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Abstract 

R ecent adv ancements in genomics, propelled b y artificial intelligence, ha v e unlock ed unprecedented capabilities in interpreting genomic se- 
quences, mitigating the need for exhaustive experimental analysis of complex, intertwined molecular processes inherent in DNA function. 
A significant challenge, ho w e v er, resides in accurately decoding genomic sequences, which inherently in v olv es comprehending rich contex- 
tual information dispersed across thousands of nucleotides. To address this need, we introduce GENA language model (GENA-LM), a suite 
of transf ormer-based f oundational DNA language models capable of handling input lengths up to 36 0 0 0 base pairs. Not ably, integrating the 
ne wly de v eloped recurrent memory mechanism allows these models to process e v en larger DNA segments. We pro vide pre-trained v ersions of 
GENA-LM, including multispecies and taxon-specific models, demonstrating their capability for fine-tuning and addressing a spectrum of com- 
plex biological tasks with modest computational demands. While language models ha v e already achie v ed significant breakthroughs in protein 
biology, GENA-LM sho w cases a similarly promising potential for reshaping the landscape of genomics and multi-omics data analysis. All mod- 
els are publicly a v ailable on GitHub ( https:// github.com/ AIRI-Institute/ GENA _ LM ) and on HuggingFace ( https:// huggingface.co/ AIRI-Institute ). In 
addition, we provide a web service ( https:// dnalm.airi.net/ ) allowing user-friendly DNA annotation with GENA-LM models. 
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Introduction 

The encoding of genetic information by DNA is a principal
subject in biology, involving both straightforward and com-
plex systems of translation and epigenetic coding, respectively.
While the translation of messenger RNA to amino acid se-
quences employs a widely accepted genetic code, other forms
of encoding, notably the epigenetic code, are more challeng-
ing ( 1 ). DNA sequences dictate functional genome elements,
including promoters, enhancers and transcription factor (TF)
binding sites, among others. However, the diversity and re-
dundancy of their underlying motifs challenge their detection
within vast eukaryotic genomes, complicating insights into
non-coding genome evolution and interpretations of human
genomic variants, given the yet-to-be-fully-unraveled com-
plexity of the epigenetic code. 

The advent of next-generation sequencing and additional
high-throughput technologies has catalyzed the accumula-
tion and public deposition of extensive databases, rich with
functional genomic elements, enabling the broad application
of computational methods to large-scale genomic data anal-
ysis ( 2 ). We, along with others ( 3 ), have successfully em-
ployed machine-learning methods, including ensemble learn-
ing ( 4 ) and convolutional neural networks ( 5 ,6 ), for this pur-
pose. However, while potent, these approaches encounter con-
straints in identifying long-range dependencies within DNA
sequences, a common phenomenon in human and other eu-
karyotic genomes ( 7 ). Recent strategies employing trans-
former neural network-based approaches seek to surmount
these constraints ( 8 ), with cutting-edge transformer archi-
tectures showcasing the capability to infer-specific epige-
netic properties and gene expression levels from DNA se-
quences with exceptional precision ( 8 ). However, training
models tailored to specific tasks demands substantial com-
putational resources, and their inference capabilities are in-
herently constrained by the targets represented in the training
dataset. 

Transfer learning, especially through pre-training, has been
widely adopted in natural language processing (NLP) for
its capacity to enhance computational efficiency and perfor-
mance in scenarios with limited target data ( 9–14 ). Mod-
els pre-trained on substantial unlabeled datasets can be
fine-tuned or utilized as feature extractors for new tasks,
frequently outperforming models trained on task-specific
datasets, particularly when those datasets are smaller. The ap-
plication of this approach to bioinformatics is exemplified by
the development of DNABERT ( 15 ), a BERT-like transformer
neural network ( 14 ,16 ) pre-trained on the human genome
to predict subsequences from context, and subsequently fine-
tuned for downstream tasks such as promoter activity pre-
diction and TF binding. While DNABERT signifies a promis-
ing advance, its applicability is hindered by an input size
cap of 500 base pairs (bp), and recent DNABERT extension
DNABERT-2 ( 17 ) also has an input length limit of ∼1–4 kb.
This input length limitation restricts the ability of the mod-
els to capture the extended contexts vital for various genomic
applications. 

Enhancing input size for transformer models has re-
cently been addressed through several developments, includ-
ing sparse attention, effective attention and recurrence. Sparse
attention techniques, which utilize either predefined or learned
attention patterns like sliding window or block-diagonal, lin-
earize the quadratic dependency of full attention on input
length ( 18–22 ). Conversely, linear attention methods approx- 
imate full token-to-token interactions through softmax lin- 
earization ( 23 ,24 ). In the domain of recurrent models, inputs 
are segmented and sequentially processed, with intersegment 
information relayed through prior hidden states ( 25 ,26 ) or 
specialized memory ( 27–29 ). Notably, the recently introduced 

recurrent memory transformer (RMT) architecture facilitates 
information aggregation from both long ( 29 ) and extremely 
long input sequences ( 30 ), spanning thousands to millions of 
elements, respectively. 

In this work, we introduce GENA language model (GENA- 
LM), a family of transformer-based foundational DNA mod- 
els. After fine-tuning for predictive analysis of various func- 
tional genomic elements—including promoter activity, splic- 
ing, polyadenylation sites, enhancer annotations and chro- 
matin profiles—GENA-LM models demonstrate state-of-the- 
art performance for a significant fraction of tasks, achiev- 
ing top average performance relative to other models. More- 
over, our augmentation of GENA-LM with the RMT en- 
ables tackling genomic tasks that require substantial input se- 
quence lengths. We also explore new applications of GENA- 
LM, such as identifying DNA motifs essential for TF binding 
and assessing mutation effects in promoters and splice sites 
to aid in the prioritization of clinical variants. To broaden 

the model’s utility beyond human genomes, we have devel- 
oped and released species-specific models for yeast, Arabidop- 
sis and Drosophila, as well as a multispecies model. To facili- 
tate sequence annotation for the thousands of unannotated se- 
quences now available, we have developed GENA-Web ( https: 
//dnalm.airi.net ), a web service that generates various annota- 
tions based on DNA sequence input. We contribute to the re- 
search community by open-sourcing the GENA-LM family on 

GitHub ( https:// github.com/ AIRI-Institute/ GENA _ LM ) and 

providing pre-trained models (prefixed with gena-lm- ) on 

HuggingFace ( https:// huggingface.co/ AIRI-Institute ). 

Materials and methods 

Datasets 

Genomic datasets for language model pre-training 
Dataset sources 
Human T2T v2 genome assembly was downloaded from 

NCBI (acc. GCF_009914755.1). Genomic datasets used to 

train multispecies models were downloaded from ENSEMBL 

release 106 ( https:// ftp.ensembl.org/ pub/ release-106/ ). The 
list of species is provided in Supplementary Table S4 . For 
the 1000-genome dataset, we used gnomAD v3.1.2 data. For 
taxon-specific models, we used the following resources: 

(1) Arabidopsis model: Data were obtained from ( 31 ) and 

contain chromosome-level genomes of 32 Arabidopsis 
thaliana ecotypes. 

(2) Yeasts model: Data were obtained from ( 32 ) and in- 
clude telomere-to-telomere assemblies of 142 yeast 
strains. 

(3) Drosophila model: Data were obtained from Progres- 
sive Cactus alignment of 298 drosophilid species gen- 
erated by ( 33 ). 

Genomic datasets preprocessing 
To prepare genomic datasets for our training corpus, we pro- 
cessed each record in the genomic FAST A files. W e excluded 

https://dnalm.airi.net
https://github.com/AIRI-Institute/GENA_LM
https://huggingface.co/AIRI-Institute
https://ftp.ensembl.org/pub/release-106/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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Table 1. Parameters of downstream tasks datasets 

Downstream task Input length (bp) Number of targets Task 

Promoters prediction (300) 300 2 Classification 
Promoters prediction (2000) 2000 2 Classification 
Promoters prediction (16 000) 16 000 2 Classification 
Splice site prediction 15 000 3 per token / bp Multiclass classification 
Drosophila enhancers prediction 249 2 Regression 
Chromatin profiling (1000) 1000 919 Multilabel classification 
Chromatin profiling (8000) 8000 919 Multilabel classification 
Polyadenylation sites prediction 443 1 Regression 
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ontigs with the substring ‘mitochondrion’ in their identifiers
nd those shorter than 10 kb. From the remaining sequences,
e divided them into ‘sentences’ spanning 500–1000 bp—

he sentence length being randomized—and compiled ‘docu-
ents’ with 50–100 consecutive sentences. This approach fol-

ows the data processing in BigBird ( 21 ). Data augmentation
ncorporated reverse-complement sequences, and we applied
 stochastic shift for some documents to include overlapping
enomic sequences. 

For the 1000-genome Single Nucleotide Polymor-
hism (SNP) augmentation, nucleotide substitution was
xecuted, replacing reference alleles with alternative ones
ourced from individual samples of 1000-genome cohort. In
rder to maintain the haplotype structure, each sample was
rocessed individually. This meant that for every genomic
egion, multiple sequences were derived, each resulting from
wapping reference alleles with sample-specific alternative
ariants from singe individual. We limited our focus to ge-
omic regions where the proportion of positions with a noted
ariant for a given sample exceeded 0.01. No allele frequency
lter was applied. 

rain and test split 

or our initial models, bert-base and bigbird-base-sparse ,
e hold out human chromosomes 22 (CP068256.2) and Y

CP086569.2) as the test datasets for the masked language
odeling (MLM) task. In contrast, for subsequent models,

dentifiable by the ‘t2t’ suffix in their names, we hold out hu-
an chromosomes 7 (CP068271.2) and 10 (CP068268.2) for

esting. All remaining data were used for training. 
Models focusing exclusively on human data were trained

sing the preprocessed Human T2T v2 genome assembly
ombined with its 1000-genome SNP augmentations, total-
ng ≈480 × 10 

9 bp. On the other hand, multispecies models
ncorporated both the human-only and multispecies data, ag-
regating to roughly ≈1072 × 10 

9 bp. 
The data splitting strategy for downstream tasks was an-

hored to methodologies previously described in literature rel-
vant for each particular downstream task. Comprehensive
pecifics for each task are provided in their respective dedi-
ated sections. 

equence tokenization 

e employed Byte-Pair Encoding (BPE) tokenization ( 34 ) for
ur models, setting the dictionary size to 32 000 and initial-
zing with a character-level vocabulary comprised of [‘A’, ‘T’,
G’, ‘C’, ‘N’]. Our study utilized two distinct tokenizers: 

(1) The first tokenizer, trained exclusively on the human
T2T v2 genome assembly, is denoted as ‘T2T split v1’

in Table 2 .  
(2) The second tokenizer, trained on a mixture of human-
only and multispecies data sampled equally, is labeled
‘T2T+1000G SNPs+Multispecies’. 

