Deep-layered machines have a built-in Occam'’s razor, vs 1.4

Thomas Fink

London Institute for Mathematical Sciences, Royal Institution, 21 Albermarle St, London W1S 4BS, UK

Input-output maps are prevalent throughout science and
technology. They are empirically observed to be biased towards
simple outputs, but we don’t understand why. To address
this puzzle, we study the archetypal input-output map: a
deep-layered machine in which every node is a Boolean function
of all the nodes below it. We give a mathematical theory for
the distribution of outputs, and we confirm our predictions
through extensive computer experiments. As the network depth
increases, the distribution becomes exponentially biased towards
simple outputs. This suggests that deep-layered machines and
other learning methodologies may be inherently biased towards
simplicity in the models that they generate.

Introduction

This paper presents a unified understanding of two seemingly
different scientific puzzles. The first is the observed tendency
of input-output maps to be biased towards simple outputs.
The second is the success of deep-layered machines and other
learning frameworks at producing parsimonious solutions. Our
overall approach is to introduce a predictive theory for the
output of deep-layered machines, show that this output is biased
towards simplicity, and, by regarding learning frameworks as
input-output maps, argue that they have a built-in Occam’s
razor.

Input-output maps are prevalent in biology, physics, mathe-
matics and technology [1, 2]. The inputs can be thought of as
instructions, and the outputs can be thought of as functions.
Input-output maps tend to be many-to-one because a lot of
different instructions produce the same function—there’s more
than one way to skin a cat.

One example of an input-output map is RNA folding, in which
nucleotide sequences (input) fold to RNA secondary structures
(output). Another is protein folding, in which sequences of
amino acids fold to 3D molecular shapes [3]. In logic circuits [4]
and Boolean networks [5, 6], local logics (input) generate global
dynamics (output). In 2D models of self-assembly, polyominoes
(input) combine to form finite or periodic shapes (output). A
similar process occurs in 3D when proteins self-assemble into
protein complexes. In neural networks, synapse weights (input)
determine the overall function of the arguments (output).

If we pick a random input, we might well expect a random
output. After all, there’s no a priori reason to expect one output
over another. But in fact most input-output maps are empirically
observed to be exponentially biased towards simple outputs
[1, 2]. They are simple in the broad sense of possessing low
Kolmogorov complexity—they have short description lengths.

Learning can be thought of as an input-output map with a
constraint on the output. Consider, for example, protein design.
The target is a protein conformation constrained to have a
particular active site. The task is to find a sequence that folds
to one of the many conformations that have the active site.
Similar reasoning applies to an associative memory. The target
is a classifier that maps, say, cat-like images to cats and dog-like
images to dogs; how other images get mapped is incidental.
The task is to find a set of weights that yields one of the many
valid cat and dog classifiers. As we shall see, just as Occam’s
razor prescribes the simplest explanation that fits the facts,
deep-layered machines are biased towards the simplest outputs
that meet the constraints.

In this paper we study the archetypal input-output map: a
deep-layered machine in which each node is a Boolean function,

or logic, of all of the nodes below it (see Fig. 1). In particular, we
do four things, which correspond to the next four sections. One,
we give a mathematical theory of the distribution of outputs
given a random choice of inputs. Two, we confirm our theory by
doing extensive computer experiments for networks of different
sizes. Three, we show that the output distribution becomes
exponentially biased towards simple functions as the network
depth increases. Four, we conjecture that this bias is part of a
more general phenomenon in which the repeated application of
irreversible rules gives rise to a bias towards simple outputs. If
so, it suggests that a broad range of learning frameworks are
biased towards simplicity in the models that they generate.

A puzzle

For a conceptual understanding of the simplicity bias in deep-
layered machines, consider a puzzle about a group of friends.
Each person has one of two moods: happy or sad. Your own
mood depends on the moods of Alice and Bob. For instance, you
might be happy only if Alice and Bob are happy. Or you might
ignore Alice and copy Bob. There are 16 such dependencies, each
of which occurs with the same chance: around 6%.

