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 A B S T R A C T

We consider finite-temperature deformation of the sine kernel Fredholm determinants acting on the closed 
contours. These types of expressions usually appear as static two-point correlation functions in the models of 
free fermions and can be equivalently presented in terms of Toeplitz determinants. The corresponding symbol, 
or the phase shift, is related to the temperature weight. We present an elementary way to obtain large-distance 
asymptotic behavior even when the phase shift has a non-zero winding number. It is done by deforming the 
original kernel to the so-called effective form factors kernel that has a completely solvable matrix Riemann–
Hilbert problem. This allows us to find explicitly the resolvent and address the subleading corrections. We 
recover Szegő, Hartwig and Fisher, and Borodin–Okounkov asymptotic formulas.
1. Introduction and motivation

Quantum integrable systems attract much attention among re-
searchers due to the possibility of precisely addressing non-perturbative 
physical phenomena ranging from AdS/CFT to condensed matter [1–3]. 
The exact evaluation of the correlation function even in the inte-
grable system remains a challenge because of the necessity to perform 
summation over the form factors [4,5]. At zero temperatures, one 
can use numerical summation [6] or settle with the effective field 
theory methods [7]. For non-zero temperatures, or more generically 
for finite entropy states, more sophisticated methods were developed: 
the quantum transfer matrix approach [8] and related thermal form 
factors series [9–11]; Leclair-Mussardo approach [12–14] and its gener-
alizations in terms of the thermodynamic form factor program [15,16], 
the quench action [17], and the ballistic fluctuation theory [18] among 
many others.

At large coupling constants, closed expressions exist for the correla-
tion functions of integrable systems in terms of Fredholm determinants 
of the generalized sine kernels [4]. Their asymptotic behavior can 
be computed via the non-linear steepest descend analysis of the cor-
responding Riemann–Hilbert problem [19,20]. This method is quite 
technically involved [21], therefore in [22,23] we introduced a heuris-
tic method of effective form factorsto extract large time and long distance 
asymptotic of two-point functions in XY-spin chain [22], the system 
of one-dimensional anyons [24], the mobile impurity [25,26], and 
Hubbard model [27]. The method’s main idea is to extract the asymp-
totic behavior not from the thermodynamic expression of the Fredholm 
determinants but rather from the scaling analysis with the system size 
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of the appropriately modified form factor series. We have checked 
the validity of this approach numerically, but the connection with the 
non-linear steepest descend method remained elusive. In this paper, 
we partially solve this problem. More specifically, we address the 
static (equal time) case for which the typical two-point function can 
be expressed as a Fredholm determinant acting on 𝐿2(S1) (or S1 for 
shortness) 

𝑇𝑥[𝜃] = det
S1

(

1 + 𝑆̂
)

(1)

here by S1 we mean a set {𝑞 ∈ C, |𝑞| = 1}, an action of the operator 𝑆̂
is specified by its kernel 𝑆(𝑞, 𝑝)

(𝑆̂𝑓 )(𝑞) = ∫S1
𝑆(𝑞, 𝑝)𝑓 (𝑝)𝑑𝑝 = ∫

|𝑝|=1
𝑆(𝑞, 𝑝)𝑓 (𝑝)𝑑𝑝. (2)

The kernel differs from the traditional sine kernel by a prefactor given 
by the weight function 𝜃(𝑞), specifically 

𝑆(𝑞, 𝑝) =
𝜃(𝑞)
2𝜋𝑖

𝑒+(𝑝)𝑒−(𝑞) − 𝑒+(𝑞)𝑒−(𝑝)
𝑝 − 𝑞

, 𝑒±(𝑞) = 𝑞±𝑥∕2. (3)

The Fredholm determinant is understood as the standard Fredholm 
series

𝑇𝑥[𝜃] = 1 +
∞
∑

𝑛=1

1
𝑛! ∫(S1)𝑛

det(𝑆(𝑞𝑗 , 𝑞𝑘))𝑛𝑗,𝑘=1

𝑛
∏

𝑗=1
𝑑𝑞𝑗 . (4)

The other definitions and the effective ways to compute Fredholm 
determinants can be found in Ref. [28].

Analogously, the continuous counterpart is a finite-temperature  sine 
https://doi.org/10.1016/j.physd.2025.134716
Received 3 December 2024; Received in revised form 25 April 2025; Accepted 30 
vailable online 17 May 2025 
167-2789/© 2025 Elsevier B.V. All rights are reserved, including those for text and
April 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
https://orcid.org/0000-0002-2889-8487
mailto:oleksandr.gamayun@gmail.com
https://doi.org/10.1016/j.physd.2025.134716
https://doi.org/10.1016/j.physd.2025.134716


O. Gamayun and Y. Zhuravlev Physica D: Nonlinear Phenomena 479 (2025) 134716 
kernel, acting on the real line (𝐿2(R)). 

𝑇𝑥[𝜃] = det
R

(

1 + 𝑆̂
)

, 𝑆(𝑞, 𝑝) =
𝜃(𝑞)
2𝜋

sin(𝑥(𝑝 − 𝑞))
𝑝 − 𝑞

. (5)

Originally, this type of kernel arose in the studies of one-dimensional 
Bose gas for the correlation functions of the impenetrable bosons [4]. 
In that case, the prefactor 𝜃(𝑞) is proportional to the Fermi weight 
𝜃(𝑞) ∼ (𝑒(𝑞2−𝜇)∕𝑇 +1)−1, where 𝑇  is the temperature and 𝜇 is a chemical 
potential. We will not fix the specific form of 𝜃(𝑞) but rather discuss 
asymptotic for the quite generic class of smooth functions decaying 
fast enough at the infinities. Recently there was a lot of interest in 
exploring the properties of finite-temperature deformations of the sine 
kernel determinants [29,30]. Partially, it is connected with the fact 
that the corresponding Riemann–Hilbert problem turns out to be much 
simpler than in the zero-temperature case when the contour degenerates 
to the set of arcs or intervals [31].

Essentially, since 𝜃(𝑞) decays fast enough at infinity, the case of R is 
completely equivalent to S1 so we will focus mainly on considering (1). 
The answer for the continuous kernels can be obtained by introducing 
the radius of S1 and then sending it to infinity with the appropriate 
rescaling of 𝑥. We are not going to discuss the possible peculiarities of 
taking such a limit, we just mention that the results for the asymptotic 
behavior in the mobile impurity problems [25] suggest that everything 
seems to work without any subtleties.

The great advantage of the S1 case is that the Fredholm determinant 
(1) is nothing but a Toeplitz determinant (see [32] or Sec. 5 in [22]) 

𝑇𝑥[𝜃] = det
0≤𝑛,𝑚≤𝑥−1

𝑐𝑛−𝑚, 𝑐𝑘 = 1
2𝜋𝑖 ∫S1

𝑑𝑞
𝑞𝑘+1

𝑒2𝜋𝑖𝜈(𝑞). (6)

with 
𝑒2𝜋𝑖𝜈(𝑞) = 1 + 𝜃(𝑞). (7)

Throughout the rest of the paper, we assume the connection (7) and 
will treat 𝜈(𝑞) and 𝜃(𝑞) on equal footing. We assume that the phase 
shift 𝜈(𝑞) is a smooth function with a possible non-zero winding number 
around S1. The large 𝑥 asymptotic of the Toeplitz determinant for 
these types of symbols is known to be given by Szegő formulas [33,34] 
and its generalization by Hartwig and Fisher [35,36]. The subleading 
corrections can be found in a form that is widely referred to as the 
Borodin-Okounkov formula [37]. By trying to reproduce the effective 
form factor asymptotic for the determinant (1) we re-derive these 
results in elementary fashion and generalize to the non-zero index 
(see Eq. (59)). It turns out that the effective form factors lead to such 
a deformation of the kernel that the corresponding Riemann–Hilbert 
problem can be solved exactly. As a consequence of that, the resolvent 
is known explicitly, and the subleading corrections can be reproduced 
systematically and presented in a closed form.

The paper is organized as follows: in the next Section 2, we intro-
duce the main notations and explain how the Riemann–Hilbert problem 
can be solved explicitly for the deformed kernels. In Section 3 we 
proceed to the evaluation of the Fredholm determinant by the means of 
computing its variation with respect to the phase shift. In Section 4 we 
consider the subleading corrections, and in Section 5 the connection 
to the effective form factors is thoroughly discussed. The last section 
contains concluding remarks and possible future directions. Various 
technical aspects and alternative formulations can be found in the 
Appendices.

2. Riemann-Hilbert problem

In this section, we introduce main notations and give the formula 
for the resolvent of the kernel (1). Let 𝜃(𝑞) in (1) be a meromorphic 
function in CP1. We additionally assume that the function 𝜈(𝑞) in (7) 
does not have singularities on S1, but might have a winding number n

n = 𝑑𝜈(𝑞) ≡ 1 𝑑𝑞
𝜃′(𝑞)

. (8)
∮S1 2𝜋𝑖 ∮S1 1 + 𝜃(𝑞)

2 
The winding number measures the difference between the number of 
zeros and the number of poles of 1 + 𝜃(𝑞) within S1, or the difference 
between the number of poles and zero outside S1. Therefore, if n < 0
there are at least |n| zeroes outside of S1. We order them by the absolute 
value |𝑧1| > |𝑧2|⋯ > |𝑧−n| > 1, 1 + 𝜃(𝑧𝑘) = 0. For clarity, we assume 
that all zeroes are distinct even by their absolute value, but the proper 
limiting procedures can easily lift this restriction in the final answers. 
We want to deform the contour S1 in (1) into  such that it will encircle 
all of the zeroes {𝑧𝑘, 𝑘 = 1,… ,−n} but none of the poles of 𝜃(𝑞) (see 
Fig.  1). By doing this the value of the Fredholm determinant remains 
unchanged, but the winding number of the new contour is zero 

𝑇𝑥[𝜃] = det

(1 + 𝑆̂), ∮

𝑑𝜈(𝑞) = 0. (9)

Similarly if n > 0 we find zeroes within S1, 1 > |𝑧1| > |𝑧2|⋯ > |𝑧n|, 
1 + 𝜃(𝑧𝑘) = 0, and deform the contour S1 →  to exclude them.

Our next step is to deform the kernel. Namely, we introduce the 
deformed Fredholm determinant 𝜏 [𝜈] defined on the contour 

𝜏 [𝜈] = det

(1 + 𝑉 ) (10)

with 

𝑉 (𝑞, 𝑝) =

√

𝜃(𝑝)
√

𝜃(𝑞)
2𝜋𝑖

v+(𝑝)v−(𝑞) − v+(𝑞)v−(𝑝)
𝑝 − 𝑞

, (11)

v−(𝑞) = 𝑞−𝑥∕2, v+(𝑞) = v−(𝑞)𝑤 (𝑞), 𝑤 (𝑞) = 𝑞𝑥 + ∫<

𝑑𝑘
2𝜋𝑖

𝑘𝑥

𝑘 − 𝑞
𝜃(𝑘)

1 + 𝜃(𝑘)
.

(12)

Here the contour < lies slightly below  (to the left for the counter-
clockwise orientation, see Fig.  1). Notice that if we discard the last 
term in 𝑤 we reproduce the kernel 𝑆̂ up to conjugation with diagonal 
matrices that does not change the value of the determinant. The idea 
of such a deformation is that the resolvent for this kernel defined as 

(1 + 𝑉 )(1 − 𝑅̂) = 1. (13)

can be found explicitly. It also has a similar (integrable) form 

𝑅(𝑞, 𝑝) =

√

𝜃(𝑝)
√

𝜃(𝑞)
2𝜋𝑖

𝑓+(𝑝)𝑓−(𝑞) − 𝑓+(𝑞)𝑓−(𝑝)
𝑝 − 𝑞

. (14)

The functions 𝑓± and v± can be related by the integral equations 

(1 + 𝑉 )
√

𝜃𝑓± =
√

𝜃v±, (1 − 𝑅̂)
√

𝜃v± =
√

𝜃𝑓±. (15)

These integral equations can be rewritten as a Riemann–Hilbert 
problem (RHP). To do this, we, following Slavnov [38], introduce the 
vector notations

|𝑉 (𝑞)⟩ =
(

v−(𝑞)
−v+(𝑞)

)

, ⟨𝑉 (𝑞)| = (v+(𝑞), v−(𝑞)), (16)

|𝐹 (𝑞)⟩ =
(

𝑓−(𝑞)
−𝑓+(𝑞)

)

, ⟨𝐹 (𝑞)| = (𝑓+(𝑞), 𝑓−(𝑞)), (17)

and define the matrix function 𝜒 (𝑞)

𝜒 (𝑞) = 1 − ∫
𝑑𝑘
2𝜋𝑖

𝜃(𝑘)|𝐹 (𝑘)⟩⟨𝑉 (𝑘)|
𝑘 − 𝑞

. (18)

In these notations, the resolvent reads 

𝑅(𝑝, 𝑞) =

√

𝜃(𝑝)
√

𝜃(𝑞)
2𝜋𝑖

⟨𝐹 (𝑝)|𝐹 (𝑞)⟩
𝑝 − 𝑞

. (19)

