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Abstract: The quantum brachistochrone method has recently emerged as a technique that allows
one to implement the desired unitary evolution operator in a physical system within a minimal
time. Here, we apply this approach to the problem of time-optimal quantum state transfer in an
array of three qubits with time-varying nearest-neighbor couplings and analytically derive the
fastest protocol.
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1. Introduction

The development of quantum technologies requires preparing and processing quantum states
within the minimal possible time while maintaining reasonably high fidelity. The elementary
building blocks of such systems are qubits – two-level systems – which can be implemented in a
variety of material platforms ranging from superconducting circuits and cold atoms to trapped
ions, quantum dots and photonic systems [1]. While decoherence and dissipation inevitably
degrade the performance of quantum systems, recent advances suggest the possibility of correcting
occurring errors [2] and achieving long coherence times up to 1 ms in the superconducting
architecture [3], allowing for multiple operations with qubits.

On the other hand, the speed of the quantum state evolution is restricted by the quantum
speed limit [4,5], which is intrinsically connected to the time-energy uncertainty relation. This
motivates interest in quantum optimal control theory [6], which aims to tailor the time-varying
Hamiltonian of the system to achieve the desired quantum state within the minimal possible time,
given the constraints on the Hamiltonian.

The most straightforward approach to this problem is the adiabatic evolution of the Hamiltonian,
which transforms the initial set of eigenstates into the desired one. In particular, adiabatic evolution
allows the transfer of a particle in the array via the so-called Thouless pump [7]. However, this
requires an extremely slow variation of the Hamiltonian, which is impractical.

This limitation can be overcome using advanced methods such as conter-adiabatic driving,
also known as shortcuts to adiabaticity [8–10], and the Pontryagin maximum principle [6]. These
techniques allow one to approach the quantum speed limit through numerical optimization. While
being powerful numerical tools, these techniques are restricted by the chosen form of the control
and do not provide straightforward access to analytical solutions.

A recently suggested alternative is the quantum brachistochrone method [11], which recasts
a bi-parametric search of the minimum evolution time along with the maximum fidelity as a
variational problem. Originally formulated by Carlini et al [11], the variational problem to
find the time-optional evolution of quantum states and the Hamiltonian for given initial and
final conditions has been further generalized to the operator form to determine the time-optimal
realization of a target unitary operation [12]. Using this technique, one can derive the control
protocol for the systems with the Hermitian Hamiltonian, converting the optimization task into a
boundary value problem. In some cases, this can be solved analytically, providing insights into
the optimal control of the simplest quantum systems.
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Fig. 1. Sketch of a three-qubit array with the controllable and time-varying nearest-neighbor
couplings J1(t), J2(t).

In addition, the problem of finding a time-optimal solution can be presented as a quantum
geodesic search [13,14] providing a geometric interpretation of the quantum brachistochrone
technique. While this approach has proven to be successful in several specific types of problems
[15–20], obtaining such solutions remains challenging, especially in large-scale systems with
multiple degrees of freedom and many control parameters.

In this Article, we illustrate the quantum brachistochrone technique with a simple but instructive
example. Specifically, we study the time-optimal transfer of a single-particle excitation in an
array of three nearest-neighbor coupled qubits, shown schematically in Fig. 1. We assume that
the excitation is initially launched in the leftmost qubit of the array. By varying the couplings
J1,2 in time such that J2

1 + J2
2 = J2

0 = const, we aim to achieve the fastest possible transfer of
the excitation to the rightmost qubit. Technically, time-varying couplings in superconducting
architecture can be implemented by inserting auxiliary qubits with controlled eigenfrequency
[21]. Other prospective platforms also allow real-time coupling control. For simplicity, we
assume that the eigenfrequencies of the qubits are fixed. While the quantum brachistochrone
method can be generalized to the dissipative case [22,23], here we discuss the Hermitian situation,
which is more transparent from a physical perspective.

Interestingly, the problem under study is analogous to the time-optimal population transfer in
a three-level system, where the direct transition between the first and third levels is prohibited.
Although the solution to this problem was proposed long ago [24], its optimality was proven only
much later using a different technique [25].