Both tokenizers incorporate special tokens: CLS,
SEP, P AD , UNK and MASK. Notably, the ‘T2T+1000G
SNPs+Multispecies’ tokenizer integrates a preprocessing step
to manage extensive gaps: sequences with over 10 consecutive
‘N’ characters are consolidated into a singular ‘–’ token. 

Downstream task datasets 
A concise overview of the dataset parameters for downstream
tasks is presented in Table 1 . A comprehensive description
follows. 

Promoters prediction 

For the task of predicting promoters, we sourced human
sequences located upstream of TSS (transcriptional start
sites) from the EPDnew database ( https:// epd.epfl.ch/ EPDnew 

select.php ). Sequences of lengths 300, 2000 and 16 000 bp
were extracted, with each dataset being processed and as-
sessed independently. For negative samples generation, we
randomly selected genomic locations outside promoter se-
quences, ensuring that negative and positive samples do not
overlap for maximum promoter length (16 kb). The entire
dataset was segregated by sequence into training, validation
and testing sets. The objective of this task is a binary classi-
fication: determining the presence or absence of a promoter
within a given region. 

Splice site prediction 

To predict splice donor and acceptor sites, we replicated the
dataset from ( 35 ), utilizing the original scripts provided by the
authors. We adhered to the same training and testing splits
as outlined in ( 35 ). In this dataset, a central 5000-bp target
region is bracketed by 10 000 bp of context, with 5000 bp
on each side. Splice site annotations within the target region
are aligned to token positions. Tokens overlapping with either
splice-donor or splice-acceptor sites are designated as positive
samples for their respective splicing annotation class. Subse-
quently, both the target and its context were tokenized inde-
pendently. If the combined length diverged from the model’s
input size, adjustments were made through either padding
or truncation. In the event of truncation, sequences furthest
from the target region’s midpoint were first removed. We de-
marcated the context and target sequences using SEP tokens.
Through this procedure, the target’s size matched the model’s
input token count. However, the computational loss did not
account for tokens representing either context or padding.
This challenge is a multiclass, token-level classification task

https://epd.epfl.ch/EPDnew%20select.php
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encompassing three categories: splice donor, splice acceptor
and none. 

Drosophila enhancers prediction 

Candidate sequences, along with their associated house-
keeping and tissue-specific activity in Drosophila cells, were
sourced from the Stark Lab repository ( https://data.starklab.
org/ almeida/ DeepSTARR/ Data/ ). These datasets are parti-
tioned into training, validation and testing sets, consistent
with those used for training the DeepSTARR model ( 36 ).
The task at hand involves a two-class regression, wherein
each 249-bp sequence is predicted to produce two continuous
scores: one for housekeeping enhancer activity and another
for developmental enhancer activity. 

Chromatin profiling 

We gained the DeepSEA dataset ( 37 ) from its original reposi-
tory ( http:// deepsea.princeton.edu/ media/ co de/ deepsea train 

bundle.v0.9.tar.gz ). This dataset outlines the chromatin occu-
pancy profiles of various genomic features, encompassing hi-
stone marks (HMs), TFs and DNAse I hypersensitivity (DHS)
regions. The dataset comprises DNA sequences of 1000 bp,
with a central 200-bp target region flanked by 400-bp con-
texts on either side. Each feature’s occupancy is quantified
over this 200-bp target. Additionally, we trialed an expanded
context of 7800 bp (yielding a total input length of 8000 bp).
To elongate the DNA context, we aligned the input DNA seg-
ments to the hg19 genome using bwa fastmap . Surrounding se-
quences at mapped sites were then harvested. Sequences that
either failed remapping or aligned too proximate to a chro-
mosome’s terminus to permit extension were omitted, though
these comprised < 1% of the dataset. Our partitioning for
training, validation and testing adhered to the divisions pre-
sented in the original DeepSEA dataset. The challenge is a
multilabel classification, with class count reflecting the unique
epigenetic profiles identified in DeepSEA (919 in total). 

Pol y aden ylation sites prediction 

For predicting polyadenylation sites, we employed the
APARENT dataset ( 38 ) (available at https:// github.com/ johli/
aparent ). This dataset characterizes the frequency with which
transcription machinery recognizes specific nucleotide se-
quences as polyadenylation signals. Utilizing the scripts pub-
lished by the authors, we extracted the target values and de-
lineated the training and testing datasets. Furthermore, we re-
trieved APARENT predictions (noted under the field iso_pred )
to gauge the performance of the APARENT model. We to-
kenized the sequences from both upstream and downstream
segments of the 5’-untranslated regions individually, and they
were demarcated using a SEP token. This study focuses on re-
gression analysis targeting 256-bp sequences. 

Nucleotide Transformer dataset 

The dataset and literature scores were obtained from the Nu-
cleotide Transformer (NT version 2 scores) ( 39 ). 

HyenaDNA species classification dataset 

The dataset was reconstructed based on the description
provided in ( 40 ). Genomes from five species (human, lemur,
mouse, pig and hippo) were downloaded from NCBI (Ref-
Seq assemblies GCF_000001405.40, GCF_020740605.2,
GCF_000001635.27, GCF_000003025.6 and
GCF_030028045.1, respectively). Four chromosomes (chro-
mosomes 1, 3, 12 and 13) were used for models evaluation,
other chromosomes were utilized during training. We sampled 

sequences from chromosomes randomly, using the uniform 

distribution. We used a five-way classification and reported 

top-1 accuracy. For each task length, we collected a total 
of 50 000 DNA subsequences from each species, ensuring a 
comprehensive dataset for our analysis. 

Models architecture and training 

DNA language models based on transformer architecture 
We trained and expanded upon several transformer models,
drawing inspiration from both BERT ( 14 ) and BigBird ( 21 ) 
architectures. These adapted models are consistently referred 

to as GENA-LM throughout this manuscript. Key distinctions 
between these architectures can be found in Table 2 . A com- 
prehensive breakdown of parameters and specific combina- 
tions for each model is available in Supplementary Table S5 .
Additionally, we enhanced BERT-based models with pre-layer 
normalization ( 41 ). In instances where the layer normaliza- 
tion is applied even to the final layer output, it is distinctly 
mentioned as lastln in the model names. For precise parame- 
ter details, refer to Supplementary Table S5 . 

All models were pre-trained using the MLM objective. Dur- 
ing this process, the sequence was tokenized and flanked 

by the special tokens, CLS and SEP. In alignment with the 
BERT pre-training methodology, 15% of the tokens were ran- 
domly selected for prediction. Among these, 80% were re- 
placed with MASK tokens, 10% were swapped with ran- 
dom tokens and the remaining 10% were retained unchanged.
Training extended for 1–2 million steps, utilizing a batch 

size of 256 and operated on 8 or 16 NVIDIA A100 GPUs.
We employed the FusedAdam implementation of the AdamW 

optimizer ( 42 ), made available through Nvidia Apex ( https: 
// github.com/ NVIDIA/ apex ). The initial learning rate was set 
at 1 × 10 

−4 , including a warm-up phase. For most models,
we adopted a linear learning rate decay, but in cases where 
pre-training diverged, we manually adjusted the learning rate.

GENA-LM fine-tuning 
In our standard procedure, we tokenize input sequences and 

prepend and append them with the service tokens CLS and 

SEP, respectively. To ensure compatibility with the model’s in- 
put requirements, sequences are either padded or truncated 

as needed. For datasets necessitating specialized tokenization,
the specific preprocessing steps are detailed in the relevant 
dataset section. 

Tokenized sequences were provided as inputs to down- 
stream models. These models utilized one of the pre-trained 

GENA-LM architectures, augmented with a single fully con- 
nected output layer. The dimensions of this layer are de- 
noted by (hidden_size, target_size) . Here, hid- 
den_size refers to the hidden unit size specific to the GENA- 
LM model (refer to Supplementary Table S5 ), while tar- 
get_size is specified in the description of each downstream 

task dataset discussed earlier. For single-label, multiclass clas- 
sification tasks, we implemented a softmax activation function 

on the final layer, paired with cross-entropy loss. In contrast,
multilabel, multiclass classification tasks employed a sigmoid 

activation function on the last layer, combined with a binary 
cross-entropy with logits loss. Regression tasks did not neces- 
sitate any activation function on the last layer and utilized 

mean squared error as the loss function. To address sequence 

https://data.starklab.org/almeida/DeepSTARR/Data/
http://deepsea.princeton.edu/media/code/deepsea%20train%20bundle.v0.9.tar.gz
http://deepsea.princeton.edu/media/code/deepsea%20train%20bundle.v0.9.tar.gz
https://github.com/johli/aparent
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://github.com/NVIDIA/apex
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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Table 2. Ov ervie w of the GENA-LM foundational DNA language models 

Model Architecture 
Maximum seq len, 
tokens ( ≈ bp) Tokenizer data Training data 

DNABERT BERT-12L 512 (512) 3,4,5,6-mer GRCh38.p13 

GENA-LM models: 

bert-base BERT-12L 512 (4500) T2T split v1 T2T split v1 
bert-base-t2t BERT-12L 512 (4500) T2T+1KG+M T2T+1KG 

bert-base-lastln-t2t BERT-12L 512 (4500) T2T+1KG+M T2T+1KG 

bert-base-t2t-multi BERT-12L 512 (4500) T2T+1KG+M T2T+1KG+M 

bert-base-t2t-yeast BERT-12L 512 (4500) T2T+1KG+M Yeast 
bert-base-t2t-fly BERT-12L 512 (4500) T2T+1KG+M Drosophila 
bert-base-t2t-athaliana BERT-12L 512 (4500) T2T+1KG+M A. thaliana 
bert-large-t2t BERT-24L 512 (4500) T2T+1KG+M T2T+1KG 

bigbird-base-sparse BERT-12L, RoPE 4096 (36 000) T2T split v1 T2T split v1 
DS sparse attention 

bigbird-base-sparse-t2t BERT-12L, RoPE 4096 (36 000) T2T+1KG+M T2T+1KG 

DS sparse attention 
bigbird-base-t2t BERT-12L 4096 (36 000) T2T+1KG+M T2T+1KG 

HF sparse attention 

This table delineates the specifications of pre-trained GENA-LM models, highlighting variations in pre-training data, layer count, attention type and sequence 
length. Models archived on the HuggingFace model hub adhere to a consistent naming convention, prefixed by AIRI-Institute / gena-lm-. Models based on 
the BERT architecture utilize pre-layer normalization ( 41 ), with lastln indicating the application of layer normalization to the output of the terminal layer. 
‘T2T split v1’ alludes to initial experiments using a non-augmented T2T human genome assembly split. The term ‘1KG’ is shorthand for 1000G SNPs 
augmentations, while ‘M’ denotes the inclusion of multispecies data. The designations ‘DS sparse’ and ‘HF sparse’ are references to the DeepSpeed sparse 
attention and HuggingFace BigBird implementations, respectively. The abbreviation ‘RoPE’ signifies the adoption of rotary position embeddings ( 43 ) as an 
alternative to BERT’s absolute positional embeddings. The models were structured with either 12 (denoted as BERT-12L) or 24 (denoted as BERT-24L) layers, 
comprising 110M and 336M parameters, respectively. 
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lassification and regression tasks, we used the hidden state
f the CLS token from the final layer. Meanwhile, for token-
evel classification tasks, such as splice site prediction, all hid-
en states from the ultimate layer were employed. Both the
eights of the final fully connected layer and the parameters
f the entire GENA-LM were fine-tuned during this process.
earning rate warm-up ( 44 ) was consistently applied across
ll tasks. The optimal number of training and warm-up steps
as determined empirically for each individual task. 