Now imagine that the mood of Alice depends, in turn, on
Carol and Dan, and the same is true of Bob. Again, there are
16 dependencies for Alice and 16 for Bob. So ultimately your
mood is governed by the moods of Carol and Dan. There are 163
ways of configuring this puzzle (the inputs), but only 16 ways
in which you can depend on Carol and Dan (the outputs). The
k = 2 architecture in Fig. 1 shows the friendship network, and
Fig. 2 shows the complete input-output map.

You might think your dependence on Carol and Dan is
uniformly distributed, since the local dependencies are assigned
uniformly. But in fact you are biased towards simple dependen-
cies. For instance, the chance of ignoring Carol and Dan and
always being happy is 17%. The chance of being happy if either
person is (happy 3/4 of the time) is 5%. The chance of copying
one and ignoring the other (happy /2 of the time) is 4%.

The favored dependencies are simple in that they are happy
most of the time or sad most of the time. Were we to extend the
game such that the mood of Carol and Dan each depends on
Eve and Frank, the bias would be stronger still.

Distribution of outputs

A A AL
\|>§€<|}

X

0 O =~

g

0 0 o 0

0 0 0 =

FIG. 1: Deep-layered machines. In a network of k arguments (a,
b,...), each logic depends on all k of the arguments below it, each
of which depends on the k arguments below it, and so on, down to
n levels. Our goal is to determine the distribution of f(a,b,...) (the
output) given a random assignment of logics to f; g1, g2, .. .; and so on
(the input).

In this section we work out the probability of the output of a
deep-layered machine given a random input, that is, a random
assignment of logics to the light gray nodes in Fig. 1.

Distribution for small k
In a deep-layered machine, each Boolean function, or logic for
short, depends on the k£ arguments in the layer below it. There

are 22" logics of k arguments. Thus the number of inputs grows

as (22k)nk+1: the number of logics per node to the power of the
number of nodes in the network. The number of outputs is much

smaller: just 92",

For k = 1, there are four logics: true, false, a and @ (not a).
There are 4" inputs but only four outputs. We can write down
the probabilities of the outputs explicitly: the probability of a
and @ are both 1/2"%2 and the probability of true and false are
both 1/2 — 1/2"F2,

For k = 2, there are 16 logics, shown in Table I Top. In a
network of depth n = 1, which is the puzzle described above, the
output is f(g1(a,b), g2(a,b)) (see Methods for examples of logic
composition). There are 16 inputs (ways of assigning logics to
f, g1 and g2), but only 16 outputs. A visual representation of
this is shown in Fig. 2. The probabilities of different output
functions are shown in Table I Top for various values of n.

For k = 3, there are 256 logics, the truth tables of which are
given in Table I. The probabilities of different outputs are shown
in Table I Bottom.

Distribution for general k

We want to know the probability of any given output function
for general k. What we find is that the probability depends only

aAND b

o

false aAND b aAND b

FIG. 2: Inputs-output map for two arguments. For k = 2
arguments and network depth n = 1, there are 16% inputs but
only 16 outputs. The outputs are indicated by the gray level, from
white to black, which correspond to false to true (in the order
given in Table I Top). The inputs are the assignments of logics
to f, g1 and g2 in f(g1(a,b),g2(a,b)). Each panel is a different
choice of f, and within each panel are the 16 x 16 choices of g1
and go.

on the Hamming weight of the output function, that is, the
number of 1s in its truth table, which ranges from 0 to 2*. For
this reason, we don’t need to keep track of 92" probabilities, but
rather just 2° + 1. We call this vector of probabilities x(n). In
Table I, x(n) is given by the columns on the right: for £ = 2,
x(0) = (Y/16,1/16, /16, 1/16,1/16), and so on.

Notice how there are (zulj) output functions with a given value
of w. For example, for k = 2, there are 1,4,6,4 and 1 functions
for w = 0,...,4. So the probability that an output function has
Hamming weight w is given by the vector

k

Thus for k = 2, z(0) = (Y/16,4/16, 6/16,4/16,1/16). Throughout this
paper we work with the more natural z, since its components
sum to one. But we are ultimately interested in x, which gives
the probabilities of specific outputs. Eq. (1) is how we translate
between them.

