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We introduce a novel machine learning based framework for discovering integrable models. Our
approach first employs a synchronized ensemble of neural networks to find high-precision numerical
solution to the Yang-Baxter equation within a specified class. Then, using an auxiliary system of
algebraic equations, [Q2, Q3] = 0, and the numerical value of the Hamiltonian obtained via deep
learning as a seed, we reconstruct the entire Hamiltonian family, forming an algebraic variety. We
illustrate our presentation with three- and four-dimensional spin chains of difference form with local
interactions. Remarkably, all discovered Hamiltonian families form rational varieties.

Symmetry is one of the most fundamental and beauti-
ful tools for understanding physics. It guides the devel-
opment of new theories, enhances physical intuition, and
reveals deep underlying mathematical structures. Inte-
grable models are a special class of systems with an in-
finite group of hidden symmetries, allowing them to be
solved exactly at any interaction strength. These models
appear in numerous areas of theoretical physics, ranging
from quantum mechanical systems like spin chains and
lattice models to quantum field theories (QFT) and string
theories. They often capture essential non-perturbative
phenomena and provide a powerful framework for theo-
retical exploration. However, discovering new integrable
models remains a formidable challenge, with no system-
atic approach currently available. At the core of inte-
grability lies the Yang-Baxter Equation (YBE), a fun-
damental constraint that the S-matrix in QFTs and the
R-matrix in spin chains and lattice models must satisfy.
Solving the YBE is challenging due to its nonlinearity
and the enormous number of possible cases to analyze.
Over the years, this problem has been approached using
various methods. For one, there are algebraic approaches
reliant on the symmetries of the R-matrix or Hamiltonian
[1–6]. Secondly, methods based on directly solving YBE
or differential equations associated with them [7]. The
third alternative which has recently been developed uti-
lizes the boost operator to generate higher charges and
impose their commutativity, a constraint also known as
the Reshetikhin condition [8–11]. The last method is
quite general in principle; however, in practice, its appli-
cation is limited to systems with a relatively small num-
ber of vertices. Otherwise, the YBE and the algebraic
system representing the Reshetikhin condition becomes
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excessively complex. In order to overcome this significant
computational barrier, we had previously introduced a
neural network solver, the R-Matrix Net [12]. We had
further provided experiments which indicated the util-
ity of this method to explore the landscape of integrable
models within a fixed setting where a complete classi-
fication of solutions was already known [8]. However in
order to claim discovery of a new model and perform fur-
ther analysis, numerical method must eventually find a
way towards an analytic solution. Then, one may explic-
itly verify that the criteria for integrability are identically
satisfied, thus resolving questions of numerical precision.

In this paper we introduce a novel AI-based frame-
work for the systematic discovering integrable systems
in the exact analytical form. The construction hinges
on two key elements, the first one is the R-Matrix Net
whose primary goal is to find a high-precision numeri-
cal R-matrix from a specified class. The corresponding
numerical Hamiltonian is extracted using Equation (11).
The second key element is the Reshetikhin condition (16).
For us, this equation is used to extract the exact ana-
lytical form of the integrable Hamiltonian family from
the initial numerical one. The R-matrix itself can then
be obtained using standard analytical methods such as
the small spectral-parameter expansion or the Suther-
land equation [8–11] We apply this framework to local
spin-chains with site space of dimension d, and restrict
ourselves to R-matrices of difference form. We showcase
examples in dimensions d = 3, 4 . Our analysis yields sev-
eral hundred new integrable Hamiltonian families which
also appear to be interesting from an algebro-geometric
point of view.

While ML has been applied to the analysis of integrable
systems [12–17] and, more broadly, to the study of sym-
metries in physical systems [13–15, 18–21], this work is
the first to systematically derive analytic expressions for
multiple new Hamiltonians across various settings. We
now overview our framework with an example.
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I. OVERVIEW

The YBE is system of d6 cubic functional equations in
d4 variables. As such it is non-linear and highly overde-
termined, which makes even numerical algorithmic scans
for solutions highly prohibitive. In this paper, we in-
troduce a new approach that combines a highly efficient
neural network-driven numerical search with a procedure
for extracting the analytical form of new integrable mod-
els. While a comprehensive explanation can only be made
after the key ingredients are suitably defined, we will an-
ticipate our results with an illustrative new model .

1. Initialization: We start by choosing a suitable
ansatz, motivated either by generality, symmetry
conditions or even the prior knowledge of an exist-
ing ansatz. In our illustrative case, we take d = 3
and consider R-matrices with subsets of activated
vertices from this pattern:

R =



∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗


, (1)

2. Exploration: We use the neural network to scan this
ansatz for the presence of new solutions of YBE,
aided by the integrability criterion defined below in
(16). Typically, the Hamiltonians thus discovered
obey the integrability criterion (16) to O

(
10−4

)
.

See Section IV for more details.

