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Abstract. Let G be an inductive limit group of general finite-dimensional linear groups which
is acting from the right on the space X of three infinite rows equipped with a Gaussian measure
µ . The involved action “respects” the measure; that is the right action is admissible. The unitary
representation of the group G on the space L2(X,µ) appears naturally. We give an irreducibility
criterion in terms of the action of the group GL(3,R) from the left on X . Namely, we prove that
this representation is irreducible if and only if all non trivial left actions are not admissible. This is
also a manifestation of a phenomenon predicted by the Ismagilov conjecture, see below. To prove
the irreducibility we show that the von Neumann algebra generated by the representation contains
certain abelian subalgebras. This is a consequence of the orthogonality and can be seen as a kind
of ergodic theorem (comparable to the Law of Large Numbers, but more subtle). More precisely,
the elements of the corresponding commutative subalgebras can be approximated (in the strong
resolvent sense) by combinations of generators of one-parameter groups. This approximation being
optimal at every finite step, represents the best possible outcome under the given conditions. Its
construction relies mainly on the properties of the generalized characteristic polynomial, an explicit
expression for the minimum of the quadratic form on a hyperplane, and a theorem regarding the
height of an infinite parallelotope.
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1. Introduction

1.1. Representations of locally compact groups
1.1.1. What is representation theory about?
The main problem in the representation theory (RT) of a topological group G is
to find its unitary dual Ĝ , i.e., the set of all irreducible unitary representations of
the group G up to the equivalence relation and decompose any representation into
a direct sum or direct integral of irreducible ones. Almost all constructions in RT
for locally compact groups such as regular, quasi-regular and induced representations
are based on the existence of the Haar measure on a group G . These constructions
allow us to find the unitary dual Ĝ for almost all locally compact groups G , except
for, e.g., the group SO(p, q) .

1.1.2. Compact groups and the regular representation
The existence of the Haar measure was proved by A.Haar [10]. A.Weil [45] proved a
converse, namely that a group with a quasi-invariant measure that acts faithfully on
the L2 -space is locally compact with respect to the strong operator topology from
U(L2(G)) . The right ρ (resp. the left λ) regular representation ρ, λ : G → U(H)
of the group G is defined on the Hilbert space H = L2(G, h) by
(ρtf)(x)=f(xt), (λsf)(x)=(dh(s−1x)/dh(x))1/2f(s−1x), t, s, x∈G, f ∈H. (1.1)

Since [ρt, λs] = 0 for all t, s ∈ G , both representations are reducible. When G
is compact, the decomposition of the right regular representation contains all the
irreducible representations:

ρ =
⊕
κ∈Ĝ

cκρκ. (1.2)

1.1.3. The Dixmier commutation theorem
Lemma 1.1. (The Dixmier commutation theorem, [8]) Let Aρ

G = (ρt|t ∈ G)′′ ,
and Aλ

G = (λs|s ∈ G)′′ be the von Neumann algebras generated by the right and the
left regular representations of a locally compact group G. Then

(Aρ
G)

′ = Aλ
G. (1.3)

This lemma is a cornerstone of our study of representations of infinite-dimensional
groups. The Ismagilov conjecture, see below, is a far-reaching generalization of this
statement.
1.1.4. Koopman’s representation
In order to construct a unitary representation of a topological group G (locally
compact or infinite-dimensional) we use a G-space (X,µ) with a “good” measure
µ . To be more precise, let α : G → Aut(X) be a measurable action of a group
G on a measurable space (X,µ) with G-quasi-invariant measure µ , i.e, µαt ∼ µ
(∼ means equivalent) for all t ∈ G , where Aut(X) is the group of all measurable
automorphisms of X . We use the notation µf (∆) = µ

(
f−1(∆)

)
for f : X → X ,

where ∆ is a measurable set in X . To this data we associate the representation
πα,µ,X : G→ U

(
L2(X,µ)

)
of the group G given by the formula:

(πα,µ,X
t f)(x) =

(
dµ
(
αt−1(x)

)
/dµ(x)

)1/2
f
(
αt−1(x)

)
, f ∈ L2(X,µ). (1.4)
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In the case of an invariant measure this representation is called Koopman’s repre-
sentation. We keep the same name for representation (1.4).
1.1.5. Quasi-regular representations
When the group is locally compact but not compact, the regular representation is not
sufficient to find all irreducible representations. One should generalize the regular
representation, for example, consider a quasi-regular or an induced representations,
as for the group SL(2,R) , see [32]. A quasi-regular representations of the group G
is a particular case of Koopman’s representation (1.4) with X = H \ G the set of
right cosets (or X = G/H , the set of left cosets), where H is a closed subgroup of
G and µ is a G-quasi-invariant measure on X . In case X = H \ G the group G
acts on X from the right, in case X = G/H it acts from the left.
1.1.6. Induced representation
To construct an induced representation of the group G we should fix a closed
subgroup H of the group G and a unitary representation S : H → U(V ) of a
group H . The induced representation IndG

HS of the group G is defined on the
space L2(X,V, µ) , where X = H \G , for details, see [33].