2. Summary of quantum brachistochrone method

To derive the time-optimal evolution of a quantum system with zero-trace N × N Hermitian
Hamiltonian, we introduce a set of N × N traceless Hermitian matrices Âi and B̂j, spanning the
subspaces A and B and normalized by the relations Tr(ÂiÂj) = δij, Tr(B̂iB̂j) = δij, Tr(ÂiB̂j) = 0.
We assume that the Hamiltonian can only contain the matrices from A subspace, while the B̂j
matrices are unavailable due to the physical constraints on the system:

Ĥ =
∑︂

i
αiÂi . (1)

Also, we assume that the norm of the Hamiltonian is bounded | |Ĥ(t)| | =
√︁

TrĤ2(t) ≤ ∆E. Our
goal is to find such a temporal variation of the Hamiltonian Ĥ(t) that the initial state |ψ(0)⟩ is
transferred to the final state |ψ(τ)⟩ = Û(τ)|ψ(0)⟩ within the minimal possible time τ, where Û(t)
is the unitary evolution operator satisfying Shrödinger equation i∂Û/∂t = ĤÛ. If the evolution
operator is known, the Hamiltonian can be readily expressed as

Ĥ = i
∂Û
∂t

Û† . (2)

Obviously, the transfer time τ is inversely proportional to the bound ∆E, while their product
∆E τ is a dimensionless coefficient dependent on the chosen Ĥ(t) protocol. Therefore, the original
problem of finding the minimal possible transfer time τ for a fixed constraint ∆E is equivalent to
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finding the minimal possible ∆E for the prescribed transfer time τ = 1. This motivates the choice
of the functional [26]

S =
τ∫

0

| |Ĥ(t)| | dt +
τ∫

0

∑︂
k
λkTr

(︂
B̂kĤ

)︂
dt , (3)

where the first term aims to minimize the norm of the Hamiltonian (i.e. ∆E), while the second
set of terms constrains the form of the Hamiltonian, excluding the contribution from B̂k matrices.
The coefficients λk are time-dependent Lagrange multipliers.

Making use of Eq. (2), we present the target functional S in the form

S = S1 + S2 =

τ∫
0

L0
T dt + i

τ∫
0

∑︂
k
λkTr

(︃
B̂k
∂Û(t)
∂t

Û†(t)
)︃

dt (4)

with L0
T = | |Ĥ(t)| | =

√︃
Tr

(︂
∂Û†/∂t · ∂Û/∂t

)︂
. Thus, the target functional only depends on the

evolution operator Û(t) and its time derivative.
Varying the functional S with respect to the evolution operator, we recover

δS1 =
1
2

τ∫
0

1
L0

T
Tr

(︃
∂Û†

∂t
∂δÛ
∂t
+
∂δÛ†

∂t
∂Û
∂t

)︃
dt

=
1

L0
T

Tr
(︃
∂Û†

∂t
δÛ

)︃ |︁|︁|︁|︁τ
0
+

1
L0

T

τ∫
0

Tr
(︃(︃

Û† ∂
2Û
∂t2

Û†+Û† ∂Û
∂t

∂Û†

∂t

)︃
δÛ

)︃
dt ,

(5)

where we used the identity δÛ† = −Û†δÛÛ†. Similarly, we compute the variation of S2:

δS2 =i Tr
∑︂

k
(Û†B̂kλkδÛ)

|︁|︁|︁|︁τ
0

− i
τ∫

0

Tr

(︄∑︂
k

(︃
λkÛ†B̂k

∂Û
∂t

Û†+Û†B̂k
∂λk

∂t
+
∂Û†

∂t
B̂kλk

)︃
δÛ

)︄
dt ,

(6)

where we used full derivative ∂
∂t (λkδÛÛ†) =

∂λk
∂t δÛÛ† + λk

∂δÛ
∂t Û† + λkδÛ ∂Û†

∂t .
Since the initial and final states of the quantum system are fixed, δÛ(0) = δÛ(1) = 0. Moreover,

L0
T = ∆E along the trajectory, and thus we can rescale L0

Tλk → λk. Requiring the extremum of
the functional δS = δS1 + δS2 = 0, we obtain quantum brachistochrone equation [12]:

dF̂
dt
+ i

[︁
Ĥ, F̂

]︁
= 0 , (7)

where F̂ = Ĥ +
∑︁

k λk B̂k. Projecting this equation onto the matrices Âm and B̂n and taking into
account their orthogonality, we recover the system

dαm

dt
= i

∑︂
k
λkTr

(︂
[Âm, B̂k]Ĥ

)︂
, (8)

dλn

dt
= i

∑︂
k
λkTr

(︂
[B̂n, B̂k]Ĥ

)︂
. (9)