3. Hamiltonian Extraction: We look for an algebraic
variety of integrable models in the vicinity of the
numerically found Hamiltonian. The general way
to do this is somewhat involved and we postpone
the discussion to Section V. One point worth men-
tioning here is that the method for extracting exact
relations relies on the integer nature of the coeffi-
cients in the polynomial relations between Hamilto-
nian entries, which enables rounding of numerical
data. While we do not have a formal proof yet,
our findings thus far suggest that deriving poly-
nomial relations with integer coefficients has been
sufficient for solving 16. One of the simplest inte-
grable families we discovered from the (1) pattern
is a 25-vertex model that forms the following three-
parameter linear variety.:

α = hii , i = 1 . . . 9 ,

β = h15, h95, −h35, −h75,

− h5i , i = 1, 3, 7, 9 ,

γ = h24, h26, h62, h68,

− h42, −h48, −h84, −h86 .

(2)

FIG. 1. Compact Scheme of our workflow

4. R-matrix: The R-matrix is extracted using the
Hamiltonian, derived in the previous step, as a
starting point. We utilize one of the standard meth-
ods such as small-parameter expansion, or solving
the Sutherland equations [8–11]. In the present
case, the final result obtained is remarkably sim-
ple. We find

R (u) = P exp (uH) , (3)

where P is a permutation matrix (8) and exp is the
matrix exponential. It can be explicitly checked
that this R-matrix obeys the Yang-Baxter equa-
tion. R-matrices found for other new integrable
systems are significantly more complicated.

The outlined workflow is schematically visualized in Fig-
ure 1.

II. QUANTUM INTEGRABLE SPIN-CHAINS

We consider quantum-integrable spin chains with L
site vector spaces Vi isomorphic to Cd. The Hilbert space
is then the L-fold tensor product V = V1 ⊗ ...⊗ VL. The
HamiltonianH of a spin chain with nearest-neighbour in-
teraction is a sum of two-site Hamiltonians Hi,i+1 which
encode interactions between degrees of freedom on the
i-th and the i+ 1-th site respectively:

H =

L∑
i=1

Hi,i+1 , (4)

where periodic boundary conditions HL,L+1 ≡ HL,1 are
assumed. Quantum integrability implies the existence of
a tower of the mutually commuting charges Qn:

[Qm,Qn] = 0 . (5)

The construction of these charges and the proof of quan-
tum integrability is based on the existence of the R-
matrix operator Rij ∈ End (Vi ⊗ Vj) which encodes
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the Hamiltonian and higher conserved charges, as re-
viewed below. The R-matrix elements are generally bi-
holomorphic functions Rij (u, v) of two spectral parame-
ters u, v ∈ C, but we specialize to the case of difference
form i.e.

Rij(u, v) ≡ Rij(u− v) . (6)

These R-matrices are constrained to obey the Yang-
Baxter equation [22, 23]

Rij(u− v)Rik(u)Rjk(v) = Rjk(v)Rik(u)Rij(u− v) , (7)

where both the operators on the left-hand and right-hand
sides are endomorphisms over Vi ⊗ Vj ⊗ Vk. In addition,
imposing locality further fixes

Rij(0) = Pij , (8)

where Pij is the permutation matrix. All charges Qn

are encoded in the R-matrix through the transfer matrix
T (u) defined as

T (u) = tra (Ra,L(u)Ra,L−1(u) . . . Ra,1(u)) , (9)

where a denotes an auxiliary spin site. The transfer ma-
trix can be formally expanded to extract the conserved
charges through

log T (u) =

∞∑
n=0

Qn+1
un

n!
. (10)

In particular, the second charge is just the Hamiltonian
Q2 = H introduced earlier in equation (4) and the Hamil-
tonian densityHi,i+1 can be generated from the R-matrix
using

Hi,i+1 = R−1
i,i+1(u)

d

du
Ri,i+1(u)|u=0

= Pi,i+1
d

du
Ri,i+1(u)|u=0 ,

(11)

where Pi,i+1 is the permutation operator between sites
i and i + 1. Let’s mention that, given a solution of the
Yang-Baxter equation, one can generate new ones by act-
ing on the R-matrix with the following transformations :
i) similarity transformation : (Ω ⊗ Ω)R(u)(Ω−1 ⊗ Ω−1)
where Ω ∈ GL(V ) is a basis transformation, ii) rescal-
ing of the spectral parameter : u → c u , ∀ c ∈ C,
iii) multiplication by any scalar holomorphic function
f(u) preserving regularity condition : R(u) → f(u)R(u),
f(0) = 1. This degree of freedom can be used to set
one of the entries of R-matrix to one or any other fixed
function, iv) permutation, transposition and their com-
position: PR(u)P, R(u)T , PRT (u)P . It means that one
is rather interested in the classes of equivalence modulo
these transformations. However, in what follows we will
not aim at the full classification problem and the full fix-
ing of all these degrees of freedom will not be crucial for
us.

