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We apply reinforcement learning (RL) to establish whether at a given position in the Coulomb branch of the 
moduli space of a 4d  = 2 quantum field theory (QFT) the BPS spectrum is finite. If it is, we furthermore 
determine the full BPS spectrum at such point in moduli space. We demonstrate that using a RL model one can 
efficiently determine the suitable sequence of quiver mutations of the BPS quiver that will generate the full BPS 
spectrum. We analyse the performance of the RL model on random BPS quivers and show that it converges to 
a solution various orders of magnitude faster than a systematic brute-force scan. As a result, we show that our 
algorithm can be used to identify all minimal chambers of a given  = 2 QFT, a task previously intractable with 
computer scanning. As an example, we recover all minimal chambers of the SU(2) 𝑁𝑓 = 4 gauge theory, and 
discover new minimal chambers for theories that can be realized by IIB geometric engineering.

1. Introduction and summary

The Seiberg-Witten solution of 4d  = 2 quantum field theories 
(QFT)s determines the low energy dynamics on the Coulomb Branch of 
the moduli space of vacua [1,2]. One crucial feature of the QFT which is 
not implied by the Seiberg-Witten solution is the spectrum of BPS states 
at a generic point of the Coulomb Branch, and how such spectrum is 
modified by moving in moduli space.

Determining the BPS spectrum of theories with  = 2 supersymme

try is non-trivial and yet seemingly tractable in numerous examples. A 
subset of 4d  = 2 theories admits a BPS quiver [3,4], from which the 
BPS spectrum can be determined via various techniques. In this letter 
we consider theories whose spectrum are described by a BPS quiver. We 
remark that of these, the problem becomes even simpler for a subclass 
of which are dubbed complete in [3,4]. Such  = 2 models are defined 
by the rather stringent property that even as one varies all parameters 
such as moduli, couplings and bare masses, the number of hypermulti

plets which constitute a basis of the BPS spectrum remains to be equal 
to the rank of the lattice of electromagnetic and flavour charges Γ.

An example of a complete QFT is that obtained from two coinci

dent M5-branes on a punctured Riemann surface, which gives us the 
theory constructed by Gaiotto [5], composed of a product of SU(2)
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gauge groups with tri-fundamental matter. Various other theories of the 
class  construction fall into the set of complete QFTs. In addition to 
these, Cecotti and Vafa [3] identified 11 exceptional cases, related to 
Dynkin diagrams for a˙ine and elliptic exceptional groups as well as 
the Derksen-Owen quivers from [6].

Now, as we enter the age of AI [7], it was inevitable that machine 
learning (ML) methods should enter theoretical physics, especially in 
high-energy theory, and pure mathematics: this was introduced in [8--

11] (for pedagogical introductions, see [12,13] and for recent reviews 
on this ``AI-guided theoretical discovery'', see [14,15]).

The use of ML is by now well-established in string theory and re

lated subfields of mathematical physics such as conformal field theory 
[16,17],  = 1 quiver QFTs [18], cluster algebras [19,20], and BPS in

dices [21]. It is therefore natural and expedient to see whether AI, and 
in particular ML methodologies, can help with our present problem of 
understanding BPS spectra and the classification of  = 2 gauge theo

ries.

This above question we address in the present paper, whose main 
results we summarize here:

1. As a main result, we develop a reinforcement learning (RL) algo

rithm which efficiently determines a sequence of quiver mutations 
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that identifies the full BPS spectrum of a complete QFT, in any finite 
chamber of the moduli space. The code is available on GitHub.

2. We apply this algorithm to the SU(2) 𝑁𝑓 = 4 theory. We determine 
the number of inequivalent chambers in the Coulomb Branch for 
which the BPS spectrum is finite and minimal. To demonstrate the 
efficiency of our algorithm, we determine the BPS spectrum in all 
such chambers. These are also included in the GitHub.