ENA-LM fine-tuning with recurrent memory 
he recently introduced RMT presents a novel approach to
xtend the context length of pre-trained models ( 29 ). Un-
ike traditional transformers, which exhibit quadratic com-
utational complexity in their attention layers, the RMT em-
loys a recurrent mechanism to efficiently manage elongated
equences. This recurrent design ensures constant memory
onsumption and linear computational scaling with context
ength. To process input, the RMT divides the sequence into
istinct segments, processing them in a sequential manner.
pecial memory tokens are integrated into the input of each
egment. For a given segment, the outputs linked to its mem-
ry tokens are subsequently utilized as input vectors for mem-
ry tokens for the succeeding segment. By this method, a mul-
ilayer transformer, such as the pre-trained GENA-LM, func-
ions as a single recurrent cell, addressing one segment at a
ime. 

For both promoter and splice site prediction tasks, we seg-
ented the input sequence into units, with each containing
12 tokens ( ∼4.5 kb). The initial 10 tokens of every sequence
ere allocated for memory tokens. Segments were processed

n a sequential manner, where outputs from the memory to-
ens of one segment are used as the input memory tokens
f the subsequent segment. During the training phase, gradi-
ents were allowed to propagate from the final segment to the
initial one through these memory tokens. We did not impose
any restrictions on the number of unrolls in backpropagation
through time, allowing gradients to flow uninterrupted from
the final to the initial segment. The initial states designated
for memory tokens were randomly initialized, and further re-
fined during the fine-tuning process. For the task of promoter
prediction, we restricted loss computation to only the last seg-
ment. Conversely, for splice site prediction, the loss was deter-
mined for every individual segment. The training employed
the AdamW optimizer and learning rates of {1e −04, 5e −05,
2e −05}. With a batch size set at 128, the training was termi-
nated when there were no discernible improvements in valida-
tion scores. The results for the promoter prediction task are
presented as averages over five folds. Meanwhile, the splice
site prediction task results are averages across three runs, each
employing a distinct random initialization. Training scripts
are accessible within our provided codebase. 

For the species classification task, we used gena-lm-bert-
base-t2t model that has been augmented with RMT (eight
segments) during the pre-training phase. The processes of fine-
tuning were enhanced through the application of a curriculum
learning strategy. This meant that our initial step included fine-
tuning the model on DNA subsequences of 1000 bp in length
(single segment). Following this initial phase, we proceeded
to extend the fine-tuning process to handle longer DNA sub-
sequences while using the model weights from the 1000-bp
fine-tuned model as initial weights, increasing the challenge
to a length of 32 kb (eight segments). Continuing with this
progressive training methodology, we further advanced our
model’s capabilities by eventually fine-tuning it to efficiently
process and analyze DNA subsequences extending up to 50 kb
in length (12 segments). This gradual fine-tuning approach, in
line with the principles of curriculum learning, facilitated the
model in sequentially mastering tasks of escalating complex-
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ity, thereby enhancing its analytical precision and performance
on genetic classification tasks. 

Phylogenetic analysis using GENA-LMs without 
recurrent memory 

For our phylogenetic analysis, we randomly sampled 500
subsequences from each genomic sequence, as detailed in
Supplementary Table S3 . To ensure representative sampling
across entire genomes, the probability of selecting a sequence
from a specific chromosome was proportionate to the chro-
mosome’s length. In instances not otherwise specified, we uti-
lized the embedding of the CLS token from the final layer.
Sequences shorter than 5 kb were processed using the bert-
large-t2t model, whereas sequences exceeding this length were
analyzed with the big-bird-base-t2t model to accommodate
the extended context. For classifying species, we employed
the HistGradientBoostingClassifier from the sklearn library,
retaining its default parameters. 

Classification of human promoter mutations 

We curated records from the ClinVar database as of 1 July
2024, applying several filters to ensure data quality and rele-
vance. Only records with > 1 piece of evidence (i.e. filtering by
the single_submitter field) and no conflicting interpretations
of significance (as indicated in the conflicting_interpretations
field) were included. We retained only variants with conse-
quences classified as either benign or pathogenic. To focus on
regulatory variants, we excluded variants overlapping exons,
as defined by Gencode V45. Additionally, we filtered out vari-
ants located on sex chromosomes and mitochondrial variants.
From the filtered dataset, we specifically selected those single-
nucleotide substitutions that overlap with promoters within
the 2 kb EPDnew promoter dataset described previously. 

For each variant, we selected all overlapping promoters
and computed the log odds value as follows: OR = log ( p 

1 −p ) ,
where p represents the promoter presence probability derived
from the gena-lm-bert-large-t2t model, which was fine-tuned
on a 2-kb length human promoter dataset. The OR was cal-
culated for both the reference sequence and the sequence con-
taining the mutation, and their absolute difference was utilized
as the mutation score. If a single mutation overlapped several
promoters, the highest score among them was used. 

Cross-species epigenetic analysis 

For the cross-species analysis of H3K27ac and CTCF bind-
ing sites, we collected Chromatin Immunoprecipitation fol-
lowed by Sequencing (ChIP-seq) data from NCBI, with ac-
cession numbers listed in Supplementary Table S6 , and uni-
formly processed them using the MACS3 software. For each
dataset, we filtered out peak calls located on scaffolds shorter
than 200 kb, and from the remaining data, we randomly se-
lected 2000 binding sites as positive samples. All genomic
regions located at least 8-kb away from any positive sam-
ple were designated as negative samples, and 2000 negative
samples were randomly chosen for each dataset. We next
computed the center of each sample and collected 2000 bp
of the flanking sequences ( ±1000 bp) to provide contextual
information. 

Each genome was randomly split into five folds, ensuring
that sequences from different folds did not overlap and that
chromosomes were uniformly distributed across the folds.
We fine-tuned the gena-lm-bert-base-t2t model using the hu- 
man SRR10182244 dataset for H3K27ac and the human 

SRR26329064 dataset for CTCF. When assessing perfor- 
mance on human datasets, we utilized sequences exclusively 
from one fold (fold 1), which was held out during training. For 
non-human species, since their data were not included during 
the human model’s fine-tuning, we performed evaluations on 

each of the five folds. Consequently, results for each human 

dataset evaluation are depicted by a single point in Figure 3 A 

and B, while results for non-human dataset evaluations are 
represented by five points. 

Cross-species promoter inference 

We evaluated the gena-lm-bert-large-t2t model, which was 
fine-tuned on human promoter sequences, using data from 

seven species: macaque, mouse, rat, dog, zebrafish, chicken 

and Caenorhabditis elegans . For each species, we downloaded 

promoter sequences from EPDnew and prepared the data into 

five folds, following the same procedure used for the human 

dataset. For each species, we conducted 25 evaluation experi- 
ments by cross-applying the models trained on each of the five 
human dataset folds to each of the five species-specific dataset 
folds. For human data, we provide five evaluation results ob- 
tained on each of the human dataset folds. 

Token attribution analysis 

We employed the Integrated Gradients algorithm ( 45 ) to con- 
duct token attribution analysis. For epigenetic data analy- 
sis, we utilized the bigbird-base-sparse-t2t model, which was 
fine-tuned on the standard DeepSEA dataset with sequences 
of 1000 bp. Despite the dataset comprising over 900 fea- 
tures, our analysis specifically targeted six key features: ATF1,
CTCF, GA T A2, H3K27me3, H3K9me3 and H3K4me1 ChIP- 
seq profiles from untreated K562 cells. For each genomic fea- 
ture, we randomly chose 3000 nucleotide sequences that en- 
compassed ChIP-seq peaks. Subsequent tokenization of these 
sequences adhered to the same methodology as that applied 

in the chromatin profile fine-tuning task. With default pa- 
rameters set, token attribution values were derived. For motif 
analysis, we leveraged the XSTREME tool ( 46 ). Both FIMO 

and XSTREME assessments sourced motifs from the HOCO- 
MOCO v11 database ( 47 ). 

For token importance analysis concerning promoter muta- 
tions, we utilized the gena-lm-bert-large-t2t model fine-tuned 

on the 2-kb length promoter dataset as previously described.
For each mutation, we identified all overlapping promoter re- 
gions and calculated token importance scores using Integrated 

Gradients. For each sample, the top-1 percentile of tokens 
were designated as ‘highly important’, while the remainder 
were classified as ‘not important’. We then overlapped mu- 
tations with these tokens and categorized each mutation as 
either ‘overlapping highly important token’ or ‘overlapping 
not important token’. If mutation overlapped tokens from 

both classes, the ‘highly important token’ class was assigned.
Finally, we compared the distribution of pathogenic and be- 
nign mutations across the ‘overlapping highly important to- 
ken’ and ‘overlapping not important token’ classes using a 
chi-squared test. 