III. FAMILIES OF INTEGRABLE MODELS AS
ALGEBRAIC VARIETIES

As was shown in [24], higher charges can be generated
with the use of the Boost operator B :

B =

∞∑
a=−∞

aHa,a+1 (12)

as commutators:

Qr+1 = [B,Qr] . (13)

For spin-chains of finite length L, these charges can be
written as a sum over the r-site Hamiltonian densities
Ha,...,a+r as follows:

QL
r =

L∑
a=1

Ha,a+1,..,a+r−1 . (14)

For example, the density of Q3 is given by the following
commutator :

Ha,a+1,a+2 = [Ha,a+1, Ha+1,a+2] . (15)

In the following, we shall focus on the constraint

[QL
2 ,QL

3 ] = 0 , (16)

This is a necessary condition for quantum integrability,
that has long been conjectured to be a sufficient one as
well [25]. It can also been seen as the global version of
the Reshetikhin condition. To the best of our knowledge,
there is neither a proof, nor any counterexamples. For-
mally, a solution of (16) is just a potentially integrable
Hamiltonian. However, given the strong evidence in favor
of this conjecture, we will just write “integrable” instead
of “potentially integrable”. In order to prove integrabil-
ity, one should obtain the R-matrix associated with the
Hamiltonian satisfying the above Reshetikhin condition,
and we will illustrate several explicit examples for the
same. However, the most nontrivial part is identification
of the integrable Hamiltonian, and it will be the main
focus for us. In order for this condition (16) to be non-
degenerate, the minimal length of the spin-chain should
be L = 4. If the site-space is d-dimensional, the cor-
responding two-particle Hamiltonian has d4 parameters
while the constraint (16) furnishes d8 scalar equations.
For example in the case of d = 3 the condition (16) thus
imposes 81 × 81 = 6561 cubic polynomial equations on
the 9× 9 = 81 entries of the Hamiltonian density - com-
plexity inaccessible for any existing computational meth-
ods. Using (14) and (16) one can see that the condition
(16) provides the system of homogeneous cubic equations
with integer coefficients on the entries of the Hamiltonian
density :

H = Hi,i+1 =

 h11 ... h1d2

... ... ...
hd21 ... hd2d2

 , (17)
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These equations define an algebraic variety in CPd4−1

whose irreducible components are families of integrable
models. Namely, let’s introduce the ideal I ⊂ C[hij ] gen-
erated by this system of equations, then the algebraic
variety V (I) can be decomposed into irreducible compo-
nents

V (I) =
⋃
i

V (Ii) , (18)

where each Ii is a prime ideal. The fact that the coef-
ficients in (16) are integers does not guarantee that the
system of defining equations for irreducible components
can also be chosen with all integer coefficients. However,
as we will see in all our examples, extracting polynomial
relations with integer coefficients turnes out to be suffi-
cient to identify the irreducible component.

The groups of transformations i)-iv) mentioned above
act on the irreducible components, and the factors are
again algebraic varieties. In this paper our prime goal
is to set up the framework for the discovering new inte-
grable models in various classes, rather than full classifi-
cation so we will not care about the global parametriza-
tion of this space of orbits and instead will use the
standard in physics literature notation of vertex mod-
els, specifying nonzero components of the Hamiltonian
density and R-matrix. We can use a gauge transforma-
tion Ω ∈ SL(d,C) to set d2−1 elements of the d4 entries
of H to zero, which practically fixes the gauge. In what
follows, we usually will consider the k-vertex models with
k < d4 − d2 + 1. We will specify a certain “pattern” -
set of nonzero entries of R-matrix as ΠR and the cor-
responding pattern for the Hamiltonian as ΠH . Fixing
the gauge or pattern reduces the number of independent
variables and equations, but the problem remains highly
complex. As sketched in the introduction, we will utilize
neural networks to overcome it.

IV. NEURAL NETWORKS AS NUMERICAL
SOLVERS OF THE YANG-BAXTER EQUATION

We will utilize neural networks to find numerical solu-
tions of YBE, which will subsequently serve as a seed for
further numerical refinement and extraction of analyti-
cal expressions. At a conceptual level, neural networks
allow us the flexibility of scanning across the vast variety
of candidate solution spaces relatively quickly and also
deal with the non-convexity of the optimization prob-
lem at hand. We had previously proposed the archi-
tecture R-Matrix Net for precisely this kind of analysis
[12]. The building block for the R-Matrix Net is the
fully-connected neural network, i.e. the multi-layer per-
ceptron (MLP). These networks consist of an input layer
ain ∈ Rn0 , followed by a series of fully connected lay-
ers and terminate in an output layer aout ∈ RnL+1 . More
explicitly it is an ansatz which has the form of the compo-
sition of alternated affine and nonlinear transformations:

aout = h̃ ◦A(L+1) ◦ h ◦A(L) ◦ ... ◦ h ◦A(1) ◦ ain , (19)

