inserting (3) into eq. (2) gives

c(m) > 2m−1.52
√
m lnm/2. (4)

We can re-express this in terms of the total number of
nodes N , where m is now a random variable. The mean
number of nodes in loops m is asymptotically

√
π
2N [1,

2]. Since eq. (4) is convex, by Jensen’s inequality we can
replace m with its mean, giving

c(N) > 21.25
√
N− 4√

N
√
1.45 lnN+0.65−1.

Despite the simplicity of our calculation, our bounds
are a marked improvement on the best known bounds
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FIG. 1: Top. We plot the best known upper bounds for the
mean attractor length A. Bottom. We plot the best known
lower bounds for the number of attractors c. In both cases
our results are a marked improvement.

for the critical Kauffman model with connectivity one.
Our upper bound for the mean attractor length A is

less than 20.5m in [1], 20.53m+1 in [2], and 2
√
2m log2

√
2m

in [3]. These are plotted in the top of Fig. 1. Sim-
ilarly, our lower bound for the number of attractors

c is greater than 20.63
√
N in [1], 20.59

√
N in [2], and

21.25
√
N− 4√

N(0.57 lnN+1.05) in [3]—the last of which was
the result of a much lengthier calculation. These are plot-
ted in the bottom of Fig. 1.
Simplified proofs are useful because they boost our

confidence in the conclusion and improve our intuition
for why it is so. Often, they motivate new lines of at-
tack, leading to further insight. Our results suggest that
the scaling of the number of attractors for the critical
Kauffman model remains unsettled, despite the series of
advances made in [1, 2, 5] and elsewhere. Our further
analysis, not included here, leads us to conjecture that
the scaling is in fact exponential in N , and we hope oth-
ers will extend our results.
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