3. As another example, we identify minimal chambers and corre

sponding BPS spectra for theories whose BPS quiver is given by 
the elliptic 𝐸-type Dynkin diagrams, ̂̂𝐸𝑛 with 𝑛 = 6,7,8 as well as 
the theories identified by the Derksen-Owen quivers 𝑋6,𝑋7 [6].

Our results represent a tremendous improvement to the efficiency 
and scalability of conventional methods for determining finite cham

bers and BPS spectra of  = 2 QFTs. Such a tool should aid in the 
current problem of the classification of  = 2 models and, furthermore, 
the study of their non-perturbative properties. For example, the muta

tion sequences identified in each case may be used as input data to the 
Cordova-Shao algorithm [22] to determine their Schur index.

It is also interesting to try and explain our conjecture for the number 
of minimal chambers, see Fig. 3, for the SU(2)𝑁𝑓 = 4 model from study 
of the underlying physics or pure mathematics. Finally, our computa

tions may also be extended to compute non-minimal, or even maximal, 
finite chambers of  = 2 QFTs.

2. Background

We begin with a brief overview on how the BPS spectrum of complete 
theories can be derived from the BPS quiver.

2.1. BPS quivers of 4𝐷  = 2 quantum field theories

Let us consider a 4d  = 2 QFT with a gauge group of rank 𝑟 and 
flavor symmetry algebra of rank 𝑓 . The moduli space of supersymmetric 
vacua is split into a Coulomb branch 𝐶 and a Higgs branch 𝐻 . On 
a generic vacua 𝑢 ∈𝐶 the gauge group is broken to 𝑈 (1)𝑟. The lattice 
of electric, magnetic and flavour charges Γ is of dimension 2𝑟 + 𝑓 and 
is equipped with a linear function

𝑍𝑢 ∶ Γ→ℂ , (1)

called the central charge of the theory.

The complex plane, where 𝑍𝑢 takes values, is split by choice into two 
half-planes ℂ±: states with charges 𝛾 ∈ Γ such that 𝑍𝑢(𝛾) ∈ℂ+ (respec

tively, 𝑍𝑢(𝛾) ∈ℂ−) are labelled as particles (respectively, antiparticles) 
of the theory. Furthermore, the charge lattice is equipped with an anti

symmetric inner product

◦ ∶ Γ × Γ→ℤ . (2)

At a point 𝑢 on the Coulomb Branch, the  = 2 superalgebra imposes 
the mass constraint on particles with charge 𝛾 ∈ Γ

𝑀 ≥ |𝑍𝑢(𝛾)| . (3)

Particles which saturate this inequality are called BPS particles. For ev

ery point 𝑢 ∈𝐶 , a relevant and important problem is finding the full 
spectrum of BPS particles, including as well their spin and multiplicity. 
For a subset of the 4𝑑  = 2 theories, such a question can be answered 
with the auxiliary tool of a BPS quiver.

The BPS quiver encodes a 1𝑑 unitary quiver gauge theory living on 
the worldline of BPS particles that describes their dynamics. It can be 
defined as follows. Let {𝛾𝑖} be the charges of the hypermultiplets which 
form a basis of the BPS spectrum. Then:

• Each element 𝛾𝑖 in the basis corresponds one node of the quiver.

• For each pair of charges in the basis, compute the electric-magnetic 
inner product 𝛾𝑖 ◦ 𝛾𝑗 . If 𝛾𝑖 ◦ 𝛾𝑗 > 0, the nodes 𝛾𝑖 and 𝛾𝑗 are connected 
with 𝛾𝑖 ◦ 𝛾𝑗 arrows,1 each pointing from node 𝑗 to node 𝑖.

From the BPS quiver alone it is possible to determine the BPS spec

trum at any point in the moduli space. One way of doing so consists in 
determining the stability conditions of various quiver representations, 
each one corresponding to a particle of the QFT. We will not include a 
detailed discussion of this method, and instead refer the reader to [23]. 
A much simpler method involves a computation of a sequence of quiver 
mutations, and is dubbed the mutation method [23]. We will review this 
method in the next subsection.