One can immediately see that the integral Eqs. (15) are equivalent to 
the 2 × 2 matrix relation 

|𝐹 (𝑞)⟩ = 𝜒 (𝑞)|𝑉 (𝑞)⟩, 𝑞 ∈ . (20)

Therefore finding 𝜒 (𝑞) is equivalent to finding the resolvent. This can 
be done by considering the jump of this function when 𝑞 crosses the 
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Fig. 1. Schematic illustration of the contour  in definition of 𝜏 in Eq. (10) for n = −3. In this case we have to encircle points 𝑧1, 𝑧2 and 𝑧3, which lie outside the unit circle 
(|𝑧𝑘| > 1) and satisfy 1 + 𝜃(𝑧𝑘) = 0. The smooth contraction of the contour  back to S1 (|𝑧| = 1) should not cross the poles of 𝜃(𝑞) schematically presented with cross marks. The 
dotted lines show the contours > and < that lie slightly above and below  correspondingly. The colored area inside  is denoted as 𝐷.
contour , which is the essence of an RHP.1 More specifically, let us 
denote by 𝜒> the function analytic in 𝐷 s.t. 𝜕𝐷 =  (see Fig.  1), and 
similarly by 𝜒< the function analytic in CP1 ⧵𝐷. Formally, they can be 
presented as

𝜒>(𝑞) = 1 − ∫>
𝑑𝑘
2𝜋𝑖

𝜃(𝑘)|𝐹 (𝑘)⟩⟨𝑉 (𝑘)|
𝑘 − 𝑞

,

𝜒<(𝑞) = 1 − ∫<
𝑑𝑘
2𝜋𝑖

𝜃(𝑘)|𝐹 (𝑘)⟩⟨𝑉 (𝑘)|
𝑘 − 𝑞

. (21)

It turns out that from the

• normalization condition 𝜒<(𝑞) → 1 as 𝑞 → ∞,
• and the jump condition for 𝑞 ∈ 

𝜒<(𝑞) = 𝜒>(𝑞)𝐽 , 𝐽 = 1 + 𝜃(𝑞)|𝑉 (𝑞)⟩⟨𝑉 (𝑞)|, (22)

one can recover 𝜒 explicitly due to the special form of the jump matrix 
𝐽 , namely one can check by a direct computation that 

𝜒 (𝑞) =
(

1 𝑏 (𝑞)
0 1

)(

𝑒−𝛺 (𝑞) 0
0 𝑒𝛺 (𝑞)

)(

1 0
𝜑 (𝑞) 1

)

, (23)

with

𝜑 (𝑞) = ∫
𝑑𝑘
2𝜋𝑖

𝑘𝑥𝜃(𝑘)
(𝑘 − 𝑞)(1 + 𝜃(𝑘))

, 𝛺 (𝑞) = ∫
𝜈(𝑘)𝑑𝑘
𝑘 − 𝑞

,

𝑏 (𝑞) = −∫
𝑑𝑘
2𝜋𝑖

𝑘−𝑥𝜃(𝑘)𝑒−𝛺>(𝑘)−𝛺<(𝑘)

𝑘 − 𝑞
. (24)

The limiting values of 𝛺 (𝑞) for 𝑞 ∈  can be associated with the 
functions 𝛺> and 𝛺< that are defined similar to (21)

𝛺>(𝑞) = ∫>
𝜈(𝑘)𝑑𝑘
𝑘 − 𝑞

, 𝛺<(𝑞) = ∫<
𝜈(𝑘)𝑑𝑘
𝑘 − 𝑞

. (25)

1 At the same time the value in (20) does not depend on from which side 

𝑞 approaches .

3 
These functions solve a scalar RHP on the contour  with the jump 2𝜋𝑖𝜈
i.e. 

𝛺>(𝑞) −𝛺<(𝑞) = 2𝜋𝑖𝜈(𝑞). (26)

Similar properties can be formulated for the functions 𝜑 , 𝑏 with the 
corresponding jumps, which turn the verification that (23) solves the 
matrix RHP (22) into a straightforward exercise. To recover 𝑓± from the 
relation (20) we can use either 𝜒> or 𝜒<. In particular, we can explicitly 
present 

𝑓−(𝑞) = 𝑒−𝛺>(𝑞)𝑞−𝑥∕2 − 𝑏>(𝑞)𝑒𝛺<(𝑞)𝑞𝑥∕2, 𝑓+(𝑞) = 𝑒𝛺<(𝑞)𝑞𝑥∕2. (27)

Notice that we have to specify the subscripts > and < when 𝑞 ∈ ; 
for 𝑞 away from contour we will always use the expression analytically 
continued to the corresponding domain.

3. Variational formulas

In this section using the exact form of the resolvent, we evaluate 
the tau function (10). To do this we consider the variation 𝜈 → 𝜈 + 𝛿𝜈
such that the winding number around the contour  remains zero. The 
variation of the determinant can be computed as 

𝛿 ln 𝜏 [𝜈] = Tr(1 − 𝑅̂)𝛿𝑉 . (28)

The variation of the kernel reads

𝛿𝑉 (𝑞, 𝑝) = 𝑉 (𝑞, 𝑝)
𝛿𝜃(𝑝)
2𝜃(𝑝)

+
𝛿𝜃(𝑞)
2𝜃(𝑞)

𝑉 (𝑞, 𝑝)

+

√

𝜃(𝑝)𝜃(𝑞)
2𝜋𝑖

𝑞−𝑥∕2𝑝−𝑥∕2 ∫<
𝑑𝑘
2𝜋𝑖

𝛿𝜃(𝑘)
(1 + 𝜃(𝑘))2

𝑘𝑥

(𝑘 − 𝑞)(𝑘 − 𝑝)
.

(29)
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The trace of the first two terms can be reduced to the computation of 
the resolvent on the diagonal. Indeed, using (1 − 𝑅̂)𝑉 = 𝑅̂ we obtain 

𝛿 ln 𝜏 [𝜈] = ∫
𝑑𝑘𝛿𝜃(𝑘)

𝑅(𝑘, 𝑘)
𝜃(𝑘)

+ ∫<
𝑑𝑘𝛿𝜃(𝑘) 𝑘𝑥

(1 + 𝜃(𝑘))2
𝑀(𝑘, 𝑘)
2𝜋𝑖

, (30)

where we have denoted by 𝑀(𝑘1, 𝑘2) the following combination 

𝑀(𝑘1, 𝑘2) ≡ ∫×
𝑑𝑞𝑑𝑝
2𝜋𝑖

√

𝜃(𝑞)𝑞−𝑥∕2

𝑘1 − 𝑞
(1 − 𝑅̂)(𝑞, 𝑝)

√

𝜃(𝑝)𝑝−𝑥∕2

𝑘2 − 𝑝
. (31)

One can easily express these integrals in terms of the solutions of the 
RHP (see (Appendix  A) for details). 

𝑀(𝑘1, 𝑘2) =
𝜒22(𝑘1)𝜒12(𝑘2) − 𝜒12(𝑘1)𝜒22(𝑘2)

𝑘1 − 𝑘2
, 𝑘1, 𝑘2 ∈ CP1 ⧵ , (32)

or using explicit presentation (23)

𝑀(𝑘1, 𝑘2) = −𝑒𝛺 (𝑘1)+𝛺 (𝑘2)
𝑏 (𝑘1) − 𝑏 (𝑘2)

𝑘1 − 𝑘2
. (33)

Here we should use either 𝜒> or 𝜒<, and correspondingly 𝑏 depending 
on the position of 𝑘1 and 𝑘2. In particular, for 𝑘1 = 𝑘2 = 𝑘 ∈ < using 
L’Hôpital’s rule we obtain 𝑀(𝑘, 𝑘) = −𝑒2𝛺>(𝑘)𝜕𝑘𝑏>(𝑘).

The resolvent at the diagonal can be easily evaluated with the 
explicit form of the 𝑓± (see Eqs. (27)). It is convenient to present it 
in a form that can be continued into the domain 𝐷 so that integration 
over  can be replaced by the integration over <, namely 

𝑅(𝑞, 𝑞) =
𝜃(𝑞)

2𝜋𝑖(1 + 𝜃(𝑞))
(

𝑥∕𝑞 + 𝜕𝑞𝛺> + 𝜕𝑞𝛺<
)

+
𝜃(𝑞)𝑒2𝛺>(𝑞)𝑞𝑥

2𝜋𝑖(1 + 𝜃(𝑞))2
𝜕𝑞𝑏>(𝑞).

(34)

Altogether the variation reads 

𝛿 ln 𝜏 [𝜈] = ∫
𝑑𝑞𝛿𝜈(𝑞)

(

𝑥
𝑞
+ ∫<

𝜈(𝑘)𝑑𝑘
(𝑘 − 𝑞)2

+ ∫>
𝜈(𝑘)𝑑𝑘
(𝑘 − 𝑞)2

)

. (35)

Here we have replaced the variation in 𝜃 to the variation in 𝜈 using 
Eq. (7). Taking into account that for 𝜈(𝑞) = 0, 𝜏 [𝜈] = 1 we obtain 

𝜏 [𝜈] = exp

(

𝑥∫
𝑑𝑞
𝑞
𝜈(𝑞) − 1

2 ∫ ∫

(

𝜈(𝑘) − 𝜈(𝑞)
𝑘 − 𝑞

)2
𝑑𝑘 𝑑𝑞

)

. (36)

This formula gives the leading asymptotic for the Toeplitz determinant 
of the symbol with the properties indicated at the beginning of the 
Section 2.

Let us discuss equivalent ways to present this formula and how 
certain known cases can be recovered from it. First, we notice that with 
the functions 𝛺> and 𝛺< from Eq. (25) we can rewrite 

∫
𝜈(𝑞)𝑑𝑞

𝑞
= ∫

(𝛺>(𝑞) −𝛺<(𝑞))𝑑𝑞
2𝜋𝑖𝑞

= 𝛺>(0). (37)

Here in the last integral we have shrinked the contour  into inside for 
𝛺> and outside for 𝛺<. Using integration by parts we can express 𝜏 as 

𝜏 [𝜈] = exp
(

𝑥𝛺>(0) + ∫
𝑑𝑞
2𝜋𝑖

𝛺′
<(𝑞)𝛺>(𝑞)

)

. (38)

For zero winding number we put  = S1 and present 𝜈(𝑞) via the 
Laurent series 𝜈(𝑞) =

∑

𝑛∈Z 𝑞𝑛𝜈𝑛∕(2𝜋𝑖). Then 𝛺>(𝑞) =
∑

𝑗≥0 𝜈𝑗𝑞
𝑗 , and 

𝛺<(𝑞) = −
∑

𝑗<0 𝜈𝑗𝑞
𝑗 so Eq. (38) gives 

𝜏 [𝜈]
|

|

|=S1
= exp

(

𝑥𝜈0 +
∞
∑

𝑗=1
𝑗𝜈𝑗𝜈−𝑗

)

. (39)

which is nothing but the strong Szegő formula for the asymptotic of the 
Toeplitz determinant. Notice that integrating by parts 𝜏 in this case can 
be also presented as 

𝜏 [𝜈]
|

|

|=S1
= exp

(

𝑥𝜈0 + ∫S1 ∫S1
𝜈′(𝑘)𝜈′(𝑞) ln |𝑘 − 𝑞|𝑑𝑘𝑑𝑞

)

. (40)

The absolute value in the logarithm reflects that while integrating by 
parts the obtained expressions should be considered as principal value.
4 
Now let us turn to the case of a non-zero winding number of 𝜈(𝑞)
w.r.t. S1. We focus on the negative values n = −𝑛 < 0. Then the contour 
 is chosen to encircle first 𝑛 roots of 1+𝜃(𝑞) lying outside the unit circle 
𝑧1, 𝑧2,… 𝑧𝑛. For practical reasons, the integration over this contour can 
be somewhat cumbersome so we further transform the contour  in the 
r.h.s. of (36) back to S1. To do so we introduce the jump 𝜈n(𝑞) that has 
zero winding number on S1. This can be achieved by many ways but 
we choose the following modification 

𝜈n(𝑞) = 𝜈(𝑞) − n
ln(𝑞) + 𝑖𝜋

2𝜋𝑖
, ⇒ ∫S1

𝜈′n(𝑞)𝑑𝑞 = 0. (41)

Similar to Eq. (25) we define the functions 

𝜔>(𝑞) = ∫
|𝑘|=1+0

𝜈n(𝑘)𝑑𝑘
𝑘 − 𝑞

, 𝜔<(𝑞) = ∫
|𝑘|=1−0

𝜈n(𝑘)𝑑𝑘
𝑘 − 𝑞

, (42)

where the integration contours lie slightly above (below) the unit circle 
for 𝜔> (𝜔<). These functions solve the scalar RHP with the modified 
jump 𝜔>(𝑞) − 𝜔<(𝑞) = 2𝜋𝑖𝜈n(𝑞) (cf. (26)). By construction 𝜔< (𝜔>) are 
analytic outside (inside) the unit circle. To connect these functions with 
𝛺≶ we compare derivates of 𝜔< and 𝛺< in the domain where both of 
them are analytic functions i.e. in CP1 ⧵ 𝐷. Integrating by parts we 
obtain 