Equations (8) define the evolution of the control parameters αm in the optimal scenario, while
the complementary Eqs. (9) determine the change of the Lagrange multipliers λn in time. Notably,
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the initial conditions for λn are unknown, which makes quantum brachistochrone equations hard
to solve. Furthermore, the existence and uniqueness of the solution is generally not guaranteed.

Note also that in the absence of the constraints on the Hamiltonian (i.e. when B̂ matrices are
absent), the time-optimal strategy is straightforward. Equation (7) suggests that the Hamiltonian
should be time-independent and should directly couple the initial and final states of the quantum
system.

3. Derivation of the time-optimal evolution

Next, we apply the quantum brachistochrone approach to the specific system – an array of 3
qubits depicted in Fig. 1. Overall, the dimensionality of the Hilbert space for such a system is
23 = 8. However, since the Hamiltonian conserves the number of excitations and we focus on a
single-particle sector, the dynamics of interest occurs in the 3-dimensional subspace spanned
by the three single-particle basis states. In turn, the Hamiltonian is parametrized by the two
variables, which are the nearest-neighbor couplings J1 and J2.

In these conventions, Â and B̂ are expressed in terms of the Gell-Mann matrices and read

Â1 =
1
√

2

⎛⎜⎜⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
, Â2 =

1
√

2

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎟⎟⎠
(10)

B̂1 =
1
√

2

⎛⎜⎜⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
, B̂2 =

1
√

2

⎛⎜⎜⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
, B̂3 =

1
√

2

⎛⎜⎜⎜⎜⎝
0 0 i

0 0 0

−i 0 0

⎞⎟⎟⎟⎟⎠
, (11)

B̂4 =
1
√

2

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 −i

0 i 0

⎞⎟⎟⎟⎟⎠
, B̂5 =

1
√

2

⎛⎜⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎟⎟⎠
, B̂6 =

1
√

6

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎟⎟⎠
, (12)

while the Hamiltonian of the system is presented as:

Ĥ =
2∑︂

m=1
αmÂm =

⎛⎜⎜⎜⎜⎝
0 J1 0

J1 0 J2

0 J2 0

⎞⎟⎟⎟⎟⎠
(13)

with J1 = α1/
√

2, J2 = α2/
√

2. Starting from the general brachistochrone Eqs. (8)–(9), we derive
the control equations for our case: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dJ1
dt = −λ3J2(t)/

√
2,

dJ2
dt = λ3J1(t)/

√
2,

dλ3
dt = 0 .

(14)

Interestingly, the equations for J1, J2 and λ3 decouple from the rest of the system, which
strongly simplifies the solution. Taking into account the constraint J2

1 + J2
2 = J2

0 , we derive an
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analytical solution:
λ3 = Ω

√
2 = const , (15)

J1(t) = J0 cos(Ωt + φ) , (16)

J2(t) = J0 sin(Ωt + φ) , (17)

where φ is a constant phase that depends on the initial conditions. Using the obtained couplings
and solving the Shrödinger equation analytically, we compute the components of the wave
function |ψ⟩ = (ψ1,ψ2,ψ3)

T :

ψ1(t) = −
iJ2
Ω

A +
ωJ1 + iJ2Ω

J2
0

B+e−iωt −
ωJ1 − iJ2Ω

J2
0

B−eiωt, (18)

ψ2(t) = A + B+e−iωt + B−eiωt, (19)

ψ3(t) =
iJ1
Ω

A +
ωJ2 − iJ1Ω

J2
0

B+e−iωt −
ωJ2 + iJ1Ω

J2
0

B−eiωt, (20)

where J1,2 are given by Eqs. (16),(17) above and ω =
√︂
Ω2 + J2

0 . Unknown integration constants
A, B+, B−,Ω, φ and the transfer time τ are determined from the initial and boundary conditions.