Code availability 

The code to generate the findings of this manuscript 
is available in the ‘ supplementary code ’ section and on 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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Figure 1. The GENA-LM family of foundational DNA language models. ( A ) The GENA-LM transformer-based architecture is pre-trained on DNA 

sequences using an MLM objective. GENA-LMs encompass a variety of models that differ in their pre-training data and architecture, as detailed in 
Table 2 . All models adhere to the same w orkflo w: DNA sequences are tok eniz ed using a BPE algorithm before being processed through transformer 
la y ers, which generate representations of the input sequences that are suitable for downstream applications. Post pre-training, this foundational DNA 

model incorporates a downstream task-specific head, which utilizes DNA representations to address specific genomic tasks during the fine-tuning 
process. ( B ) GENA’s e v aluation tasks include predictions related to promoter and enhancer activities, splicing sites, chromatin profiles and 
poly aden ylation site strength (not all shown). ( C ) Task-specific fine-tuned models can be queried via web service ( https:// dnalm.airi.net/ ). ( D ) Post-BPE 
tokenization, the median token length stands at nine bp, as reflected in the token length distribution. ( E ) Illustration of repetitive element representation 
for the 100 longest tokens. ( F ) GENA’s model accuracies for pre-training on the MLM task demonstrate that models with a higher parameter count 
achie v e superior performance. 
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ur GitHub repository: https:// github.com/ AIRI-Institute/
ENA _ LM . Additionally, our trained models can be found on
uggingFace under the prefix ‘gena-lm’: https://huggingface.

o/ AIRI-Institute/ . 

esults 

amily of pre-trained transformer-based GENA-LM 

odels 

n this study, we introduce a new universal transformer model
ailored for nucleic acid sequences, which offers several im-
rovements over existing models such as DNABERT ( 15 ) and
igBird ( 21 ) (as depicted in Figure 1 A). To ensure its versa-

ility across various applications, we pre-trained our model
sing multiple datasets and diverse input sequence lengths. 
In the data preprocessing phase, we have extended estab-

ished pipelines by integrating BPE for sequence tokenization
Figure 1 A, bottom panel). The essence of BPE is that it con-
structs a sequence dictionary to pinpoint the most frequently
occurring subsequences within the genome. This results in to-
kens of diverse lengths, ranging from a single base pair up
to 64 bp. In our tests, the median token length was deter-
mined to be 9 bp (Figure 1 D). Interestingly, our BPE vocab-
ulary revealed tokens of significant biological relevance. For
example, the longest tokens were often indicative of famil-
iar repetitive elements, such as LINEs or simple repeats (Fig-
ure 1 E). The tokenization approach we adopted is greedy,
starting with the longest sequences in the dictionary and tok-
enizing them first. Employing non-overlapping tokens, as op-
posed to the overlapping k-mers used in earlier studies, allows
for the analysis of more extended sequence fragments while
maintaining the same model input size. To put it in perspec-
tive, 512 overlapping 6-mers represent 512 bp, but 512 non-
overlapping BPE tokens can represent ∼4.5 kb. This is a cru-
cial factor when dealing with expansive and intricate genomes
like that of humans. Nevertheless, it is worth noting that
the model’s granularity is confined to the resolution of these

https://dnalm.airi.net/
https://github.com/AIRI-Institute/GENA_LM
https://huggingface.co/AIRI-Institute/
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individual tokens, which might pose constraints for certain
applications. 

Our second enhancement pertains to the diversification in
the implementation of the attention mechanism. The founda-
tional GENA models utilize a conventional attention mecha-
nism, which empowers the model to discern relationships be-
tween every pair of tokens in the input sequences. Conversely,
sparse GENA models incorporate a sparse attention mecha-
nism. This approach extends the permissible length of the in-
put sequence by constraining the overall number of connec-
tions. Nevertheless, it retains the capability to understand re-
lationships between distant sequence elements. In the case of
recurrent GENA models (see ‘Handling even longer sequences
with recurrent memory’ section), the transformer is supple-
mented with memory capabilities. This modification facilitates
the processing of even longer inputs by segmenting them. 

Through the integration of BPE tokenization and the sparse
attention mechanism, we are able to train models that can
handle input sequences of ∼4.5 kb (512 tokens with full at-
tention) and 36 kb (4096 tokens with sparse attention). The
incorporation of recurrent memory further expands this ca-
pacity, allowing for the processing of input sequences span-
ning hundreds of thousands of base pairs. 

For model training, we utilized the MLM task, a prevalent
technique in NLP wherein the model predicts a masked to-
ken based on its surrounding sequence context. Unlike pre-
vious studies that used the hg38 genome assembly ( 15 ,21 ),
we trained all our models using the more recent human
T2T genome assembly, setting our experiment apart. To mit-
igate the risk of overfitting to the reference genome, we in-
corporated common variants from the 1000-genome project
database into some of our models. Additionally, we enriched
our training dataset with genomes from diverse species, en-
compassing standard model organisms such as mice, fruit flies,
nematode worms and baker’s yeast, as well as others covering
the entire spectrum of eukaryotic taxa. For a detailed method-
ology, see ‘Materials and methods’ section. 

Throughout the manuscript, we collectively refer to our
suite of developed models as GENA-LMs. Each specific model
is designated by its label as shown in Table 2 . While each
model has its unique merits and constraints, we wish to high-
light the following: 

(1) The gena-lm-bert-base-t2t model: This model emulates
the BERT transformer architecture, serving as a bench-
mark for subsequent models. 

(2) The gena-lm-bert-base-t2t-yeast / fly / athaliana / multi
models: These models include multispecies or taxon-
specific data during pre-training while using the same
BERT architecture as a model described above. 

(3) The gena-lm-bert-large-t2t model: With the most sig-
nificant parameter count (336M) and an input capacity
of 4.5 kb, it stands out in terms of complexity. 

(4) The gena-lm-bigbird-base-sparse-t2t models: These
models, although having fewer parameters than the
gena-lm-bert-large-t2t , boast a more extended input se-
quence length of 36 kb. 

Upon evaluating the performance of our models in the
MLM task (Figure 1 F), we observed that models with sparse
attention slightly outperformed their full-attention counter-
parts limited to 512 tokens. This underscores the role of con-
textual information in the training regimen. Nonetheless, it is
imperative to note that while achieving commendable scores
in the MLM task is encouraging, it does not necessarily guar- 
antee optimal translation of the learned DNA representations 
to downstream applications. Consequently, our study delves 
into the comprehensive assessment of GENA-LMs across a 
spectrum of biologically relevant tasks to explore their merits 
and constraints. 

GENA-LM performance on different genomic tasks 

To evaluate the foundational GENA-LM models, we selected a 
range of genomic challenges that have recently been addressed 

using artificial intelligence (Figure 1 B). These challenges en- 
compass (i) prediction of polyadenylation site strength; (ii) 
forecasting of chromatin profiles, which includes histone 
marks (HMs), DHS sites and TF binding sites, among oth- 
ers; (iii) identification of splicing sites. In addition, we em- 
ployed a comprehensive set of 18 benchmarks recently devel- 
oped by ( 39 ). The datasets for these tasks are derived from 

human genomic data. To explore the performance of models 
when applied to non-vertebrate species, we introduced chal- 
lenges including (iv) determining the activity of housekeep- 
ing and developmental enhancers in a STARR-seq assay in 

Drosophila cells ( 36 ) and (v) estimation of DNA sequence pro- 
moter activity in humans, flies, yeasts and plants. 

Prediction of chromatin profiles 

The major feature of GENA-LMs is their ability to process 
long DNA sequences, ranging from 4 to 36 kb. Consequently,
we benchmarked GENA-LMs on tasks where understanding 
long-range dependencies in DNA sequences is crucial for ac- 
curate prediction. In genomics, these long-range dependen- 
cies are particularly significant for various epigenetic features,
which makes predicting a locus’s epigenetic states based on 

its sequence a significant challenge. To assess the capabilities 
of the GENA-LM transformers in addressing this, we used 

DeepSEA dataset( 37 ). This dataset encompasses over 900 cell- 
type-specific chromatin profiles, which are grouped into DHS 
sites, HMs and TF binding sites. In the foundational DeepSEA 

challenge, chromatin mark signals were predicted for each 

200-bp genomic segment, informed by both its sequence and 

an additional 800-bp context derived from its flanking regions 
( ±400 bp). 

When deploying GENA-LMs for this challenge (see 
DeepSEA section of Table 3 ), we discovered that trans- 
former models markedly surpassed the performance metrics 
previously achieved by the convolutional neural network,
DeepSEA. Notably, for TF and DHS profiles, GENA-LMs 
delivered scores that eclipsed those reported for the Big- 
Bird architecture, even though BigBird utilized an expanded 

8-kb context (leading GENA-LM average Receiver Operat- 
ing Characteristic Area Under the Curve (ROC AUC) on 

a 1-kb context for TF: 96.81 ± 0.1 versus BigBird’s 96.1; 
for DHS: 92.8 ± 0.03 versus BigBird’s 92.3). Furthermore,
the performance metrics for GENA-LMs were either on par 
with or exceeded those recently reported for the Nucleotide 
Transformer ( 39 ). They also proved superior to the outcomes 
of the DNABERT architecture when trained on 1-kb input 
lengths. 

To ensure a more equitable comparison between the Big- 
Bird and GENA-LM architectures, we adapted the DeepSEA 

dataset to incorporate expanded context sequences. This 
adaptation allowed us to match the 8-kb input length charac- 
teristic of the BigBird architecture. Intriguingly, the augmented 
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Table 3. Comparative performance analysis of GENA-LM models across multiple genomic tasks and input sizes 

GENA-LM models DNABERT models 

Sub-task \ input 
size 

bert-base- 
t2t 

bert-base- 
lastln-t2t 

bert-base- 
multi-t2t 

bert-large- 
t2t 

bigbird- 
base-t2t 

bigbird-base- 
sparse-t2t DNABERT DNABERT-2 

DeepSEA chromatin profiling, ROC AUC 

DHS \ 1kb 92.15 89.13 92.87 90.73 92.04 92.70 86.03 
DHS \ 8kb 87.85 92.26 92.06 
HM \ 1kb 85.17 86.05 82.65 86.64 84.72 85.31 86.13 79.14 
HM \ 8kb 88.18 89.71 89.69 
TF \ 1kb 95.69 95.98 92.83 96.54 94.96 96.81 96.37 88.53 
TF \ 8kb 95.18 96.24 96.40 

EPDnew promoter activity, F 1 

promoter \ 0.3 kb 89.88 90.08 89.70 90.62 89.98 87.57 93.26 89.44 
promoter \ 2 kb 93.41 93.62 93.11 94.16 93.42 93.85 94.28 92.98 
promoter \ 16 kb 93.15 93.40 

Splice site annotation, AP score 

splice site \ 15 kb 92.63 92.56 91.42 93.6 94.78 94.7 

This table encapsulates results for tasks including: DeepSEA ( 37 ) chromatin profile prediction (DHS, HMs and TF binding sites); promoter activity prediction 
based on EPDnew dataset; and splice sites annotation based on SpliceAI dataset. All values are average of at least three runs. 
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ontext had differential effects on the prediction of various
pigenetic profiles. For HMs, a marked performance improve-
ent was evident, with an AUC reaching 89.71 ± 0.08. This
as notably superior to the shorter context’s score of 86.64 ±
.08, the original DeepSEA findings (85.6), and the BigBird’s
esult (88.70). However, for TF and DHS predictions, the ex-
ension in input length yielded only marginal enhancements
n performance. 