Logic functions ~ Hamming Probability of function
of k=2 arguments weight w n=0 n=1 n=2 n=3
false 0000 0} 15 S5 Tt Bepe
ab 1000 1
ab 0100 1 1 216 42048 8087040
ab 0010 1 16 163 165 167
ab 0001 1 }
a 1100 2
a 0011 2
b 1010 2 1 168 31680 6068736
b 0101 2 16 163 165 167
asb 0110 2
aeb 1001 2 l
a+b 1110 3
a+b 1101 3 1 216 42048 8087040
a+b 1011 3 16 16° 165 167
a+b 0111 3
true 1111 4 % % 261160556 83616637360
Logic functions Hamming Prob. of function

of k = 8 arguments weight w n=0 n=1
00000000 0 e 1a6rasped
00000001, 00000010, ... 1 = 40611200
00000011, 00000101, ... 2 s 19712088
00000111, 00001011, ... 3 T 12986980
00001111, 00010111, ... 4 s 552
00011111, 00101111, ... 5 e 12985080
00111111, 01011111, ... 6 T 10714058
01111111, 10111111, ... 7 o T
11111111 8 e 16702004

TABLE I: Distribution of output functions. Top. For k = 2
arguments, there are 16 logic functions, which can also be ex-
pressed by their binary truth tables. In our notation, @ means
NOT a, ab means a AND b, a®b means a XOR b (exclusive or), and
a+b means a OR b. For network depth n = 0, 1, 2 and 3, we show
the probability of producing each of the output functions. The
probability depends only on the Hamming weight w of the func-
tion, that is, the number of 1s in the truth table. Bottom. For
k = 3 arguments, there are 256 logics, which we express by their
binary truth tables. They are grouped by their Hamming weight
w. For network depth n = 0 and 1, we show the probability of
each of the output functions in the Hamming weight group.

There exists a 2% + 1 by 2% + 1 transition matrix A such that
z(n) = A"z(0).

The elements of the matrix A satisfy

1 (2] N o—j
AiJ:ﬂ(j)’LJ(e—Z)[J,

where for convenience we set ¢ = 2F and we take 0° = 1, a
common convention in combinatorics. For example, for k = 1,

1 ((2)) 0022 1012 2002
A:Z—2 o*2' 1'1* 2'o! |.
(g) 0220 1219 92200

(g) 0044 1034 9094 3074 4004
(111) 0143 1133 9l93 3193 4103
A= v () 0247 1232 2227 3212 4%0?
(é) 0341 1331 9391 33711 43(l

(3) 0440 1430 9490 3470 4440

@)

Properties of the transition matrix

The matrix A has 2* + 1 eigenvalues and eigenvectors; see the
Methods for the £ = 2 example. The first two eigenvalues are
A1 = A2 = 1, corresponding to the eigenvectors (1,0, ...,0) and
(0,...,0,1). As we confirm in Methods, the jth eigenvalue is

£)j—1
. 3)
where £ = 2% and (£); = £(0 —1)...(£ —j + 1) is the falling
factorial. Thus in the limit of large depth n, the output function
is true and false each with probability 1/2, with the probabilities
of all other outputs vanishing.

However, the situation is more interesting than the large-n
limit suggests. Notice how the first two eigenvectors tell us
nothing about the bulk of the outputs, that is, all of the 2¢ — 2
functions that are not true and false. For large depth n, the
shape of z(n) for the bulk is rather given given by the third
eigenvector vz of A. We don’t know how to write it down
explicitly, but we can show that it is approximately flat apart
from the endpoints. In particular, the ratio of the smallest and
largest components of vg is at least (1 — e)/e = 0.632 and at
most 1. As we shall see, this flatness is key to our main result,
namely, that the distribution of output functions is exponentially
biased towards simple functions.

Comparison with computer experiments

To confirm our theoretical predictions, we conducted extensive
computer experiments for various values of the number of
arguments k and network depth n. In all cases, our computer
experiments match our theory. The computational cost of enu-
merating all possible inputs is formidable: it grows as (22k)nk+1.
Therefore our experiments include complete enumeration of the
inputs when possible, and sampling from the ensemble of inputs
otherwise.

