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We propose a machine learning approach to study topological quantities related to the Sasakian and 𝐺2-
geometries of contact Calabi-Yau 7-manifolds. Specifically, we compute datasets for certain Sasakian Hodge 
numbers and for the Crowley-Nördstrom invariant of the natural 𝐺2-structure of the 7-dimensional link of a 
weighted projective Calabi-Yau 3-fold hypersurface singularity, for 7549 of the 7555 possible ℙ4(w) projective 
spaces. These topological quantities are then machine learnt with high performance scores, where learning the 
Sasakian Hodge numbers from the ℙ4(w) weights alone, using both neural networks and a symbolic regressor 
which achieve 𝑅2 scores of 0.969 and 0.993 respectively. Additionally, properties of the respective Gröbner bases 
are well-learnt, leading to a vast improvement in computation speeds which may be of independent interest. The 
data generation and analysis further induced novel conjectures to be raised.
1. Introduction

Motivation Since its inception in 2017 [1–4], the study of Calabi-Yau 
(CY) manifolds in the context of string theory compactifications, using 
machine learning techniques has flourished, encompassing a wide array 
of investigations. Notably, these methods have been employed to pre-
dict Hodge numbers [5–9], learn Ricci-flat Calabi-Yau metrics [10–14], 
forecast line bundle cohomologies [15], generate new Calabi-Yau man-
ifolds [16], and uncover volume bounds on Sasaki-Einstein manifolds 
[17]. Furthermore, machine learning techniques have found various 
other applications in geometry and physics [18–28]. For an extensive 
review, see [29,30]. As important as Calabi-Yau compactification is to 
string theory, 7-manifolds of holonomy G2 are crucial to M-theory com-
pactification [31,32]. Nonetheless, there have yet been no successful ap-
plications of machine learning in the context of G2-geometry, let alone 
on compact manifolds with such special holonomy. This is no doubt due 
to the scarcity of dedicated databases for G2-manifolds, which in turn 

* Corresponding author.

reflects the difficulty in describing (torsion-free) G2-manifolds system-
atically in terms of algebraic discrete data.

While the holonomy reduction to G2 amounts to a difficult non-
linear PDE, pragmatically it may be relaxed in a number of ways, by 
considering the fundamental notion of a G2-structure: a non-degenerate 
3-form 𝜑 which induces a so-called G2-metric 𝑔𝜑; its failure to give 
rise to a metric with Hol(𝑔𝜑) ⊂ G2 is encoded by its full torsion tensor

𝑇 ∶= ∇𝑔𝜑𝜑. A G2-structure is closed if 𝑑𝜑 = 0 and coclosed if 𝑑𝜓 = 0, 
where 𝜓 ∶=∗𝜑 𝜑, and the torsion-free condition 𝑇 = 0 is equivalent to 
𝜑 being both closed and coclosed. We propose therefore to work with 
coclosed G2-structures on certain contact Calabi-Yau (cCY) 7-manifolds, 
which are closely related to the weighted projective Calabi-Yau 3-folds 
famously studied in [33].

Despite their unsuitability to M-theory, torsionful G2 structures re-
tain relevance in the context of (3+7)-dimensional heterotic supergrav-
ity with flux, as demonstrated by [34–36]. Indeed, as shown by [37], 
one can explicitly solve the corresponding Strominger system on cCY 
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7-manifolds, by way of coclosed G2-structures together yielding non-
trivial scalar and G2-instanton gauge fields, with constant dilaton, as 
well as an 𝐻 -flux with prescribed Chern-Simons defect, in accordance 
to the ‘anomaly-free’ condition referred to as the heterotic Bianchi iden-
tity.

Topological invariants of CY links Contact Calabi-Yau manifolds were 
introduced by Tomassini and Vezzoni in [38], and they consist of 
Sasakian manifolds endowed with a closed basic complex volume form, 
which is ‘transversally holomorphic’ in the sense of foliations. It was 
shown in [39] that such a manifold carries naturally a coclosed G2-
structure.

A special class of such structures arises from Calabi-Yau links, which 
were first discussed from the perspective of G2 topology in [40]. A 
7-dimensional weighted link 𝐾𝑓 is obtained as the intersection of a 
possibly small 𝑆9 ⊂ ℂ5 with a weighted homogeneous affine variety 
(defined by the zero locus of the polynomial 𝑓 ) having an isolated sin-
gularity at the origin. Milnor showed that such links are 2-connected 
compact smooth manifolds, indeed 𝐾𝑓 is the total space of a Hopf 𝑆1-

bundle over a (weighted) projective 3-orbifold in ℙ4(w), for appropriate 
choices of polynomial degree and weighted ℂ×-action, see §2. Inter-
estingly, the dataset of possible weights that admit these CY 3-folds 
consists of the 7555 cases classified in [33]. Therefore, we pursue the 
construction of a Calabi-Yau link for each of these weight systems, com-
puting the following two types of topological invariants.

From the perspective of Sasakian topology, the (basic) Hodge num-
bers ℎ𝑝,𝑞 can be obtained as the dimensions of certain linear subspaces 
of the Milnor algebra 𝕄𝑓 = ℂ[[𝑧1, … , 𝑧5]]∕𝑓 , defined by the corre-
sponding Jacobian ideal of 𝑓 [41]. We provide the first systematic 
computation of the Sasaki-Hodge numbers {ℎ3,0, ℎ2,1} for this class of 
7-dimensional CY links.

On the other hand, considering their G2-topology, a CY link bounds 
an 8-dimensional Milnor fibre which smoothly extends the G2-structure 
𝜑 as a spinor field, hence it is possible to explicitly compute the 
Crowley-Nordström (CN) homotopy invariant 𝜈(𝜑) ∈ ℤ∕48ℤ, intro-
duced in [42]. Building upon the calculations first carried out in [40], 
we obtain an exhaustive dataset of 𝜈-invariants for Calabi-Yau links.

Machine learning cCY topology We analyse these two sets of topological 
data from a perspective similar to what has been done for Calabi-Yau 
manifolds [1]. In the standard Calabi-Yau case, the weights defin-
ing the ambient projective space are sufficient to uniquely determine 
the Calabi-Yau 3-fold’s Hodge numbers, motivating ML of the known 
formulas from weights to Hodge numbers [43]. However, in the 7-
dimensional Calabi-Yau link case, no such explicit formula is known, 
and one would initially expect the specific polynomial coefficients cho-
sen to change the topology. Extending the ML techniques to these link 
invariants would establish existence of an approximate formula for 
Sasakian Hodge numbers from the weight information, from which ML 
interpretability techniques may be used to uncover its true form. This 
formula would provide new insights into Sasakian structures, as well 
as being dramatically quicker to compute, as well as open the door for 
their application on other related invariants, including for G2-structures 
as motivated by their ML in this work.

We therefore extend previous work learning CY Hodge numbers 
from weights, to predicting Calabi-Yau link topological properties 
(namely Sasakian Hodge numbers and CN invariants). We find that, 
whilst the machine is able to learn the Sasakian Hodge number topol-
ogy of these manifolds with high-performance measures, the same can-
not be established for the CN invariant. The datasets of the weighted 
Calabi-Yau polynomials used in the link construction, with the com-
puted Sasakian Hodge numbers and CN invariants, as well as the scripts 
used for analysis and machine learning, are available on GitHub [44].