𝜔′
<(𝑞) = ∫

|𝑘|=1−0

𝜈′n(𝑘)𝑑𝑘
𝑘 − 𝑞

= ∫
|𝑘|=1−0

𝜈′(𝑘)𝑑𝑘
𝑘 − 𝑞

+ n

𝑞
. (43)

Computing 𝛺′
<(𝑞) by the deformation the integration contour  back to 

S1 we have to account for the residues at points 𝑧𝑘, thus 

𝛺′
<(𝑞) = ∫

𝜈′(𝑘)𝑑𝑘
𝑘 − 𝑞

= ∫
|𝑘|=1−0

𝜈′(𝑘)𝑑𝑘
𝑘 − 𝑞

−
𝑛
∑

𝑘=1

1
𝑧𝑘 − 𝑞

. (44)

This way, we conclude that 

𝑒𝜔<(𝑞) = 𝑒𝛺<(𝑞)
𝑛
∏

𝑘=1
(1 − 𝑧𝑘∕𝑞) (45)

The integration constant is chosen such that 𝜔<(𝑞) → 0 as 𝑞 → ∞. The 
relation between 𝜔>(𝑞) and 𝛺>(𝑞) can be found either directly as above, 
or analytically continuing Eq. (45) via the scalar RHPs 

𝑒𝜔>(𝑞) = 𝑒𝛺>(𝑞)
𝑛
∏

𝑘=1
(𝑧𝑘 − 𝑞). (46)

We start rewriting 𝜏 with the 𝑥-dependent part, we use presentation 
Eq. (37) along with (46)

exp
(

𝑥∫
𝑑𝑞
𝑞
𝜈(𝑞)

)

= 𝑒𝑥𝛺>(0) = 𝑒𝑥𝜔>(0)
∏𝑛

𝑘=1 𝑧
𝑥
𝑘
= exp

(

𝑥∫S1
𝑑𝑞
𝑞
𝜈n(𝑞)

) 𝑛
∏

𝑘=1
𝑧−𝑥𝑘 .

(47)

Proceeding in a similar way we rewrite the remaining double integral 
in (38) (for details of the computations see (Appendix  B)). Overall the 
tau function (36) can be rewritten as

𝜏 [𝜈] =

∏𝑛
𝑘=1

∏𝑛
𝑗≠𝑘(𝑧𝑗 − 𝑧𝑘)

∏𝑛
𝑘=1 𝑧

2𝑛+𝑥
𝑘 𝜃′(𝑧𝑘)

exp

(

(𝑥 + 𝑛)𝜔>(0) + ∫S1
𝑑𝑞
2𝜋𝑖

𝜔′
<(𝑞)𝜔>(𝑞) − 2

𝑛
∑

𝑘=1
𝜔<(𝑧𝑘)

)

, (48)

or in terms of 𝜈n

𝜏 [𝜈] = exp
(

𝑆[𝜈n]
)

∏𝑛
𝑘=1

∏𝑛
𝑗≠𝑘(𝑧𝑗 − 𝑧𝑘)

∏𝑛
𝑘=1 𝑧

2𝑛+𝑥
𝑘 𝜃′(𝑧𝑘)

, (49)

with

𝑆[𝜈n] = −(𝑥 + 𝑛)∫S1
ln(𝑞)𝑑𝜈n(𝑞) + ∫S1 ∫S1

ln |𝑘 − 𝑞|𝑑𝜈n(𝑘)𝑑𝜈n(𝑞)

+ 2
𝑛
∑

𝑗=1
∫S1

ln(𝑧𝑗 − 𝑘)𝑑𝜈n(𝑘) (50)
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here 𝑑𝜈n(𝑞) ≡ 𝜈′n(𝑞)𝑑𝑞. If we wish further to present an answer in 
terms of 𝜈(𝑞) we have to take into account that it is not a single-valued 
function on S1 and choose a particular integration path. Let us denote 
by Ŝ1 the integration contour 𝑞 ∈ Ŝ1 ⇔ 𝑞 = 𝑒𝑖𝜑, 𝜑 ∈ [−𝜋, 𝜋). This choice 
allows us to conclude that 

∫Ŝ1
𝑑𝑞
𝑞

ln 𝑞 = −∫

𝜋

−𝜋
𝜑𝑑𝜑 = 0, (51)

which along with 
1
2𝜋𝑖 ∫Ŝ1

𝑑𝑞
𝑞

ln(𝑧𝑘 − 𝑞) = ln 𝑧𝑘, ∫Ŝ1
𝑑𝑝
𝑝

ln |𝑞 − 𝑝| = 0, (52)

leads to 

𝜏 [𝜈] = exp (𝑆[𝜈])

∏𝑛
𝑘=1

∏𝑛
𝑗≠𝑘(𝑧𝑗 − 𝑧𝑘)

∏𝑛
𝑘=1 𝑧

𝑥
𝑘𝜃

′(𝑧𝑘)
. (53)

where now

𝑆[𝜈] = −(𝑥 + 𝑛)∫Ŝ1
ln(𝑞)𝑑𝜈(𝑞) + ∫Ŝ1 ∫Ŝ1

ln |𝑘 − 𝑞|𝑑𝜈(𝑘)𝑑𝜈(𝑞)

+ 2
𝑛
∑

𝑗=1
∫Ŝ1

ln(𝑧𝑗 − 𝑘)𝑑𝜈(𝑘). (54)

The formula (53) coincides with the leading terms of the Hartwig-Fisher 
asymptotic of the corresponding Toeplitz determinant [35]. We discuss 
it in more detail below in Section 5, while the subleading corrections 
are discussed in Section 4.

4. Subleading corrections

The technique developed in the previous section allows us to prove 
that Eq. (36) indeed gives the leading asymptotic to the Toeplitz 
determinant (1) and find the exact relations between 𝜏𝐶 [𝜈] and 𝑇𝑥[𝜃]
valid for any 𝑥 > 0. We start by identically presenting 

𝑇𝑥[𝜃] = det

(1 + 𝑆̂) = det


(1 + 𝑉 − 𝛥), 𝛥 ≡ 𝑉 − 𝑆̂. (55)

The kernel for 𝛥 is explicitly given by 

𝛥(𝑞, 𝑝) =

√

𝜃(𝑝)
√

𝜃(𝑞)𝑝−𝑥∕2𝑞−𝑥∕2

2𝜋𝑖 ∫<
𝑑𝑘
2𝜋𝑖

𝑘𝑥𝜃(𝑘)
(1 + 𝜃(𝑘))(𝑘 − 𝑞)(𝑘 − 𝑝)

(56)

or equivalently for 𝑥 > 0

𝛥(𝑞, 𝑝) = −

√

𝜃(𝑝)
√

𝜃(𝑞)𝑝−𝑥∕2𝑞−𝑥∕2

2𝜋𝑖 ∫<
𝑑𝑘
2𝜋𝑖

𝑘𝑥

(1 + 𝜃(𝑘))(𝑘 − 𝑞)(𝑘 − 𝑝)
. (57)

Notice that 𝑞 and 𝑝 dependence of this expression is the same as in the 
last term of the variational formula Eq. (29). Computation of the full 
determinant 𝑇𝑥[𝜃] can be reduced to the following procedure 

𝑇𝑥[𝜃] = det

(1 + 𝑉 − 𝛥) = 𝜏 det

(1 − (1 − 𝑅̂)𝛥). (58)

Using the cyclic permutation under the determinant and the relations 
(31), and (33), as well as Eq. (36) for 𝜏 we can present the Toeplitz 
determinant as 

𝑇𝑥[𝜃] = det

(1 − 𝐾̂) exp

(

𝑥∫

𝑑𝑞
𝑞
𝜈(𝑞) − 1

2 ∫ ∫

(

𝜈(𝑘) − 𝜈(𝑞)
𝑘 − 𝑞

)2

𝑑𝑘 𝑑𝑞

)

.

(59)

with the integrable kernel 𝐾

𝐾(𝑘1, 𝑘2) =
𝑘𝑥1𝑒

𝛺>(𝑘1)+𝛺>(𝑘2)

2𝜋𝑖(1 + 𝜃(𝑘1))
𝑏>(𝑘1) − 𝑏>(𝑘2)

𝑘1 − 𝑘2
. (60)

Here we have presented 𝐾 in a form that has allowed us to transform 
the contour in the Fredholm determinant < → .

There are a couple ways of how to transform this kernel even further 
such that the 𝑥-dependence is manifest. We call them the first and the 
5 
second Slavnov formula, following Ref. [31], and Borodin-Okounkov 
formula after Refs. [36,37].

The first Slavnov formula. Let us denote solutions of the equation 
𝜃(𝑞) + 1 = 0 inside 𝐷 as 𝑧𝑛, 𝑛 = 1, 2,… |𝑍| and in CP1 ⧵ 𝐷 as 𝑤𝑛, 
𝑛 = 1, 2,… |𝑊 | (see Fig.  2). We allow having an infinite number of 
zeroes |𝑊 | and |𝑍|. As we have discussed in Section 2 all these roots are 
assumed to be distinct and ordered ⋯ > |𝑤2| > |𝑤1| > |𝑧1| > |𝑧2| > … . 
Then we evaluate 𝑏>(𝑘) by shrinking the contour to the infinity (see 
(24)) 

𝑏>(𝑘) = ∫>
𝑑𝑞
2𝜋𝑖

𝑞−𝑥𝜃(𝑞)𝑒−2𝛺<(𝑞)

(1 + 𝜃(𝑞))(𝑘 − 𝑞)
=

|𝑊 |

∑

𝑛=1

𝑤−𝑥
𝑛 𝑒−2𝛺<

(

𝑤𝑛
)

𝜃′
(

𝑤𝑛
) (

𝑤𝑛 − 𝑘
) . (61)

This results in the following presentation for the kernel (60)

𝐾(𝑘1, 𝑘2) =
𝑘𝑥1𝑒

𝛺>(𝑘1)+𝛺>(𝑘2)

2𝜋𝑖(1 + 𝜃(𝑘1))

|𝑊 |

∑

𝑛=1

(

𝑤𝑛
)−𝑥 𝑒−2𝛺<

(

𝑤𝑛
)

𝜃′
(

𝑤𝑛
) (

𝑤𝑛 − 𝑘1
) (

𝑤𝑛 − 𝑘2
) (62)

Using the cycling property under the determinant we obtain 
det

(1 − 𝐾̂) = det

1≤𝑛,𝑚≤|𝑊 |

(

𝛿𝑛𝑚 −𝑛𝑚
)

≡ det
1≤𝑛,𝑚≤|𝑊 |

(

𝛿𝑛𝑚 −(𝑤𝑛, 𝑤𝑚)
)

(63)

where

(𝑤𝑛, 𝑤𝑚) =

(

𝑤𝑛
)−𝑥 𝑒−2𝛺<

(

𝑤𝑛
)

𝜃′
(

𝑤𝑛
) ∫<

𝑑𝑘
2𝜋𝑖

𝜃(𝑘)𝑒2𝛺>(𝑘)

1 + 𝜃(𝑘)
𝑘𝑥

(

𝑤𝑛 − 𝑘
) (

𝑤𝑚 − 𝑘
)

= −
|𝑍|

∑

𝑙=1

(

𝑤𝑛
)−𝑥 𝑒−2𝛺<

(

𝑤𝑛
)

𝑒2𝛺>
(

𝑧𝑙
)

(

𝑧𝑙
)𝑥

𝜃′
(

𝑤𝑛
)

𝜃′
(

𝑧𝑙
) (

𝑤𝑛 − 𝑧𝑙
) (

𝑤𝑚 − 𝑧𝑙
) . (64)

It can be presented as a matrix product (𝑤𝑛, 𝑤𝑚) =
∑

|𝑍|

𝑙=1 𝐵(𝑤𝑛, 𝑧𝑙)𝐶(𝑧𝑙 , 𝑤𝑚) with 

𝐵(𝑤𝑛, 𝑧𝑙) =
𝑤−𝑥

𝑛 𝑒−2𝛺<
(

𝑤𝑛
)

𝜃′
(

𝑤𝑛
) (

𝑤𝑛 − 𝑧𝑙
) , 𝐶(𝑧𝑙 , 𝑤𝑚) =

𝑒2𝛺>
(

𝑧𝑙
)

(

𝑧𝑙
)𝑥

𝜃′
(

𝑧𝑙
) (

𝑧𝑙 −𝑤𝑚
) . (65)

Notice that under the determinant we can exchange 𝐵 ↔ 𝐶, which is 
equivalent to exchanging the role of zeroes 𝑤 → 𝑧. Therefore, without 
loss of generality, we can assume that |𝑊 | ≤ |𝑍| and use the expansion 
in traces of the antisymmetric powers of , namely 

det
1≤𝑛,𝑚≤|𝑊 |

(

𝛿𝑛𝑚 −𝑛𝑚
)