We analyzed the AUC variations across individual HMs to
inpoint which epigenetic profiles were responsible for the ob-
erved performance enhancement. Remarkably, there was a
istinct divergence between narrow and broad HMs. While
he narrow marks demonstrated marginal AUC improve-
ents, the broad marks exhibited a pronounced increase when

he context length was extended ( Supplementary Figure S1 ).
hese observations reinforce our prior observation ( 5 ) that
road HMs necessitate an expansive context for precise pre-
iction. This highlights the importance of handling extended

nput lengths for such tasks. 
The varying performance metrics of distinct GENA-LMs

cross diverse epigenetic profiles and context lengths under-
core that no singular model universally excels across all chal-
enges. For TFs, the gena-lm-bigbird-base-sparse-t2t stands
ut on 1-kb inputs, with performance diminishing marginally
hen the input size increases. In contrast, for DHS, the
ena-lm-bert-large-t2t model, boasting the highest parameter
ount, emerges as the optimal choice. Surprisingly, extending
he context for this model results in a notable performance
ip. For HMs, the optimal approach hinges on processing
xtended contexts with the gena-lm-bigbird-base-t2t model.
ollectively, GENA-LMs outstrip competing models like Big-
ird, DNABERT and Nucleotide Transformer, marking a new
erformance state of the art for this task. 

romoter activity prediction 

romoter activity is an essential characteristic of genomic se-
uences, allowing them to drive the expression of genes. Al-
hough the basal promoter is a relatively short genomic re-
gion of 300 bp, surrounding context can substantially mod-
ify promoter activity. We assessed whether our models can
discriminate human promoter sequences using promoter in-
stances from the EPD dataset and juxtaposed them against
non-promoter control samples. We observed that when the in-
put sequence length was extended from 300 bp to 2 kb, there
was a significant improvement in performance, as shown in
the EPDnew section of Table 3 . With 300-bp sequences, the
DNABERT architecture emerged superior, registering an F 1
score of 93.26, compared with the top-performing GENA-
LM’s F 1 score of 90.62. However, when evaluating 2-kb se-
quences, the GENA-LM performance matched DNABERT re-
sults, recording an F 1 score of 94.28 ± 0.65 and 94.16 ± 0.19
for DNABERT and gena-lm-bert-large-t2t , respectively (no
significant difference, Wilcoxon test P -value = 0.0625). This
result was markedly higher than the DNABERT-2 model’s
score, which, when fine-tuned for the same input sequence
length, achieved an F 1 score of 92.98 ± 0.25. 

In assessing the performance of GENA-LMs for predict-
ing promoter activity, we observed the following: (i) Models
with a greater number of parameters outperformed those with
fewer. For instance, the gena-lm-bert-large-t2t surpassed the
gena-lm-bert-base-t2t . (ii) The ability to handle longer input
sequences due to the sparse attention mechanism gave certain
models an edge over traditional full-attention BERT models.
As a result, the gena-lm-bigbird-base-sparse outperformed the
gena-lm-bert-base-t2t . Interestingly, models with shorter in-
puts but more parameters, such as the gena-lm-bert-large-t2t ,
still had superior performance over the gena-lm-bigbird-base-
sparse . (iii) Incorporating multispecies training by using ge-
nomic sequences beyond just human data during pre-training
did not result in improved performance, as seen when com-
paring the gena-lm-bert-base-t2t-multi with the gena-lm-bert-
base-t2t . 

Splice site annotation 

We further optimized GENA-LMs to predict splice-donor
and splice-acceptor sites within the human genome (Splice

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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section of Table 3 ). The task required analyzing large contexts:
a 15-kb input comprised of a central 5-kb target flanked by 5-
kb sequences on either end. Notably, the task-specific convolu-
tional neural network, SpliceAI, marginally surpassed GENA-
LMs, registering a mean PR (precision-recall) AUC of 0.960
compared with 0.947 ± 0.002 for GENA-LMs. 

For this task, models designed for longer sequence inputs,
such as gena-lm-bigbird-base-t2t , outperformed those tailored
for shorter inputs, even if the latter were equipped with more
parameters, as in gena-lm-bert-large-t2t . This aligns with our
earlier findings, suggesting that extending contextual infor-
mation could be more beneficial than merely increasing the
number of parameters. Consistent with our promoter analysis,
multispecies models, like gena-lm-bert-base-t2t-multi (mean
PR AUC of 0.914), did not enhance performance compared
with their single-species counterparts, such as gena-lm-bert-
base-t2t (mean PR AUC of 0.926). 

Benc hmar king GENA-LMs on short sequence tasks 
To compare GENA-LM with with several recently developed
DNA language models, including Nucleotide Transformer
( 39 ), DNABER T ( 15 ), DNABER T-2 ( 17 ), HyenaDNA ( 40 )
and fine-tuned versions of Enformer ( 8 ), we adopted a re-
cent series of 18 benchmarks ( 39 ), which include relatively
short sequence inputs ranging from 300 to 600 bp. Accord-
ing to the results presented in the Table 4 , gena-lm-bert-large-
t2t outperformed all other models, achieving the highest aver-
age score and the second-best average ranked score. Notably,
gena-lm-bert-large-t2t outperformed Nucletide Transformer
in multiple tasks, despite having substantially less parameters
(330M versus 2500M). Similarly, GENA-LMs demonstrated
performance on par with these models in another series of
benchmarks focused on prediction of the human polyadeny-
lation sites and Drosophila enhancer activity, as detailed in
Supplementary Note 1 ( Supplementary Figures S9 , S10 and
S11 , respectively). 

Identifying functional genomic elements with 

GENA-LMs 

Spotting motifs for TFs binding 

Modern techniques for analyzing deep neural networks al-
low us to assess the contribution of each input element to
a model’s downstream task performance. Such analyses offer
valuable insights into the underlying mechanisms of biological
processes. Take the ChIP-seq technique, for instance, a preva-
lent method for chromatin profiling. Its resolution is ∼100–
200 bp. However, recognition motifs for the majority of DNA-
binding proteins are significantly shorter, typically between 4
and 10 bp. Consequently, deducing precise binding locations
from ChIP-seq data is challenging and often necessitates sup-
plementary experiments ( 48 ). 

To ascertain if GENA can enhance the resolution of ex-
perimental ChIP-seq data, we employed token importance
scoring ( 45 ) on the bigbird-base-sparse-t2t model, which was
fine-tuned using the DeepSEA dataset. This methodology as-
signs a significance value to each token within the input,
based on its relevance to the prediction outcome. Here, we
concentrate on the binding of three TFs: ATF1, CTCF and
GA T A2 in human K562 cells. Each of these factors possesses
well-established DNA recognition motifs (Figure 2 A). This al-
lows for a comparison between tokens important for GENA’s

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://huggingface.co/spaces/hlnicholls/nucleotide_transformer_benchmark
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A B C D

Figure 2. GENA-LM identifies DNA motifs essential for TF binding. In panels (A)–(D), each row pertains to a distinct factor, labeled to the left. ( A ) Logo 
representation of motifs for the three TFs considered in our analysis. ( B ) Profile of average token importance scores over the sequence length. Vertical 
dashed lines demarcate the 200-bp prediction region. ( C ) Bars represent the frequency of token occurrences in the ‘highly important’ category (tokens 
with scores in the top 5th percentile). The X -axis shows the proportion of these occurrences relative to all occurrences for that token. A vertical 
reference line marks the 0.05 fraction threshold; only tokens exceeding this fraction are displayed. ( D ) Boxplots detail the distribution of importance 
scores for tokens, categorized by different FIMO q-values. They display the median, interquartile range as well as the 5th and 95th percentiles. 
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redictions and the recognized sequence determinants associ-
ted with TF binding. 

First, we examined the distribution of importance scores
cross the sequence length, as depicted in Figure 2 B. It should
e noted that during the fine-tuning process, the input consists
f the DNA sequence from the 200-bp target region (where TF
inding is anticipated) accompanied by an 800-bp contextual
equence. Our analysis, presented in Figure 2 B, reveals a con-
istent pattern: the importance attributed to a token dimin-
shes as its distance from the target region increases, a trend
bserved for all three TFs. 
We subsequently sought to discern which sequences gar-

ered high token importance scores. Tokens exceeding the
5th percentile of the importance score distribution were des-
gnated as ‘highly important. ’ W e then compiled tokens that
onsistently featured on this ‘highly important’ list. Upon vi-
ual examination (Figure 2 C), we observed that these tokens
requently encompassed full or fragmented motifs of the target
Fs. For instance, ATF1, which has a core motif of TGACG,
rominently displayed a token matching this exact sequence
mong its highly important tokens. In the case of the GA T A2
actor (core motif: GA T AA), the token AGA T AAG, incorpo-
ating the GA T A2 motif, was most prevalent among the highly
mportant tokens. As for CTCF, which boasts a motif more
ntricate and extended than its counterparts, the most recur-
ent highly important tokens primarily featured GC-rich sub-
equences of the motif. 

To more comprehensively assess the congruence between
nown TF motifs and ‘highly important’ tokens, we employed
he FIMO tool to annotate all DNA samples. FIMO is a
ioinformatics software designed to identify specific motifs by
everaging the motif’s position weight matrix (PWM). As de-
icted in Supplementary Figure S2 , there is a discernible over-
ap between significant tokens and motifs detected by FIMO.
ur statistical evaluation establishes a relationship between
IMO motif scores and token importance scores. Both robust
motifs (FIMO q-value < 0.01) and more tenuous motifs (0.01
< FIMO q-value < 0.05) manifest markedly elevated token
importance scores compared with tokens absent of any dis-
cerned motif (FIMO q-value > 0.01) (Figure 2 D). It is worth
noting, in the context of the GA T A2 TF which is characterized
by a shorter motif length, sequences with high FIMO q-values
are absent. Nonetheless, we observed that the majority of the
‘highly important’ tokens encompass the core GA T A2 motif,
as delineated in Supplementary Figure S3 . 