1.2. A brief history of the representations of infinite-dimensional
groups G = lim−→n

Gn

The representation theory of infinite-dimensional groups is a very broad area. We
mention here only some results connected with unitary representations of inductive
limits of classical groups, and an interesting connection with random matrices.
Using his orbit method developed in [17], A.A.Kirillov described in [18] all unitary
irreducible representations of the group U∞(H) , completion in the strong operator
topology of the group U(∞) = lim−→n

U(n) . The group U∞(H) consists of all unitary
operators of the form 1 + a , where a is compact.
This approach was generalized by G. I. Ol’shanskii for the inductive limits of other
classical groups K(∞)=lim−→n

K(n) , where K is U, O or Sp . In [38] the complete
classification of the so-called “tame” representations of the group K(∞) was ob-
tained, see also [34]. N. I. Nessonow [36] proved that a previously known list of
indecomposable spherical functions of the group GL(∞) that are bilaterally invari-
ant with respect to the unitary subgroup is complete. A. I. Bufetov [6] showed that
a Borel measure on the space of infinite Hermitian matrices, that is invariant under
the action of the infinite unitary group under additional conditions, is finite.
The aim of the book [41] by S. Stratila and D.Voiculescu is to study the factor
representations of the group U(∞) , see more details in the review by Ola Bratteli
(MR0458188).
In [35], K.H.Neeb describes the recent progress in the classification of bounded and
semibounded representations of infinite-dimensional Lie groups. He starts with a dis-
cussion of the semiboundedness condition and how the new concept of a smoothing
operator can be used to construct C∗ -algebras (so called host algebras) whose rep-
resentations are in one-to-one correspondence with certain semibounded representa-
tions of an infinite-dimensional Lie group G . This makes the full power of C∗ -theory
available in this context. Then he discusses the classification of bounded representa-
tions of several types of unitary groups on Hilbert spaces and of gauge groups. After
explaining the method of holomorphic induction as a means to pass from bounded
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representations to semibounded ones, he describes the classification of semibounded
representations for hermitian Lie groups of operators, loop groups (with infinite-
dimensional targets), the Virasoro group and certain infinite-dimensional oscillator
groups. The article [39] by G. I. Ol’shanskii deals with the representation theory
of the automorphism groups of infinite-dimensional Riemannian symmetric spaces.
The book [13] by R. S. Ismagilov is devoted to the representations of certain classes
of infinite-dimensional Lie groups: current group, diffeomorphism group and some
of their semidirect products.
Let S∞ = ∪n≥1Sn be the group of finite permutations of natural numbers. All
indecomposable central positive definite functions on S∞ , which are related to
factor representations of II1 , were given by E.Thoma [42]. Later A.M.Vershik
and S.V.Kerov obtained the same result by a different method in [43] and gave
a realization of the representations of type II1 in [44]. In [15] the generalized
regular representations {Tz : z ∈ C} of the group S∞ × S∞ were studied. These
representations are deformations of the biregular representation of S∞ in l2(S∞) .
A two-parameter family of the generalized regular representations Tz,z′ of the group
S∞ was considered also in [15]. In [5] the corresponding spectral measure Pz,z′ was
investigated. The correlation functions are of a determinantal form similar to those
studied in random matrix theory.
Borodin [4] studied the asymptotics of the Plancherel measures Mn for the sym-
metric groups Sn . He showed that Mn converges to the delta measure supported
on a certain subset Ω of R2 closely connected to Wigner’s semicircle law for the
distribution of eigenvalues of random matrices thus giving a positive answer to the
conjecture of J. Baik, P.A.Deift and K. Johansson [2].
1.3. Our approach to representations of infinite-dimensional groups
We will consider infinite-dimensional non-locally compact groups. If the group is
not locally compact, there is no Haar measure on it, see [45]. The main idea of [26]
is to construct an analogue of the regular, quasi-regular and induced representations
and study their irreducibility. Our approach to representation theory is completely
different and is based on a variety of non-equivalent G-quasi-invariant measures
µ on a G-space (X,µ) . To study irreducibility we use the Ismagilov conjecture,
a generalization of Dixmier’s commutation theorem. This approach allows us to
prove that nonequivalent measures correspond to nonequivalent representations ! See
Remark 1.3 below. Thus, the nonequivalent measures become essential ingredients
in the description of the dual Ĝ for infinite-dimensional groups G .
1.3.1. The Ismagilov conjecture
In order to construct an analogue of the regular representation of an infinite-
dimensional group G , we can first try to find a triplet

(G̃, G, µ), (1.5)

where G̃ is some larger topological group containing G as a dense subgroup, and a
measure µ on G̃ which is right or left G-quasi-invariant, i.e., µRt ∼ µ for all t ∈ G ,
(or µLs ∼ µ for all s ∈ G), here ∼ means equivalence, for details see [26]. Consider
the right and the left actions Rt, Ls of the group G on G̃ defined below:

Rtx = xt−1, Lsx = sx, t, s ∈ G, x ∈ G̃.
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Denote by µRt , µLs the images of the measure µ under the maps Rt, Ls : G̃→ G̃ .
The right and the left representations TR,µ, TL,µ : G → U(L2(G̃, µ)) are naturally
defined on the Hilbert space L2(G̃, µ) by the following formulas, compare with (1.1):

(TR,µ
t f)(x) = (dµ(xt)/dµ(x))1/2f(xt), (1.6)