This letter is organised as follows: in §2 we survey some background 
2

to contact Calabi-Yau manifolds, G2-geometry, and machine learning; 
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in §3 we describe the methodology for the construction of the Calabi-
Yau link data and perform relevant statistical analysis of the datasets of 
invariants; in §4 we present the results of the machine learning investi-
gations; and we conclude in §5, discussing some future prospects.

2. Background

2.1. Calabi-Yau links

One may interpret structure group reductions on an odd-dimensional 
contact metric manifold (𝐾2𝑛+1, 𝜂, 𝜉, 𝑔) as ‘even-dimensional’ structures 
‘transverse’ with respect to a 𝑆1-action along the fibres of a submersion 
𝑆1 →𝐾 → 𝑉 . Here 𝜂 ∈ Ω1(𝐾) denotes the contact form and 𝜉 ∈𝒳(𝐾)
its (unit) dual Reeb field, such that 𝜂(𝜉) = 1. Whenever clear from con-
text, we will omit mention of the Riemannian metric 𝑔, for simplicity.

In particular, Sasakian geometry may be seen as transverse Kähler 
geometry, corresponding to the reduction of the transverse holonomy 
group to U(𝑛). These are equipped in addition with a transverse com-
plex structure 𝐽 ∈ End(𝑇𝐾) such that 𝐽◦𝐽 = −I𝑇𝐾 + 𝜂 ⊗ 𝜉, yielding a 
decomposition of forms by basic bi-degree, and a transverse symplec-
tic form 𝜔 = 𝑑𝜂 ∈ Ω1,1(𝐾), all of which satisfy suitable compatibility 
conditions; for more details see e.g. [45, §2] or the canonical reference 
[46]. Furthermore, Sasakian manifolds with special transverse holon-
omy SU(𝑛) are studied by Habib and Vezzoni [39, § 6.2.1]:

Definition 1. A Sasakian manifold (𝐾2𝑛+1, 𝜂, 𝜉, 𝐽, Υ) is said to be a con-

tact Calabi–Yau manifold (cCY) if Υ is a nowhere-vanishing transverse 
form of horizontal type (𝑛, 0), such that

Υ∧ Ῡ = (−1)
𝑛(𝑛+2)

2 𝜔𝑛 and 𝑑Υ= 0, with 𝜔 = 𝑑𝜂.

A polynomial 𝑓 ∈ ℂ[𝑧1, … , 𝑧𝑛+2], for 𝑛 ≥ 2, is said to be weighted 
homogeneous of degree 𝑑 with weight vector 𝐰 = (𝑤1, … , 𝑤𝑛+2) ∈ℤ𝑛+2

>0 , 
if it is homogeneous of order 𝑑 with respect to the ℂ×(𝐰)-action on 
ℂ𝑛+2

(𝑡, 𝑧)↦ 𝑡 ⋅ 𝑧 = (𝑡𝑤1𝑧1,… , 𝑡𝑤𝑛+2𝑧𝑛+2).

Such an 𝑓 defines an affine variety

𝑉𝑓 = (𝑓 ) = {𝑧 ∈ℂ𝑛+2 ∣ 𝑓 (𝑧) = 0},

which, in general, admits a singularity at the origin.
Assuming that the origin is an isolated singularity, the intersection 

of 𝑉𝑓 with a surrounding small hypersphere 𝑆2𝑛+3
𝜀

is a compact smooth 
(2𝑛 + 1)-manifold 𝐾𝑓 = 𝑉𝑓 ∩ 𝑆2𝑛+3

𝜀
, the so-called weighted link of the 

singularity [47]. A weighted link 𝐾𝑓 of degree 𝑑 and weight 𝑤 is a 
Calabi-Yau link if

𝑑 =
𝑛+2∑
𝑖=1

𝑤𝑖, (1)

which precisely guarantees the existence of a cCY structure on 𝐾𝑓 . 
The dimension of the moduli space of these cCY structures is well-
understood and discussed in §5.

2.2. Sasakian Hodge numbers of a CY link

The ℂ×(𝐰)-action on ℂ𝑛+2 induces a contact-metric 𝑆1-action on 
𝐾𝑓 . It admits finitely many distinct isotropy subgroups, contained in 
some finite subgroup Γ ⊂ 𝑆1, so that 𝐾𝑓 admits a double fibration over 
a projective 𝑛-orbifold 𝑉 ⊂ ℙ𝑛+1(𝐰),

𝜋 ∶𝐾𝑓 ⟶𝐾𝑓∕Γ⟶𝐾𝑓∕𝑆1 = (𝑉𝑓 ⧵ {0})∕ℂ× ∶= 𝑉 ∗
𝑓

The following key theorem allows us to compute certain mixed Hodge 
numbers ℎ𝑝,𝑞(𝐾𝑓 ) from the dimensions of the primitive cohomology 

groups 𝐻𝑛

0 (𝑉
∗
𝑓
), for 𝑝 + 𝑞 = 𝑛, which in turn can be obtained from the 

https://github.com/TomasSilva/MLcCY7.git
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Milnor algebra. A brief survey of Sasakian Hodge numbers can be found 
in Appendix A.

Theorem 2 ([41, Theorem 1.2], [48,49]). Let 𝑓 be a 𝐰-homogeneous poly-

nomial on ℂ𝑛 of degree 𝑑. Given 𝑝 + 𝑞 = 𝑛, let 𝓁 = (𝑝 + 1)𝑑 −
∑
𝑖 𝑤𝑖, and 

denote by (𝕄𝑓 )𝓁 the linear subspace of the Milnor algebra consisting of de-

gree 𝓁 elements.

ℎ𝑝,𝑞(𝐾𝑓 ) = dimℂ(𝕄𝑓 )𝓁 .

When (1) is satisfied, i.e. 𝐾𝑓 is a Calabi-Yau link, the condition reduces to 
𝓁 = 𝑝𝑑.

Finally, Moriyama expresses the dimension of the moduli space 
of cCY structures on a given 7-dimensional link 𝐾𝑓 , in terms of the 
Sasakian Hodge numbers [50]:

dim𝔐𝐶𝑌 (𝐾𝑓 ,𝜉) = 𝑏3(𝐾𝑓 ) + ℎ1,1(𝐾𝑓 ) − 1. (2)

In particular, the third Betti number 𝑏3 is completely determined by 
ℎ2,1 and ℎ3,0:

(ℎ3,0 + ℎ2,1)(𝐾𝑓 ) =
1
2
𝑏3(𝐾𝑓 ), (3)

which we have computed in this work. The remaining term is ℎ1,1
𝑆

, 
which is not calculable via Theorem 2, however may be accessible by 
other means. For instance, in the study of Calabi-Yau manifolds [33,51,
52], there is a well-established notion of homological mirror symmetry 
between Hodge numbers. We propose that if one could extend this to a 
notion of mirror symmetry among links, perhaps one could access ℎ1,1
for a link as being ℎ2,1 of the respective ‘mirror’. For this dataset, we 
have enumerated the ℎ2,1’s exhaustively, so we could in principle know 
all the terms in (2) and subsequently the dimensions of the moduli space 
of cCY structures, at least for CY link mirror pairs.