Due to the choice of the initial and target state, we have the set of conditions for the wave
function:

ψ1(0) = 1 , ψ2(0) = 0 , ψ3(0) = 0 , (21)

ψ1(τ) = 0 , ψ2(τ) = 0 , (22)

while the phase of ψ3(τ) is unknown. However, these five requirements are insufficient to
determine six unknowns above. Therefore, we additionally request that

J2(0) = 0 . (23)

Physically, this requirement is easy to understand. Since the initial excitation is localized in
the first qubit, only the first coupling J1(0) should be maximized, and hence J2(0) should be set
to zero.

Fig. 2. Calculated transfer time of the excitation from the leftmost to the rightmost qubit
versus the initial value J2(0) of the coupling constant. The minimal time is achieved when
J2(0) = 0.
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Equation (23) immediately yields φ = 0. Next, we analyze Eqs. (21) and recover A = 0,
B+ = −B− = J0/(2ω). Then we turn to Eqs. (22), which yield the requirements sinωτ = 0 and
cosΩτ = 0, leading to ω = 2Ω = π/τ. We thus recover Ω = J0√

3
and the transfer time

τ =

√
3π

2J0
≈ 2.721/J0 . (24)

This provides the fastest possible transfer protocol given the nearest-neighbor couplings and
the constraint on the sum of their squares.

The dependence on the initial condition for J2 can be further explored numerically by computing
the transfer time for the same harmonic switching of the couplings, Eq. (16),(17), but with the
different value of J2(0), sweeping the range from 0 to J0. Interestingly, perfect transfer of the
excitation occurs for any J2(0). However, the transfer time differs, as illustrated in Fig. 2. In
particular, we observe that the minimal possible time is achieved when J2(0) = 0, consistent with
our reasoning above. Note that our initial condition for the coupling aligns with the initial and

Fig. 3. Couplings J1 and J2 for the (a) stepwise switching, (c) perfect transfer, (e) time-
optimal transport and the calculated wave functions im−1ψm (b,d,f) for the respective
scenarios. Transfer time in the time-optimal case is 13% less than in the two other examples.
Horizontal axis shows the dimensionless values of J0 t.



Research Article Vol. 15, No. 3 / 1 Mar 2025 / Optical Materials Express 584

boundary conditions derived in quantum brachistochrone formulation with a movable endpoint
[27].

To complete our analysis, we compare the derived protocol with two alternative strategies,
also providing maximal fidelity. The first approach is a stepwise switching of the couplings
[Fig. 3(a)]. In this case, J1(t) = J0 is switched on for some time until the excitation moves from
the first qubit to the second one. Then, this coupling is turned off, and coupling J2 is switched
on instead. Straightforward analytical and numerical [28] calculation shows that this strategy
indeed provides maximal fidelity of the transfer [Fig. 3(b)]. However, the timing in this case
τst = π/J0 ≈ 3.142/J0 is non-optimal.

Another strategy, known as perfect transfer [29], suggests time-independent couplings, both
equal to J0/

√
2 [Fig. 3(c)]. In this case, the particle is perfectly transferred from the first to the

third site [Fig. 3(d)]. However, the timing is also non-optimal τpt = π/J0 ≈ 3.142/J0.
These results should be compared with the calculated optimal control Eqs. (16)–(17), which

assumes the change of the couplings according to cosine and sine functions, as shown in Fig. 3(e).
Although the wave function’s evolution shown in Fig. 3(f) strongly resembles the two previous
scenarios, the transfer time is reduced by 13%.

In case of superconducting qubits, the couplings can realistically vary in the range from 1 to
100 MHz [3], yielding the characteristic transfer times in the range from 0.01 µs to 1 µs, shorter
than the characteristic relaxation times. This justifies the Hermitian treatment of the problem.

4. Discussion and conclusions

In summary, the quantum brachistochrone method is a powerful tool that provides analytical
insights into time-optimal control of relatively simple quantum systems. It offers an elegant
solution to the two-factor optimization problems, such as finding the strategies that ensure both
maximal fidelity of the transfer and the minimal transfer time.

However, optimal control of large quantum systems still poses a significant challenge, as the
number of quantum brachistochrone equations grows rapidly with the system size, requiring
extensive computations. Given current advances in the engineering of multi-qubit quantum
processors, this provides an interesting topic for further research.
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