=
|𝑊 |

∑

𝑘=0

∑

𝐰,|𝐰|=𝑘
det

𝑤𝑛 ,𝑤𝑚∈𝐰

(

−(𝑤𝑛, 𝑤𝑚)
)

(66)

here 𝐰 = {𝑤𝑎1 , 𝑤𝑎2 ,…𝑤𝑎𝑘} is an ordered set of zeroes 1+𝜃(𝑞) in CP1⧵𝐷. 
Taking into account that  = 𝐵𝐶 we can employ the Cauchy–Binet 
theorem [39] to present

det
1≤𝑛,𝑚≤|𝑊 |

(

𝛿𝑛𝑚 −𝑛𝑚
)

=
|𝑊 |

∑

𝑘=0

∑

𝐰,𝐳
|𝐳|=|𝐰|=𝑘

det
𝑤𝑛∈𝐰,𝑧𝑙∈𝐳

(

−𝐵(𝑤𝑛, 𝑧𝑙)
)

det
𝑧𝑙∈𝐳,𝑤𝑚∈𝐰

(

𝐶(𝑧𝑙 , 𝑤𝑚)
)

≡
|𝑊 |

∑

𝑘=0

∑

𝐰,𝐳
|𝐳|=|𝐰|=𝑘

D𝐳,𝐰. (67)

Here 𝐳 = {𝑧𝑏1 , 𝑧𝑏2 ,… 𝑧𝑏𝑘} is an ordered set of zeroes 1 + 𝜃(𝑞) in 𝐷. The 
determinants are of the Cauchy type and can be easily evaluated

D𝐳,𝐰 =
∏

𝑤𝑛∈𝐰

𝑤−𝑥
𝑛 𝑒−2𝛺<(𝑤𝑛)

𝜃′(𝑤𝑛)
∏

𝑧𝑙∈𝐳

𝑧𝑥𝑙 𝑒
2𝛺>(𝑧𝑙 )

𝜃′(𝑧𝑙)
∏

𝑎>𝑏,𝑤𝑎 ,𝑤𝑏∈𝐰(𝑤𝑎 −𝑤𝑏)2
∏

𝑎>𝑏, 𝑧𝑎 ,𝑧𝑏∈𝐳(𝑧𝑎 − 𝑧𝑏)2
∏

𝑧𝑙∈𝐳, 𝑤𝑛∈𝐰(𝑧𝑙 −𝑤𝑛)2
(68)

From this expression, it is clear that for 𝑥 → +∞ all such determinants 
vanish, det(1−) → 1. This, in particular, is related to the proper choice 
of the contour  discussed in Section 2.

The second Slavnov formularelates the subleading terms to the differ-
ent choices of the contour . Namely, let us denote by 𝐳,𝐰 the contour 
that (i) is obtained from  by a smooth deformation that avoids crossing 
the poles of 𝜃(𝑞); (ii) excludes 𝐳 = {𝑧𝑎1 , 𝑧𝑎2 ,… 𝑧𝑎𝑘}; and (iii) includes the 
points 𝐰 = {𝑤𝑏1 , 𝑤𝑏2 ,…𝑤𝑏𝑘}, in the area 𝐷𝐳,𝐰 encircled by 𝐳,𝐰 (see 
Fig.  2). Notice that the winding number of   is still zero, so we can 
𝐳,𝐰
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Fig. 2. The left panel shows the original contour  in the complex 𝑞 plane, the black dots are zeroes of 1+ 𝜃(𝑞) inside the shaded region 𝐷 - 𝑧1, 𝑧2, … , and outside - 𝑤1, 𝑤2, … . 
The crosses denote the poles of 𝜃(𝑞). The right panel shows an example of the contour 𝐳,𝐰 = 𝑧𝑎 ,𝑤𝑏

= 𝑎𝑏 obtained by inclusion of the point 𝑤𝑏 and exclusion of 𝑧𝑎 as well as the 
intermediate contour 𝑎 that excludes 𝑧𝑎 but does not encircle 𝑤𝑏. Notice that in the process of deformation  → 𝑎 → 𝑎𝑏 neither the poles of 𝜃(𝑞) are crossed nor other zeroes 
except 𝑧𝑎 and 𝑤𝑏.
associate the corresponding tau function 𝜏𝐳,𝐰 [𝜈] given by (36). Then, 
the second Slavnov formula generalized from the real line reads 

𝜏𝐳,𝐰 [𝜈] = D𝐳,𝐰𝜏 [𝜈]. (69)

Or equivalently for 𝑇𝑥[𝜃] the full asymptotic expansion can be presented 
as 

𝑇𝑥[𝜃] =
∑

𝐳,𝐰

𝜏𝐳,𝐰 [𝜈] (70)

where each 𝜏𝐳,𝐰 [𝜈] is given by Eq. (36) and summation is over all 
possible classes of contours with zero winding number of 𝜈(𝑞) that are 
obtained from  by smooth deformations that do not cross poles of 𝜃(𝑞).

The proof of this statement can be obtained by induction.
Step 1. Let us start by proving Eq. (69) for the simplest case 𝐳 = {𝑧𝑎}

and 𝐰 = {𝑤𝑏} i.e. when the deformed contour  includes/excludes only 
one point (see Fig.  2). With respect to this new contour 𝐳,𝐰 ≡ 𝑎𝑏 we 
define 𝛺𝑎𝑏  as in Eq. (24). Our aim is to relate 𝛺𝑎𝑏  with 𝛺 .

Lemma 1. Similar to Eq. (25) 𝛺>𝑎𝑏
 is analytic inside the 𝑎𝑏 (the shaded 

area 𝐷𝑎𝑏 in Fig.  2) and 𝛺<𝑎𝑏
 is analytic outside. These functions are 

connected by the same jump as the original scalar RHP (26), but this time 
while crossing the contour 𝑎𝑏
𝛺>𝑎𝑏

(𝑞) −𝛺<𝑎𝑏
(𝑞) = 2𝜋𝑖𝜈(𝑞). (71)

Then, we have relations 

𝑒
𝛺>𝑎𝑏

(𝑞)
= 𝑒𝛺>(𝑞)

𝑞 − 𝑧𝑎
𝑞 −𝑤𝑏

, 𝑒
𝛺<𝑎𝑏

(𝑞)
= 𝑒𝛺<(𝑞)

𝑞 − 𝑧𝑎
𝑞 −𝑤𝑏

. (72)

The proof essentially repeats the same manipulations as when deriving (45), 
(46) i.e. we compute the derivatives, deform the contour to account for the 
residues, and then integrate back, accounting for the integration constant 
from the normalization condition at infinity.

Remark. The relation (72) can be straightforwardly generalized to the 
case of contour 𝐳,𝐰 instead of 𝑎𝑏. Namely, we have 

𝑒
𝛺>𝐳,𝐰

(𝑞)
= 𝑒𝛺>(𝑞)

∏ 𝑞 − 𝑧𝑎
𝑞 −𝑤

. (73)

𝑧𝑎∈𝐳,𝑤𝑏∈𝐰 𝑏

6 
Lemma 2. The determinant 𝜏𝑎𝑏 [𝜈] for the contour 𝑎𝑏 defined above is 
related to 𝜏 [𝜈] as 

𝜏𝑎𝑏 [𝜈] =
𝑧𝑥𝑎𝑤

−𝑥
𝑏 𝑒2𝛺>(𝑧𝑎)−2𝛺<(𝑤𝑏)

𝜃′(𝑧𝑎)𝜃′(𝑤𝑏)(𝑧𝑎 −𝑤𝑏)2
𝜏 [𝜈]. (74)

The factor before 𝜏 [𝜈] coincides with D{𝑧𝑎},{𝑤𝑏}, thus Lemma  2 implies 
Step 1.

Proof. To prove (74) we can either use the explicit formula (38) and fol-
low a tedious path of deriving Eq. (48) outlined in Appendix  B or obtain 
it directly from the definition of the tau function (10). To do the latter, 
we introduce the contour 𝑎, which serves as an intermediate between 
 and 𝑎𝑏 i.e. the point 𝑧𝑎 is already excluded but 𝑤𝑏 is not included 
yet (see Fig.  2). We can define the corresponding tau function 𝜏𝑎 [𝜈] =
det𝑎 (1+𝑉𝑎 ), however it is no longer given by Eq. (38) as the winding 
of 𝜈(𝑞) on 𝑎 is no longer zero. Nevertheless, from the definition of the 
kernel (11) and (12) we see that the contour 𝑎 can be extended to 
both  and 𝑎𝑏 because it lies inside each of them so moving 𝑞 in 𝑤𝑎
in Eq. (12) would never cross the integration contour. This way 

𝜏𝑎 [𝜈] = det
𝑎

(1 + 𝑉𝑎 ) = det
𝑎𝑏

(1 + 𝑉𝑎 ) = det
𝑎𝑏

(1 + 𝑉𝑎𝑏 + 𝑊̂𝑤𝑏
), (75)

𝜏𝑎 [𝜈] = det
𝑎

(1 + 𝑉𝑎 ) = det

(1 + 𝑉𝑎 ) = det


(1 + 𝑉 + 𝑊̂𝑧𝑎 ), (76)

where the additional terms come from the difference between 𝑤𝑎
and 𝑤𝑎𝑏  with 𝑤 in (12). They can be computed as residues in the 
corresponding points 

𝑊𝑠(𝑞, 𝑝) =

√

𝜃(𝑞)𝜃(𝑝)
2𝜋𝑖

𝑠𝑥𝑞−𝑥∕2𝑝−𝑥∕2

𝜃′(𝑠)(𝑠 − 𝑞)(𝑠 − 𝑝)
. (77)

On both contours, the winding number is zero so we can use the 
exact formulas for the resolvent along with Eq. (31) to evaluate the 
contributions of the rank-1 corrections explicitly. We have
𝜏𝑎 [𝜈]
𝜏 [𝜈]

= 1 + Tr(1 − 𝑅̂)𝑊̂𝑧𝑎 = 1 +
𝑧𝑥𝑎

𝜃′(𝑧𝑎)
𝑀(𝑧𝑎, 𝑧𝑎)

(33),(24)
= 1 + ∫

𝑑𝑠
2𝜋𝑖

(

𝑠
𝑧𝑎

)−𝑥 𝜃(𝑠)𝑒2𝛺>(𝑧𝑎)−2𝛺<(𝑠)

(1 + 𝜃(𝑠))𝜃′(𝑧𝑎)(𝑠 − 𝑧𝑎)2
. (78)

Using the scalar RHP (26) we present an integrand in a form that allows 
one to deform the integration contour back to  . By doing so we have 
𝑎
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to take into account the residue at 𝑠 = 𝑧𝑎, namely, 
𝜏𝑎 [𝜈]
𝜏 [𝜈]

=
𝑧𝑥𝑎𝑒

2𝛺>(𝑧𝑎)

𝜃′(𝑧𝑎) ∫𝑎

𝑑𝑠
2𝜋𝑖

𝑠−𝑥
(1 + 𝜃(𝑠))𝜃(𝑠)𝑒−2𝛺>(𝑠)

(𝑠 − 𝑧𝑎)2
(79)

And in a similar way 

𝜏𝑎 [𝜈]
𝜏𝑎𝑏 [𝜈]

=
𝑤𝑥

𝑏𝑒
2𝛺>𝑎𝑏

(𝑤𝑏)

𝜃′(𝑤𝑏) ∫𝑎

𝑑𝑠
2𝜋𝑖

𝑠−𝑥
(1 + 𝜃(𝑠))𝜃(𝑠)𝑒

−2𝛺>𝑎𝑏
(𝑠)

(𝑠 −𝑤𝑏)2
. (80)

Taking into account Eq. (72) we notice that the integrals in both 
Eqs. (79) and (80) are the same, which leads to 
𝜏𝑎𝑏 [𝜈]
𝜏 [𝜈]

=
𝑧𝑥𝑎𝑤

−𝑥
𝑏 𝜃′(𝑤𝑏)𝑒2𝛺>(𝑧𝑎)

𝜃′(𝑧𝑎)𝑒
2𝛺>𝑎𝑏

(𝑤𝑏)
. (81)

The value in the denominator should be understood as a limit. Namely, 
from (72) we get 

𝑒
𝛺>𝑎𝑏

(𝑞)
= (1 + 𝜃(𝑞))

𝑞 − 𝑧𝑎
𝑞 −𝑤𝑏

𝑒𝛺<(𝑞) (82)

Thus for 𝑞 = 𝑤𝑏 we get 

𝑒
𝛺>𝑎𝑏

(𝑤𝑏) = lim
𝑞→𝑤𝑏

(1 + 𝜃(𝑞))
𝑞 − 𝑧𝑎
𝑞 −𝑤𝑏

𝑒𝛺<(𝑞) = (𝑤𝑏 − 𝑧𝑎)𝜃′(𝑤𝑏)𝑒𝛺<(𝑤𝑏). (83)

Substituting this expression to (81) we recover (74).
Step 2. Let us introduce two contours 2 = 𝐳∪𝑧𝑎 ,𝐰∪𝑤𝑏

 and 1 = 𝐳,𝐰, 
which correspond to the situation where the point 𝑧𝑎 is added to 𝐳 and 
𝑤𝑏 to 𝐰. The second step of the induction is equivalent to the statement 

𝜏2 [𝜈] =
D2
D1

𝜏1 [𝜈], (84)

with D2 = D𝐳∪𝑧𝑎 ,𝐰∪𝑤𝑏
 and D1 = D𝐳,𝐰.