For k = 2 arguments (Fig. 1A), there are 16%,16°, 16" and
16° input configurations for network depths n = 1,2,3 and 4.
We enumerated all of these inputs and, for each, determined the
network’s output function. Since the probability of an output is
the same for outputs with the same Hamming weight w, we plot
the probability z(n) of obtaining a given w in Fig. 3A (points).
This exactly matches our theoretical predictions given by eq.
(2). The solid line indicates the probabilities of the bulk of the
outputs and the dotted line connects to the outputs false (w = 0)

and true (w = 4). As n increases, the likelihood of true and false
approach 1/2 and the likelihoods of the remaining outputs fall,
bearing in mind that the likelihoods sum to one.

For k = 3 arguments (Fig. 1B), there are 256* 2567 and

F - T
,'A = L4
- k=2
031" ‘
> ke ” . . o
£ . n=1 .
© 0.2f
Q °
<] L® - n=2 . L4
& -
S n=3 .

01F . nea .

0.07\ Il L L L
0 1 2 3 4
| B k=3

n=0

0.2+

_é‘ F . n=1 . T
E ™ *-

g | J— . nz2 .
QL. ° ° n=3 °

0.1F . n=4 *

0.0t | I | i
0 2 4 6 8

0.2 N

c k=4
n=0"x
2 4 n=1%%
o A e U
% 01F . n=§ .
& z n-a :
'F g - T

00’; el I I | T3 ;

0 4 8 12 16

Hamming weight w

FIG. 3: Computer experiments confirm our theory. We
compare our theoretical predictions of z(n) given by eq. (2) (lines)
with computer experiments (points), for various values of the
number of arguments k and the network depth n. The vertical
axis shows the probability that the network produces an output
function with a given Hamming weight w (the number of 1s in
its truth table), since outputs with the same w have the same
probability. In all cases, our experiments agree with our theory
exactly or, when sampling, to within statistical significance. A
For k = 2, we enumerated all of the input configurations up
to network depth n = 4. As n increases, the distribution of the
output function flattens out and falls. But for false and true (w =
0 and w = 4), the probabilities approach one half. B For k& = 3,
we show exact results for n = 0 and 1, and sample the inputs for
n = 2 and 3. We show our n = 4 theory for comparison. C For
k = 4, we show exact results for n = 0, and sample the inputs for
n =1 and 2. We show our n = 3 and 4 theory for comparison.

2560 input configurations for network depths » = 1,2 and 3.
For n = 1, we were able to enumerate all of the inputs. For
n = 2 and 3, this is computationally infeasible, so instead we
sampled the inputs. We randomly assigned one of the 256 logics
to each of the nodes and then determined the network output,
repeating this two million times. These are plotted in Fig. 3B
(points). We calculated errors bars, but these are negligible
compared to the point size in the plots. Our theory predicts the
computer experiments exactly for n = 1 and to within statistical
significance for n = 2 and 3. We also show our n = 4 predictions
for comparison.

For k = 4 arguments (Fig. 1C), there are 65536° and 65536°
inputs for network depths n = 1 and 2. These are too many to
enumerate, so we took two million samples for n = 1 and the
same for n = 2. These are plotted in Fig. 3C. Once again, our
theory predicts the experiments to within statistical significance.
We also show our n = 3 and n = 4 predictions for comparison.

Bias towards simplicity

To our surprise, we find that the distribution of the output
function is biased towards simplicity in an easily quantifiable
way. This effect gets stronger as the network depth n increases.

At network depth n = 0, the distribution of the 92" logic

functions is uniform: the probability of each is 1/22k. But at
n = 1, where we first start to combine logics, some outputs
become more likely than others. The probability of a given
output depends solely on its Hamming weight w; all functions
with a given Hamming weight have the same probability. For
k = 2 and k = 3, these probabilities are given in Table I.

Information content of a function

The simplicity of a logic function can be measured by its
information content, where simpler functions contain less
information.

A logic can be represented by its binary truth table of 2F
bits. This just specifies the value of the function for all possible
combinations of its k arguments, where 0 is false and 1 is true.
For example, if the function is abc (a AND b AND c), the truth
table is 10000000 (adopting the Mathematica convention for
ordering), since the function is true only when all three of
its inputs are true. If the function is false, the truth table is
00000000.