(TL,µ
s f)(x) = (dµ(s−1x)/dµ(x))1/2f(s−1x). (1.7)

In [26, Chapter 5, Theorem 5.2.11] we proved that for the group BN
0 = lim−→n

B(n,R) ,
where B(n,R) is the group of upper-triangular real matrices with units on the diago-
nal, and a Gaussian product-measure µb on the group BN the Dixmier commutation
theorem holds when µLs

b ∼ µb for all s ∈ BN
0 under some special conditions on the

measure µb . Here BN
0 (resp. BN ) is a group of infinite real matrices of the form

I + x , where x is upper-triangular with a finite number of nonzero elements (resp.
x =

∑
k<n xknEkn is arbitrary upper-triangular) and

µb(x) =
⊗
k<n

µ(bkn,0)(xkn), dµ(bkn,akn)(xkn) =

√
bkn
π
e−bkn(xkn−akn)

2

dxkn. (1.8)

However, the right regular representation of an infinite-dimensional group can be
irreducible if no left actions are admissible for the measure µ , i.e., when µLs ⊥ µ
for all s ∈ G\{e} . In this case the von Neumann algebra ATL,µ generated by the
left regular representation TL,µ is trivial:

Conjecture 1.2. (Ismagilov, 1985) The right regular representation defined by (1.6)
TR,µ : G→ U(L2(G̃, µ))

is irreducible if and only if
(1) µLs ⊥ µ for all s ∈ G\{e}, (where ⊥ stands for orthogonal measures),
(2) the measure µ is G-ergodic.

Recall that the probability measure µ on a G-space X is called ergodic if any func-
tion f ∈ L1(X,µ) with property f(αt(x)) = f(x) modµ is constant. Conditions
(1) and (2) are necessary irreducibility conditions, at least for Gaussian measures.
The challenge is to prove that they are sufficient too.

Remark 1.3. Conjecture 1.2 was expressed by R. S. Ismagilov in his referee report
of the first author’s PhD Thesis, 1985. It was verified for a lot of particular cases by
the first author. In [20], see also [26, Theorem 2.1.1], he proved Conjecture 1.2 for
the group BN

0 and a Gaussian product-measure µb on the group BN . Moreover, he
proved that two irreducible representations TR,µb and TR,µb′ are equivalent if and
only if the corresponding measures µb and µb′ are equivalent [26, Theorem 2.1.17].
In the general case, Conjecture 1.2 is an open problem, for details see [26].

1.3.2. Irreducibility of Koopman’s representation
If a G-space X has a “natural” right action of the group G and a left action
of another group G1 , such as in the case of Schur-Weil duality, and these actions
commute: [Rt, Ls] = 0 for all t ∈ G, s ∈ G1 , then we can imagine that the Koopman
representation (1.4) is irreducilble if the left action is not admissible, i.e., µLs ⊥ µ
for all s ∈ G1 \ {e} and the measures µ is G-right-ergodic, such as in the Ismagilov
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conjecture. The main result of this article, Theorem 2.1 is a particular case of this
situation. However, if we have only one action α : G → Aut(X) , the right action
R(G) should be replaced by α(G) ⊂ Aut(X) and the left action L(G1) by the
centralizer of the subgroup α(G) in the group Aut(X) . The following conjecture is
a natural generalization of Ismagilov’s conjecture.

Conjecture 1.4. The representation (1.4) is irreducible if and only if
(1) µg ⊥ µ for all g ∈ ZAut(X)(α(G))\{e},
(2) the measure µ is G-ergodic.

Here ZG(H) is the centralizer of the subgroup H in the group G :
ZG(H) = {g ∈ G | {g, a} = e for all a ∈ H},

where {g, a} = gag−1a−1 . In general, Conjecture 1.4 is false. In the case of a finite
field Fp we need some additional conditions for the irreducibility [25]. Our aim is
to determine them.

1.3.3. Representations of the groups G = lim−→n
Gn

Consider an inductive limit G = lim−→n
Gn , with all Ĝn known.

Problem 1.5. Is it sufficient to determine Ĝ , i.e., whether Ĝ = lim←−n
Ĝn?

In the case of commutative groups Gn = Rn or Gn = T n = T×· · ·×T the answer to
Problem 1.5 is positive. In the first case we have Ĝ = lim←−n

Ĝn = R∞ . In the second
Ĝ = lim←−n

Ĝn = Z∞ . If we have ρn ∈ Ĝn defined on the Hilbert space Hn and there
is an embedding of Hilbert spaces in : Hn → Hn+1 , we can define the representation
ρ = lim−→n

ρn in the space H = lim−→n
Hn = ∪n∈NHn and this representation should be

irreducible. But usually, the space H = lim−→n
Hn has no Hilbert structure see e.g.,

[46], like the space R∞
0 = lim−→n

Rn . But when the representations T = lim−→n
Tn can

be obtained as limits of Koopman’s representations Tn = παn,µn,Xn on the space
Hn = L2(Xn, µn) and we have an additional structure:

Xn = X(1) × · · · ×X(n), µn =
n⊗

k=1

µ(k), (1.9)

in this case the final object lim−→n
Hncan be embedded in a Hilbert space

⊗∞
k=1H

(k) .
The construction of von Neumann infinite tensor product of the Hilbert spaces H(k)