2.2. Quiver mutation and finite chambers

If at a point 𝑢 ∈ 𝐶 the BPS spectrum is finite, the spectrum can 
be fully determined by the so-called mutation method [23]. A quiver 
mutation is an operation 2 that is applied at a node of a BPS quiver 𝑄. 
After the mutation, a new BPS quiver 𝑄̃ is produced. The new quiver 
𝑄̃ will have the same number of nodes, although now labelled with 
different charges 𝛾̃𝑖, and a different set of arrows.

In order to find the full BPS spectrum one needs to apply a sequence 
of quiver mutations (generically acting on different nodes) such that at 
the end of the process, the final quiver produced will have all charges 
flipped compared to the original quiver and all arrows inverted. We call 
such end-point of the mutation method the antiparticle quiver. Keeping 
track of all the charges that appear at all nodes in every intermediate 
steps is equivalent to determine the full BPS spectrum. We will recall 
below the rules defining the mutation operation. To define the mutation, 
let us suppose that we mutate at the node labelled by 1, and whose 
corresponding charge is 𝛾1. Let us call 𝑄 the original quiver, and 𝑄̃ the 
quiver after the mutation. The procedure to derive 𝑄̃ from 𝑄 is then the 
following:

1. The nodes of the mutated quiver 𝑄̃ are the same of the nodes of 
the quiver 𝑄. Also, for every arrow in the quiver 𝑄, write the cor

respondent arrow in the quiver 𝑄̃.

2. For each length two path of arrows passing through node 1 in 𝑄, 
draw a new arrow in 𝑄̃ connecting the initial and final node of the 
two steps path.

3. Invert all arrows in 𝑄̃ which end on node 1.

4. If between any two nodes 𝑖, 𝑗 of the quiver 𝑄̃ there is both an arrow 
𝑖→ 𝑗 and one 𝑗→ 𝑖, delete both of them. Repeat this procedure until 
no such couple of lines with opposite orientation exist anymore, for 
all couple of nodes.

5. The new basis is given by

𝛾̃1 = −𝛾1 (4)

𝛾̃𝑗 =

{
𝛾𝑗 + (𝛾𝑗 ◦ 𝛾1)𝛾1 if 𝛾𝑗 ◦ 𝛾1 > 0
𝛾𝑗 if 𝛾𝑗 ◦ 𝛾1 ≤ 0.

(5)

There are further rules to derive the superpotential of the mutated quiver 
𝑄̃, but we will not make use of those in this paper.

We have reviewed here the mutation mechanism to determine the 
BPS spectrum from the BPS quiver. Such a method is of course much 

1 If 𝛾𝑖 ◦𝛾𝑗 < 0, then we have no arrows. Note that this convention is slightly dif

ferent from that in the quiver gauge theory literature where the antisymmetrized 
adjacency matrix is used so that a negative intersection means an arrow going 
the other way.

2 In the mathematics literature, this was coined by Fomin-Zelevinsky in the 
context of cluster algebras [24]. Interestingly, in physics, this was realized in

dependently around the same time [25] as Seiberg duality or toric duality. It 
was only years later that at a Oberwolfach workshop that the two communities 
realized that they were talking about the same thing.
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Fig. 1. Cumulative reward (𝜆 = 0.1) against mutation for a successful training episode on the BPS quiver 𝑄1 of the SU(2) 𝑁𝑓 = 4 SCFT, from Fig. 3, identifying a 
finite chamber containing 12 states.

Fig. 2. Plot of the average convergence rate to a finite chamber against number of nodes of a random BPS quiver for a smart walk (SW) and reinforcement learning 
model (RL).

more efficient than the method of studying representation theory of the 
BPS quiver. However, crucially, for more complicated quivers guessing 
by eye the right sequence of mutations is very challenging, and also an 
extremely inefficient problem to be treated by a computer code which 
uses a brute-force algorithm. We will solve both of these issues by using 
Reinforced Machine Learning (RL) to compute the BPS spectrum in finite 
chambers. In the following sections, we outline the RL algorithm we use.