While the results affirm that token importance mirrors the
presence of established motifs for DNA-binding TFs, the con-
gruence between FIMO-detected motifs and tokens with high
scores is not absolute. This observation prompted us to delve
into the nature of motifs encompassed by tokens vital for
GENA model prediction, yet devoid of the target TF’s anno-
tated motif as per FIMO. Utilizing the de novo motif discov-
ery tool XSTREME, we analyzed a subset of important tokens
lacking a canonical motif (with FIMO target factor motif q-
value > 0.05) and examined the enriched motifs therein. In-
triguingly, for both CTCF and GA T A2, XSTREME predom-
inantly identified their respective motifs. In the case of im-
portant ATF1 tokens sans ATF1 motif, the secondary most
abundant motif discerned belonged to the ATF family. This
suggests that the rudimentary PWM statistics employed by
FIMO might overlook biologically pertinent motif variants
that diverge notably from the consensus represented by the
PWM. Conversely, GENA-LM exhibits a promising poten-
tial in recognizing these variant motifs. When consolidated
during XSTREME analysis, these diverse motif representa-
tions converge to echo the canonical motif’s PWM. More-
over, our analysis revealed a significant presence of GA T A2
motifs within tokens deemed essential for the ATF1 factor,
hinting at a possible functional synergy between these TFs
in K562 cells—a nuance discerned by GENA-LM. Given that
ATF1 is an integral part of the AP-1 complex, our findings
resonate with, and potentially elucidate, prior experimental

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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data evidencing cooperation between GA T A2 and the AP-1
complex ( 49 ). 

Searching for DNA sequence determinants of hisone modifica-
tions 
Having ascertained GENA’s capacity at pinpointing DNA mo-
tifs crucial for TF binding, we turned our attention to dis-
cerning sequence determinants associated with HMs, which
currently lack identifiable binding motifs. Our focus centered
on H3K4me1, H3K9me3 and H3K27me3. These factors rep-
resent HMs with distinct and well-documented functional
implications: H3K4me1 delineates active genomic regions,
H3K9me3 signifies heterochromatin and H3K27me3 demar-
cates the suppressed ‘facultative heterochromatin’ including
genes under developmental regulation, bound by polycomb
group proteins. In our examination of these factors, we evalu-
ated the distribution of importance scores relative to sequence
length and accumulated tokens that frequently exhibited high
importance values. 

As depicted in Supplementary Figure S4 , the distribution of
token importance scores across sequence lengths for these epi-
genetic markers mirrors that of the previously discussed fac-
tors. Notably, specific tokens consistently emerged as highly
significant in predicting these HMs, reminiscent of the motif-
rich tokens previously identified as important for predicting
associated TFs (see Supplementary Figure S5 ). 

Prompted by our observations, we sought to determine
if motifs enriched among the tokens with high importance
scores were shared across these three factors. Extending the
sequences of our selected highly important tokens by 4 bp, we
then undertook a rigorous motif analysis using XSTREME.
Our examination revealed several motifs of significance (see
Supplementary Table S1 ), each aligning with known TFs. For
the active promoter mark, H3K4me1, the significant tokens
were found to encompass motifs corresponding to the GA T A,
JUN and FOSL TFs. These findings align with the documented
roles of these factors in regulating transcription and influenc-
ing the oncogenic transformation of K562 cells ( 50 ,51 ). In the
context of the H3K27me3 mark, which signifies facultative
heterochromatin and designates functional elements repressed
in specific cell lineages, our data from hematopoietic K562
cells indicated an enrichment of TF motifs not typically asso-
ciated with blood cells. Examples include SNAI2, pivotal in
epidermal cell differentiation, and ASCLI, a critical regulator
of neurogenesis. This suggests that within this setting, GENA
discerned genomic motifs that might be activated in alterna-
tive cell types but are designated for repression in the K562
lineage. Lastly, for the H3K9me3 mark indicative of constitu-
tive heterochromatin, our analysis highlighted an enrichment
of the ZNF274 TF motif. This is in agreement with its estab-
lished role as a transcriptional repressor. 

In summary, our findings indicate that beyond predicting
the epigenetic profiles of a specific locus, GENA models can ef-
fectively identify the distinct subsequences that drive observed
epigenetic signals. Such analysis holds potential to substan-
tially augment the resolution of prevailing experimental ap-
proaches, like ChIP-seq, and to pinpoint TFs linked to partic-
ular HMs. 

Evaluation of clinical relevance of mutations 

The capability of GENA-LMs to accurately predict promoter
activity inspired us to investigate whether model predictions
could functionally characterize variants in human promot-
ers. We compiled ClinVar mutations that overlap with pro- 
moter sequences and evaluated them using the odds ratio 

of promoter presence probability for wild-type versus mu- 
tated sequences. While not all pathogenic ClinVar variants 
overlapping promoters impact predicted promoter activity,
a pathogenic-versus-benign classifier based on gena-lm-bert- 
large-t2t predictions achieved an AUC of 0.66 and an aver- 
age precision (AP) of 0.59 ( Supplementary Figure S6 ). Fur- 
ther, we applied the Integrated Gradients method ( 45 ) to 

identify input sequences tokens that are the most important 
for predicting promoter presence. Our analysis revealed that 
pathogenic mutations are enriched ∼2.5 times in the top 

percentile of the most important tokens ( P -value < 1e −15,
Supplementary Table S2 ). Comparable results were obtained 

with the gena-lm-bigbird-base-sparse-t2t model. 
Similar to promoters, mutations at splice sites often have 

clinical implications in human diseases. To determine whether 
GENA-LMs can detect the impact of single-nucleotide per- 
turbations at splice donor and acceptor sites, we conducted 

comprehensive in silico mutagenesis, evaluating the effects of 
every possible single-nucleotide substitution within a ±20-bp 

sequence surrounding splice sites. Despite the token-level res- 
olution of the inputs, predictions from gena-lm-bigbird-base- 
t2t proved sensitive to single-nucleotide substitutions. We ob- 
served that the model distinctly identifies substitutions within 

canonical splice site motifs from other single-nucleotide vari- 
ants ( Supplementary Figure S7 ). While the latter rarely alter 
the model’s prediction, mutations within canonical splice sites 
almost invariably abolish the predicted acceptor or donor site.
Notably, the predicted effects of single-nucleotide substitu- 
tions align precisely with known splice site motifs: changes 
in the constant motif positions have more significant effects 
compared with the substitutions in the more variable regions 
of the motif. These findings highlight the potential of GENA- 
LMs for clinical interpretation of human genetic variants. 

GENA-LMs beyond human species 

Epigenetic annotation of non-human genomes using GENA- 
LMs 
While the results discussed previously demonstrate the high 

efficacy of fine-tuned GENA-LM models in reconstructing 
and analyzing genomic features such as promoters or protein 

binding sites, task-specific training of these models necessi- 
tates the availability of experimentally measured data, which 

is often lacking for non-model species. We hypothesize that 
features relatively conserved across different species and cell 
types could be effectively predicted by a model that has been 

fine-tuned using human (or other reference) data. To explore 
this hypothesis, we collected experimentally measured profiles 
of insulatory protein CTCF binding sites, H3K27 acetylation 

(H3K27ac) HMs, and promoter activity across various animal 
species. 

We initiated our study by evaluating a human-based pro- 
moter activity prediction model on data from seven species: 
macaque, mouse, rat, dog, zebrafish, chicken and C. elegans .
For mammals (macaque, mouse, rat and dog), the model’s 
performance closely mirrored that observed with human pro- 
moters, achieving an F 1 score of ∼0.95, despite the absence 
of species-specific data during the model’s fine-tuning (Fig- 
ure 3 A). The evaluation score decreased by 10 pt when ap- 
plying the same model to phylogenetically more distant verte- 
brate species such as chicken and zebrafish, but it still achieved 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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A B C

D

Figure 3. GENA-LMs demonstrate generalization across species. (A–C) GENA-LM fine-tuned on human promoters ( A ), CTCF ( B ) or H3K27 ( C ) binding 
sites e v aluated on dif ferent species. ( D ) Ef fect of multispecies versus species-specific pert aining on promoter activit y prediction. 
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 relatively high F 1 score of around 0.85. However, for more
istantly related species like the fruit fly or the flatworm C. ele-
ans , the model’s performance dropped significantly, resulting
n an F 1 score of ∼0.7. These results suggest that closely re-
ated mammals share similar promoter grammars, which can
e captured by training on a human dataset, while more dis-
ant species exhibit gradual modifications in the DNA encod-
ng of their promoters. 

Then gena-lm-base-t2t was trained to differentiate between
enomic sites with H3K27ac and CTCF binding sites and
hose without binding on human data, achieving F 1 scores
etween 0.7 and 0.8 on held-out human sequences (Figure 3 B
nd C). Applying this model to other species revealed that
ts performance correlates with the evolutionary distance be-
ween the target species and humans. For CTCF binding
rediction, the model demonstrated similar performance in
losely related species, such as mice, with a gradual decrease in
ther vertebrates and a more significant drop in invertebrate
pecies such as Drosophila (Figure 3 B and C). 

While similar cross-species analyses for CTCF can be per-
ormed using a known motif, this is infeasible for H3K27ac
ue to the lack of any recognized motif. When evaluating the
uman H3K27ac model across species, we observed a sub-
stantial performance decline outside tetrapod species, and for
evolutionarily distant species like Hydra F 1 score drops to
∼0.4. The decline in model performance across species may
serve as a measure of the interspecies differences in H3K27ac
encoding. Thus, the use of GENA-LMs enables explorations
into the evolution of sequence grammar. Furthermore, these
results suggest that GENA-LMs can be used to infer epigenetic
marks from genomic sequences in the absence of experimen-
tal data. Although the performance of such inferences is infe-
rior to that of species-and cell type-specific models and may
be limited to taxonomically close groups, it presents exten-
sive opportunities for annotating available genomes, such as
using the human model to annotate H3K27ac across several
thousand available mammalian genomes. 

Species-specific pre-training improves model quality 
Based on the aforementioned experiments, it is clear that
promoter grammar varies significantly across evolutionar-
ily distant species such as humans, flies, yeasts and plants
( 52 ). As a result, learning species-specific information dur-
ing pre-training could prove beneficial for accurate promoter
presence prediction and other species-specific genomic tasks.
However, pre-training species-specific GENA-LMs requires
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sufficient amount of data and computational resources. Thus,
it is important to know whether transfer learning, when a
model pre-trained on one data distribution is reused for tasks
in similar domain, can substantially improve performance.
Another viable strategy in this case involves generation of
a universal foundational model trained on the mixture of
species. 