2.3. The Crowley-Nordström invariant on cCY 7-manifolds

For an arbitrary closed 7-manifold with G2-structure (𝑌 7, 𝜑), Crow-
ley and Nordström have defined a ℤ∕48ℤ-valued homotopy invari-
ant 𝜈(𝜑), which is a combination of topological data from a com-
pact coboundary 8-manifold with Spin(7)-structure (𝑊 8, Ψ) extending 
(𝑌 7, 𝜑), in the sense that 𝑌 = 𝜕𝑊 and Ψ ∣𝑌 = 𝜑:

𝜈(𝜑) ∶= 𝜒(𝑊 ) − 3𝜎(𝑊 ) mod 48, (4)

where 𝜒 the real Euler characteristic and 𝜎 is the signature.
In particular (𝑛 = 3), specialising §2.1 to real dimension 7, a contact 

Calabi–Yau structure naturally induces a coclosed G2-structure (with 
symmetric torsion):

Proposition 3 ([39, Corollary 6.8]). Every cCY manifold (𝐾7, 𝜂, 𝜉, 𝐽, Υ)
is an 𝑆1-bundle 𝜋 ∶ 𝐾 → 𝑉 over a Calabi–Yau 3-orbifold (𝑉 , 𝜔, Υ), with 
connection 1-form 𝜂 and curvature

𝑑𝜂 = 𝜔, (5)

and it carries a cocalibrated G2-structure

𝜑 ∶= 𝜂 ∧𝜔+ReΥ, (6)

with torsion 𝑑𝜑 =𝜔 ∧𝜔 and Hodge dual 4-form

𝜓 =∗ 𝜑 = 1
2
𝜔 ∧𝜔+ 𝜂 ∧ ImΥ.

It therefore makes sense, for further instance, to systematically study 
the invariants 𝜈(𝜑) associated to 𝐰-homogeneous polynomials 𝑓 defin-
3

ing Calabi-Yau links 𝐾𝑓 .
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2.4. Weak R-equivalence of weighted polynomials

In the light of Theorem 2, we will observe in §3 that the Sasakian 
Hodge numbers and the natural CN invariant of a CY link depend only 
upon the Milnor algebra 𝕄𝑓 . The relation between the Milnor algebras 
of different weighted homogeneous polynomials was examined in [53], 
where the notion of R-equivalence is introduced:

Definition 4. Two weighted homogeneous polynomials 𝑓, 𝑔 on ℂ𝑛 are 
𝑅−equivalent if there exists a diffeomorphism 𝜓 ∶ ℂ𝑛 ↦ ℂ𝑛 such that 
𝑓◦𝜓 = 𝑔.

Theorem 2 in [53] gives a sufficient condition for R-equivalence 
between two such polynomials, as quoted below:

Theorem 5. Let 𝑓, 𝑔 be 𝐰-homogeneous polynomials on ℂ𝑛 of degree 𝑑, 
such that 𝑓 = 𝑔 ; then 𝑓 is R-equivalent to 𝑔.

However, our initial empirical observations (as detailed in §3.3) sug-
gested that any homogeneous polynomial with the same weight vector 
(up to permutations), and no further singularities, has the same 𝓁-
degree subspaces of the Milnor algebra, up to linear isomorphism. This 
then implies that their respective Sasakian Hodge numbers and CN in-
variants will be the same. This motivates us to propose the following 
definition and conjecture.

Definition 6. Two weighted homogeneous polynomials 𝑓, 𝑔 on ℂ𝑛 are 
said to be weakly R-equivalent if the respective 𝓁-degree linear subspaces 
of their Milnor algebras are isomorphic, for each 𝓁 such that 𝑝 + 𝑞 = 𝑛, 
as in Theorem 2.

Conjecture 7. Consider two weighted homogeneous polynomials 𝑓, 𝑔 on 
ℂ𝑛 of same degree 𝑑; if their weight vectors 𝐰𝑓 and 𝐰𝑔 coincide (up to 
permutations), then 𝑓 and 𝑔 are weakly R-equivalent.

The Conjecture is somewhat surprising, since it encompasses cases 
in which the Jacobian ideals 𝑓 and 𝑔 are non-isomorphic, and thus 
𝕄𝑓 and 𝕄𝑔 are not equivalent. As we will see in §3, although certain 
steps in the algorithms to compute the Sasakian Hodge numbers and 
CN invariant involve the Gröbner basis, which is directly related to the 
Jacobian ideal, the results of these computations seem to depend only 
on the initial sets of weights of the ℂ×-action.

2.5. Machine learning

Aiming at an audience in the community of mathematics and theo-
retical physics, we provide a very brief introduction to neural networks, 
which is the architecture we use in our investigation [30,54,55]. We be-
gin by introducing the neuron, the building block of any neural network. 
A neuron is a vertex in an oriented graph, which takes in a set of input 
data {𝑥𝑖} and produces a single numerical output 𝑦, by the following 
three steps:

1. First, each input 𝑥𝑖 is multiplied by a weight 𝑊𝑖: 𝑊𝑖𝑥𝑖.
2. Next, all the weighted inputs are summed and a bias 𝑏 is added: ∑

𝑖 𝑊𝑖𝑥𝑖 + 𝑏.
3. Finally, the sum is passed through a non-linear activation function 

which produces an output: �̂�= act(
∑
𝑖 𝑊𝑖𝑥𝑖 + 𝑏).

ReLU is perhaps the most standard example of a non-linear activation 
function, it is defined

ReLU(𝑥) ∶=

{
𝑥 𝑥 > 0

(7)

0 otherwise
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and is the activation function used in this work. A neural network 
is then simply a collection of neurons stratified in a series of layers, 
whereby the neurons in each layer are connected by edges to neurons 
in the previous and next layers.

The process of training a neural network starts with partitioning 
the dataset into training data, from which the network will learn, and 
test data, which is only used after training to evaluate the network’s 
performance. The training process involves repeatedly calculating the 
‘error’, which is some measure of the difference between the predicted 
model outputs and the true known outputs for the training data. During 
training, these weights and biases are stochastically updated in order 
to reduce this error measure. Computing the error requires a choice of 
loss function, for regression problems typically one uses either mean 
absolute error (MAE) or mean squared error (MSE)

MAE = 1
𝑁

𝑁∑
𝑖=1

|𝑦𝑖 − �̂�𝑖|,
MSE = 1

𝑁

𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2,

(8)

where 𝑦𝑖 and �̂�𝑖 are the true and predicted values, respectively, and 
𝑁 is the dataset size. The method by which we change the weights 
and biases to minimise the loss is called the optimisation algorithm, the 
simplest of which is stochastic gradient descent (SGD). There are more 
advanced optimisation methods that build on SGD, of which Adam [56]
is a popular choice and is the particular optimisation we adopt.

For regression tasks, typical performance metrics include MAE (8)
as well the 𝑅2 score (9), which is defined as the proportion of the vari-
ance in the dependent variable that is predictable from the independent 
variable(s):

𝑅2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − �̂�𝑖)
2∑𝑁

𝑖=1(𝑦𝑖 − �̄�)2
∈ (−∞,1], (9)

where

�̄� = 1
𝑁

𝑁∑
𝑖=1

𝑦𝑖, (10)

is the mean output. Therefore an 𝑅2 score close to 1 means the regres-
sion model is a good fit, whereas a score close to 0 means the model is 
a poor fit. Additionally, despite this being a regression problem, we in-
troduce a classification-inspired metric: Accuracy. We define this be the 
proportion of predictions within a fixed distance from the true value 
over the test data, where this fixed distance is defined in terms of a 
bound which is 0.05 times the range of the true values. This also evalu-
ates in the range [0, 1], where a value of 1 indicates perfect learning.