where affine transform A(ℓ)(a(ℓ−1)) ≡ w(ℓ)a(ℓ−1) + b(ℓ) is
parametrized by a weight matrix w(l) ∈ M(nl, nl−1,R)
and bias vector - b(l) ∈ Rnl . h is a non-linear, non-
polynomial activation function which acts element-wise
over z while h̃ is the activation function for the output
layer, which is just the identity map in our case. These
MLPs are trained by optimizing a loss function in terms
of parameters wℓ and bℓ. In the most basic implementa-
tion, this loss function may encode pairs of input-output
values, but it is well established by now that loss func-
tions can also efficiently encode more complex proper-
ties of the target function such as being solutions of dif-
ferential or functional equations. The feasibility of this
approach is motivated by the well known universal ap-
proximation property of MLPs [26–30] along with their
feature learning capabilities. Together, these provide jus-
tification that a neural network may approximate any
function over a finite interval of arguments and the de-
sired properties of the target function be encoded in loss
functions with respect to which the neural network can
be trained. These observations are also the key driver to
the automated search for R-matrices which we have im-
plemented here and previously in [12]. It was proposed
that each non-zero function in the R-matrix ansatz be
modeled by such a neural network and the overall archi-
tecture be trained on loss functions encoding the Yang-
Baxter equation, locality and additional constraints on
the Hamiltonian and/or R-matrix, if any. In particular,
we define the matrix norm ||...|| as

||A|| =
n∑

α,β=1

|Aαβ | (20)

for a complex-valued n × n matrix A then the Yang-
Baxter loss

LY BE = ||R12(uc)R13(ua)R23(ub)

−R23(ub)R13(ua)R12(uc)|| ,
(21)

where {ua, ub, uc ≡ ua − ub} are points drawn from the
interval (−1, 1). The locality condition (8) is encoded in
the loss functions as

Lreg = ||R (0)− P ||. (22)

In the similar manner we can implement other constraints
like hermiticity of the Hamiltonian, braiding unitarity,
crossing etc. These losses are positive semi-definite and
vanish only when the corresponding functional identities
are exactly satisfied. Finally once we found a certain
Hamiltonian from the given class we can activate repul-
sion loss

Lrepulsion = exp (−||H −Ho||/σ) , (23)

for several epochs to scan the vicinity of the found Hamil-
tonian for other representatives from the same class, see
[12] for further details. In this paper we will make the
main focus on the most nontrivial YBE loss assuming a
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certain pattern for the R-matrix and locality, no other
restrictions will be imposed. In order to navigate the the
search we will also implement the loss function LQ2Q3

encoding Reshetikhin condition :

LQ2Q3 = max |[Q2,Q3]| . (24)

where max |M | = max
i,j

|Mij |. This loss not only improves

the training but also provides a natural metric to mea-
sure the “closeness” of the found Hamiltonian to an in-
tegrable one. Empirically, we observed that a terminal
value of LQ2Q3

∼ O
(
10−4

)
corresponds to a candidate

integrable Hamiltonian family which can be found by our
subsequent methods.

A. Averting Mode Collapse

In order to prevent the neural network from converg-
ing onto a trivial solution, a phenomenon known as mode
collapse, we may introduce a loss function that penalizes
such solutions. More generally we can prevent the con-
vergence to already known solutions. For example, to
encourage O (1) terms in the Hamiltonian, we may intro-
duce a loss function ensuring unit norm for the weighted
absolute sum of the Hamiltonian entries Hij , i.e.

Lm.c. =

∣∣∣∣∣∣
 1

n

∑
i,j

|Hij |

− 1

∣∣∣∣∣∣ , (25)

n being the number of non-zero Hamiltonian entries. One
natural extension of this loss is to differently penalize the
vanishing of different Hamiltonian entries. For example,

L̃m.c. =

∣∣∣∣∣
(

1

ndiag

∑
i

|Hii|

)
− λdiag

∣∣∣∣∣
+

∣∣∣∣∣∣
 1

noff−diag

∑
i̸=j

|Hij |

− λoff−diag

∣∣∣∣∣∣ ,
(26)

where we distinguish between diagonal and off-diagonal
entries in the learnt Hamiltonian, and λdiag, λoff−diag

are the hyperparameters which control the relative
strengths of the two repulsions. As a further extension,
if we want to avoid solution-classes satisfying known con-
straints, say {Ck} we can add a further term to this mode
collapse,

Ltotal
m.c. =L̃m.c. +

∣∣∣∣∣
(∑

k

µk |Ck|

)
− λrepul

∣∣∣∣∣ , (27)

where µk, λrepul are further new hyperparameters. In
practice, we fix these hyperparameters randomly to some
positive values between 0 and 1 at the start of each op-
timization run. For example if we want to repulse from
the given family of Hamiltonians we can choose {Ck} as
a Gröbner basis Gk({hij}) of the ideal defining this sub-
variety and set λrepul = 0, µk = 1.