To study generalization capabilities of GENA-LM models,
we utilized EPD promoter annotations for yeast, fly and Ara-
bidopsis species to fine-tune universal, multispecies or species-
specific models. We discovered that for all these species, gena-
lm-bert-base-lastn-t2t pre-trained on human data can be ef-
fectively fine-tuned to provide reasonably accurate promoter
classification (Figure 3 D). When comparing datasets with
varying promoter lengths (300 bp versus 2 kb), we observed a
significant impact of contextual information on prediction ac-
curacy, mirroring the dependency noted in human data. Com-
pared with the model pre-trined on human data, multispecies
pre-training proved to be benefitial: in five out of six ex-
periments, we observed performance improvements ranging
from 0.2 to 1.5 points when fine-tuning gena-lm-bert-base-
t2t-multi model. It is important to note that the gena-lm-bert-
base-t2t-multi training dataset includes dozens of genomes;
hence, the amount of data from each species available dur-
ing the pre-training phase was limited. Consequently, we pre-
trained new taxon-specific models for yeast, flies and Ara-
bidopsis. Fine-tuning these models to predict promoter activ-
ity in their respective taxa resulted in performance improve-
ments of 2–7 points compared with the model pre-trained on
human data (Figure 3 D). Therefore, we conclude that taxon-
specific models can significantly enhance DNA annotations by
learning the unique DNA grammar of each species during pre-
training. We have publicly released these taxon-specific mod-
els to facilitate further applications within the selected species.

Species classification based on embeddings from GENA-LMs 
The universality of GENA-LMs in addressing various bio-
logical challenges suggests that the DNA embeddings of the
pre-trained model encapsulate significant biological insights.
Evolutionary distant species are known to exhibit divergence
in their regulatory code and codon usage patterns. If GENA-
LMs effectively capture these inherent biological characteris-
tics during pre-training, one would expect that their embed-
dings could differentiate DNA sequences sourced from vary-
ing species without any additional fine-tuning. To evaluate this
premise, we curated a set of 27 species spanning diverse tax-
onomic classifications, ranging from bacteria to humans (re-
fer to Supplementary Table S3 ). These species also represent
a broad spectrum of evolutionary divergence times, spanning
from millions to over a billion years (as depicted in Figure 4 A
and B). We then examined the embeddings generated by in-
putting genomic DNA subsequences into pre-trained GENA-
LMs. Our investigations encompassed a range of sequence
lengths, beginning with the typical length of shotgun sequenc-
ing reads (100 bp) and culminating at 30 kb, a size consistent
with reads from third-generation sequencing platforms. 

Initially, we employed tSNE to project sequence embed-
dings derived from all genomes into a 2D space. This visu-
alization reveals discernible clusters that mirror the phyloge-
netic relations between the species. Notably, distinct group-
ings emerged for bacteria, plants and yeasts, each isolated
from the clusters representing animal genomes. Within the
realm of animals, we could discriminate invertebrate species
and various vertebrate classes. This evidence underscores that 
GENA-LM embeddings encapsulate nuances allowing for the 
differentiation of species based on their genomic sequences. 

To deeply study these capabilities, we employed a Gradi- 
ent Boosting algorithm for each of the 27 species pairs. Our 
aim was to achieve binary species classification leveraging the 
sequence embeddings. 

The data in Figure 4 C show the richness of information 

contained in GENA embeddings, enabling species differenti- 
ation based on their genomic DNA subsequences. The accu- 
racy of classification is influenced by both the divergence time 
and the length of the input sequence, with the latter exerting 
a more pronounced effect. For species that are closely related 

(with divergence times ≤ 20 MYA), classification accuracy re- 
mains constrained ( F 1 score ≈ 0.7). However, for species di- 
verging around 60–100 MYA—equivalent to the evolution- 
ary separation among all mammalian species—employing the 
model that accepts longer sequence inputs boosts our classifi- 
cation capability, yielding an F 1 score exceeding 0.8. Remark- 
ably, for extensive divergence times ( ≥200 MYA, reflecting the 
era of the last common ancestor of vertebrates), the classifica- 
tion’s precision approaches perfection. 

We next evaluated the classification efficacy of sequence 
embeddings derived from various layers and architectures of 
GENA-LMs. Across all models, embeddings sourced from the 
initial layers consistently delivered subpar performance. This 
performance incrementally improved, peaking around layers 
9 to 12. Notably, for both gena-lm-bert-large-t2t (comprising 
24 layers) and gena-lm-bigbird-base-t2t (with 12 layers), a mi- 
nor performance dip was observed when utilizing embeddings 
from the final layers. This trend resonates with prior stud- 
ies in NLP ( 53 ) and protein modeling ( 54 ). Such studies have 
posited that in transformer-based language models, the termi- 
nal layer embeddings encapsulate information tailored to the 
specific model training task. In contrast, embeddings from in- 
termediary layers are more versatile, proving advantageous in 

knowledge transfer for tasks not explicitly addressed during 
the pre-raining phase. The depth of the layer is also indicative 
of the abstraction degree of the representations. While prelim- 
inary layers prioritize local level representations, the advanced 

layers capture intricate global features, such as binding sites 
and contact maps ( 54 ). 

Collectively, our findings demonstrate that the sequence 
embeddings from pre-trained GENA-LMs encapsulate abun- 
dant biological insights, enabling the resolution of genomic 
challenges without the necessity for fine-tuning. 

GENA-LM-based web service 

Given the demonstrated potential of GENA-LMs in various 
genomic tasks, we aim to extend their accessibility through 

GENALM-Web, a web service designed for sequence anno- 
tation using DNA language models (Figure 1 C). GENALM- 
Web incorporates several downstream tasks developed in this 
paper, such as promoter activity prediction, chromatin an- 
notation, splice site inference and enhancer activity predic- 
tion for Drosophila sequences. Key features of the web ser- 
vice include the capability to handle exceptionally long in- 
puts (up to 1 Mb), utilize extensive contextual information 

and conduct token importance analysis in real time. This last 
feature allows users to identify sequence regions responsi- 
ble for specific features, even if these regions are located at 
distant genomic locations. The web service is accessible at 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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Figure 4. Sequence embeddings from pre-trained GENA-LMs facilitate species classification. t-Distributed Stochastic Neighbor Embedding (tSNE) 
projections ( A ) of sequences sampled from 27 species ( B ), representing a spectrum across the tree of life. ( C ) Classification performance for different 
sequence lengths plotted against divergence time. ( D ) Classification performance of embeddings taken from different layers of three models. Data are 
presented for sequence lengths of 5 kbp (for ‘gena-lm-bert-base-lastln-t2t’ and ‘gena-lm-bert-large-t2t’) and 30 kbp (for ‘gena-lm-bigbird-base-t2t’). 
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ttps://www.dnalm.airi.net , and documentation is available at
ervice pages and in the supporting manuscript ( 55 ). 

andling even longer sequences with recurrent 
emory 

hile the integration of sparse attention techniques and
PE tokenization in GENA-LMs has substantially expanded

he permissible DNA input length, the current limit (about
6 kb) may not sufficiently capture certain biological depen-
encies. Notably, the prediction of chromatin interactions ( 7 ),
nhancer–promoter associations ( 4 ), gene expression ( 8 ) and
ther genomic phenomena necessitate the processing of con-
exts that extend beyond 30 kb. Additionally, our empirical
nalyses show improvements in promoter and splice site pre-
ictions as the context size expands from 512 to 4096 tokens
see ‘GENA-LM performance on different genomic tasks’ sec-
ion). This indicates the potential benefits of further enhancing
equence length for these biological tasks. 

To enhance the input capacity of GENA-LMs, we incor-
orated recurrent memory mechanisms. The RMT has been
emonstrated as an efficient, plug-and-play method to handle
xtended input sequences using pre-trained transformer mod-
els ( 30 ). In this recurrent strategy, the input sequence is parti-
tioned into segments which are processed one after the other
(Figure 5 A). Special memory tokens are introduced to each
segment to pass information between consecutive segments,
allowing them to use information from all previous segments.
Thus, the entire pre-trained transformer effectively functions
as a single recurrent unit. 

RMT can be optionally incorporated during pre-training,
enabling the model to learn the use of memory tokens at this
stage. Alternatively, memory tokens can be introduced during
the fine-tuning phase, using a model that was pre-trained
without RMT. To assess these two training strategies and
determine the optimal approach, we conducted pre-training
experiments with gena-lm-rmt-base-t2t and gena-lm-rmt-
large-t2t models. During pre-training, we evaluated how
RMT augmentation influences MLM accuracy. As illustrated
in Supplementary Figure S8 , RMT augmentation enhances
accuracy for the base-size model when provided with 8–10
segments of contextual information. However, the large-size
model pre-trained without RMT augmentation achieves a
substantially better score. Extending the large-size model’s
input with RMT does not improve the score ( Supplementary 
Figure S8 ). These findings corroborate our previous

https://www.dnalm.airi.net
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1310#supplementary-data
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Figure 5. L e v eraging recurrent memory to enhance the input capacity of GENA-LM models yields impro v ed perf ormance in do wnstream tasks. ( A ) T he 
RMT architecture. A vocabulary of the model is augmented with a memory token denoted as ‘mem’ in the figure. Memory augmented model is 
fine-tuned to write rele v ant inf ormation in memory tok ens and pass it to subsequent segments. ( B ) T he augmentation of GENA-LM with RMT with 3 ×
(left), 8 × (center) and 50 × (right) larger sequence lengths. Models with memory achie v e superior results in splice site annotation and promoter 
prediction tasks when compared with all other GENA-LMs, including those utilizing sparse attention (Wilco x on test P -value ≤0.043 in all comparisons). 
On the species classification task, RMT with GENA-LM outperforms the HyenaDNA model designed for long sequences. RMT+P refers to models that 
ha v e not only been fine-tuned with RMT, but also pre-trained with it. 
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observation that gena-lm-bert-large-t2t outperforms gena-
lm-bigbird-base-sparse in the MLM task Figure 1 F, de-
spite the latter’s longer input length. Therefore, we pro-
pose that long-range dependencies beyond 4 kb are not
necessary for accurate masked token prediction. How-
ever, these dependencies are important for downstream
tasks. 