To demonstrate why this relation holds, we simply use Lemma  2 
for the contours  → 𝐳,𝐰 and 𝑎𝑏 → 𝐳∪𝑧𝑎 ,𝐰∪𝑤𝑏

 (recall that we use the 
notation 𝛺>, 𝛺< instead of 𝛺> , 𝛺< ) 

𝜏2 [𝜈]
𝜏1 [𝜈]

=
𝑧𝑥𝑎𝑤

−𝑥
𝑏 𝑒

2𝛺>1
(𝑧𝑎)−2𝛺>1

(𝑤𝑏)

𝜃′(𝑧𝑎)𝜃′(𝑤𝑏)(𝑧𝑎 −𝑤𝑏)2
. (85)

Then, we relate the functions 𝛺1  to 𝛺 using Lemma  1

𝑒
2𝛺>1

(𝑧𝑎)−2𝛺>1
(𝑤𝑏) =

(

𝑒2𝛺>(𝑧𝑎)

∏

𝑧𝑘∈𝐳(𝑧𝑎 − 𝑧𝑘)2
∏

𝑤𝑘∈𝐰(𝑧𝑎 −𝑤𝑘)2

)

(

𝑒−2𝛺<(𝑤𝑏)

∏

𝑤𝑘∈𝐰(𝑤𝑏 −𝑤𝑘)2
∏

𝑧𝑘∈𝐳(𝑤𝑏 − 𝑧𝑘)2

)

. (86)

Then, using the definition (68) for D𝐳,𝐰, we find

D2
D1

=
𝑧𝑥𝑎𝑤

−𝑥
𝑏

𝜃′(𝑧𝑎)𝜃′(𝑤𝑏)(𝑧𝑎 −𝑤𝑏)2

(

𝑒2𝛺>(𝑧𝑎)

∏

𝑧𝑘∈𝐳(𝑧𝑎 − 𝑧𝑘)2
∏

𝑤𝑘∈𝐰(𝑧𝑎 −𝑤𝑘)2

)

(

𝑒−2𝛺<(𝑤𝑏)

∏

𝑤𝑘∈𝐰(𝑤𝑏 −𝑤𝑘)2
∏

𝑧𝑘∈𝐳(𝑤𝑏 − 𝑧𝑘)2

)

. (87)

Combining the last three formulas we get (85), which completes the 
proof.

Borodin-Okounkov formula. Let us briefly comment on how to present
the Fredholm determinant det (1 − 𝐾̂) acting on the contour as a Fred-
holm determinant acting on 𝑙2(𝑥, 𝑥 + 1,…). We focus only on the case 
 = S1. First we note that functions 𝛺> and 𝛺< (25) solve the factoriza-
tion problem for the symbol 𝜙(𝑞) = 1 + 𝜃(𝑞) on the contour , namely 
𝜙+(𝑞)𝜙−(𝑞) = 𝜙(𝑞) = 1 + 𝜃(𝑞) = 𝑒𝛺>(𝑞)𝑒−𝛺<(𝑞), (88)

with the identification 
𝜙+(𝑞) = 𝑒𝛺>(𝑞), 𝜙−(𝑞) = 𝑒−𝛺<(𝑞). (89)

Then the kernel 𝐾̂ in (60) after the conjugation with the diagonal 
matrices and the slight shift of the contour can be presented as 

𝐾(𝑘1, 𝑘2) =
1 𝑑𝑠 𝐴(𝑘1, 𝑠)𝐵(𝑠, 𝑘2), (90)

2𝜋𝑖 ∫> 2𝜋𝑖

7 
with 

𝐴(𝑘1, 𝑠) ≡
𝑘𝑥1𝜙+(𝑘1)𝜙−1

− (𝑘1)
𝑠 − 𝑘1

, 𝐵(𝑠, 𝑘2) ≡
𝑠−𝑥𝜙−1

+ (𝑠)𝜙−(𝑠)
𝑠 − 𝑘2

. (91)

We expand these functions in the Laurent series 

𝐴(𝑘1, 𝑠) =
∞
∑

𝑛=1
𝐴𝑛(𝑘1)𝑠−𝑛, 𝐵(𝑠, 𝑘2) =

∞
∑

𝑚=−∞
𝐵𝑚(𝑘2)𝑠−𝑚−1, (92)

to present the kernel in terms of 𝐴𝑛, 𝐵𝑚, namely 

𝐾(𝑘1, 𝑘2) =
1
2𝜋𝑖

∞
∑

𝑛=1
𝐴𝑛(𝑘1)𝐵−𝑛(𝑘2). (93)

Using the cyclic property of determinant we can get 
det

(1 −𝐾) = det

N
(1 −), (94)

where 

𝑛𝑚 = ∫
𝑑𝑘
2𝜋𝑖

𝐵−𝑛(𝑘)𝐴𝑚(𝑘). (95)

The explicit form of the Laurent coefficient reads 
𝐴𝑚(𝑘) = 𝑘𝑥+𝑚−1𝜙+(𝑘)𝜙−1

− (𝑘), (96)

𝐵−𝑛(𝑘) = ∫>
𝑠−𝑛𝑑𝑠
2𝜋𝑖

𝑠−𝑥𝜙−1
+ (𝑠)𝜙−(𝑠)
𝑠 − 𝑘

=
∞
∑

𝑙=0
𝑘𝑙(𝜙−1

+ 𝜙−)𝑥+𝑛+𝑙 . (97)

Therefore

𝑛𝑚 =
∞
∑

𝑙=0
(𝜙−1

+ 𝜙−)𝑥+𝑛+𝑙 ∫
𝑑𝑘
2𝜋𝑖

𝑘𝑥+𝑚+𝑙−1𝜙+(𝑘)𝜙−1
− (𝑘)

=
∞
∑

𝑙=0
(𝜙−1

+ 𝜙−)𝑥+𝑛+𝑙(𝜙+𝜙
−1
− )−𝑥−𝑚−𝑙 . (98)

which is after the shift of the 𝑛 and 𝑚 turns into a kernel acting on 
𝑙2(𝑥, 𝑥 + 1,…).

5. Effective form factors

Finally, let us comment on the heuristic approach of the effective 
form factors. In [22] we have considered a formal form factor series 

𝜏eff [𝜈] ≡
∑

𝐪
|⟨𝐩|𝐪⟩|2

𝑁
∏

𝑖=1

𝑞𝑥𝑖
𝑝𝑥𝑖

, (99)

where the ordered set 𝐩 = {𝑝1,… 𝑝𝑁} of the shifted momenta consists 
of 𝑁 distinct solutions of the equation 𝑝𝐿 = 𝑒−2𝜋𝑖𝜈(𝑝); the set 𝐪 =
{𝑞1,… , 𝑞𝑁} is taken from the solutions of the unshifted equation 𝑞𝐿 = 1; 
and the form factors are declared to be 

|⟨𝐩|𝐪⟩|2 =
( 2
𝐿

)2𝑁 𝑁
∏

𝑖=1

𝑝𝑖𝑞𝑖𝜃(𝑞𝑖)𝜃(𝑝𝑖)

(1 + 𝜃(𝑞𝑖))(1 +
2𝜋
𝐿
𝜈′(𝑝𝑖))

∏𝑁
𝑖>𝑗 (𝑝𝑖 − 𝑝𝑗 )2

∏𝑁
𝑖>𝑗 (𝑞𝑖 − 𝑞𝑗 )2

∏𝑁
𝑖,𝑗=1(𝑝𝑖 − 𝑞𝑗 )2

.

(100)

Here we have changed notations to exponential ones 𝑒𝑖𝑝 → 𝑝 compared 
to [22]. The main result of [22] is that in the thermodynamic limit 
𝑁 → ∞, 𝑁∕𝐿 → 1, on the one hand the sum in (99) converges into to 
the Fredholm determinant 
𝜏eff [𝜈] = det

S1

(

1 + 𝑉S1
)

(101)

with the kernels defined in (11), (12). On the other hand, we can apply 
the thermodynamic limit to each element of the sum (99) and evaluate 
it afterward. This leads to elementary expressions. For example, it is 
clear that if the winding number is zero we can put 𝑁 = 𝐿 so that 
we end up with only one term in the sum (99). More specifically, 
let us consider non-positive winding number n = −𝑛 ≤ 0, then (Eqs. 
(46),(105) in [22])
𝜏eff [𝜈] = det 𝑦n(𝑥 + 𝑖 − 𝑗) × exp
1≤𝑖,𝑗≤𝑛
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(

(𝑥 + 𝑛)∫S1
𝑑𝑞
𝑞
𝜈n(𝑞) −

1
2 ∫S1 ∫S1

𝑑𝑞𝑑𝑝
(

𝜈n(𝑞) − 𝜈n(𝑝)
𝑞 − 𝑝

)2
)

,

(102)

here 
𝑦n(𝑠) =

1
2𝜋𝑖 ∫S1

𝑑𝑘
𝑘
𝑘−𝑠𝑒−2𝜋𝑖𝜈n(𝑘)𝑒−2𝜔<(𝑘). (103)

This formula is nothing but the Hartwig-Fisher asymptotic (Theorem 4 
in Ref. [35]) for the Toeplitz determinant with the symbol related to 
𝜈(𝑞) as in Section 1. However, let us emphasize again that Eq. (102) is 
an exact result for the sum (99) in the thermodynamic limit (i.e. for 
the determinant (101)) valid for any 𝑥 > 0 (not just asymptotically). 
Moreover, in (Appendix  C) we prove Eq. (102) without referring to 
the form factor series but directly from the Riemann–Hilbert approach. 
Presenting the asymptotic expansion for each of 𝑦n(𝑥) and computing 
the leading asymptotic in (102) one can recover (53). It is instructive, 
however, to discuss the relationship between 𝜏eff  and 𝜏 directly from 
their definitions (10) and (101) correspondingly. First notice that the 
definition of the kernel (11) allows us to deform the contour in 𝜏eff  from 
S1 to . Indeed, by definition, during the deformation process, we never 
cross poles of 𝜃(𝑞), and integration of 𝑤S1  in (12) can be continued for 
𝑞 outside the unit circle, similarly as we did in Section 4.

On the other hand,

𝑉S1 = 𝑉 + 𝑊̂ , 𝑊 (𝑝, 𝑞) =

√

𝜃(𝑞)𝜃(𝑝)𝑞−𝑥∕2𝑝−𝑥∕2

2𝜋𝑖

𝑛
∑

𝑗=1

𝑧𝑥𝑗
𝜃′(𝑧𝑗 )(𝑧𝑗 − 𝑞)(𝑧𝑗 − 𝑝)

(104)

On the contour  we can invert 1 + 𝑉 to obtain 

𝜏eff [𝜈] = det


(

1 + 𝑉S1
)

= det


(

1 + 𝑉 + 𝑊̂
)

= 𝜏 [𝜈] det
(

1 + (1 − 𝑅̂)𝑊̂
)

(105)

Further, we can use the cyclic property of determinant along with 
Eqs. (31) and (33) to present the Fredholm determinant
det

(

1 + (1 − 𝑅̂)𝑊̂
) as the determinant with the kernel of 𝑛 × 𝑛 matrix 

det1≤𝑖,𝑗≤𝑛(𝛿𝑖𝑗 −𝐾(𝑧𝑖, 𝑧𝑗 )) with the kernel defined as (cf  (60) and (62)) 

𝐾(𝑧𝑖, 𝑧𝑗 ) = −
𝑧𝑥𝑗

𝜃′(𝑧𝑗 )
𝑀(𝑧𝑖, 𝑧𝑗 ) =

𝑧𝑥𝑗
𝜃′(𝑧𝑗 )

𝑒𝛺 (𝑧𝑖)+𝛺 (𝑧𝑗 )
𝑏 (𝑧𝑖) − 𝑏 (𝑧𝑗 )

𝑧𝑖 − 𝑧𝑗
. (106)

To compare with the results of the Section 4 we can do a cyclic 
transformation once again to exchange 𝑧 ↔ 𝑤, which leads to 
𝜏eff [𝜈] = 𝜏 [𝜈] det

1≤𝑛,𝑚≤|𝑊 |

(

𝛿𝑛𝑚 − ̃(𝑤𝑛, 𝑤𝑚)
)

(107)

with 

̃(𝑤𝑛, 𝑤𝑚) = −
|𝛿|
∑

𝑙=1

𝑤−𝑥
𝑛 𝑒−2𝛺<

(

𝑤𝑛
)

𝑒2𝛺>
(

𝑧𝑙
)

𝑧𝑥𝑙
𝜃′

(

𝑤𝑛
)

𝜃′
(

𝑧𝑙
) (

𝑤𝑛 − 𝑧𝑙
) (

𝑤𝑚 − 𝑧𝑙
) (108)

So contrary to Eq. (64) where the summation is over all the solutions 
inside the area 𝐷 encircled by the contour , here the summation is 
only over 𝑧𝑘 which lie between the contour  and the unit circle (the 
dashed circle labeled by ε|𝑧| = 1ε in Fig.  2). Similarly, we can write the 
analog of the second Slavnov formula (70). The overall form remains 
the same 𝜏eff [𝜈] = ∑

𝐳,𝐰 𝜏𝐳,𝐰 [𝜈], however the summation is limited to 
the sets 𝐳 consisting only on the points between  and the unit circle. 
This way, the effective form factors give the leading asymptotic up to 
the order 𝑂(𝑒−𝑥(|𝑤|𝛿|+1|+|𝑧|𝛿|+1|)).