FIG. 2. The evolution of the training and validation losses
for a typical round of training the neural network. The x axis
is plotted in units of 100 iterations of gradient descent. The
y axis is in log scale. The mode collapse loss is turned off at
200 × 100 iterations, indicated by the gray vertical line.

B. Neural Network Implementation and Training

We now overview the neural network architecture
and the hyperparameters for training the R-Matrix Net
which we introduced previously in [12]. The architec-
ture is a set of independent MLPs, in one-to-one corre-
spondence with the non-vanishing entries of the R-matrix
dictated by the pattern. In principle, this would yield an
architecture comprising O

(
d4
)
number of independent

neural networks which are trained using the loss func-
tion

L =
∑
Λ

wΛLΛ , (28)

where wΛ is the relative weight for the loss term LΛ

and Λ={Y BE , reg ,m.c. ,Q2Q3}. Given the computa-
tional demands, we rewrote the R-Matrix Net from the
ground up in JAX which utilizes just-in-time (JIT) com-
pilation and additionally provides highly sophisticated
auto-differentiation capabilities which are also crucial for
implementing our loss functions [31]. The hyperparam-
eters wΛ and others are further elaborated on in Table
I. Training typically proceeds for Nsteps = 50000 itera-
tions of gradient descent and a batch size of 32 to 128
u, v pairs sampled randomly from Ω = (−1, 1) at each
iteration. Default run involves attenuating the weights
wm.c., wQ2Q3

by a factor of 10 after a fixed number of it-
erations, we call the turn-off time tTO, to allow YBE loss
and regularity to drive the final phase of optimization.
The evolution of various losses during typical rounds of
training is shown in Figures 2 and 3.

V. HAMILTONIAN EXTRACTION

In principle, the primary decomposition (18) can be
performed using Gröbner basis or other standard com-
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FIG. 3. The decomposition of the validation loss into its
various constituents in a typical round of training the network.
The x axis is plotted in units of 100 iterations of gradient
descent. The y axis is in log scale. The mode collapse loss
is turned off at 200 × 100 iterations, indicated by the gray
vertical line.

TABLE I. The hyperparameters of R-Matrix Net, represen-
tative choices for their values and scheduling policy, as appli-
cable.

Parameter Configuration

η (Adam learning rate)

Initial value: 10−3

Final value: 10−8

Scheduling: annealing factor,
monitor val. loss,
patience = 500 iterations

wY BE
Weight for LY BE in net loss
Value: 1.0 (constant)

wreg
Weight for Lreg in net loss
Value: 1.0 (constant)

wm.c.

Weight for Lm.c. in net loss
Penalizes trivial/known solutions
Init value: 1.0 (constant)
Final value: 0.1(after
tTO=20,000 iterations)

wQ2Q3

Weight for LQ2Q3 in net loss
Sub-leading to Lm.c.

Init value: 0.1 (constant)
Final value: 0.01 (after
tTO=20,000 iterations)

putational techniques. However, the complexity of these
algorithms typically increases very rapidly—often dou-
ble exponentially—making them impractical for the cases
of interest. Indeed even in the simplest case of two-
dimensional site-space we have 256 cubic equations (16)
depending on 16 variables. However, as one can see in
[8], the Hamiltonians are extremely simple, there are just
14 different classes with 12 families forming linear vari-
eties and two others involving simple quadratic relations.
Other examples from literature demonstrate similar sim-
plicity, suggesting that we should look for such relations
between Hamiltonian entries and then use them to solve

the system (16). Let’s describe this strategy in more de-
tails.
1) R-Matrix Net outputs a new numerical Hamilto-

nian Hseed with entries of order O(1) and typical preci-
sion ∼ 10−4 − 10−3.
2) We next solve algebraic equations (16) in the vicin-

ity of Hseed. At the given precision, the problem turns
out to be (almost) convex and standard numerical meth-
ods can improve precision to 10−10−10−8 or even higher
if needed. We then perform N random perturbations
δH ∼ O(10−2) of the original Hamiltonian Hseed + δH
and again solve (16). It gives us a cloud V of high-

precision Hamiltonians V = {H(k)
num}, 1 ≤ k ≤ N .

3) Because the perturbations δH are small, we expect
that the Hamiltonians V belong to a certain irreducible
component (18), and as explained above, we expect vari-
ous simple polynomial relations between nonzero Hamil-
tonian entries {hij} on V. Let’s describe it in more de-
tails. First we consider just linear relations between K
nonzero Hamiltonian entries η = {hij} and we will use a
single index α ∈ (1, ..,K) to numerate them. As an initial

step, we construct N lists η(k) from H
(k)
num and combine

them into the one N×K matrix M = {η(1), .., η(N)}. Be-
cause the numerical Hamiltonians V are generated from
random perturbations, they will all be in general posi-
tions, and we can choose N = K. In order to find the
linear relations on V we use the singular value decompo-
sition (u, σ, v) :