He =
∞⊗

k=1,e

H(k), (1.10)

can be found in [3], but see also [16], here e = (fk)
∞
k=1 is some stabilisation where

fk ∈ H(k) . Two infinite products He and Hl corresponding to two different stabil-
isations are equivalent if and only if the corresponding stabilisations are equivalent
e ∼ l . As it was shown in [26, Chapter 8] the answer to Problem 1.5 is negative, at
least for the group BN

0 = lim−→n
Gn , where Gn = B(n,R) . The dual Ĝn is described

by the orbit method, but this procedure will not allow us to obtain all irreducible
representations, in particular, the regular representation. By [26, Theorem 2.1.1]
the representation TR,µb : BN

0 → U
(
L2(BN, µb)

)
is irreducible if and only if µLs

b ⊥ µb
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for all s∈BN
0 \ {e} , where µb is defined by (1.8). Denote by Rn the regular repre-

sentation of the group B(n,R) in the Hilbert space Hn =L2(Gn, hn) , where hn is
the Haar measure on Gn . But the restriction TR,µb|Gn is equivalent to the regular
representation Rn of Gn all of which are reducible! We have TR,µb =lim−→n

Rn , for the
details see [26, Chapter 2.4]. So we can obtain the irreducible representation as in-
ductive limits of reducible representations. Moreover, we prove [26, Theorem 2.1.17]
that two irreducible representations TR,µb and TR,µb′ are equivalent if and only if
the corresponding measures µb and µb′ are equivalent. Nonequivalent measures,
in fact, give us two nonequivalent infinite tensor products He 6∼ Hl . This means
that different embeddings of the spaces in : Hn → Hn+1 can give nonequivalent
representations, see details in [26, Chapter 8].

1.3.4. The inductive limit of reducible Koopman representations
can be irreducible

In this article we consider Koopman representations of the inductive limit
GL0(2∞,R) = lim−→n,is

GL(2n+ 1,R)

with respect to the symmetric embedding (2.2). Theorem 2.1 states that TR,µ,3

is irreducible if and only if (µ3
(b,a))

Ls ⊥ µ3
(b,a) for all s ∈ GL(3,R)\{e} . But the

restriction TR,µ,3|Gn of the representation TR,µ,3 to the subgroup Gn is the Koopman
representation of Gn , which is reducible, since any action of the group GL(3,R) from
the left on the space X3,n is admissible, i.e.,

(
µ3,n
(b,a)

)Ls

∼ µ3,n
(b,a) for all s ∈ GL(3,R) .

1.4. The general idea to prove the irreducibility
Let G be some infinite-dimensional group acting on a G-space (X,µ) equipped with
some quasi-invariant measure. In the concrete examples considered in [20]–[30] the
possibility to approximate a lot of functions in L∞(X,µ) using Lemma 6.1, follows
from the fact

lim
n→∞

(Cn(λ)
−1an, an) =∞, where Cn(λ) = diag

(
λ1, . . . , λn

)
+ Cn. (1.11)

By Theorem 5.3 proved in [30], (see also Lemma 6.4 for m = 3), we have

(
Cn(λ)

−1an, an
)
=∆(y

(n)
1 , y

(n)
2 , . . . , y(n)m )=

det
(
Im + γ(y

(n)
1 , y

(n)
2 , . . . , y

(n)
m )

)
det
(
Im−1 + γ(y

(n)
2 , . . . , y

(n)
m )

) − 1. (1.12)

Finally, by Lemma 1.2, [29] (see Lemmas 6.3 and 6.5 for m = 3) we get

lim
n→∞

det
(
Im + γ(y

(n)
1 , y

(n)
2 , . . . , y

(n)
m )

)
det
(
Im−1 + γ(y

(n)
2 , . . . , y

(n)
m )

) =∞.

The article is organized as follows. The main result and the idea of the proof are
formulated in Section 2.2, the orthogonality problem in measure theory is studied in
Section 3, irreducibility is considered in Section 4 and the approximation of xkn or
Dkn in Section 5. In the Appendix we explain the use of the generalized characteristic
polynomial, the explicit expression for the minimum of the quadratic form restricted
to a hyperplane and present a result of independent interest on the height of an
infinite parallelotope. In Section 7 we indicate what we can do in the case m > 3 .
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2. Representations of the group GL0(2∞,R)

2.1. Finite-dimensional case
Consider the space Xm,n =

{
x =

∑
1≤k≤m

∑
−n≤r≤n

xkrEkr, xkr ∈ R
}
, where Ekn ,

k, n ∈ Z are infinite matrix unities, with the measure (see (2.5))

µm,n
(b,a)(x) =

m⊗
k=1

n⊗
r=−n

µ(bkr,akr)(xkr).