3. Methods

In this work, we use a Proximal Policy Optimisation (PPO) algo

rithm to address the problem of finding finite chambers of  = 2 gauge 
theories. PPO is a model-free reinforcement learning (RL) involving an 
optimal policy 𝜋∗ ∶  → that maps any state 𝑠 ∈  to an action 𝑎 ∈. 
Given a state 𝑠𝑡 at discrete timestep 𝑡, the PPO algorithm selects an 
action 𝑎𝑡, computes a reward and moves to a subsequent state 𝑠𝑡+1 . 
The policy 𝜋 is updated based on the clipped objective function and 

is represented by a deep neural network (NN). The NN we used for the 
optimisation procedure consists of three hidden layers of 252, 504 and 
252 neurons with ReLU activation. The NN was trained using the Adam 
optimiser and the learning rate 𝛼 and discount factor 𝛿 were set to 0.5
and 0.995, respectively. Further details of RL and PPO can be found in 
Appendix A.

In our investigation, training is initialized with an 𝑛-node BPS quiver 
𝑠0 ∈  , with  the space of BPS quivers equivalent to 𝑠0 by quiver mu

tation. A state is represented by an 𝑛 × 2𝑛 matrix (𝑀 | 𝐺), where 𝑀
is the adjacency matrix of the underlying digraph, and 𝐺, the ‘gamma 
matrix’, encodes quiver labels as linear combinations of BPS hypermul

tiplets {𝛾𝑖}, i.e.

node label 𝑖 =
∑
𝑗

𝐺𝑖𝑗𝛾𝑗 ; 𝐺𝑖𝑗 ∈ℤ . (6)

We illustrate the matrices 𝑀 and 𝐺 with the following:
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Example 1. Let 𝑠0 be the BPS quiver 𝑄1 for the SU(2) 𝑁𝑓 = 4 gauge 
theory [23] from Fig. 3. Training is initialized with the data structure

𝑠0 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 2 0 0 0 0 1 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎠
. (7)

The adjacency matrix 𝑀 adopts the standard convention, where an ar

row from nodes 𝑖→ 𝑗 is represented by 𝑀𝑖𝑗 = +1, 𝑀𝑗𝑖 = 0. The gamma 
matrix 𝐺 of the initial quiver 𝑠0 is always set to the identity matrix. Here, 
the 𝑖-th node label is simply the hypermultiplet 𝛾𝑖 alone. In general, in

termediate quivers will have off-diagonal elements in 𝐺, representing 
bound states of {𝛾𝑖}. Now, after the first step in the mutation, there is a 
bound state 𝛾5 + 𝛾6, so 𝐺 has a 1 in the entry (5,6).

We define the action space  as all possible nodes that can be mu

tated on at a given time-step. Illegal nodes are those with labels that 
contain negative coefficients of the hypermultiplets, or that have already 
been mutated on in the action history. For this reason, the action space is 
dynamic, which makes the use of a PPO algorithm especially suitable,3

as it demonstrates notable stability with action masking compared to 
other RL algorithms [26].

Finally, we define a reward function 𝑅(𝑠) that provides feedback 
for beneficial actions and a terminal reward (+1) when the antiparti

cle quiver is reached. A fitness function 𝑓 ∶  → [0,1] quantifies the 
proximity of a given intermediate state 𝑠𝑡 to the antiparticle quiver. 
We define two distinct fitness functions, 𝑓𝑀 and 𝑓𝐺 , which separately 
evaluate this proximity in terms of the graph structure and node labels, 
respectively. The reward function is then

𝑅(𝑠) = 1 − 𝜆𝑓𝑀 (𝑠) − (1 − 𝜆)𝑓𝐺(𝑠) , (8)

where 𝜆 ∈ [0,1] is a tunable parameter representing the relative weight

ing of structural and label similarities in the reward logic.