M = uσv† , (29)

where σ with singular values of M on the diagonal or-
dered as σi,i ≥ σi+1,i+1. Vanishing singular values
σi,i = 0, i ≥ i0 correspond to linear relations :

Ri =

K∑
α=1

vα,iηα = 0, i ≥ i0 . (30)

Let’s mention that in practice vanishing singular values
are not exactly zeros but small numbers and we introduce
an cutoff to distinguish them from non-vanishing ones.
Finally we choose i0 − 1 independent variables (or less if
the rank is smaller) , let’s say η1, ..., ηi0−1 and solve the
system

Ri = 0, i ≥ i0 , (31)

with respect to them:

ηβ =

i0−1∑
i=1

c̃β,iηi, β > i0 − 1 . (32)

In all cases we analyzed, the coefficients c̃β,i were very
close to integer numbers if the precision for V was high
enough, which suggests that we should just round them
cβ,i = Round[c̃β,i] and use

ηβ =

i0−1∑
i=1

cβ,iηi (33)
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as exact relations. In principle one can use them to re-
duce the number of independent Hamiltonian entries and
then repeat the similar algorithm to extract the linear re-
lations between more general monomials {ηi}, {ηiηj}, ...,
however, in practice even linear relations (33) often turn
out to be enough to drastically simplify and solve the
system (16).

The crucial element of this procedure is the integrality
of coefficients cβ,i. Although a formal proof is not yet
available, all cases studied so far indicate that extracting
polynomial relations with integer coefficients has been
sufficient to obtain a solution.

VI. EXAMPLES OF NEW MODELS

The ingredients described in Sections IV and V yield
a few hundred new Hamiltonians that are integrable in
the sense of the Reshetikhin criterion (16), too numerous
to exhaustively detail here. We will therefore highlight
only a few highly illustrative examples, and provide R-
matrices for some of them. The discussion that follows
should be read in conjunction with the workflow outlined
in Section I.

a. Example 1 The Hamiltonian we presented in Sec-
tion I, see Equation (2).

b. Example 2 Lets look at another general pat-
tern that likely encompasses many families of integrable
Hamiltonians. In [8] authors found six classes of inte-
grable spin-chains with two-dimensional site space and
upper triangular R-matrix (plus terms in lower triangu-
lar part originated from permutation). Generalizing such
an ansatz to three dimensions, we start with an upper
triangular R-matrix.

R =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 ∗ 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ 0 ∗ ∗
0 0 0 0 0 0 0 0 ∗


, (34)

One of the simplest models we found is the following
15-vertex model consisting of 9 diagonal terms hii and six
off-diagonal h13, h17, h19, h39, h46, h79 with the following
relations :

h11 = h99, h66 = h55 ,

h33 = h11 − h44 + h55, h77 = h11 + h44 − h55 ,

h88 = h22 + h44 − h55, h39 = h13 + h17 − h79 .

(35)

The corresponding R-matrix is somewhat lengthy and is
given below in Equations (A1) and (A2).
In appendix (B 1) we list another pair of new upper-

triangular integrable families with 19 vertex Hamiltoni-
ans, which differ only by h55, illustrating how close the

models can be. Many other examples of models obtained
from the upper-triangular ansatz can be found in the at-
tached file.
c. Example 3 Another strategy is to relax (symme-

try) constraints in known models. For example, we can
consider the general 19 vertex ice-rule ansatz (see equa-
tion (B7)) and relax any additional symmetry assump-
tions (see [32]). We found several interesting solutions in
the setting, such as the following two-parameter family
of Hamiltonians:

h11 = h99 = 1 ,

h24 = h42 = h37 = h73 = h68 = h86 = α ,

h35 = h53 = h57 = h75 = β ,

h22 = h66 = −1 + α− β2

α ,

h33 = −h44 = −h88 = −3 + 3α− 2β2

α ,

h55 = 1− 2α+ β2

α , h77 = 5− 5α+ 4β2

α .

(36)

Another such example is presented in Appendix (B 2).
d. Example 4 is a d = 4 spin system obtained from

an extension of the d = 4 XXZ pattern (see [33] for an
earlier analytic search). The 2-site Hamiltonian HIJ is a
16 × 16 matrix, with indices I, J enumerated using the
hexadecimal system {1, . . . , 9, A, . . . ,G}. The nonzero
entries of the Hamiltonian include: all 16 diagonal terms
hii, plus 8 off-diagonal terms h25, h52, h4D, hD4, h7A,
hA7, hCF , hFC . These entries are related by the following
identities

h11 = −h55 + h77 + h99, h22 = hAA − h55 + h77,

h33 = −2h55 + 2h77 + h99, h66 = hAA + h55 − h99,

hBB = −h55 + h77 + h99, hCC = hAA − hFF + h77,

hDD = hFF + h55 − h77, hGG = hAA + h55 − h99,

h52 = hD4h4D

h25
, hA7 = hD4h4D

h7A
, hFC = hD4h4D

hCF
,

h44 = hAA − hFF − h55 + 2h77 ,

h88 = hAA − hFF + h55 + h77 − h99 ,

hEE = hAA + hFF + h55 − h77 − h99 .