Throughout the paper, we focused on the negative winding num-
bers. Still, the final answers (36), (38) remain unchanged up to the 
correct choice of the contour  for any winding number. For the 
effective form factor approach the situation is a bit different. As we 
suggest in [22] the effective form factor approach for the positive 
winding of 𝜈(𝑞) can be achieved by a slight change in the definition 
of 𝜏 , namely 
𝜏eff [𝜈] = det

(

1 + 𝑄̂ 1
)

(109)

S1

S

8 
where 𝑄̂ is an integral operator acting on S1 with the following kernel 

𝑄(𝑞, 𝑝) =

√

𝜃(𝑝)
√

𝜃(𝑞)
2𝜋𝑖

𝑤+(𝑝)𝑤−(𝑞) −𝑤+(𝑞)𝑤−(𝑝)
𝑝 − 𝑞

, (110)

and function 𝑤± are defined as
𝑤+(𝑞) = 𝑞𝑥∕2, 𝑤−(𝑞) = 𝑤+(𝑞)𝑤̃S1 (𝑞),

𝑤̃S1 (𝑞) = 𝑞−𝑥 − ∫
|𝑘|=1+0

𝑑𝑘
2𝜋𝑖

𝑘−𝑥𝜃(𝑘)
(1 + 𝜃(𝑘))(𝑘 − 𝑞)

. (111)

Another result of [22] that readily follows from the microscopic
presentation (99) is the determinants with the special rank-1 correction 
relevant for the correlation functions. Namely, 
det
S1

(1 + 𝑉𝜈 + 𝑉 (1)
𝜈 ) − det

S1
(1 + 𝑉𝜈 ) = det

S1
(1 + 𝑉𝜈1 ) (112)

where 𝜈1 is obtained from 𝜈 by (41) and 𝑉 (1)(𝑝, 𝑞) =
√

𝜃(𝑝)𝜃(𝑞)𝑝−𝑥∕2𝑞−𝑥∕2∕(2𝜋𝑖𝑝). It is interesting that the same relation holds 
even for the full sine kernel 
det
S1

(1 + 𝑆̂𝜈 + 𝑉 (1)
𝜈 ) − det

S1
(1 + 𝑆̂𝜈 ) = det

S1
(1 + 𝑆̂𝜈1 ) (113)

where the kernel 𝑆̂ is defined in Eq. (1), with the subscript indicating 
the corresponding 𝜃 via the relation (7). Eq. (113) can be demonstrated 
by rewriting the left and the right parts of the equations as Toeplitz 
determinants (see Sec. 5 in [22]). Demonstrating the validity of (112) 
is relatively simple from the microscopic point of view (99) but quite 
challenging in the form of Fredholm determinants. We illustrate it 
below for the particular case of a zero winding number of 𝜈 on S1. In 
this case, Eq. (102) gives 

det
S1

(1+𝑉𝜈 ) = exp

(

𝑥∫S1
𝑑𝑞
𝑞
𝜈(𝑞) − 1

2 ∫S1 ∫S1
𝑑𝑞𝑑𝑝

(

𝜈(𝑞) − 𝜈(𝑝)
𝑞 − 𝑝

)2
)

(114)

and

det
S1

(1 + 𝑉𝜈1 ) =
1
2𝜋𝑖 ∫S1

𝑑𝑘
𝑘𝑥+1

𝑒−2𝛺<(𝑘)

1 + 𝜃(𝑘)
exp

(

(𝑥 + 1)∫S1
𝑑𝑞
𝑞
𝜈(𝑞) − 1

2 ∫S1 ∫S1
𝑑𝑞𝑑𝑝

(

𝜈(𝑞) − 𝜈(𝑝)
𝑞 − 𝑝

)2
)

,

(115)

or in other words 

det
S1

(1 + 𝑉𝜈1 ) =
detS1 (1 + 𝑉𝜈 )

2𝜋𝑖 ∫S1
𝑑𝑘
𝑘𝑥+1

𝑒𝛺>(0)−2𝛺<(𝑘)

1 + 𝜃(𝑘)
= det

S1
(1 + 𝑉𝜈 )𝑒𝛺>(0)𝑏>(0).

(116)

Here we have used that [𝜈1]−1 = 𝜈. The resolvent is explicitly given for 
1 + 𝑉𝜈 by Eqs. ((14), (27)). Moreover, to be able to immediately use 
formulas ((31), (33)) we present 

𝑉 (1)
𝜈 (𝑝, 𝑞) = lim

𝑧∞→∞
(−𝑧∞)

√

𝜃(𝑝)𝜃(𝑞)
2𝜋𝑖

𝑝−𝑥∕2𝑞−𝑥∕2

𝑝(𝑝 − 𝑧∞)
. (117)

Using the fact that the l.h.s of Eq. (112) is linear in 𝑉 (1)
𝜈 , we obtain

det
S1

(1 + 𝑉𝜈 + 𝑉 (1)
𝜈 ) − det

S1
(1 + 𝑉𝜈 ) = det

S1
(1 + 𝑉𝜈 ) lim

𝑧∞→∞
(−𝑧∞)𝑀(0, 𝑧∞)

= det
S1

(1 + 𝑉𝜈 )𝑒𝛺>(0)𝑏>(0), (118)

which is exactly as (116). It would be nice to prove (112) directly in 
the full generality.

6. Summary and outlook

To summarize, we have found closed expressions for the large 𝑥
asymptotic of the finite temperature sine kernel Fredholm determi-
nants. To address the non-zero winding number we have considered 
the deformation of the contours on which the original determinant is 
defined along with the deformation of the kernel that corresponds to 
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the effective form factors approach. To clarify this connection was our 
original motivation. In (Appendix  C) we have presented an alternative 
way, where one keeps the contour, deforms only the kernel, and still 
gets a completely solvable Riemann–Hilbert problem. In the end, our 
approach turned out to be similar to the approach in [31], but the 
advantage of our case is that we have found the resolvent explicitly. 
Notice that we could have considered more general kernels by deform-
ing 𝑒±(𝑞) → 𝑒±(𝑞)𝑒±𝑔(𝑞). Even though the connection with the Toeplitz 
determinant would be lost in this case, all the procedures for finding 
the resolvent and asymptotic remain mostly unchanged. However, 
achieving the full asymptotic expansion might be unreachable because 
of the properties of the function 𝑔(𝜆), which need to be specified case 
by case.

The variational formula was an important step in our derivation. 
This, in our opinion, is the best approach to deal with the generic 
function 𝜈(𝑞), while in specific cases the differentiation over particular 
parameters might be preferable. Together with differentiation over 𝑥
this might lead to the closed system of differential equations [4,30,40–
44].

It would be interesting to generalize our approach to the special 
cases of the so-called Toeplitz + Hankel determinants [45], which 
seems to be possible since the analogs of the Borodin-Okounkov for-
mula exist in these cases [46]. Another interesting problem is how to 
add time dependence to the picture. The main obstacle for implement-
ing this also originates from the effective form factors and lies in the 
problems of choosing the continuous effective phase-shift 𝜈(𝑞) [23,24].
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Appendix A. Lemma about the integrals with the resolvent

In this appendix, we prove Eq. (33). To do this we use the explicit 
form of 𝑓± (27). We start by introducing 𝑟(𝑞; 𝑘)
√

𝜃(𝑞)𝑟(𝑞; 𝑘) ≡ ∫
𝑑𝑝(1 − 𝑅)(𝑞, 𝑝)

√

𝜃(𝑝)𝑝−𝑥∕2

𝑘 − 𝑝
. (A.1)

This quantity defines 𝑀(𝑘1, 𝑘2) in Eq. (33) as 

𝑀(𝑘1, 𝑘2) ≡ ∫
𝑑𝑞
2𝜋𝑖

𝑞−𝑥∕2𝜃(𝑞)𝑟(𝑞; 𝑘1)
𝑘2 − 𝑞

. (A.2)

Let us demonstrate how 𝑟(𝑞; 𝑘) can be expressed via the solution of the 
RHP (23). The definition (A.1) is equivalent to 

𝑟(𝑞; 𝑘) ≡
v−(𝑞) − 𝜃(𝑝)𝑑𝑝 𝑓+(𝑝)𝑓−(𝑞) − 𝑓+(𝑞)𝑓−(𝑝) v−(𝑝) . (A.3)

𝑘 − 𝑞 ∫ 2𝜋𝑖 𝑝 − 𝑞 𝑘 − 𝑝

9 
Then using 
1

𝑝 − 𝑞
1

𝑘 − 𝑝
= 1

𝑝 − 𝑞
1

𝑘 − 𝑞
+ 1

𝑘 − 𝑝
1

𝑘 − 𝑞
, (A.4)

we transform 𝑟(𝑞, 𝑘) as

𝑟(𝑞; 𝑘) ≡ 1
𝑘 − 𝑞

(

v−(𝑞) − ∫

𝜃(𝑝)𝑑𝑝
2𝜋𝑖

𝑓+(𝑝)𝑓−(𝑞) − 𝑓+(𝑞)𝑓−(𝑝)
𝑝 − 𝑞

v−(𝑝)
)

−
𝑓−(𝑞)
𝑘 − 𝑞 ∫

𝜃(𝑝)𝑑𝑝
2𝜋𝑖

v−(𝑝)𝑓+(𝑝)
𝑘 − 𝑝

+
𝑓+(𝑞)
𝑘 − 𝑞 ∫

𝜃(𝑝)𝑑𝑝
2𝜋𝑖

𝑓−(𝑝)v−(𝑝)
𝑘 − 𝑝

(A.5)

Using Eq. (15) for the first group of terms and the definition for the 
RHP (18) for the last two we obtain 

𝑟(𝑞; 𝑘) =
𝑓−(𝑞)𝜒22(𝑘) + 𝑓+(𝑞)𝜒12(𝑘)

𝑘 − 𝑞
=

𝑒𝛺 (𝑘)(𝑓−(𝑞) + 𝑓+(𝑞)𝑏 (𝑘))
𝑘 − 𝑞

, (A.6)

with 𝑓± given in (27) and 𝑏 .
Now let us come back to the integral (A.2). Using the same trick as 

above (A.4) we obtain (recall that v−(𝑞) = 𝑞−𝑥∕2) (see the equation in 
Box  I). Here at the last step, we have employed the exact solution (23).

Appendix B. Double integral transformation

To transform the double integral in (38) we first identically split it 
in two parts using Eq. (45)

∫
𝑑𝑞
2𝜋𝑖

𝛺′
<(𝑞)𝛺>(𝑞) = 𝐽1 + 𝐽2, (B.1)

with 

𝐽1 = −∫
𝑑𝑞
2𝜋𝑖

𝜔<(𝑞)𝛺′
>(𝑞), 𝐽2 = ∫

𝑑𝑞
2𝜋𝑖

(

𝑛
𝑞
−

𝑛
∑

𝑘=1

1
𝑞 − 𝑧𝑘

)

𝛺>(𝑞).