For a comparative evaluation between RMT and other
GENA models, we focused on tasks with inputs of moderate
length (15–16 kb), which can be processed by sparse mod-
els. The gena-lm-bert-large-t2t model, when integrated with
RMT, was fine-tuned on sequences of 16 kb for promoter pre-
diction and 15 kb for splice site prediction. Inputs were di-
vided into segments, with each segment comprising ∼512 to-
kens or about 4.5 kb. These segments also included memory
tokens as part of the input, with 10 memory tokens used for
each task. When contrasted with the original gena-lm-bert-
large-t2t model, the sequence length processed by the gena-
lm-bert-large-t2t + RMT increased substantially: from three
to eight times (rising from 4.5 to 15 kb for the splice site pre-
diction and from 2 to 16 kb for other tasks). 
The expansion in input length significantly enhanced the 
performance of the gena-lm-bert-large-t2t model, as depicted 

in Figure 5 B. Notably, models employing the RMT outper- 
formed all other GENA-LMs, including those sparse variants 
of GENA-LM. While these sparse models can accommodate 
the input lengths featured in the aforementioned tasks, they 
have fewer parameters compared with gena-lm-bert-large-t2t .
Thus, RMT allows combining models with the higher number 
of parameters and longer sequence inputs, achieving the best 
performance on the common biological tasks. Furthermore,
RMT has no limit in a sequence length and could be used for 
even longer sequences. Sparse GENA-LMs, on the other hand,
are limited to the lengths on which they were trained. 

We next used splice sites and promoter activity prediction 

tasks to benchmark the effects of the RMT application dur- 
ing pre-training. This benchmark yields mixed results: for pro- 
moter activity prediction, limiting the RMT approach to the 
fine-tuning stage does not diminish performance compared 

with its use at both the pre-training and fine-tuning stages.
However, for splice site annotation, pre-training with RMT 

proved beneficial, improving performance by ∼0.5 points. 
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Recently, the HyenaDNA team introduced a specific bench-
ark for DNA language models that process long input se-
uences ( 40 ). The authors demonstrated that HyenaDNA can
lassify five mammalian species (human, mouse, lemur, pig
nd hippo) based on their genomic sequences. Compared with
he classification of a broader range of species using GENA-
M embeddings, as previously described, the species in this
enchmark are phylogenetically closer, making classification
ore challenging. Original research ( 40 ) illustrated that clas-

ification accuracy is heavily dependent on the input DNA
ength, which increases gradually from 61.1 to 99.84 as se-
uence length scales from 1 kb to 1 Mb. 
We compared HyenaDNA results with gena-lm-bert-base-

2t augmented with RMT. For sequence inputs of 1 kb, the
lassification accuracy of both models was relatively low
61.45 ± 0.91 for GENA and 61.1 for HyenaDNA). A sig-
ificant enhancement in classification accuracy was observed
hen the sequence length was increased to 32 kb, with

mt+gena-lm-bert-base-t2t achieving 99.24 ± 0.06, thereby
urpassing the performance of HyenaDNA (93.4), as shown in
igure 5 (right panel). Further extending the sequence length
o 50 kb elevated the classification accuracy of rmt+gena-lm-
ert-base-t2t to 99.67 ± 0.059, exceeding the accuracy Hye-
aDNA attained with 1000 kb sequences. This indicates that,
ithin this experimental framework, RMT and the associ-

ted model architecture extract and leverage information from
xtended DNA sequences more efficiently than other tech-
ologies designed for processing long input sequences such as
yena layers underlying HyenaDNA. 

iscussion 

ransformer architectures have garnered significant interest
cross diverse research domains, including genomics. They
onsistently achieve exemplary results in various biological
asks such as deciphering gene expression regulation in mam-
als ( 8 ) and Esc heric hia coli ( 56 ), predicting phenotypes from

ene expression ( 57 ,58 ), deducing DNA methylation ( 59 ) and
lling in missing genotypes ( 60 ), to name a few. Neverthe-
ess, the challenge lies in training task-specific models for each
istinct biological question. This process demands substan-
ial time and resources. DNABER T, DNABER T-2 and similar
oundational DNA models such as BigBird and Nucleotide
ransformer provide a solution by offering a platform for
efining universally applicable models without starting from
cratch. The Nucleotide Transformer v2 ( 39 ) has incorpo-
ated rotary embeddings and gated linear units paired with
wish activations, distinguishing it from its predecessor. This
odel has an input size of 12 kb. DNABERT v2 ( 17 ), while
rawing upon the foundational DNABERT architecture, ex-
ands in terms of model parameters and employs BPE tok-
nization. However, its sequence input length remains below
000 bp. Contrarily, HyenaDNA ( 40 ) introduces a novel ar-
hitecture capable of handling vast DNA sequences, extending
p to 1 million base pairs. Yet, benchmark results suggest an
nverse relationship between HyenaDNA’s performance and
he input size used during its training, as noted by ( 39 ). More-
ver, our benchmarking GENA-LMs augmented with RMT
gainst HyenaDNA in species classification task indicate bet-
er performance of the former model. 

A unique feature of HyenaDNA is its decoder-only config-
ration. Unlike the encoder-centric GENA-LMs, HyenaDNA
does not generate sequence embeddings directly. Instead, it
produces DNA sequences, making the derivation of class la-
bels (for classification purposes) or quantitative targets (for
regression) from its outputs a complex task. To predict specific
DNA states with the HyenaDNA model, the authors utilized
a DNA-alphabet encoding, obliging the model to understand
this biologically unrelated nucleotide sequence interpretation.

We introduce GENA-LMs, a collection of open-source
models boasting the most extensive input capacity among all
accessible DNA transformers (for models starting with the
gena-lm- prefix, visit https:// huggingface.co/ AIRI-Institute/ )
(10). The GENA-LM collection encompasses a spectrum of
publicly accessible architectures, catering to researchers by
offering tailored solutions for unique challenges. Moreover,
GENA-LMs include several taxon-specific models that can
improve performance in species-specific setups. Our rigorous
benchmarking affirms that GENA-LMs not only surpass ear-
lier pre-trained models but occasionally even rival the preci-
sion of task-specific convolutional neural networks. 

In our comparison of various GENA-LMs, we investigated
the influence of context length and the total number of model
parameters on predictive accuracy. We found that the opti-
mal balance between these two factors varies depending on
the specific task. For instance, an extended context is vital for
predicting promoter activity or deciphering widespread HM
distributions, as previously indicated by ( 5 ). However, for cer-
tain tasks, a more concise context is adequate, making it more
advantageous to augment the model’s parameter count. The
broad spectrum of GENA-LMs available offers researchers
the flexibility to select a model best suited for their particu-
lar objective. 

While GENA-LMs accommodate extensive input sizes, they
occasionally fall short of the lengths required for peak ac-
curacy in specific biological tasks. For example, research has
shown that gene expression can be influenced by variants sit-
uated hundreds or even millions of base pairs distant from the
promoter. This can be attributed to processes such as loop ex-
trusion ( 61 ) and other 3D-genomic mechanisms ( 62 ). There
are several strategies to address this constraint in GENA. 

First, the RMT technique facilitates the processing of exten-
sive sequence inputs using powerful models with a large num-
ber of parameters. Our benchmarks reveal that this approach
delivers superior results for tasks where the biological signal
spans a lengthy context. Notably, unlike transformer layers
that exhibit a quadratic memory dependence on the number of
tokens, the computational resources needed for RMT training
and inference scale linearly with sequence length. RMT can be
integrated with GENA-LMs not only during the fine-tuning
phase of downstream tasks but also throughout the MLM pre-
training stage. This could enhance learning operations on ex-
tended sequences, particularly for downstream task datasets
that are of limited size. Furthermore, RMT models pre-trained
on multiple segments can be utilized for a greater number of
segments during inference ( 30 ). As such, RMT models are
versatile enough to address a variety of downstream tasks,
even for teams without access to cutting-edge computational
infrastructure. 

Second, the 3D proximity of chromatin can be determined
using specialized models ( 7 ). This information can then be di-
rectly incorporated into transformer models, enabling them to
capture long-range associations between functional genomic

https://huggingface.co/AIRI-Institute/
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One limitation of GENA-LMs arises from the granular-
ity imposed by the use of BPE tokenization, which confines
predictions to specific tokens. To overcome this, exploring
alternative DNA tokenization methods and developing low-
level nucleotide embeddings could offer solutions for certain
applications. 

Beyond merely predicting specific biological signals, we
demonstrate that GENA-LMs can also be harnessed to de-
cipher and understand the functions of sequences underpin-
ning these signals. An analysis of token importance revealed
that GENA-LM accurately detected motifs corresponding to
known TFs. Furthermore, it pinpointed TF binding sites cru-
cial for specific HMs. There exists an array of factors that
modify histones, termed histone ‘writers’, many of which are
cell-type specific. Determining these factors and their corre-
sponding genomic binding sites is a complex endeavor. In this
context, we illustrate how GENA-LMs can aid in this task by
discerning motifs deemed ‘essential’ for a specific HM within
a particular cell type. However, it is pivotal to approach this
method judiciously. The presence of enriched motifs may only
indicate an association rather than a direct causal relationship.
As an instance, while the enrichment of recognized activator
factor motifs within H3K4me3-important tokens aligns with
the understood biological roles of these factors, the presence
of motifs specific to neural or dermal TFs within H3K27me3-
important tokens in lymphoid K562 cells likely does not sig-
nify a direct causal role of these proteins in establishing the
repressive H3K27me3 mark. We posit that these factors’ tar-
gets were suppressed in blood lineage progenitors, implying
that the enrichment of their motifs is a reflection of the devel-
opmental trajectory of these cells. 

To sum up, our study provides compelling evidence that
large language models trained on DNA sequences have the
capability to generate useful biological insights. This not only
presents an innovative method for solving an array of ge-
nomic challenges but also forges a pathway for a more nu-
anced understanding of genetic data. The transformative im-
pact of language models has already been witnessed in protein
biology, where they have brought about remarkable progress
in predicting protein properties and engineering novel pep-
tides with tailored functions ( 63–65 ). This is indicative of
the potential these models hold, suggesting that their capa-
bilities go beyond mere sequence analysis. With the exponen-
tial increase in multi-omics data—spanning genomics, tran-
scriptomics, proteomics and metabolomics—it is imperative
to have advanced analytical tools that can seamlessly inte-
grate and interpret these vast and complex datasets. Language
models, as demonstrated by our findings, appear poised to
fill this role. As the nexus between computational techniques
and biology strengthens, it is foreseeable that language mod-
els will be pivotal in ushering in a new era of DNA-based
technologies. 

Data availability 

The code to generate the findings of this manuscript is avail-
able in the ‘ supplementary code ’ section, on our GitHub
repository ( https:// github.com/ AIRI-Institute/ GENALM ) and
on Zenodo ( https:// doi.org/ 10.5281/ zenodo.14394199 ). Ad-
ditionally, our trained models can be found on Hugging-
Face under the prefix “gena-lm”: https:// huggingface.co/ AIRI-

Institute/. 
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Supplementary Data are available at NAR Online. 
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