Cross-validation is a method commonly used to get an unbiased eval-
uation of the learning, whereby the full dataset is shuffled and then split 
into 𝑘 non-overlapping subsets. Each subset acts as the test dataset once, 
whilst the remaining (𝑘 −1) subsets are combined to create the comple-
ment training dataset. 𝑘 independent identical neural network models 
are then each trained on one of these training datasets, then evaluated 
on the complementary test dataset, with the evaluation scores recorded. 
The mean evaluation scores, with their standard errors, are then calcu-
lated and used to measure the model performance.

Continuous datasets may be quantitatively tested for correlations via 
the Product Moment Correlation Coefficient (PMCC), as linear method 
providing first order insight about potential dataset dependencies. This 
measure is defined

PMCC(𝑋,𝑌 ) ∶=
𝔼(𝑋 − 𝜇𝑋 )𝔼(𝑌 − 𝜇𝑌 )

𝜎𝑥𝜎𝑌
∈ [−1,1] , (11)

for random variables 𝑋, 𝑌 with respective means 𝜇𝑋, 𝜇𝑌 and standard 
deviations 𝜎𝑥, 𝜎𝑌 , and expectation values over the datasets taken with 
𝔼(⋅). It takes values in the range stated with perfect (anti-)correlation 
4

represented by PMCC of 1 (-1), and no correlation for PMCC of 0.
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A more interpretable supervised learning method is symbolic regres-
sion [57]. In this method a basis of functions is assembled into an 
expression which is fit to training data. The basis used later in this 
work was {+, −, ∗, ∕}. These methods are genetic algorithms at their 
core, in that a population of expressions (represented as trees) are first 
initialised and then evaluated on the training data with respect to a 
standard loss (8) perturbed with a parsimony term which rewards sim-
plicity in the expression (alike regularisation techniques in traditional 
ML preventing overfitting). The fittest individuals are then selected for 
cross-breeding between their expression trees, with subsequent muta-
tion, to form the next generation of expressions. This process is then 
iterated to convergence, providing an array of candidate expressions 
which one can deduce information about the true functional form from.

3. Data generation & analysis

As previously stated, the Calabi-Yau 3-folds arising in the link 
construction are hypersurfaces in complex weighted projective space 
ℙ4(𝐰). Such spaces are compact Fano manifolds (with positive curva-
ture), constructed through identification of ℂ5 with a weight vector of 5 
entries. It was shown in [33], that the list of weight vector combinations 
which lead to unique weighted projective spaces whose anticanonical 
divisors are compact and Ricci-flat is finite, with 𝑁 = 7555 cases.

For each ℙ4(𝐰), any hypersurface in the anticanonical divisor class 
can be represented as a weighted homogeneous polynomial of degree ∑
𝑖 𝑤𝑖. Throughout this class, there is freedom in the choice of com-

plex coefficients for each of the monomial terms in the hypersurface’s 
defining polynomial equation. Any choice of coefficients, such that the 
surface does not become more singular, defines a Calabi-Yau 3-fold. All 
of these will share the same Hodge numbers, but may otherwise be topo-
logically distinct [33]. In addition, there is redundancy between choices 
of coefficient sets due to polynomial symmetries (such as coordinate 
transformations, coefficient normalisation, etc.), allowing multiple sets 
of coefficients to define the same 3-fold.

The dataset of Calabi-Yau links considered in this work was con-
structed using one Calabi-Yau from each of the respective 7555 ℙ4(𝐰)’s. 
In each case, the Calabi-Yau polynomial was first selected to have all 
monomial coefficients as 1. Physically, this may be interpreted as con-
sidering equivalent points on the Coulomb branches of the vacuum 
expectation value moduli spaces, when the Calabi-Yau manifolds are 
used for string compactification [58]. However 1484 out of the 7555 
polynomial hypersurfaces intersected with singularities in the ambient 
space, leading to a higher-dimensional singularity structure on the links. 
To avoid this, for these 1484 cases other polynomials were sampled, 
with coefficients from {1, 2, 3, 4, 5}, until the singularity structure was 
exclusively the isolated singularity at the origin - as required for the 
link construction.1

To exemplify this process, consider the weight vector 𝐰 = (22, 29, 49,
50, 75), whose degree 𝑑 = 225 (=

∑
𝑖 𝑤𝑖) monomial basis has 7 terms:

𝑧81𝑧3, 𝑧
4
1𝑧

3
2𝑧3, 𝑧1𝑧

7
2, 𝑧1𝑧2𝑧3𝑧4𝑧5, 𝑧2𝑧

4
3, 𝑧

3
4𝑧5, 𝑧

3
5.

We thus initialise the Calabi-Yau polynomial equation to:

0 = 𝑎1𝑧81𝑧3 + 𝑎2𝑧
4
1𝑧

3
2𝑧3 + 𝑎3𝑧1𝑧

7
2 + 𝑎4𝑧1𝑧2𝑧3𝑧4𝑧5

1 Practically, the dimension of the singular locus of each Calabi-Yau poly-
nomial was computed over a finite field of prime characteristic (101). Since 
this field reduction from the complex numbers cannot decrease the dimension 
of the singularity structure, where the dimension was 0 the polynomial was 
accepted. Where the observed singularity dimension was higher, a selection 
of other primes (251, 1993, 1997) were used to check for bad field reduction, 
where the dimension was 0 in any of those cases the polynomial was accepted 
as the increase in observed singularity dimension was due to this bad reduction. 
Where the singularity dimension did not decrease to 0, the polynomial was re-
sampled until one with singularity dimension 0 was found (each time only 1 

resample was required).
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Fig. 1. Histogram of Gröbner basis lengths for the 7549 Calabi-Yau link con-
structions computed.

+ 𝑎5𝑧2𝑧43 + 𝑎6𝑧
3
4𝑧5 + 𝑎7𝑧

3
5,

for the complex coefficient vector (𝑎1, … , 𝑎7). We set 𝑎1 =⋯ = 𝑎7 = 1, 
and check the singularity structure of the resulting hypersurface. In this 
case, the singular locus defined by this polynomial has dimension 0, 
which is the isolated singularity at the origin, there is hence no further 
singularity structure introduced. We therefore accept this Calabi-Yau 
3-fold, adding it to our database for topological invariant computation 
(no further sampling of the 𝑎𝑖 values is required).

For 7549 of these 7555 Calabi-Yau’s selected in this way, the topo-
logical properties of the corresponding links were calculated. Namely, 
the Sasakian Hodge numbers {ℎ3,0, ℎ2,1}, from Theorem 2, and the 
CN invariant, from (4). It is worth emphasising that, since the list of 
weight vectors which lead to complex 3-dimensional Calabi-Yaus is fi-
nite, and since the topological invariants computed are conjectured to 
be identical for all Calabi-Yau polynomials with same weight vector 
(via Conjecture 7, and inspired by initial empirical observations exem-
plified in §3.3), the data generated for these 7555 manifolds would be 
exhaustive for this link construction.2

The polynomial generation and topological invariant computations 
were performed in sagemath [59], with the help of macaulay2 [60]
and singular [61]. Computation of each of the topological invariants 
required the respective Gröbner bases of the Calabi-Yau polynomials; 
these bases are notoriously expensive to compute with at worst doubly-
exponential time complexity [62], and taking our High-Performance 
Computing cluster (HPC) ∼ 100, 000 core hours. Hence, as a side prod-
uct of these computational efforts, the Gröbner basis for a selection of 
the Calabi-Yau polynomials considered (one for each possible weight 
vector) is provided, along with the corresponding topological quanti-
ties, on this work’s respective GitHub.