(B.2)

Here in 𝐽1 we have also integrated by parts. Notice that in the integra-
tion contour in 𝐽1 can be shrinked to S1, due to analytic properties of 
both 𝜔< and 𝛺>. Moreover, using Eq. (46) we obtain

𝐽1 = −∫S1
𝑑𝑞
2𝜋𝑖

𝜔<(𝑞)

(

𝜔′
>(𝑞) −

𝑛
∑

𝑘=1

1
𝑞 − 𝑧𝑘

)

= ∫S1
𝑑𝑞
2𝜋𝑖

𝜔′
<(𝑞)𝜔>(𝑞) + ∫S1

𝑑𝑞
2𝜋𝑖

𝑛
∑

𝑘=1

𝜔<(𝑞)
𝑞 − 𝑧𝑘

. (B.3)

Now in the second integral, we can pull the contour to infinity and 
evaluate the residues at 𝑞 = 𝑧𝑘

𝐽1 = ∫S1
𝑑𝑞
2𝜋𝑖

𝜔′
<(𝑞)𝜔>(𝑞) −

𝑛
∑

𝑘=1
𝜔<(𝑧𝑘). (B.4)

To evaluate 𝐽2 we shrink the contour to the origin and obtain the 
following sum of the residues 

𝐽2 = 𝑛𝛺>(0) −
𝑛
∑

𝑘=1
𝛺>(𝑧𝑘). (B.5)

The evaluation of 𝛺>(𝑧𝑘) should be understood as a limiting procedure 
from Eq. (46), namely

𝑒𝛺>(𝑧𝑘) = lim
𝑞→𝑧𝑘

𝑒𝜔>(𝑞)
∏𝑛

𝑘=1(𝑧𝑘 − 𝑞)
= lim

𝑞→𝑧𝑘

𝑞𝑛(1 + 𝜃(𝑞))𝑒𝜔<(𝑞)
∏𝑛

𝑗=1(𝑧𝑗 − 𝑞)

=
𝑧𝑛𝑘𝜃

′(𝑧𝑘)
∏𝑛

𝑗≠𝑘(𝑧𝑗 − 𝑧𝑘)
𝑒𝜔<(𝑧𝑘). (B.6)

In the similar way we express 𝛺>(0) via 𝜔>(0)

exp
(

𝛺>(0) − 𝜔>(0)
)

=
𝑛
∏

𝑘=1
𝑧−1𝑘 . (B.7)

Overall, we obtain

exp
(

𝑑𝑞
𝛺′

<(𝑞)𝛺>(𝑞)
)

= exp

(

𝑑𝑞
𝜔′
<(𝑞)𝜔>(𝑞) + 𝑛𝜔>(0) − 2

𝑛
∑

𝜔<(𝑧𝑘)

)

∫ 2𝜋𝑖 ∫S1 2𝜋𝑖 𝑘=1
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𝑀(𝑘1, 𝑘2) =
𝜒22(𝑘1)𝜒12(𝑘2) + 𝜒12(𝑘1)(1 − 𝜒22(𝑘2)) − 𝜒22(𝑘1)𝜒12(𝑘1) − 𝜒12(𝑘1)(1 − 𝜒22(𝑘1))

𝑘1 − 𝑘2

=
𝜒22(𝑘1)𝜒12(𝑘2) − 𝜒12(𝑘1)𝜒22(𝑘2)

𝑘1 − 𝑘2
= −𝑒𝛺 (𝑘1)+𝛺 (𝑘2)

𝑏 (𝑘1) − 𝑏 (𝑘2)
𝑘1 − 𝑘2

. (A.7)

Box I. 
×

∏𝑛
𝑘=1

∏𝑛
𝑗≠𝑘(𝑧𝑗 − 𝑧𝑘)

∏𝑛
𝑘=1 𝑧

2𝑛
𝑘 𝜃′(𝑧𝑘)

, (B.8)

which results in Eq. (48)

Appendix C. Hartwig-Fisher asymptotic without effective form fac-
tors

C.1. Resolvent from the Riemann-Hilbert problem

Here we derive relation (102) without referring to the effective 
form factors series. We focus on the negative winding number for 𝜈(𝑞), 
𝑛 = −n > 0. Instead, of deforming the contour to achieve zero winding 
as in our main approach we evaluate the determinant (101) directly 
on S1 and solve the corresponding Riemann–Hilbert problem (RHP) 
explicitly. Namely, we have to find the matrix-valued function 𝜒(𝑞)
with the following properties

• 𝜒(𝑞) is holomorphic and invertible outside S1.
• 𝜒(𝑞) → 1 as 𝑞 → ∞.
• For 𝑞 ∈ S1 we have a jump relation 
𝜒<(𝑞) = 𝜒>(𝑞)𝐽 , 𝐽 = 1 + 𝜃(𝑞)|𝑉 (𝑞)⟩⟨𝑉 (𝑞)|. (C.1)

The first two transformations are almost identical to those of Sec-
tion 2. Let us make transformations by the conjugation of the following 
matrices 

𝜒 = 𝛹
(

𝑒−𝜔 0
0 𝑒𝜔

)(

1 0
𝜑 1

)

, (C.2)

where we introduced functions 

𝜑(𝑞) = ∫S1
𝑑𝑘
2𝜋𝑖

𝑘𝑥

𝑘 − 𝑞
𝜃(𝑘)

1 + 𝜃(𝑘)
, 𝜔(𝑞) = ∫S1

𝜈n(𝑘)𝑑𝑘
𝑘 − 𝑞

, (C.3)

with 
2𝜋𝑖𝜈n(𝑘) = ln[(1 + 𝜃(𝑘))𝑘−𝛿]. (C.4)

Notice that the index of 𝜈n(𝑘) is zero on S1. This definition differs by a 
constant from 𝜈n(𝑘) defined in (41). The resulting jump for 𝛹 reads 

𝛹−1
> 𝛹< = 𝐽𝛹 =

(

𝑞n 𝑒−𝜔>−𝜔<𝜃𝑞−𝑥

0 𝑞−n

)

. (C.5)

Further, we can make the following transformation to simplify the jump 

𝛹< = 𝛷<

(

1 𝑒−2𝜔<𝑞−𝑥

0 1

)

, 𝛹> = 𝛷> (C.6)

the jump for this RHP 𝐽𝛷 is presented as 

𝛷−1
> 𝛷< = 𝐽𝛷 =

(

𝑞n −𝑞−n𝜇(𝑞)
0 𝑞−n

)

, (C.7)

where we introduced 
𝜇(𝑞) = 𝑒−𝜔>−𝜔<𝑞−𝑥+n. (C.8)

Up to this moment, all the transformations were holomorphic and 
invertible outside S1. To proceed further, we define the new RHP as
𝛷 (𝑞) = 𝑌 (𝑞)𝑞n𝜎3 , 𝛷 (𝑞) = 𝑌 (𝑞). (C.9)
< < > >

10 
The corresponding jump reads 

𝑌 −1
> 𝑌< = 𝐽𝑌 = 𝐽𝛷𝑞

−n𝜎3 =
(

1 −𝜇
0 1

)

. (C.10)

Additionally to the jump condition, we changed normalization at 
infinity, which now has the form 
𝑌<(𝑞) =

(

1 + 𝑂(𝑞−1)
)

𝑞−n𝜎3 , 𝑞 → ∞. (C.11)

It is clear, that 𝑌 (𝑞) is not holomorphic at infinity. However, this 
RHP still can be solved using orthogonal polynomials as we consider 
𝑛 = −n > 0 (see Remark 3.2 in [47]). We can formally define monic 
orthogonal polynomials with respect to the measure function 𝜇(𝑞) given 
by (C.8)

∫S1
𝑝𝑖(𝑞)𝑝𝑗 (𝑞)𝜇(𝑞)𝑑𝑞 = ℎ𝑖𝛿𝑖𝑗 , ℎ𝑖 ≠ 0. (C.12)

The condition that ℎ𝑖 ≠ 0 is quite nontrivial for generic measure 
function 𝜇(𝑞). It can be proven [48] that the following conditions are 
equivalent

• Norms of polynomials ℎ𝑘 ≠ 0 for 𝑘 = 0,… , 𝑛 − 1;
• Determinants of Gram matrix restricted on the space of polyno-
mials of degree less than 𝑘 are nonzero 𝛥𝑘 ≠ 0 for 𝑘 = 1,… , 𝑛; 

𝛥𝑘 = det
1≤𝑖,𝑗≤𝑘

𝜇𝑖+𝑗−2, 𝜇𝑗 = ∫S1
𝑘𝑗𝜇(𝑘)𝑑𝑘. (C.13)

We will assume that our measure function 𝜇(𝑞) is such that 𝛥𝑘 ≠ 0 for 
𝑘 = 1,… , 𝑛. Then, the solution of the RHP (C.10) reads 

𝑌 (𝑞) =
(

𝛼(𝑞) 𝐴(𝑞)
𝛽(𝑞) 𝐵(𝑞)

)

, (C.14)

where 

𝛼(𝑞) = 𝑝𝑛(𝑞), 𝛽(𝑞) = 𝑝𝑛−1(𝑞) ⋅
(

− 2𝜋𝑖
ℎ𝑛−1

)

(C.15)

and 
𝐴(𝑞) = ∫S1

𝑑𝑘
2𝜋𝑖

𝛼(𝑘)𝜇(𝑘)
𝑘 − 𝑞

, 𝐵(𝑞) = ∫S1
𝑑𝑘
2𝜋𝑖

𝛽(𝑘)𝜇(𝑘)
𝑘 − 𝑞

. (C.16)

This can be readily checked using that 𝐴>−𝐴< = 𝛼𝜇 and 𝐵>−𝐵< = 𝛽𝜇. 
The non-trivial part is to satisfy the normalization conditions at 𝑞 → ∞
(C.11). First we notice that

𝐵<(𝑞) = ∫
|𝑘|=1−0

𝑑𝑘
2𝜋𝑖

𝛽(𝑘)𝜇(𝑘)
𝑘 − 𝑞

=
∞
∑

𝑗=1
𝑞−𝑗 ∫S1

𝑘𝑗−1𝑑𝑘
𝑝𝑛−1(𝑘)𝜇(𝑘)

ℎ𝑛−1

= 𝑞−𝑛 + 𝑂(𝑞−𝑛−1), (C.17)

where we used |𝑘∕𝑞| < 1 and orthogonality condition for 𝑝𝑛. Similarly, 
we get 𝐴<(𝑞) = 𝑂(𝑞−𝑛−1). Thus, we have 
𝑌<(𝑞)𝑞−𝑛𝜎3 = 1 + 𝑂(𝑞−1). (C.18)

This finishes the proof for the solution of the RHP, which in the full 
form reads as 

𝜒(𝑞) =
(

𝛼(𝑞) 𝐴(𝑞)
𝛽(𝑞) 𝐵(𝑞)

)

𝐿(𝑞)
(

𝑒−𝜔(𝑞) 0
0 𝑒𝜔(𝑞)

)(

1 0
𝜑(𝑞) 1

)

, (C.19)

where 

𝐿<(𝑞) = 𝑞−𝑛𝜎3
(

1 𝑒−2𝜔<𝑞−𝑥
)

, 𝐿>(𝑞) = 1. (C.20)

0 1
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We can find resolvent using formulas (16) and (20).

C.2. Variational formula

Now let us apply the solution of the RHP from the previous subsec-
tion to find 𝜏eff [𝜈] (101). To do this we consider the variation 𝜃 → 𝜃+𝛿𝜃
such that the winding number of 𝜈n, defined in (C.4), remains zero 
with respect to the contour S1. The variation of the determinant can 
be computed in the same way as in (30)

𝛿 ln 𝜏eff [𝜈] = ∫S1
𝑑𝑞

𝛿𝜃(𝑞)
𝜃(𝑞)

𝑅(𝑞, 𝑞) + ∫
|𝑘|=1−0

𝑑𝑘
2𝜋𝑖

𝛿𝜃(𝑘)
(1 + 𝜃(𝑘))2

𝑘𝑥𝑀(𝑘, 𝑘).

(C.21)

Recall, that 𝑀 can be expressed with the solution of the RHP as follows 
(see Eq. (A.7)) 

𝑀(𝑘1, 𝑘2) =
𝜒22(𝑘2)𝜒12(𝑘1) − 𝜒22(𝑘1)𝜒12(𝑘2)

𝑘2 − 𝑘1
. (C.22)

Or using (C.14) and (C.19)

𝑀(𝑘1, 𝑘2) =
𝑌22(𝑘2)𝑌12(𝑘1) − 𝑌22(𝑘1)𝑌12(𝑘2)

𝑘2 − 𝑘1
𝑒𝜔(𝑘1)+𝜔(𝑘2). (C.23)

The derivation of this result is purely algebraic. It is convenient to 
introduce 2 × 2 matrix 𝑈 (𝑘2, 𝑘1) defined as 
𝑌 −1(𝑘2)𝑌 (𝑘1) = 1 + (𝑘2 − 𝑘1)𝑈 (𝑘2, 𝑘1), (C.24)

then we have 
𝑀(𝑘1, 𝑘2) =

(

𝑈 (𝑘2, 𝑘1)
)

12 𝑒
𝜔(𝑘1)+𝜔(𝑘2). (C.25)

Note, that the matrix 𝑈 (𝑘2, 𝑘1) has regular limit on diagonal 𝑘2 = 𝑘1, 
which give us 
𝑀(𝑘, 𝑘) =

(

𝑈>(𝑘, 𝑘)
)

12 𝑒
2𝜔>(𝑘), |𝑘| < 1. (C.26)

Let us also clarify the jump condition for the matrix 𝑈 on S1. Denoting 
𝐽 (𝑞) ≡ 𝐽𝑌 (𝑞) from Eq. (C.10) we obtain

𝑈>(𝑝, 𝑞) =
𝑌 −1
> (𝑝)𝑌>(𝑞) − 1

𝑝 − 𝑞
=

𝐽 (𝑝)𝑌 −1
< (𝑝)𝑌<(𝑞)𝐽−1(𝑞) − 1

𝑝 − 𝑞

= 𝐽 (𝑝)𝑈<(𝑝, 𝑞)𝐽−1(𝑞) +
𝐽 (𝑝)𝐽−1(𝑞) − 1

𝑝 − 𝑞
. (C.27)

Let us express the resolvent (19) via the matrix 𝑈 . The numerator reads
⟨𝐹 (𝑝)|𝐹 (𝑞)⟩ = ⟨𝑉 (𝑝)|𝜒−1(𝑝)𝜒(𝑞)|𝑉 (𝑞)⟩. (C.28)

We can express it in terms of 𝑌 . To do this, we will use (C.19) for 𝜒<(𝑞). 
We have
⟨𝐹 (𝑝)|𝐹 (𝑞)⟩ = ⟨𝑉1(𝑝)|𝑌 −1(𝑝)𝑌 (𝑞)|𝑉1(𝑞)⟩

= ⟨𝑉1(𝑝)|𝑉1(𝑞)⟩ + (𝑝 − 𝑞)⟨𝑉1(𝑝)|𝑈<(𝑝, 𝑞)|𝑉1(𝑞)⟩, (C.29)

where

|𝑉1(𝑞)⟩ =𝐿<(𝑞)𝑒−𝜔<(𝑝)𝜎3
(

1 0
𝜑<(𝑞) 1

)

|𝑉 (𝑞)⟩ =
(

0
−𝑒𝜔<(𝑞)𝑞𝑛+𝑥v−(𝑞)

)

,

(C.30)

⟨𝑉1(𝑝)| =⟨𝑉 (𝑝)|
(

1 0
−𝜑<(𝑝) 1

)

𝑒𝜔<(𝑝)𝜎3𝐿−1
< (𝑝) = (𝑒𝜔<(𝑝)𝑝𝑛+𝑥v−(𝑝), 0).