Example 2. Fig. 1 shows the cumulative reward for a successful episode 
on the BPS quiver of the SU(2) 𝑁𝑓 = 4 SCFT from Example 1, identifying 
the 12-state chamber

𝛾3, 𝛾4, 𝛾2, 𝛾1 + 𝛾3 + 𝛾4, 𝛾2 + 𝛾5, 𝛾2 + 𝛾6,
𝛾1 + 𝛾3, 𝛾1 + 𝛾4, 𝛾2 + 𝛾5 + 𝛾6, 𝛾1, 𝛾5, 𝛾6

(9)

in agreement with the result from [23].

4. Results

To demonstrate the capability of our RL model to find a finite cham

ber for a generic theory, we established a dataset of cyclic digraphs, 
ranging from 3 − 10 nodes, from which random BPS quivers are drawn. 
We then trained the RL algorithm on a random selection of these quiv

ers, and recorded the convergence rate of the procedure as the number 
of time-steps to identify a finite chamber for a given quiver. A negative 
penalty is applied to episodes that exceed a maximum length or label 
complexity to encourage further exploration by the agent. As a base

line for performance evaluation, we use a smart walker (SW) algorithm 
that combines a random walk search with an exhaustive scan. This al

gorithm is equivalent to the RL algorithm with learning disabled. A log 
plot of the average convergence rate against number of nodes is shown 
in Fig. 2.

Some BPS quivers do not have finite chambers, which are identified 
by allowing the SW algorithm to run until it has exhausted all possible 

3 Our experiments showed that Deep-Q Learning proves much less stable with 
dynamic action masking in this context.

BPS Quiver Minimal Chambers

𝑄1: 

𝛾3 𝛾4

𝛾2

𝛾6𝛾5

𝛾1 312×24

𝑄2: 𝛾1

𝛾2𝛾3

𝛾4

𝛾5 𝛾6

576 × 24

𝑄3:

𝛾4

𝛾2

𝛾5 𝛾6

𝛾3

𝛾1

1,656 × 8

𝑄4:

𝛾4 𝛾3

𝛾6

𝛾2

𝛾1

𝛾5 1,776 × 6

Fig. 3. The four BPS quivers of the SU(2) 𝑁𝑓 = 4 SCFT and the number of 
minimal chambers identified by the RL model.

mutation sequences. Of the quivers with finite chambers, the RL algo

rithm achieves a 100% accuracy and, moreover, is orders of magnitude 
more efficient than the SW algorithm. These results mean that the RL al

gorithm can efficiently identify finite chambers even for large BPS struc

tures, where traditional exhaustive scans are intractable as the number 
of possible sequences scales as ∼ (number of nodes)length of sequence [23].

For this reason, Fig. 2 includes projections for the SW algorithm on 
9 and 10 node quivers at (109) and (1010) time-steps, respectively. 
This would correspond to a computing time of ∼ 10 days and ∼ 1 year, 
respectively, on a home machine. We report an average of (104) and 
(105) time-steps with the RL algorithm, or a computing time of ∼ 5
minutes and ∼ 20 minutes, for 9 and 10 node quivers respectively.

Furthermore, the RL algorithm is inclined to identify minimal cham

bers of the theory due to the discount factor 𝛿 in the 𝑄-function, see 
Appendix A. For instance, the 12-state chamber identified in Example 2
is indeed a minimal chamber of the theory. This is not a feature of the 
SW model, where the length of the chamber is needed a priori, and there 
is no guarantee that any finite chamber identified is a minimal one.

4.1. Counting minimal chambers

As discussed in [27], it is interesting to find all the minimal chambers 
for all the BPS quivers of a given theory. To further showcase the capa

bilities of our model, we offer the original computation of all minimal 
chambers of the SU(2)𝑁𝑓 = 4 gauge theory.