The distribution of the lengths of the Gröbner bases for 7549 out of 
7555 Calabi-Yau polynomials is shown in Fig. 1. Due to the non-trivial 
connection between weights and basis length, and the importance of 
the basis length in determining whether invariant computation is even 
feasible, the prediction of Gröbner bases lengths was independently in-
vestigated, as detailed in §4.1.

2 In this work, the topological data was computed for 7549 of the 7555, where 
the 6 remaining ((1, 1, 8, 19, 28), (1, 1, 9, 21, 32), (1, 1, 11, 26, 39), (1, 1, 12, 
28, 42), (1, 6, 34, 81, 122), (1, 6, 40, 93, 140)) were the most computationally 
expensive and whose computation is left for future work. Since they represent 
such a small fraction of the dataset their omission should have negligible impact 
5

on learning performance.
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Fig. 2. Histogram of Sasakian ℎ2,1 values for the 7549 Calabi-Yau link construc-
tions computed.

3.1. Sasakian Hodge numbers

As outlined in §2.2, the computation of the Hodge numbers ℎ3,0 and 
ℎ2,1 associated with each weighted homogeneous polynomial is done by 
the algorithmic implementation of the explicit formula in Theorem 2, 
from [41]:

Algorithm 1 Computation of Sasakian Hodge Numbers via Theorem 2.

Require: 𝑓 (𝑧1, … , 𝑧5), a homogeneous polynomial in ℂ5 .
Require: 𝐰 = (𝑤1, … , 𝑤5), the weight vector associated with the polynomial 

𝑓 .
Ensure: [ℎ3,0, ℎ2,1], the Sasakian Hodge Numbers associated to (𝑓, 𝐰)
1: 𝐴 ← ℂ[𝑧1, … , 𝑧5]
2: 𝑑← deg(𝑓 ) (⊳) w.r.t. 𝐰
3: 𝐽𝑓 ←

⟨
𝜕𝑓

𝜕𝑧1
,… ,

𝜕𝑓

𝜕𝑧5

⟩
(⊳) The Jacobian ideal of 𝑓

4: 𝐾 ← GRÖBNERBASIS

(
𝐴

𝐽𝑓

)
(⊳) Basis of 𝕄𝑓

5: ℎ3,0 = #{𝑥 ∈𝐾 ∶ deg(𝑥) = 4𝑑 −
∑
𝑖 𝑤𝑖} (⊳) dim(𝕄𝑓 )4𝑑−∑𝑤𝑖

6: ℎ2,1 = #{𝑥 ∈𝐾 ∶ deg(𝑥) = 3𝑑 −
∑
𝑖 𝑤𝑖} (⊳) dim(𝕄𝑓 )3𝑑−∑𝑤𝑖

7: return [ℎ3,0, ℎ2,1]

Step 4 of Algorithm 1 corresponds to a well-known super-exponential 
(hard) routine, the Gröbner basis generation [63,64]. In order to per-
form computations within a feasible time for all the 7555 polynomials,3

we implemented a parallel version of Algorithm 1 using sagemath [59]
and its built-in interface to singular [61], and executed the job on a 
HPC cluster.

The Sasakian ℎ3,0 values for the 7549 Calabi-Yau links computed 
all take value 1, matching the value known for all Calabi-Yau 3-
folds, which corresponds to the unique holomorphic volume form. The 
Sasakian ℎ2,1 values range from 1 to 416, their frequency distribution 
is shown in Fig. 2. Despite the similar structure to the distribution of 
Gröbner basis lengths, we note that there is only a mild positive corre-
lation, with PMCC ∼ 0.65.

Due to the aforementioned successes of ML in predicting the Hodge 
numbers of these Calabi-Yaus [1,8], it is natural to consider how this 
performance can extrapolate to Sasakian Hodge numbers, which will be 
addressed in §4.2. To compare directly the CY Hodge numbers with the 
Sasakian Hodge numbers of the links built from the same polynomials, 
a cross-plot of the respective ℎ2,1 values is given in Fig. 3. This plot 
shows that these topological invariants are strongly correlated (PMCC 
∼ 0.99), and the Sasakian Hodge number is bounded above by the CY 
Hodge number – suggesting the following mathematical conjecture:
3 Of which only 6 have been considered timed-out for this letter.

https://github.com/TomasSilva/MLcCY7.git
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Fig. 3. Scatter graph of the Calabi-Yau complex threefold ℎ2,1 values against 
the Sasakian transverse ℎ2,1 values for the 7549 Calabi-Yau link constructions 
considered. For this data Sasakian ℎ2,1 ≤ CY ℎ2,1, with 4198 cases satisfying the 
equality.

Conjecture 8. The Sasakian Hodge number ℎ2,1
𝑆

for a Calabi-Yau link is 
bounded above by the Hodge number ℎ2,1

𝐶𝑌
of the Calabi-Yau 3-fold built 

from the same 𝐰-homogeneous polynomial:

ℎ
2,1
𝑆

≤ ℎ2,1
𝐶𝑌

. (12)

We note that the analogous bound also technically holds for 1 =
ℎ
3,0
𝑆

≤ ℎ3,0
𝐶𝑌

= 1; as it may well be the case for other yet uncomputed 
Sasakian Hodge numbers. Hence, from the successes in previous work 
on learning Calabi-Yau Hodge numbers [1,8], and this strong corre-
lation with Sasakian Hodge numbers, the investigation into their ML 
prediction is well-motivated.

3.2. Crowley-Nördtrom invariant

To compute the CN invariant for polynomials in our dataset, we 
modify a procedure developed and described in [40] which utilises 
Steenbrink’s Signature theorem. Let

{𝑧𝛼 ∶ 𝛼 = (𝛼1, ..., 𝛼𝑛+1) ∈ 𝐼 ⊂ℤ𝑛+1
>0 }

be a set of monomials in ℂ[𝑧1, ..., 𝑧𝑛+1] representing a basis over ℂ for 
its Milnor algebra 𝕄𝑓 = ℂ[[𝑧1 ,...,𝑧𝑛+1]]

𝜕𝑓∕𝜕𝑧1 ,...,𝜕𝑓∕𝜕𝑧𝑛+1
. For each 𝛼 ∈ 𝐼 , define

𝑙(𝛼) ∶=
𝑛+1∑
𝑖=1

(𝛼𝑖 + 1)
𝑤𝑖

𝑑
. (13)

The CN invariant of a link was computed in [40] in terms of its degree 
and weights, along with the signature (𝜇−, 𝜇0, 𝜇+) of the intersection 
form on 𝐻4(𝑉𝑓 , ℝ):

𝜈(𝜑) =
(
𝑑

𝑤1
− 1

)
...