A logic function of k arguments with Hamming weight w can
be uniquely indicated by first specifying its Hamming weight, of
which there 2% 4 1 possibilities, then by specifying which of the
functions with the given Hamming weight it is, of which there
are (21‘];) possibilities. Thus the information content of a logic
function f is at most

k

w) +log, (2" +1). (4)

I(f) = log, <2

For example, for the function abc described above, which has
w =1, I = log, (}) + log, 9 = 6.2 bits. For the function false,

which has w =0, I = log, (ﬁ) + log, 9 = 3.2 bits.

Probability versus information content

We show the bias towards simplicity in Fig. 4 for £ = 4, 6 and
8 arguments, and various values of the network depth n. For
n = 0, the distribution of outputs is flat—all output functions
are equally likely. As mn increases, the distribution changes in
two different ways. First, the bulk of the outputs (everything
but true and false) becomes exponentially biased towards simple
outputs. Second, the probability of obtaining true and false each
approaches 1/2 and the distribution of the bulk vanishes. The
first effect governs the shape of the bulk distribution, whereas

the second shrinks the bulk distribution along the vertical axis.

-8 [
27 n=s k=4
n=4
n=2
> 2
E \
©
Q
[}
o
2% n=0
A
8 12 16
n=2
AR k=6
n=3
-32F \
2
5 n=1 N
2 T NN
O -48r X
a \
< s
o A
- ‘\\
-64 n=0 =N
-80
B
16 32 48 64
-64
2 -128r
=
©
Q
<)
a -1921
<
e)
A
-256
-320 -
C
0 64 128 192 256

Information content (bits)

FIG. 4: Probability of an output function versus its infor-
mation content. As the network depth n increases, the loga-
rithm of the probability distribution of the output rotates clock-
wise from horizontal to a nearly straight line with slope —1. On
a slower time scale, it also falls as the outputs true and false (not
shown here) dominate. The black curves show the distribution
rising and the gray curves show it falling. The points (orange on-
line) are the third eigenvector of the transition matrix A, which
governs the shape of the bulk, translated from z to x via eq. (1);
the slope of the orange line which they approach is —1. A For
k = 4 arguments, we show the distribution for n = 0 and powers
of 2. B For k = 6 arguments, we show it for n = 0 and powers of
3. C For k = 8, we show it for n = 0 and powers of 4.

For clarity the rising curves are black and the falling curves are
gray.

Notice how, at its highest level, the distribution approaches
the third eigenvector of the transition matrix A, translated
from z to x via eq. (1). This is indicated in Fig. 4 by the
points (orange online). As n increases, the distribution appears
to get closer and closer to it before falling away. If we take
z(n), for large n, to be strictly rather than approximately flat,
then all of the components are 1/(2* + 1), and the probability
P(I) is 1/(%) - 1/(2" + 1), and by eq. (4) log, P(I) = —I.
In Fig. 4 this is the orange line which the orange points approach.

Discussion

In this paper we give the exact solution to the output of a
deep-layered machine with randomly chosen Boolean functions,
or logics, at each node. This is to our knowledge the first exact
solution to a non-trivial input-output map. As well as ordinary
digital computing, our deep-layered machine encompasses
discretized neural networks in which the logics are threshold
Boolean functions.

Critical network depth

Crucially, the bias of the bulk towards simplicity happens faster
than true and false take over—the distribution flattens out before
it shrinks. We have verified this computationally, as shown in Fig.
3 from the z perspective and in Fig. 4 from the x perspective.
The reason is that the spectral gap A1 — A3 = Ao — A3 = 1/2F,
which governs the equilibration of true and false, is smaller
than the spectral gap A3 — As = (1 — 1/2%)2/2% which governs
the equilibration of the bulk. As k increases, the latter gap
approaches twice the former gap.