Minimal chambers for this theory have been identified many times 
[4,23,27,28], but the scale of an exhaustive computational scan means 
that a complete census is absent in the literature. For the SU(2) 𝑁𝑓 = 4
theory, the Coulomb branch is spanned by four distinct BPS quivers, see 
Fig. 3, corresponding to the four possible triangulations of the fourth

punctured sphere [3,23]. These can be verified using Keller’s mutation 
Java applet [29], as well as using our code. We note that for each finite 
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Fig. 4. Plot of the total number of distinct minimal chambers of SU(2)𝑁𝑓 = 4
found against the number of steps taken for a random walk search using the RL 
model with PPO.

chamber, there exists a set of equivalent chambers obtained from the 
symmetries of the quiver. One such symmetry is permutation of topolog

ically equivalent nodes (formally an automorphic equivalence in graph 
theory). For 𝑄1 in Fig. 3, the nodes are arranged into classes

{𝛾1} ,{𝛾2} ,{𝛾3, 𝛾4, 𝛾5, 𝛾6} (10)

which introduces a 4! = 24-fold degeneracy to each chamber found for 
this quiver. The quivers 𝑄2 and 𝑄3 in Fig. 3 also have global symmetries 
that introduce additional degeneracies, see Appendix B. In the counting 
procedure, the RL model does not identify these as distinct chambers, 
and so the results in Fig. 3 and Fig. 4 should be interpreted as the number 
of essentially unique minimal chambers of each quiver.

For this experiment, the RL algorithm is adjusted to apply a negative 
penalty upon visiting a known chamber, which encourages the agent to 
further explore the moduli space and identify new minimal chambers. 
We run the searches until no new chambers are found in (106) time

steps, which occurs after (106 ∼ 107) time-steps. The total identified 
for each quiver is shown in Fig. 3, up to symmetries, and the full lists of 
these chambers are in the GitHub. Each chamber can also be manually 
checked using the interactive quiver plot. The total number of minimal 
chambers found by the agent against total time-steps is shown in Fig. 4. 

4.2. Exceptional complete theories

The  = 2 models engineered from punctured Riemann surfaces [5] 
are all but finitely many of the complete theories with BPS quivers. We 
now divert our attention to identifying minimal chambers of the fol

lowing exceptional complete theories, which are not constructed by the 
triangulation of a Riemann surface but rather by type IIB geometric en

gineering [3,4]:

• The three theories identified with the elliptic 𝐸-type Dynkin dia

grams, ̂̂𝐸𝑛 with 𝑛 = 6,7,8 [30].

• The two theories identified by the Derksen-Owen quivers, 𝑋6 and 
𝑋7 [6].

The RL algorithm identifies minimal chambers of these theories in 
(102 ∼ 103) timesteps, which are shown with their BPS quivers in 
Fig. 5. In agreement with results from [4], we find that the 𝑋7 quiver 
has no finite chamber.
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Appendix A. Reinforcement learning

A.1. Proximal policy optimisation

The dynamics of the intelligent agent are determined by a Markov 
decision process (MDP), formally a tuple 
( ,,{𝑃 (𝑠, 𝑎)}, 𝛾,𝑅) where

•  is the set of states in the environment.

•  is the set of actions permissible to the agent.

• 𝑃 (𝑠, 𝑎) are the state transition probabilities. For each state 𝑠 ∈ 

and action 𝑎 ∈, this describes the distribution over what states 
the agent will transition to if the action 𝑎 is taken in state 𝑠.

• 𝛾 ∈ [0,1) is the discount factor.

• 𝑅 ∶  ×→ℝ is the reward function.