(
𝑑

𝑤5
− 1

)
− 3(𝜇+ − 𝜇−) + 1 (14)

Steenbrink [48] proved that the signature can be computed as follows:

𝜇+ = |{𝛽 ∈ 𝐼 ∶ 𝑙(𝛽) ∉ℤ,⌊𝑙(𝛽)⌋ ∈ 2ℤ}|
𝜇− = |{𝛽 ∈ 𝐼 ∶ 𝑙(𝛽) ∉ℤ,⌊𝑙(𝛽)⌋ ∉ 2ℤ}|
𝜇0 = |{𝛽 ∈ 𝐼 ∶ 𝑙(𝛽) ∈ℤ}|
In [40], this procedure was originally implemented as two separate 
scripts, one in singular and one in MATHEMATICA [65]. We improve 
upon this by combining those into a single python script. We are then 
able to take advantage of parallel processing, pooling, and the power-
ful computational resources of our HPC’s to compute the CN invariant 
6

for 7549 out of the 7555 Calabi-Yau links.
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Fig. 4. Histogram of CN invariants for the 7549 Calabi-Yau link constructions 
computed.

The CN invariants computed fully span the range of possible val-
ues, which are odd integers from 1 to 47, cf. [40, Proposition 3.2]. 
Their frequency distribution is shown in Fig. 4, which exhibits an unex-
pected periodicity of 12 in the most populous invariant values (∼ 500). 
In particular, we note the occurrence of CN invariants 27 and 35, where 
previous work had not identified examples in these topological classes 
[40]. Below we provide an explicit example of a Calabi-Yau polynomial 
that leads to a link in each of these classes (noting the repetition of the 
example considered earlier in §3):

CN ∶ 27 ,

Weights ∶ (22,29,49,50,75) , (15)

Polynomial ∶

0 = 𝑧81𝑧3 + 𝑧
4
1𝑧

3
2𝑧3 + 𝑧1𝑧

7
2 + 𝑧1𝑧2𝑧3𝑧4𝑧5 + 𝑧2𝑧

4
3 + 𝑧

3
4𝑧5 + 𝑧

3
5 ,

CN ∶ 35 ,

Weights ∶ (31,35,36,42,108) , (16)

Polynomial ∶

0 = 𝑧71𝑧2 + 𝑧
2
1𝑧

2
2𝑧3𝑧

2
4 + 𝑧1𝑧2𝑧

4
3𝑧4 + 𝑧1𝑧2𝑧3𝑧4𝑧5 + 𝑧

6
2𝑧4 + 𝑧

7
3

+ 𝑧43𝑧5 + 𝑧3𝑧
2
5 + 𝑧

6
4 .

3.3. Explicit weak R-equivalence

To corroborate the weak R-equivalence predicted in Conjecture 7, 
we show the observed behaviour for the previously selected example, 
as stated in (15).

In performing the checks of weak R-equivalence, we considered 10 
permutations of the example weight system, and 50 polynomials per 
permutation (with general integer coefficients in the range (0,100), 
such that singular locus dimension is still 0; here, 100 was selected as 
it is the bound set by the prime 101 used for the coefficient ring char-
acteristic). In each case, the computed CN invariant was 𝜈 = 27, and 
(ℎ3,0
𝑆
, ℎ2,1
𝑆
) = (1, 2). We observe that, while these values for the invari-

ants were the same, the Gröbner basis lengths changed among different 
weight permutations (but were the same for different polynomials with 
the same weight system permutation). This behaviour was expected 
since the permutation of weights effectively amounts to a relabelling 
of the coordinates.

In addition to running these checks for the quoted example, the same 
procedure was repeated for 100 weight systems randomly selected from 
the database (selecting those with generally shorter polynomials, for 
computational efficiency), again considering 50 polynomials per weight 

system, and in all cases the weak R-equivalence was verified. Code to 
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run these checks in general scenarios is also made available in this arti-
cle’s GitHub

Below are two example weight permutations of (15), each with two 
respective Calabi-Yau polynomials. These were all included in the ex-
plicit checks above and hence lead to the same topological invariants.

Weights ∶ [75,22,49,29,50] ,

0 = 𝑧31 + 𝑧1𝑧2𝑧3𝑧4𝑧5 + 𝑧1𝑧
3
5 + 𝑧

8
2𝑧3 + 𝑧

4
2𝑧

3
4𝑧5 + 𝑧2𝑧

7
4 + 𝑧

4
3𝑧4 ,

0 = 48𝑧31 +49𝑧1𝑧2𝑧3𝑧4𝑧5 +6𝑧1𝑧35 +71𝑧82𝑧3 +35𝑧41𝑧
3
4𝑧5 +29𝑧2𝑧74 +25𝑧43𝑧4 .

Weights ∶ [49,22,75,50,29] ,

0 = 70𝑧41𝑧5+12𝑧1𝑧82+39𝑧1𝑧2𝑧3𝑧4𝑧5+90𝑧42𝑧4𝑧
3
5+95𝑧2𝑧75+49𝑧33+11𝑧3𝑧34 ,

0 = 30𝑧41𝑧5 +22𝑧1𝑧82 +23𝑧1𝑧2𝑧3𝑧4𝑧5 +59𝑧42𝑧4𝑧
3
5 +90𝑧2𝑧75 +38𝑧33 +7𝑧3𝑧34 .

4. Machine learning

In order to investigate the efficacy of ML techniques to learn topo-
logical invariants of this dataset of Calabi-Yau links, NNs were chosen 
as the prototypical tool from supervised learning. Since the output in-
variants take a large range of values in each case, the NNs were set up 
for a regression-style problem. The NNs used had the same architecture 
in each case. They had neuron layer sizes of (16, 32, 16), ReLU activa-
tion, and were trained on a MSE loss using an Adam optimiser. These 
layer sizes and the other hyperparameters were set after some heuristic 
tuning for the Gröbner basis ML, then used for the other investigations 
also for consistency. Each NN hence amounts to a map of the form:

ℝ5 𝑓1
←←←←←←←←←←→ℝ16 𝑓2

←←←←←←←←←←→ℝ32 𝑓3
←←←←←←←←←←→ℝ16 𝑓4

←←←←←←←←←←→ℝ1 , (17)

such that each 𝑓𝑖 acts via linear then non-linear action as 𝑓 (x) =
ReLU(W ⋅ x+ b).

In each case, the regression NNs were trained on 5 different par-
titions of the dataset into 80:20 train:test splits in accordance with 
cross-validation, to provide statistical error on the metrics used to as-
sess learning performance. The NNs were implemented in python with 
the use of scikit-learn [66].

These NNs were trained to predict, from an input of the weight 
vectors, the respective Calabi-Yau link Gröbner basis length, Sasakian 
Hodge number ℎ2,1, and the CN invariant. The first two of these in-
vestigations are detailed in the subsequent sections, whilst the final 
investigation is briefly detailed here since this architecture could not 
learn to predict the CN invariant sufficiently well. Performance had 𝑅2

value of ∼ 0.004. Even reducing the problem to a binary classification 
between the two most populous classes (𝜈 = 1 and 𝜈 = 25) did not lead 
to accuracies much above 0.5, indicating no significant learning and 
highlighting the highly non-trivial dependency of this invariant on the 
input polynomial and weight data, despite our computations showing 
the invariant was only dependent on the weight data in accordance with 
Conjecture (7).

4.1. Grobner basis length

By a significant margin, the computational bottleneck (in terms of 
both time and memory) of the invariant calculations was the generation 
of the Gröbner basis. Many initial runs failed from memory overload 
in this step for specific Calabi-Yau links. Through trial and error, we 
diverted our resources to allocate more computational power to the 
harder cases with larger Gröbner bases. However, it would have been 
substantially more efficient if we had approximately accurate predic-
tions of which links would have required more computational power.