Two groups act on the space Xm,n : GL(m,R) from the left, and GL(2n+1,R) from
the right, and their actions commute. Therefore, two von Neumann algebras A1,n

and A2,n in the Hilbert space L2(Xm,n, µ
m,n
(b,a)) generated respectively by the left and

the right actions of the corresponding groups have the property that A′
1,n ⊆ A2,n ,

where A′ is a commutant of a von Neuman algebra A . We study what happens as
n→ ∞ . In the limit we obtain some unitary representation TR,µ,m (see (2.6)) of
the group G := GL0(2∞,R) = lim−→n,is

GL(2n + 1,R) acting from the right on Xm .
In the generic case, the representation TR,µ,m is reducible. Indeed, if there exists
a non-trivial element s ∈ GL(m,R) such that the left action is admissible for the
measure µm

(b,a) , i.e., (µm
(b,a))

Ls∼µm
(b,a) the operator TL,µ,m

s naturally associated with
the left action, is well defined and [TR,µ,m

t , TL,µ,m
s ]=0 for all t∈G, s∈GL(m,R) .

Here, as in the case of the regular [19, 20] and quasi-regular representations of the
group BN

0 , which is an inductive limit of upper-triangular real matrices, we obtain
the remarkable result that the irreducible representations can be obtained as the
inductive limit of reducible representations !
The action of GL(2n + 1,R) on the space Xm,n can be seen as a product of the
natural action on R2n+1 . To see this set
X(k)

m,n = {x =
∑

−n≤r≤n

xkrEkr, xkr ∈ R
}
∼ R2n+1, µm,n,k

(b,a) (x) := ⊗n
r=−nµ(bkr,akr)(xkr).

Then Xm,n = ⊗m
k=1R2n+1, L2(Xm,n, µ

m,n
(b,a)) = ⊗

m
k=1L

2(R2n+1, µm,n,k
(b,a) ) .

2.2. The main result
Let us denote by Mat(2∞,R) the space of all real matrices that are infinite in both
directions:

Mat(2∞,R) =
{
x =

∑
k,n∈Z

xknEkn, xkn ∈ R
}
. (2.1)

The group GL0(2∞,R) = lim−→n,is
GL(2n + 1,R) is defined as the inductive limit

of the general linear groups Gn = GL(2n + 1,R) with respect to the symmetric
embedding is :

Gn 3 x 7→ isn+1(x) = x+ E−(n+1),−(n+1) + En+1,n+1 ∈ Gn+1. (2.2)
For a fixed natural number m , consider a G-space Xm as the following subspace of
the space Mat(2∞,R) :

Xm =
{
x ∈ Mat(2∞,R) | x =

m∑
k=1

∑
n∈Z

xknEkn

}
. (2.3)
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The right action of the group GL0(2∞,R) is correctly defined on the space Xm by
the formula Rt(x) = xt−1, t ∈ G, x ∈ Xm . We define a Gaussian non-centered
product measure µ := µm := µm

(b,a) on the space Xm :

µm
(b,a)(x) = ⊗m

k=1 ⊗n∈Z µ(bkn,akn)(xkn), (2.4)

where dµ(bkn,akn)(xkn) =

√
bkn
π
e−bkn(xkn−akn)

2

dxkn (2.5)

and b = (bkn)k,n, bkn > 0, a = (akn)k,n, akn ∈ R, 1 ≤ k ≤ m, n ∈ Z . Next we
define the unitary representation TR,µ,m of the group GL0(2∞,R) on the space
L2(Xm, µ

m
(b,a)) by the formula:

(TR,µ,m
t f)(x) =

(
dµm

(b,a)(xt)/dµ
m
(b,a)(x)

)1/2
f(xt), f ∈ L2(Xm, µ

m
(b,a)). (2.6)

The centralizer ZAut(Xm)(R(G)) ⊂ Aut(Xm) contains the group L(GL(m,R)) , i.e.,
the image of the group GL(m,R) with respect to the left action

L : GL(m,R)→ Aut(Xm) , Ls(x) = sx , s ∈ GL(m,R), x ∈ Xm .

Theorem 2.1. The representation TR,µ,m : GL0(2∞,R)→ U
(
L2(Xm, µ

m
(b,a))

)
is

irreducible, for m = 3, if and only if
(i) (µm

(b,a))
Ls ⊥ µm

(b,a) for all s ∈ GL(m,R)\{e};
(ii) the measure µm

(b,a) is G-ergodic.

In [26, 27] this result was proved for m ≤ 2 . Note that Theorem 2.1 is a particular
case of a generalisation of the Ismagilov conjecture, see Conjecture 7.7 in [30], for
the group G acting on some space X .

Remark 2.2. Any Gaussian product-measure µm
(b,a) on Xm is GL0(2∞,R)-right-

ergodic [40, §3, Corollary 1]. For non-product-measures this is not true in general.

In order to study the condition (µm
(b,a))

Lt ⊥ µm
(b,a) for t ∈ GL(m,R) \ {e} set

t = (trs)
m
r,s=1 ∈ GL(m,R), Bn = diag(b1n, b2n, ..., bmn), Xn(t) = B1/2

n tB−1/2
n . (2.7)

Let M i1i2...ir
j1j2...jr

(t) be the minors of the matrix t with i1, i2, ..., ir rows and j1, j2, ..., jr
columns, 1 ≤ r ≤ m . Let δrs be the Kronecker symbols.