(C.31)

where we have used that 𝑤S1 (𝑞) in the definition of v+(𝑞) in Eq. (12) 
is nothing but 𝑤S1 = 𝑞𝑥 + 𝜑<(𝑞) (see (C.3)). This way ⟨𝑉1(𝑝)|𝑉1(𝑞)⟩ = 0
and the trace of the resolvent can be presented as 
𝑅(𝑞, 𝑞) = 𝜃(𝑞)⟨𝑉1(𝑞)|𝑈<(𝑞, 𝑞)|𝑉1(𝑞)⟩ = −𝑒2𝜔<(𝑞)𝑞2𝑛+𝑥

(

𝑈<(𝑞, 𝑞)
)

12 . (C.32)

Using formula (C.26), we can rewrite variation of 𝜏eff [𝜈] as 

𝛿 ln 𝜏eff [𝜈] = 𝑑𝑞𝛿𝜃(𝑞)𝑒2𝜔<(𝑞)𝑞2𝑛+𝑥
(

𝑈>(𝑞, 𝑞) − 𝑈<(𝑞, 𝑞)
)

. (C.33)
∫S1 12

11 
The jump in the off-diagonal elements can be recast in the jump of the 
diagonal with the help of the condition (C.27)
(

𝑈>(𝑞, 𝑞)
)

12 −
(

𝑈<(𝑞, 𝑞)
)

12 = 𝜇(𝑞)
[(

𝑈>(𝑞, 𝑞)
)

11 +
(

𝑈<(𝑞, 𝑞)
)

11
]

− 𝜇′(𝑞),

(C.34)

Moreover, taking into account that 𝑒2𝜔>(𝑘) = 𝑒2𝜔<(𝑘)𝑘2𝑛(1 + 𝜃(𝑘))2

together with 

−𝑘𝑥+2𝑛𝑒2𝜔<(𝑘)𝜇′(𝑘) =
( 𝑛 + 𝑥

𝑘
+ 𝜔′

>(𝑘) + 𝜔′
<(𝑘)

) 1
1 + 𝜃(𝑘)

, (C.35)

and 
𝑘𝑥+2𝑛𝑒2𝜔<(𝑘)𝜇(𝑘) = 1

1 + 𝜃(𝑘)
, (C.36)

We present the variation as

𝛿 ln 𝜏eff [𝜈] = ∫S1
𝑑𝑞
2𝜋𝑖

𝛿𝜃(𝑞)
1 + 𝜃(𝑞)

(

𝜔′
>(𝑞) + 𝜔′

<(𝑞) +
𝑛 + 𝑥
𝑞

+
(

𝑈>(𝑞, 𝑞)
)

11 +
(

𝑈<(𝑞, 𝑞)
)

11

)

.

(C.37)

Plugging in the exact solution (C.14) we obtain 

(𝑈 (𝑞, 𝑞))11 = −𝐵(𝑞)𝛼′(𝑞) + 𝛽′(𝑞)𝐴(𝑞) = ∫S1
𝜇(𝑘)𝑑𝑘
2𝜋𝑖

𝛼(𝑘)𝛽′(𝑞) − 𝛼′(𝑞)𝛽(𝑘)
𝑘 − 𝑞

.

(C.38)

Or equivalently 

(𝑈 (𝑞, 𝑞))11 = ∫S1
𝜇(𝑘)𝑑𝑘
2𝜋𝑖

𝛼(𝑘)𝛽′(𝑘) − 𝛼′(𝑘)𝛽(𝑘)
𝑘 − 𝑞

, (C.39)

where we used the following identities 

∫S1
𝜇(𝑘)𝑑𝑘
2𝜋𝑖

𝛼(𝑘)(𝛽′(𝑞) − 𝛽′(𝑘))
𝑘 − 𝑞

= ∫S1
𝜇(𝑘)𝑑𝑘
2𝜋𝑖

(𝛼′(𝑞) − 𝛼′(𝑘))𝛽(𝑘)
𝑘 − 𝑞

= 0.

(C.40)

It is quite trivial and can be proven using the orthogonality condition. 
Indeed, we have 

deg𝑘
𝛽′(𝑞) − 𝛽′(𝑘)

𝑘 − 𝑞
= 𝑛 − 3, deg𝑘

𝛼′(𝑞) − 𝛼′(𝑘)
𝑘 − 𝑞

= 𝑛 − 2, (C.41)

which is less than the degree of the polynomials 𝛼(𝑘) and 𝛽(𝑘) corre-
spondingly.

Now let us consider how the variation of 𝜇 is connected to the 
variation of 𝜈. Using definition (C.8) we obtain 

𝛿𝜇(𝑘) = −
(

𝛿𝜔>(𝑘) + 𝛿𝜔<(𝑘)
)

𝜇(𝑘) =
(

∫
|𝑞|=1+0

+∫
|𝑞|=1−0

)

𝑑𝑞
𝛿𝜈n(𝑞)𝜇(𝑘)

𝑘 − 𝑞
.

(C.42)

Eq. (7) relates variations of 𝜃 and 𝜈

𝛿𝜈n(𝑞) =
1
2𝜋𝑖

𝛿𝜃(𝑞)
1 + 𝜃(𝑞)

, (C.43)

which allows us to present

∫S1
𝑑𝑞
2𝜋𝑖

𝛿𝜃(𝑞)
1 + 𝜃(𝑞)

[(

𝑈>(𝑞, 𝑞)
)

11 +
(

𝑈<(𝑞, 𝑞)
)

11
]

= ∫S1
𝑑𝑘
2𝜋𝑖

𝛿𝜇(𝑘)
(

𝛼(𝑘)𝛽′(𝑘) − 𝛼′(𝑘)𝛽(𝑘)
)

. (C.44)

The last expression can be found from the variation of the Hankel 
(Toeplitz) determinant 

𝛿 ln det
1≤𝑖,𝑗≤𝑛

𝑀𝑖𝑗 = ∫S1
𝑑𝑘
2𝜋𝑖

𝛿𝜇(𝑘)
(

𝛼(𝑘)𝛽′(𝑘) − 𝛼′(𝑘)𝛽(𝑘)
)

, (C.45)

where the matrix 𝑀𝑖𝑗 ≡ 𝜇𝑛−1+𝑖−𝑗 is constructed from the moments of 
𝜇(𝑞). To prove (C.45) we make use of the Christoffel–Darboux kernel 
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defined as 

𝑛−1(𝑞, 𝑘) ∶=
𝑛−1
∑

𝑗=0

𝑝𝑗 (𝑞)𝑝𝑗 (𝑘)
ℎ𝑗

=
𝑛
∑

𝑖,𝑗=1
𝑞𝑛−𝑖𝑘𝑗−1𝐴𝑖𝑗 . (C.46)

That it is the kernel of orthogonal projection to the space of polynomi-
als of deg ≤ 𝑛 − 1 which can be explicitly expressed as 
𝑛−1
∑

𝑗=0

𝑝𝑗 (𝑞)𝑝𝑗 (𝑘)
ℎ𝑗

= 1
ℎ𝑛−1

𝑝𝑛(𝑘)𝑝𝑛−1(𝑞) − 𝑝𝑛(𝑞)𝑝𝑛−1(𝑘)
𝑘 − 𝑞

=
𝛼(𝑞)𝛽(𝑘) − 𝛼(𝑘)𝛽(𝑞)

2𝜋𝑖(𝑘 − 𝑞)
.

(C.47)

In the 𝑘 → 𝑞 limit this expression allow us to conclude 
1
2𝜋𝑖

(

𝛼(𝑘)𝛽′(𝑘) − 𝛼′(𝑘)𝛽(𝑘)
)

= 𝑛−1(𝑘, 𝑘) =
𝑛
∑

𝑖,𝑗=1
𝑘𝑛−𝑖+𝑗−1𝐴𝑖𝑗 . (C.48)

The matrix 𝐴𝑖𝑗 is, in fact, the inverse of 𝑀𝑖𝑗 : (𝑀−1)𝑖𝑗 = 𝐴𝑖𝑗 (see for 
example [49]). This way, the variation (C.45) reads

∫S1
𝑑𝑘
2𝜋𝑖

𝛿𝜇(𝑘)
(

𝛼(𝑘)𝛽′(𝑘) − 𝛼′(𝑘)𝛽(𝑘)
)

=
𝑛
∑

𝑖,𝑗=1
𝐴𝑖𝑗𝛿𝜇𝑛−𝑖+𝑗−1

=
𝑛
∑

𝑖,𝑗=1
(𝑀−1)𝑖𝑗𝛿𝑀𝑗𝑖 = 𝛿 ln det

1≤𝑖,𝑗≤𝑛
𝑀𝑖𝑗 . (C.49)

Let us return to the variation formula (C.37). The first three terms can 
be integrated into 

∫S1
𝑑𝑞
2𝜋𝑖

𝛿𝜃(𝑞)
1 + 𝜃(𝑞)

(

𝜔′
>(𝑞) + 𝜔′

<(𝑞) +
𝑛 + 𝑥
𝑞

)

= 𝛿𝑆[𝜈n] (C.50)

where 

𝑆[𝜈n] = (𝑥 + 𝑛)∫S1
𝑑𝑞
𝑞
𝜈n(𝑞) −

1
2 ∫S1 ∫S1

𝑑𝑞𝑑𝑝
(

𝜈n(𝑞) − 𝜈n(𝑝)
𝑞 − 𝑝

)2
. (C.51)

The last two terms can be integrated into 

∫S1
𝑑𝑞
2𝜋𝑖

𝛿𝜃(𝑞)
1 + 𝜃(𝑞)

[(

𝑈>(𝑞, 𝑞)
)

11 +
(

𝑈<(𝑞, 𝑞)
)

11
]

⇒ log det
1≤𝑖,𝑗≤𝑛

𝜇𝑛−1+𝑖−𝑗 .

(C.52)

Overall, we conclude that our original tau function has the same 
variation as asymptotics in the Hartwig–Fisher formula 
𝛿 log 𝜏eff [𝜈] = 𝛿 log 𝜏HF[𝜈], (C.53)

where 
𝜏HF[𝜈] ≡ (−1)𝑛𝑥 det

1≤𝑖,𝑗≤𝑛
𝑦n(𝑥 + 𝑖 − 𝑗) × exp

(

𝑆[𝜈n]
)

, (C.54)

with 

𝑦n(𝑥 + 𝑠) = 1
2𝜋𝑖 ∫S1

𝑑𝑘
𝑘
𝑘−𝑥−𝑠𝑒−2𝜋𝑖𝜈n(𝑘)𝑒−2𝜔<(𝑘) = 1

2𝜋𝑖 ∫S1
𝑑𝑘
𝑘
𝑘𝑛−𝑠𝜇(𝑘) =

𝜇𝑛−1−𝑠

2𝜋𝑖
.

(C.55)

Note, that from equality of variations (C.53) follows that these tau 
functions might differ by an overall constant. However, in the main 
text, we show by comparing asymptotics that they are equal. Note, that 
the factor (−1)𝑛𝑥 in the definition of 𝜏HF can be eaten up by redefinition 
𝜈n as in the main text (41).

Data availability

No data was used for the research described in the article.
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