This problem again suits itself to ML, where a simple regression 
model can provide quick estimates of Gröbner basis length, and thus 
guide the subsequent allocation of computational resources. Previously, 
ML methods have been used to help optimise specific steps of the Gröb-
7

ner basis algorithm [67,68], and decide when a Gröbner basis would be 
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useful [69]. Yet, only recently has ML been used to predict Gröbner ba-
sis properties directly, e.g. in [70] predictions of Gröbner basis length 
reached 𝑅2 scores ∼ 0.4 for binomial ideals of 2 terms.

For our specific construction the polynomial ideals have much more 
than 2 terms (with the longest polynomial having 680), and 5 terms 
per ideal for each partial derivative of the polynomial. Therefore it is 
prudent to investigate the performance of regression NNs in predicting 
Gröbner basis length for our Calabi-Yau links. These NNs used the same 
hyperparameters as previously specified in (17), with neuron layer sizes 
(16,32,16), ReLU activation, training on a MSE loss with an Adam op-
timiser on a 80:20 train:test data split. Performance measures for the 
learning were:

𝑅2 = 0.964 ± 0.002 ,

MAE = 122 ± 2 ,

Accuracy = 0.947 ± 0.005 ,

(18)

showing excellent performance, especially when comparing the MAE 
score to the Gröbner basis range of values, as shown in Fig. 1. We also 
note that whilst the number of monomial terms in a polynomial does 
correlate with Gröbner basis length, the correlation is not strong (PMCC 
∼ 0.66), and hence ML is much more useful in estimating the length of 
a Gröbner basis. These results corroborate the motivation to use ML in 
improving computational efficiency, particularly here in the application 
of calculating topological invariants; where perhaps the architectures 
are using that the data represents similar geometries to aid learning in 
this case. Inspired by this success, the authors hope to extend, in future 
work, the application of ML to learning more properties of Gröbner 
bases, as well as the basis elements directly.

4.2. Sasakian Hodge numbers

Extending work where NNs have showed surprising success in pre-
dicting Hodge numbers of Calabi-Yau manifolds, we now investigate 
their success in predicting the Sasakian Hodge number ℎ2,1, the compu-
tation of which was described in §3.1.

Using the same NN regressor architecture previously described in 
(17), with neuron layer sizes (16,32,16), ReLU activation, training on a 
MSE loss with an Adam optimiser on a 80:20 train:test data split. The 
ℎ2,1 values for the 7549 Calabi-Yau links computed were learnt with 
performance measures:

𝑅2 = 0.969 ± 0.003 ,

MAE = 5.53 ± 0.22 ,

Accuracy = 0.967 ± 0.004 .

(19)

These results are equivalently strong and exemplify the efficacy of ML 
methods in predicting more subtle topological parameters.

Comparing the predicted ℎ2,1 outputs of a trained NN to the ℎ2,1
𝐶𝑌

values of the input weight system (instead of the intended ℎ2,1
𝑆

values) 
produces lower performance scores across the dataset: 𝑅2 = 0.915, MAE 
= 9.88, Accuracy = 0.912. This reassures that the NN’s are learning the 
Sasakian topology instead of the correlated (and well learnt in previous 
work) Calabi-Yau base topology.

4.3. Sasakian Hodge symbolic regression

Motivated by the highly accurate regression results, one is led to 
expect these NN functions to be approximating a true relation between 
the Sasakian Hodge numbers and the weights used to define the Calabi-
Yau links. In spirit, this could be a similar phenomenon to what was 
observed for the Poincaré polynomial, cf. [71].

To distil some mathematical insight about the function space of ap-
propriate approximations for Sasakian Hodge numbers from weights, 

as equivalently and independently probed by the NN architectures, we 

https://github.com/TomasSilva/MLcCY7.git
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Fig. 5. ML architecture predictions of the ℎ2,1
𝑆

values, against the true values, for the 7549 Calabi-Yau link constructions considered, from: (a) a trained NN; and (b) 

the symbolic regression best model of equation (20).

implement techniques of symbolic regression using PySR [72] to pro-
vide interpretable relations between inputs and outputs, which should 
help guide any investigation of this direct relation bypassing the Milnor 
algebra Gröbner basis computation. The scripts used for the symbolic re-
gression analysis are also available at this work’s GitHub. The (highest 
performing) equation on the independent test data (10% of the dataset) 
proposed by PySR to model Sasakian ℎ2,1 is presented in (20), achiev-
ing 𝑅2 ≈ 0.99 and MAE ≈ 2.6, exceeding the scores of the NN in (19).

ℎ
2,1
PySR(𝑤0,… ,𝑤4) =

14.91𝑤1
(
𝑤0𝑤4 +𝑤3

(
𝑤0 +𝑤3

))
𝑤0𝑤1𝑤2𝑤3

+
10.02𝑤2𝑤3

(
𝑤0 +𝑤4 + 0.77

)
𝑤0𝑤1𝑤2𝑤3

,

(20)

where this expression may shed some light on the structure of the true 
function.

The ℎ2,1
𝑆

predicted value from (20) for each of the Calabi-Yau links 
considered is plotted against the true values in Fig. 5. Additionally the 
plot shows the equivalent predictions for a trained NN, where predic-
tions are less accurate, particularly at higher invariant values.

4.4. Predicting the remaining invariants

As mentioned in §3, in this work the topological invariants have 
been computed for all but 6 of the 7555 weight systems, where HPC 
walltime has been successively exceeded due to the enormous computa-
tional cost. Practically the computations failed at walltimes of 1000 core 
hours using > 200 GB of RAM. However, as demonstrated in the previ-
ous sections, machine learning architectures have shown great success 
in modelling the prediction of these topological invariants. It therefore 
makes sense to apply instances of these very trained models to predict 
the invariant values for the remaining (currently computing) six weight 
systems. The prediction results are shown in Table 1.

Due to the excessive computation time for these remaining 6 weight 
systems, we expect their Gröbner basis lengths to make up the tail end 
of the respective distribution in Fig. 1. The extrapolation capabilities of 
the NN models were briefly tested by training the same NN architecture 
to predict Gröbner basis length from input weight system for 95% of the 
8

dataset pairs with shortest lengths, then testing on the remaining 5% 
Table 1

ML architecture predictions of the well-learnt CY link properties for the remain-
ing 6 weight systems. The Gröbner basis length (GBL) and the Sasakian ℎ2,1

𝑆

values are predicted by the trained NN architectures or the symbolic regression 
(SR) equation.

Invariant GBL ℎ
2,1
𝑆

Architecture NN NN SR

(1, 1, 8, 19, 28) 1531 257 338
(1, 1, 9, 21, 32) 1623 272 377
(1, 1, 11, 26, 39) 1807 293 447
(1, 1, 12, 28, 42) 1879 299 476
(1, 6, 34, 81, 122) 3488 243 243
(1, 6, 40, 93, 140) 3770 265 272

(378 bases). The NN had lower performance scores of: 𝑅2 = 0.594, MAE 
= 452, Accuracy = 0.484; highlighting the importance of interpretation 
of statistical methods for out-of-distribution predictions. However the 
predictions do well identify these test weight systems as having long 
bases, with the minimum predicted basis length on the test data being 
2391, far exceeding the mean of the full dataset (1290). Whilst the 
NN models do predict large lengths for the remaining weight systems’ 
Gröbner bases in Table 1, with values significantly above the average, 
they do not predict values exceeding the current highest value of 7299. 
These predictions are high, as is useful for our implementation but less 
likely to be exact.