The MDP evolves as follows: starting with an initial state 𝑠0 ∈  , the 
agent selects some action 𝑎0 ∈ , drawn according to 𝑃 (𝑠0, 𝑎0). This 
causes a transition from 𝑠0 to some new state 𝑠1 ∈  . The agent then 
picks another action 𝑎1 drawn according to 𝑃 (𝑠1, 𝑎1), which leads to 𝑠2 ∈
 . The process continues iteratively, with the agent choosing subsequent 
actions 𝑎0, 𝑎1, 𝑎2,… , to navigate a trajectory of states:

𝑠0
𝑎0⟶ 𝑠1

𝑎1⟶ 𝑠2
𝑎2⟶… (A.1)

The goal of any reinforcement learning algorithm is to find a policy 
𝜋 ∶  → that maximises the so-called 𝑄-function

𝑄𝜋(𝑠0) =𝐸
[
𝑅(𝑠0, 𝑎0) + 𝛾𝑅(𝑠1, 𝑎1) + 𝛾2𝑅(𝑠2, 𝑎2) +… ||| 𝜋], (A.2)

which is the expected cumulative reward when the agent takes actions 
according to some policy 𝜋, i.e., 𝑎𝑡 = 𝜋(𝑠𝑡).

Proximal Policy Optimisation (PPO) improves the policy 𝜋 by param

eterising it with a neural network and introducing a clipped objective 
function to constrain policy updates. This stabilises training by ensur

ing gradual improvements. This robustness is particularly advantageous 
when combined with action masking to exclude domain-violating ac

tions dynamically. Domain-violating actions are identified by the con

straints of the environment, and we customise the model-free PPO algo

rithm to mask these actions dynamically.

A.2. 𝝐-greedy strategy

Although PPO generates a distribution over actions for each state, we 
further incorporate an 𝜖-greedy exploration scheme. In the language of 
the MDP tuple ( ,,{𝑃 (𝑠, 𝑎)}, 𝛾,𝑅), this approach modifies the effec

tive policy distribution 𝜋(𝑠) from which actions are sampled. Concretely, 
with probability 𝜖, the agent chooses a random valid action (one that 
is not masked out by domain constraints), and with probability 1 − 𝜖, 
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BPS quiver Minimal chamber

̂̂𝐸6: 𝛾3

𝛾4

𝛾2

𝛾6

𝛾5

𝛾1 𝛾7

𝛾8

12 states:

𝛾8, 𝛾4, 𝛾3, 𝛾2, 𝛾1 + 𝛾3 + 𝛾4,

𝛾2 + 𝛾5, 𝛾1 + 𝛾3, 𝛾6, 𝛾1 + 𝛾4, 𝛾7, 𝛾1, 𝛾5

̂̂𝐸7: 𝛾3

𝛾4

𝛾2 𝛾5

𝛾1 𝛾6

𝛾8

𝛾7

𝛾9

13 states:

𝛾4, 𝛾9, 𝛾8, 𝛾2, 𝛾2 + 𝛾5, 𝛾1 + 𝛾4, 𝛾1,

𝛾6, 𝛾7, 𝛾5, 𝛾1 + 𝛾2 + 𝛾3, 𝛾2 + 𝛾3, 𝛾3

̂̂𝐸8: 𝛾3

𝛾4

𝛾2 𝛾5

𝛾1 𝛾7

𝛾6

𝛾8 𝛾9 𝛾10
14 states:

𝛾4, 𝛾6, 𝛾2, 𝛾1 + 𝛾4, 𝛾7, 𝛾8, 𝛾9, 𝛾10,

𝛾2 + 𝛾3, 𝛾3, 𝛾1 + 𝛾3, 𝛾2 + 𝛾5, 𝛾1, 𝛾5

𝑋6: 𝛾3

𝛾4𝛾2

𝛾6

𝛾5𝛾1

10 states:

𝛾6, 𝛾2, 𝛾2 + 𝛾3, 𝛾5, 𝛾2 + 𝛾3 + 𝛾4,

𝛾1, 𝛾2 + 2𝛾3 + 𝛾4 + 𝛾5, 𝛾3 + 𝛾5, 𝛾4, 𝛾3

𝑋7: 𝛾3

𝛾4𝛾2

𝛾6

𝛾5𝛾1

𝛾7

No finite chamber

Fig. 5. The 5 exceptional complete  = 2 theories and their BPS quivers, and their minimal chamber as identified by the RL model. In agreement with the literature, 
we find that the 𝑋6 Derksen-Owen quiver has no finite chamber.

it selects an action according to the PPO policy. This ensures sufficient 
exploration of the state-action space during training, mitigating prema

ture convergence to suboptimal deterministic policies and helping the 
agent discover higher-value trajectories.