Lemma 2.3 ([26], Lemma 10.2.3; [27], Lemma 2.2). For the measures µm
(b,a) , with

m a natural number, the following relation holds true:
(µm

(b,a))
Lt ⊥ µm

(b,a) for all t ∈ GL(m,R)\{e} if and only if∏
n∈Z

1

2m|det t|
det (I+X∗

n(t)Xn(t))+
∑
n∈Z

m∑
r=1

brn

( m∑
s=1

(trs−δrs)asn
)2

=∞,

det
(
I +X∗

n(t)Xn(t)
)
= 1 +

m∑
r=1

∑
1≤i1<i2<...<ir≤m
1≤j1<j2<...<jr≤m

(
M i1i2...ir

j1j2...jr
(Xn(t))

)2
. (2.8)

Let us define the following measures on the spaces Rm and Xm :
µ(Bn,0)
m = ⊗m

k=1µ(bkn,0), µ(Bn,an)
m = ⊗m

k=1µ(bkn,akn),

where an=(a1n, ..., amn) ∈ Rm and Bn=diag(b1n, ..., bmn) ∈ Mat(m,R) .
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Set Hm,n(t)=H
((
µ(Bn,0)
m

)Lt

, µ(Bn,0)
m

)
=
(

1

2m|det t|
det (I+X∗

n(t)Xn(t))
)−1/2

. (2.9)

Remark 2.4. (Idea of the proof of irreducibility.) Let us denote by Am the
von Neumann algebra generated by the representation TR,µ,m , that is, we have
Am = (TR,µ,m

t | t∈G)′′ , where M ′ is the commutant of the von Neunmann algebra
M ⊂ B(H) . For α=(αk)∈{0, 1}m define the von Neumann algebra L∞

α (Xm, µ
m)

as follows:
L∞
α (Xm, µ

m)=
(
exp(itBα

kn) | 1 ≤ k ≤ m, t ∈ R, n ∈ Z
)′′
,

where Bα
kn=

{
xkn, if αk = 0

i−1Dkn, if αk = 1
and Dkn = ∂/∂xkn − bkn(xkn − akn) .

The proof of the irreducibility is based on four facts:
(1) We can approximate by the generators Akn = AR,m

kn = d
dt
TR,µ,m
I+tEkn

|t=0 the set of
operators (Bα

kn)
m
k=1, n∈Z for some α∈{0, 1}m depending on the measure µm using

the orthogonality condition (µm)Ls ⊥ µm for all s ∈ GL(m,R)\{e} ;
(2) it is sufficient to verify the approximation only for the cyclic vector 1(x)≡ 1 ,
since the representation TR,µ,m is cyclic;
(3) the subalgebra L∞

α (Xm, µ
m) is a maximal abelian subalgebra in Am ;

(4) the measure µm is G-ergodic.
Here the generators Akn are given by the formulas:

Akn=
m∑
r=1

xrkDrn, k, n ∈ Z, where Dkn = ∂/∂xkn − bkn(xkn − akn). (2.10)

Remark 2.5. Scheme of the proof. We prove the irreducibility as follows(
µLs ⊥ µ for all s ∈ GL(3,R) \ {e}

)
⇔
( criteria

of
orthogonality

)
& (2.11)( Lemma 6.3

about
three vectors f,g,h ̸∈l2

)
⇒
(

some of ∆(1), ∆1

the expressions ∆(2), ∆2

are divergent: ∆(3), ∆3

)
⇒ irreducibility,

where ∆(i) := ∆(Y
(i)
i , Y

(i)
j , Y

(i)
k ), ∆i := ∆(Yi, Yj, Yk), (2.12)

∆(f, g, h) is defined by (2.15), and {i, j, k} is a cyclic permutation of {1, 2, 3} , see
for details Lemma 5.1, Lemma 5.2 and Lemma 5.4.

We use the following notation. For k vectors f1, f2, . . . , fk ∈ Rn with k ≤ n set

∆(f1, f2, . . . , fk)=
det(I + γ(f1, f2, . . . , fk))

det(I + γ(f2, . . . , fk))
− 1, for k = 2, 3: (2.13)

∆(f1, f2)=
det(I + γ(f1, f2))

det(I + γ(f2))
−1= I+Γ(f1)+Γ(f2)+Γ(f1, f2)

I + Γ(f2)
, (2.14)

∆(f1, f2, f3) =
Γ(f1) + Γ(f1, f2) + Γ(f1, f3) + Γ(f1, f2, f3)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)
. (2.15)
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Remark 2.6. The fact that the conditions (µ3
(b,a))

Lt⊥µ3
(b,a) for all t ∈ GL(3,R)\{e}

imply the possibility of the approximation of xkn or Dkn by combinations of
generators is based on Lemma 6.1 and Lemma 6.4 about explicit expression for
(C−1(λ)a, a) , see [30], where C(λ) is defined by (6.3). Finally the last lemma
is based on some completely independent statement about three infinite vectors
f1, f2, f3 6∈ l2(N) such that

∑3
k=1Ckfk 6∈ l2(N) , see Lemma 6.3 for general m in

[29]. These lemmas are the key ingredients of the proof of the irreducibility of the
representation.

Remark 2.7. Note that in the case of the “nilpotent group” BN
0 and the infinite

product of arbitrary Gaussian measures on Rm (see [1]) the proof of the irreducibility
is also based on another completely independent statement namely, the Hadamard-
Fischer inequality, see Lemma 2.8.