(37)

e. Hundreds of other examples: For illustrative pur-
poses, we attach a Mathematica file containing hundreds
of additional examples. While this represents only a frac-
tion of our findings, it provides insight into the diver-
sity of models, even when they share the same vertices.
As previously mentioned, new models can be generated
by relaxing one or two constraints in already discovered
ones, which is how some of the presented models were
obtained.

VII. DISCUSSION AND FUTURE DIRECTIONS

In this paper we introduced a novel AI-based frame-
work to discover new integrable models. It combines the
R-Matrix Net neural network with the auxiliary system
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of algebraic equations (16) and the procedure V to ex-
tract exact relations defining Hamiltonian families from
the deep-learned data.

From the algebraic geometry point of view we con-
struct irreducible components of the algebraic variety de-
fined by (16). The extraction of exact relations described
in section V crucially relies on the fact that coefficients
are integers, which allows us to round off our numerical
data. While we do not yet have a formal proof, all our
cases so far have demonstrated that extracting polyno-
mial relations with integer coefficients has been sufficient
to solve 16. Moreover all integrable Hamiltonians we
found, remarkably, can be written as rational varieties
and we would like to conjecture that all irreducible com-
ponents (18) are (uni)rational varieties. It is possible in
principle, that the conjecture may eventually need to be
qualified by an as yet unknown, but fairly general extra
constraint. Reshetikhin condition has the form of the
vanishing commutator, and in the simpler case of com-
muting varieties the rationality was already proved [34].
Some of the discovered Hamiltonians form highly com-
plex varieties – see e.g. (B6) – making it tempting to ini-
tiate their systematic analysis using algebraic geometry.
In particular, studying their topology by computing ho-
mology groups could reveal distinctive properties of this
class of varieties and inspire a new research direction in
the algebro-geometric analysis of integrable models.

Furthermore, by fully automating Hamiltonian extrac-
tion, we could potentially generate hundreds of thou-
sands or even millions of new models, creating a novel
type of big data. This dataset could, in turn, be ana-
lyzed using AI techniques, akin to the machine-learning
approaches applied to the string landscape [35–38].

We emphasize that the primary focus of this work was
the discovery of integrable Hamiltonians, understood as
solutions to the Reshetikhin condition. As mentioned
in the introduction, all solutions found so far have led
to corresponding R-matrices. However, in principle, ver-
ifying the existence of an associated R-matrix requires
a separate analysis for each case. While we explicitly
carried out this verification for only a few examples, it
is important to highlight that our method is based on
numerically solving the YBE and the high precision of
these numerical solutions provides additional confirma-
tion of the existence of R-matrices behind the extracted
Hamiltonians.

The framework developed in this work is highly flexi-
ble and can be adapted to various integrable models be-
yond spin chains. In particular, it can be used to sys-
tematically search for new 2D integrable quantum field
theories [39]. In this case, additional constraints—such
as unitarity, crossing symmetry, global symmetries, and
analyticity—must be incorporated. These can be imple-
mented directly at the neural network architecture level
and through additional terms in the loss function.

Next, to set up the search for integrable string world-
sheet sigma models on an AdS background, we need to
extend our approach to S-matrices of non-difference form

[40–43]. In this case, the Boost operator will be modi-
fied by an additional derivative term with respect to the
second spectral parameter, resulting into the Reshetikhin
condition in the form of first-order ODE system. How-
ever, we can formally treat these first derivatives as a
new set of algebraic variables and analyze the resulting
augmented algebraic variety. Once its irreducible compo-
nents are extracted, the drastically simplified ODE sys-
tem may become much easier to solve.

With mild modifications we also can discover new
Lindbladian systems [44–47], spin-chains with medium-
range interaction [48] and R-matrices providing quantum
gates for quantum computers [49–54].

In addition, integrable models often exhibit symme-
tries associated with certain algebras, such as Yan-
gian, Hecke, Temperley-Lieb algebras etc. The discov-
ery of new integrable systems and their corresponding
R-matrices is likely to uncover novel algebraic structures,
which may be of independent interest to mathemati-
cians. Further, R-matrices are well known as a source
of topological knot invariants. Adapting our method to
search for new invariants would be an exciting direction.
In particular, for a given pair of knots that remain in-
distinguishable by known invariants, one could employ
R-Matrix Net to search over R-matrices to identify new
invariants aiming to distinguish the pair. This approach
could be combined with other ML-based techniques to
the analysis of knots [55–57].