Intriguingly, these two time scales—one for the endpoints and
one for the bulk—implies the existence of a critical network
depth neris beyond which the simplicity bias breaks down and
the network becomes dominated by true and false. In Fig. 4, this
is the depth at which the distribution goes from black (rising)
to gray (falling). Since the equilibration time is proportional to
the inverse of the spectral gap, neic grows as 2F. A separate
argument, given in the Methods, also suggests that true and
false start to dominate around network depth 2.

As an aside, there is an intuitive proof that true and false
must dominate eventually. At each level in the network, there is
a finite probability that all of the k logics are true, independent
of the level n. When this happens, the output function f must be
true, regardless of what happens farther down the network. Thus
the probability of true and false each asymptotically approach
1/2 (though faster than this lower bound argument suggests).
Mozeika et al. [11] observed a similar phenomena when they
considered deep-layered machines with rectified linear unit
functions: “random deep ReLU networks compute only constant
Boolean functions in the infinite depth limit”.

Generalizations and deep learning
In the architecture we considered, every logic is a function
of all k of the arguments below it. It is regular in the sense
that it contains all possible loops (multiple paths to the same
point), and this regularity is key to its solvability. In separate
work, not yet published, we considered the opposite extreme: no
loops, but rather a uniform branching structure. For example,
instead of f(g1(a,b),gz2(a,b)) (k = 2 and n = 1), we studied
f(g1(a,b),g2(c,d)) (branching degree 2 and n = 1). For this
branching architecture we also observed an exponential bias
towards simplicity.

We conjecture that the bias towards simplicity described in
this paper is just one instance of a more general phenomenon:
the repeated application of irreversible local rules generates a

global bias towards simplicity. In other words, simplicity bias in
input-output maps is not the exception but the rule.

Methods

Representing and composing logics

In our notation, @ means NOT a, ab means a AND b, a ® b means
a XOR b (exclusive or), and a + b means a OR b. The order
of operations is AND takes precedence over XOR, which takes
precedence over OR.

The composition of logics works just like the composition
of ordinary functions. When composing logics by hand, it’s
convenient to write them in disjunctive normal form, which
consists of a disjunction of conjunctions. In other words, we
write them as ORs of ANDs, or sums of products.

Let’s work out a couple of examples for k = 2 arguments and
network depth n = 1. The output of the network is

f(g1(a,b), g2(a,b)). (5)
Set g1 = a OR b and g2 = @ OR b, that is,
gi=a+b, 92:6—&—5.
If we set f = g1 AND g2, then
f=gig2=(a+b)(@+b)=ab+ab=a®b,
that is, f = a XOR b. But if we set f = g1 OR g2, then
f=aq +g2:a+b+6+5:true.

To take this to the next level (n = 2), in eq. (5) we would
replace a with hy(a,b) and b with ha(a,b).

Example of the eigenvalues and eigenvectors

For k = 2, the transition matrix A has five eigenvalues A and
eigenvectors v:

Ar=1 vi= (0 0 0 0 1
)\2 =1 Vo = (1 0 0 0 0)
Az =3/4 vy = (—1 16/25 18/25 16/35 —1)
)\4 = 3/8 V4 = (—]. 2 0 -2 1)
As = 3/32 vs= (1 -4 6 —4 1)

Then we can write
z(n) = A"z(0) = c1v1 + cava + c3A3 Vs + cad\fva + cs A5 V.

The projection of the initial condition z(0) onto the eigenvec-
tors is V7'z(0), where V is the matrix with the eigenvectors
as its columns. For z(0) = (Y/16,4/16,6/16,4/16,1/16), this gives
(c1,c2,...) = (1/2,1/2,25/56,0,1/112). Then the probability distri-
bution of the output having Hamming weight w is

z(n) = avy + 1/2vap + 25/56(3/4)" va + 1/112(3/32) " vs.

Leading eigenvector for the bulk is flat
The third eigenvector of the transition matrix A is the principal
eigenvector for the bulk of the outputs (everything but true and
false). We are unable to work it out explicitly, but we can show
that, apart from the endpoints, it is approximately flat. Let B
be the 2% — 1 by 2% — 1 matrix that is the interior of A, that is,
everything but the outer edge. The principal eigenvector of B is
the interior of the third eigenvector of A.