Lemma 2.8. (Hadamard-Fischer inequality [11, 12]) For any positive definite ma-
trix C∈Mat(m,R), m∈N, and any two subsets α and β with ∅ ⊆ α, β ⊆ {1, ...,m}
the following inequality holds:∣∣∣∣ M(α) M(α

⋂
β)

M(α
⋃
β) M(β)

∣∣∣∣ = ∣∣∣∣ A(α̂) A(α̂
⋃
β̂)

A(α̂
⋂
β̂) A(β̂)

∣∣∣∣ ≥ 0, (2.16)

where M(α) = Mα
α (C), A(α) = Aα

α(C) are factors and cofactors of the matrix C
and α̂={1, ...,m} \ α.

2.3. Equivalent series and equivalent sequences

Definition 2.9. We say that two series
∑

n∈N an and
∑

n∈N bn with positive
an, bn are equivalent if they are divergent or convergent simultaneously. We will
write

∑
n∈N an ∼

∑
n∈N bn . We say that two sequences (an)n∈N and (bn)n∈N are

equivalent if for some C1, C2 > 0 we have C1bn ≤ an ≤ C2bn for all n ∈ N . We will
use the same notation an ∼ bn .

Lemma 2.10. Let 1 + cn > 0 for all n ∈ Z. Then the following two series are
equivalent:

Σ1 :=
∑
n∈Z

c2n
1 + cn

, Σ2 :=
∑
n∈Z

c2n. (2.17)

Proof. Fix some ε ∈ (0, 1) and a large enough N . We have three cases:
(a) 1 + cn ∈ (ε,N) ,
(b) for an infinite subset Z1 we have limn∈Z1(1 + cn) =∞ ,
(c) for an infinite subset Z1 we have limn∈Z1(1 + cn) = 0 .
When we are not in the case (a) there is an infinite subset Z1 ⊂ Z such that (b) or
(c) holds true. In the case (a) we have

1

N

∑
n∈Z

c2n <
∑
n∈Z

c2n
1 + cn

<
1

ε

∑
n∈Z

c2n, (2.18)

In the cases (b) and (c) both series are divergent.

We will make systematic use of the following statement.
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Remark 2.11. ([26]) Let an, bn > 0 for all n ∈ N . The following two series are
equivalent ∑

n∈N

an
an + bn

∼
∑
n∈N

an
bn
. (2.19)

3. Some orthogonality problems in measure theory

3.1. General setting
Our aim now is to find the minimal generating set of conditions for the orthogonality
(µm

(b,a))
Lt⊥µm

(b,a) for all t ∈ GL(m,R)\{e} . To be more precise, consider the following
more general situation. Let α : G→ Aut(X) be a measurable action of a group G on
a measurable space (X,µ) with the following property: µαt ⊥ µ for all t ∈ G \ {e} .
Define a generating subset G⊥(µ) in the group G as follows:

if µαt ⊥ µ for all t ∈ G⊥(µ), then µαt ⊥ µ for all t ∈ G \ {e}. (3.1)

Problem 3.1. Find a minimal generating subset G⊥
0 (µ) satisfying (3.1).

3.2. Orthogonality criteria µLt ⊥ µ for t ∈ GL(2,R) \ {e}
Remark 3.2. By Lemma 4.1 proved in [27] or Lemma 10.4.1 in [26] for m = 2 we
conclude that the minimal generating set G⊥

0 (µ) = GL(2,R)⊥0 (µ) (see Problem (3.1))
is reduced to the following subgroups, families and elements:

exp(tE12) = I + tE12=

(
1 t
0 1

)
, exp(tE21)=I + tE21 =

(
1 0
t 1

)
, (3.2)

exp(tE12)P1 =

(
−1 t
0 1

)
, exp(tE21)P2 =

(
1 0
t −1

)
, (3.3)

τ−(ϕ, s)=

(
cosϕ s2 sinϕ

s−2 sinϕ − cosϕ

)
=D2(s)

(
cosϕ − sinϕ
sinϕ cosϕ

)
D−1

2 (s)P2. (3.4)

The families (3.2) are one-parameter subgroups, the families (3.3) are just reflections
of (3.2) and the family (3.4) depends on two parameters. All elements are of
order 2 except the elements in subgroups given in (3.2). It suffices to verify the
conditions (3.2) only for some t ∈ R \ {0} . Actually, the family τ−(ϕ, s) coincides
with D2(s)O(2)D−1

2 (s)P2 , where D2(s) = diag(s, s−1) . All points t in (3.3) and all
points (ϕ, s) in (3.4) are essential, i.e., they cannot be removed.