The ability to extract exact analytical formulas places
our project among the very few existing examples of AI-
generated or AI-assisted mathematical discoveries. In the
medium- to long-term, our framework could be of inter-
est not only to human researchers but also to AI agents
(tool-use), serving as a testbed for automated scientific
discovery. One can envision for instance an AI agent
[58–63], built on a fine-tuned LLM, that analyzes arXiv
papers to identify promising classes of models and then
utilizes our framework to conduct an exact search for new
integrable systems.
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APPENDIX

Appendix A: R-matrix for the upper-triangular
15-vertex Model

We present the non-vanishing elements of the R-matrix
corresponding to the 15-vertex Hamiltonian of Equation
(35).

r11 = r99 = eh11u , r42 = eh22u , r24 = eh44u ,

r55 = r86 = eh55u , r73 = r37 = eh33u , r68 = eh88u ,

r13 = h13

h44−h55
e13 (u) , r79 = h39

h44−h55
e13 (u)

r17 = h17

h44−h55
e71 (u) , r39 = h79

h44−h55
e71 (u)

r26 = h46

h44−h55
e45 (u) ,

(A1)

and finally

r19 =
e−h33u

2 (h44 − h55)
2

[
(h13h39 + h17h79) e

2
31

− h19(h44 − h55)
(
e2h33u − e2h11u

)]
.

(A2)

where we have defined the combinations

eij (u) = ehiiu − ehjju, (A3)

for notational convenience.

Appendix B: More integrable Hamiltonians

In this appendix, we present additional findings on
novel integrable Hamiltonians mentioned in the main sec-
tions. For further examples, please refer to the attached
Mathematica file.

1. Hamiltonians arising from upper-triangular
ansatz

We now show two families, denoted U1, U2, of inte-
grable Hamiltonians with 19 non-zero entries, obtained
on starting from the upper-triangular ansatz in equa-
tion (34),

HU1/U2
=



∗ 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 0 0 ∗ 0
0 0 ∗ 0 0 0 ∗ 0 0
0 ∗ 0 ∗ 0 ∗ 0 0 0
0 0 0 0 ∗ 0 0 0 0
0 0 0 0 0 ∗ 0 ∗ 0
0 0 ∗ 0 0 0 ∗ 0 0
0 0 0 0 0 ∗ 0 ∗ 0
0 0 0 0 0 0 0 0 ∗


(B1)

Both families have all but one generically unequal entries.
The equal non-zero entries in both families satisfy the
following linear relations

h17 = h28 = −h46 = −h13, h42 = h68 = h37,

h33 = h11 − h37, h66 = −h37 − h88,

h22 = 2h11 − h37 + h88, h44 = −2h11 − h88,

h77 = −h99 = −h11, h24 = h86 = h73 = 2h11 ,

(B2)

while the two classes U1, U2 are differentiated by their
h55 entry:

U1 : h55 = h11 , U2 : h55 = −h11 − h37 . (B3)

To illustrate the non-triviality of the varieties obtained,
here is another example with 19 non-zero Hamiltonian
entries

H =



∗ 0 0 0 0 0 ∗ ∗ 0
0 ∗ 0 0 0 0 ∗ ∗ ∗
0 0 ∗ 0 0 0 0 0 0
0 0 0 ∗ 0 0 ∗ ∗ 0
0 0 0 0 ∗ 0 ∗ ∗ 0
0 0 0 0 0 ∗ 0 0 ∗
0 0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 0 ∗ 0
0 0 0 0 0 0 0 0 ∗


(B4)

In the gauge h58 = h69 = 1 and independent parameters
α, β, γ, ρ, σ, τ defined as

h11 = α, h28 = ρ, h29 = σ, h59 = τ ,

h77 = β + α , h47 = 1 + γ .
(B5)

The remaining non-vanishing elements of the Hamilto-
nian are parametrized as

h22 = h44 = h55 = h99 = α ,

h33 = h66 = α− β ,

h26 =
σγβ

γ − τβ
, h27 =

ρ (γ − τβ)

σβ
,

h17 = −γ (2ρ (γ − τβ) + σβ (2γ − τβ))

τβ (γ + τβ)
.

(B6)

2. 19-vertex ice-rule Hamiltonian

R-matrices satisfying the ice-rule ansatz follow the con-
straint

Rαβ
µν = 0, if α+ β ̸= µ+ ν , (B7)

where the indices α, β, µ, ν all range in the triplet
of values {−1, 0, 1}, corresponding to the local 3 di-
mensional representations of the “in” and “out” states.
Looking for solutions in this restricted setting, we ob-
tained several novel solutions, one of which is discussed
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in equation (36). Another 3-parameter family of inte-
grable Hamiltonians, parametrized by (h35, h37, h44) is
presented below

h11 = h99 = 1 , h88 = h44 ,

h22 = h66 = 2 +
h2
35

h37
− 2h37 − h44 ,

h24 = h42 = h68 = h86 = −h73 = −h37 ,

h33 = 3 +
2h2

35

h37
− 3h37 − 2h44 ,

h53 = h57 = h75 = h35 , h55 = 1 +
h2
35

h37
− 2h37 ,

h77 = −1 + h37 + 2h44 .

(B8)
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