Conversely, the Sasakian Hodge number values have been shown 
to only loosely correlate with the Gröbner basis length, hence there 
is only loose intuition that these Hodge numbers should be high. Our 
Conjecture 8 produces some bound on the Sasakian ℎ2,1 values, set by 
the respective Calabi-Yau ℎ2,1 values: 348, 387, 462, 491, 246, 275. 
Interestingly, all predictions from both the NN and the symbolic re-
gression satisfy this bound as well. Furthermore, the better-performing 
symbolic regression model of (20) predicts Hodge numbers very close 
to this bound, which is sensible behaviour, as demonstrated by Fig. 3.

Despite the predictions between the NN and symbolic regressor in 
some cases being quite different, pragmatically mathematicians and 
physicists are often most interested in discerning when Hodge num-
bers are particularly low, such as 0 or 1, as indications of phenomena 

such as exactness, rigidity or unobstruction. Hence, these learnt mod-

https://github.com/TomasSilva/MLcCY7.git
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els can very quickly provide confidence in whether this is the case, by 
making predictions which can test conjectures or corroborate theoreti-
cal expectations.

Our own experienced difficulty in computing the topological invari-
ants for these final 6 remaining cases illustrates the potential of these 
machine learning models. Where direct computation is not feasible, ML 
methods can provide predictions for quantities of interest (such as our 
CY link topological invariants) with statistical confidence, providing in-
valuable insight to guide refinement of the computation, and further 
the progress of academic research.

5. Conclusion

In this work, real 7-dimensional Calabi-Yau links were constructed 
for a complex 3-dimensional Calabi-Yau manifold coming from 7549 of 
the 7555 complex 4-dimensional weighted projective spaces that admit 
them. It was observed, and conjectured, that any Calabi-Yau hypersur-
face with the correct singularity properties leads to the same Sasakian 
Hodge number ℎ2,1 and CN invariant; which (when computed for the 
final 6 evasive cases) will produce an exhaustive list of these invariants 
from the Calabi-Yau link construction.

The datasets of these invariants were statistically analysed, and NN 
regressors were used to successfully predict the respective Sasakian 
ℎ2,1 values from the ambient ℙ4(w) weights alone. The same architec-
tures were not successful in predicting the CN invariant, but did show 
surprising success in predicting the length of the Gröbner basis from 
the weights. These regressors can hence be used to streamline future 
computation of Gröbner basis by informing on efficient computational 
resource allocation.

The exhaustive list of Calabi-Yau link data, as well as the python
scripts used for their analysis and ML are made available at this work’s 
corresponding GitHub.

Avenues for future work include studying whether we can obtain 
Sasakian structure for more general links made through general toric 
varieties rather than weighted projective spaces. As well as application 
of ML techniques to study other Gröbner basis properties to further 
streamline their computation.
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Appendix A. Sasakian Hodge decomposition

We establish some notation and elementary facts about the com-
9

plexified tangent bundle, which are largely adapted from [73]. The
Physics Letters B 850 (2024) 138517

contact structure splits the tangent bundle as 𝑇𝑀 = 𝐵 ⊕ 𝑁𝜉 , where 
𝐵 = ker(𝜂) and 𝑁𝜉 is the real line bundle spanned by the Reeb field 
𝜉. The transverse complex structure Φ satisfies (Φ|𝐵)2 = −1, so the 
eigenvalues of the complexified operator Φℂ are ±

√
−1. The com-

plexification 𝐵ℂ ∶= 𝐵 ⊗ℝ ℂ splits as 𝐵ℂ = 𝐵1,0 ⊕ 𝐵0,1, so we obtain 
a decomposition of direct sum of vector bundles

Λ𝑑 (𝐵ℂ)∗ =
𝑑⨁
𝑖=0

(𝐵𝑖,𝑑−𝑖)∗.

This induces the decomposition of vector bundles

Ω𝑑 (𝑀) =

(
𝑑⨁
𝑖=0

Ω𝑖,𝑑−𝑖
𝐵

(𝑀)

)
⊕

(
𝜂 ∧

(
𝑑−1⨁
𝑗=0

Ω𝑗,𝑑−𝑗−1
𝐵

(𝑀)

))
,

where Ω𝑝,𝑞
𝐵
(𝑀) ∶= Γ(𝑀, Λ𝑝(𝐵ℂ)∗ ⊗Λ𝑞(𝐵ℂ)∗).

Let us briefly describe the transverse complex geometry on a 
Sasakian manifold (𝑀, 𝜂, 𝜉, 𝑔, Φ), following [45] and references therein. 
Relatively to the Reeb foliation, the usual Hodge star induces a trans-

verse Hodge star operator ∗𝑇 ∶ Ω𝑘
𝐵
(𝑀) →Ω𝑚−(𝑘+1)

𝐵
(𝑀) by the formula

∗𝑇 (𝛽) = (−1)𝑚−1−𝑘 ∗ (𝛽 ∧ 𝜂). (A.1)

Both operators are compatible, in the sense that

∗ 𝛼 =∗𝑇 𝛼 ∧ 𝜂, ∀𝛼 ∈Ω∙
𝐵
(𝑀). (A.2)

Now, acting on (𝑝, 𝑞)-forms, we have well-defined operators

𝜕𝐵 ∶ Ω𝑝,𝑞
𝐵

→Ω𝑝+1,𝑞
𝐵

and �̄�𝐵 ∶ Ω𝑝,𝑞
𝐵

→Ω𝑝,𝑞+1
𝐵

. (A.3)

In terms of the transverse Hodge star (A.1), the operators (A.3) have 
adjoints

𝜕∗
𝐵
∶ Ω𝑝,𝑞

𝐵
→Ω𝑝−1,𝑞

𝐵

𝜕∗
𝐵
∶= − ∗𝑇 𝜕𝐵 ∗𝑇

and
�̄�∗
𝐵
∶ Ω𝑝,𝑞

𝐵
→Ω𝑝,𝑞−1

𝐵

�̄�∗
𝐵
∶= − ∗𝑇 �̄�𝐵 ∗𝑇 .

(A.4)

An inner product on Ω∙(𝑀) is defined by:

(𝛼, 𝛽)𝑀 = ∫
𝑀

𝛼∧ ∗ 𝛽 = ∫
𝑀

𝛼∧ ∗𝑇 𝛽 ∧ 𝜂. (A.5)

Defining Δ�̄�𝐵 ∶= �̄�∗
𝐵
�̄�𝐵+ �̄�𝐵�̄�∗𝐵 , 𝐻𝑝,𝑞 ∶= ker Δ�̄�𝐵 ⊂Ω𝑝,𝑞

𝐵
, the space 𝐻𝑘

of harmonic 𝑘-forms on 𝑀 has the following decomposition [41,74]:

𝐻𝑘 =
⨁
𝑝+𝑞=𝑘

𝐻𝑝,𝑞, with �̄�𝑝,𝑞 =𝐻𝑞,𝑝, 𝑘 ≤ 𝑛. (A.6)
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