We know, in general, that the principal eigenvector is at least
as flat as the column sums of the matrix that it satisfies. For our

matrix B, with £ = 2* the column sums are
-1 121
y e
ZB”:ﬁZ] ZJ(E—Z) J.
j=1 i=1

If we extend the bounds in the sum to 0 and ¢, by the binomial
theorem the sum is just 1. So we know that

— ' =i\
S () (5)
Jj=1
This is minimized when i = 1 and ¢ = £ — 1, and maximized when
i = £/2. For even modest values of k, { = 2% is large, and the

minimum and maximum values of the sum tend to (1 —e)/e and
1. Thus in the limit of large ¢,

— 1—e
> By e { ,1] : (7)
i=1 ¢

where (1 — e)/e is 0.632. For example, for k¥ = 3, the minimum
and maximum column sums are 0.656 and 0.992. So the ratio of
the smallest and largest components of the interior of the third
eigenvector of A is at least (1 — e)/e and at most 1. (Cf. the
third eigenvector for k = 2 above.)

Critical network depth

The first two eigenvalues govern the leading behavior of the
endpoints, and the third eigenvalue governs the leading be-
havior of everything else (the bulk). Let the initial state be

((2;), (21k), o (EIZ)) The first two terms in the projection onto

the eigenvectors are both !/2, and call the third c3. Keeping just
the first three terms,
z(n) ~ 1/avy + 1/2va + c3((1 — 1/2F)"v3.

From above, we know the interior of vg is approximately flat. If
we take it to be strictly flat, then

z(n) = (1/2,0,...,0,1/2) + c3(1 — 1/2%)" (-1, e—%v e e—%’ -1).

True and false start to dominate when the probability of the
endpoints equals the probability of the interior, that is,

2(1/2 = ealL = 1/24)"7) = 1/,
which gives
Nerit = 2° In(4es),

where c3 ~ 1.

Comparing the trace and the sum of the eigenvalues

In general the sum of the eigenvalues of a matrix is equal to its
trace. We show that this is the case for the transition matrix A
as a confirmation of the form of the eigenvalues in eq. (3). The
trace is

Iy A :
tr(A) =7 > ; 7=,
=0

where we take 0° = 1, a common convention in combinatorics.
Then, by Abel’s binomial theorem,

14
>
7=0

4

‘ ~

[
tr(A) = v

x|~
o

(€ — e

R =

7=0

Since (;) is symmetric, we can replace (£ — j)!1# with j1£¢77 so

AW
tr(A) =) b

Il
>
.

=0

<.

Acknowledgements: The author acknowledges Evgeny Sobko for helpful discussions.
Competing interests: The author declares that he has no competing interests.

[1] K. Dingle, C. Q. Camargo, A. A. Louis, Input-output maps are
strongly biased towards simple outputs, Nat Commun 9, 761 (2018).

[2] 1. G. Johnston et al., Symmetry and simplicity spontaneously emerge
from the algorithmic nature of evolution, P Natl Acad Sci USA 119,
2113883119 (2022).

[3] J. L. England, E. I. Shakhnovich, Structural determinant of protein
designability, Phys Rev Lett 90, 218101 (2003).

[4] S. E. Ahnert, T. M. A. Fink, Form and function in gene regulatory
networks, J Roy Soc Interface 13, 20160179 (2016).

[5] T. Fink, F. Sheldon. Number of cycles in the critical Kauffman model
is exponential, Phys Rev Lett, 131, 267402 (2023).

[6] F. Sheldon, T. Fink Insights from number theory into the critical
Kauffman model with connectivity one, J Phys A, 57, 275003 (2024).

[7] T. M. A. Fink and R. Hannam, Biological logics are restricted,
arxiv.org/abs/2109.12551.

[8] T. M. A. Fink, On the number of biologically permitted logics, Nat
Rev Genet

[9] N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Se-
quences, published electronically at https://oeis.org, 2021.

[10] K. Raman, A. Wagner, The evolvability of programmable hardware,
J Roy Soc Interface 8, 269 (2011).

[11] A. Mozeika, B. Li, D. Saad, The space of functions computed by deep
layered machines, Phys Rev Lett 125, 168301 (2020).