A.3. Dynamic action masking

Dynamic action masking is used to ensure that the agent never at

tempts actions outside the domain constraints defined by the environ

ment. At each state 𝑠, a subset of actions in  may be prohibited due 
to physical laws, or human-imposed restrictions. Before the policy net

work computes the action probabilities for a given state 𝑠, a mask 𝐦(𝑠)
is generated, where 𝐦(𝑠) is a binary vector of the same dimension as 
. Each entry of 𝐦(𝑠) corresponds to an action in , taking the value 
1 if the action is valid and 0 otherwise. This vector is dynamically con

structed by querying the underlying environment constraints relevant 
to the current state. Formally, if 𝓵 is the vector of logits for each action, 
the masked logits are given by

𝓵′ = 𝓵⊗𝐦(𝑠),

where ⊗ denotes element-wise multiplication. Logits associated with 
invalid actions are thus set to zero (or a sufficiently negative value if 
working in log space), ensuring that subsequent sampling of actions is 
limited to valid entries only.

Appendix B. Graph automorphisms

An automorphism of a directed graph 𝐺 = (𝑉 ,𝐸) is a permutation 
𝜎 of the vertex set 𝑉 that preserves edge-vertex connectivity. That is, if 
the vertex pair (𝑢, 𝑣) is connected by a directed edge, the pair

(𝜎(𝑢), 𝜎(𝑣)) (B.1)

is also connected by an edge with the same direction. BPS quivers are di

rected graphs, with the vertex set 𝑉 the set of node labels {𝛾𝑖}. For each 
finite chamber of the quiver, there exists a set of equivalent chambers 
obtained through such automorphisms. The degeneracy of each chamber 
is therefore equal to the order of the automorphism group of the underly

ing quiver Aut(𝐺). The automorphism groups of the quivers from Fig. 3
are shown in Fig. B.6 with the following considerations:

1. Pairs of nodes that are automorphically equivalent are identified 
with the same colour. A quiver 𝐺 that contains 𝑛 such equivalent 
nodes contains a factor 𝑆𝑛 in Aut(𝐺).

2. Global symmetries of the graph 𝐺 represent automorphisms where 
entire classes of nodes are interchanged simultaneously. These con

tribute factors of ℤ𝑚 to the group Aut(𝐺), with 𝑚 the order of the 
symmetry.

The quivers 𝑄1 and 𝑄4 contain no such global symmetries. The quivers 
𝑄2 and 𝑄3 have a third order rotational symmetry ℤ3 , and a reflection 
symmetry ℤ2, respectively. Our code utilities the networkx package for 
Python to automatically detect these automorphisms for a given quiver.
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BPS Quiver Aut(𝐺) Order

𝑄1: 

𝛾3 𝛾4

𝛾2

𝛾6𝛾5

𝛾1 𝑆4 24

𝑄2: 𝛾1

𝛾2𝛾3

𝛾4

𝛾5 𝛾6

𝑆2 × 𝑆2 ×𝑆2 ×ℤ3 24

𝑄3:

𝛾4

𝛾2

𝛾5 𝛾6

𝛾3

𝛾1

𝑆2 × 𝑆2 ×ℤ2 8

𝑄4:

𝛾4 𝛾3

𝛾6

𝛾2

𝛾1

𝛾5 𝑆3 6

Fig. B.6. The four BPS quivers of the SU(2) 𝑁𝑓 = 4 SCFT and their automor

phism groups.

Data availability

Data will be made available on request.
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