The conditions for the orthogonality with respect to elements defined by (3.2)–(3.4)
are transformed in the divergence of the following series:

SL
12(µ) =

∑
n∈Z

b1n
2

(
1

2b2n
+ a22n

)
, SL

21(µ) =
∑
n∈Z

b2n
2

(
1

2b1n
+ a21n

)
, (3.5)

SL,−
kn (µ, t) =

t2

4

∑
m∈Z

bkm
bnm

+
∑
m∈Z

bkm
2
(−2akm + tanm)

2, t ∈ R, (3.6)

Σ−
12

(
τ−(ϕ, s)

)
= sin2 ϕΣ12(s) + Σ−

12

(
τ−(ϕ, s)

)
, ϕ ∈ [0, 2π), s > 0, (3.7)

where Σ12(s) :=
∑
n∈Z

(
s2
√

b1n
b2n
−s−2

√
b2n
b1n

)2
, (3.8)
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Σ−
12

(
τ−(ϕ, s)

)
=
∑
n∈Z

(
4b1n sin

2 ϕ

2
+4s−4b2n cos

2 ϕ

2

)(
a1n sin

ϕ

2
−s2a2n cos

ϕ

2

)2
. (3.9)

Remark 3.3. [see [27]] The following three conditions are equivalent:
(i) µLτ−(ϕ,s) ⊥ µ , ϕ ∈ [0, 2π) , s > 0 ,
(ii) Σ12

(
τ−(ϕ,s)

)
=sin2 ϕΣ12(s)+Σ−

12

(
τ−(ϕ, s)

)
=∞ , ϕ ∈ [0, 2π) , s > 0 ,

(iii) Σ12(s) + Σ12(C1, C2) =∞ , s > 0 , (C1, C2) ∈ R2 \ {0} ,
where Σ12(s) is defined by (3.8) and

Σ12(C1, C2) :=
∑
n∈Z

(C2
1b1n + C2

2b2n)(C1a1n + C2a2n)
2. (3.10)

3.3. Orthogonality criteria µLt ⊥ µ for t ∈ GL(3,R) \ {e}
Recall [27] that for m = 2 and det t > 0 we have

22 | det t |
(
H−2

2,n(t)− 1
)
=
[
(1−| det t |)2+(t11−t22)2+

(
t12

√
b1n
b2n

+t21

√
b2n
b1n

)2]
=
[(
M∅

∅ (X(t))−A∅
∅(X(t))

)2
+
(
M1

1 (X(t))−A1
1(X(t))

)2
+
(
M1

2 (X(t))−A1
2(X(t))

)2]
,

where Hm,n(t) is defined by (2.9). For m = 3 , using the relations of (2.7), we have
X(t) = B1/2tB−1/2 , hence

X(t) =

 b1n 0 0
0 b2n 0
0 0 b3n

1/2 t11 t12 t13
t21 t22 t23
t31 t32 t33

 b1n 0 0
0 b2n 0
0 0 b3n

−1/2

=


t11

√
b1n
b2n
t12

√
b1n
b3n
t13√

b2n
b1n
t21 t22

√
b2n
b3n
t23√

b3n
b1n
t31

√
b3n
b2n
t32 t33

 .

Therefore, using (2.8) and the fact that X = X∗(t)X(t) we obtain

23 | det t | H−2
3,n(t) =

(
1+ | det t |2 +t211 +

b1n
b2n
t212 +

b1n
b3n
t213 +

b2n
b1n
t221 + t222 +

b2n
b3n
t223

+
b3n
b1n
t231 +

b3n
b2n
t232 + t233 +

(
M12

12 (t)
)2

+
b2n
b3n

(
M12

13 (t)
)2

+
b1n
b3n

(
M12

23 (t)
)2

+
b3n
b2n
×(

M13
12 (t)

)2
+
(
M13

13 (t)
)2

+
b1n
b2n

(
M13

23 (t)
)2

+
b3n
b1n

(
M23

12 (t)
)2

+
b2n
b2n
×

(
M23

13 (t)
)2

+
(
M23

23 (t)
)2)

= 1+ | det t |2 +
∑

1≤i≤j≤3

[(
tij

√
bin
bjn

)2
+

(
Ai

j

√
bjn
bin

)2 ]
= 1+ | det t |2 +

∑
1≤i≤j≤3

(
|M i

j(X(t))|2 + |Ai
j(X(t))|2

)
.

Let Ai
j(t) be the cofactors of a matrix t ∈ GL(3,R) .
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Using the notation tij = tij and the relations

det t = tk1A
k
1(t) + tk2A

k
2(t) + tk3A

k
3(t), k = 1, 2, 3, we get

23 | det t |
(
H−2

3,n(t)− 1
)
= (1− | det t |)2 +

∑
1≤i,j≤3

(
M i

j(X(t))− Ai
j(X(t))

)2
= (1− | det t |)2 +

∑
1≤i≤j≤3

(
tij

√
bin
bjn
− Ai

j(t)

√
bjn
bin

)2
. (3.11)

Similar to [27, Lemmas 2.22] in the case m = 2 , or [26, Lemma 10.4.30] we get the
following lemma, for m = 3 .

Lemma 3.4. For t ∈ GL(3,R) \ {e}, if ± det t > 0, we have respectively

(µ3
(b,0))

Lt ⊥ µ3
(b,0) ⇔ (3.12)∑

n∈Z

[
(1−| det t |)2 +

∑
1≤i≤3

(
tii ∓ Ai

i(t)
)2

+
∑

1≤i<j≤3

(
tij

√
bin
bjn
∓ Ai

j(t)

√
bjn
bin

)2]
=∞.

By Lemma 2.3 the following lemma holds true.

Lemma 3.5. For t ∈ GL(3,R) \ {e} we have

(µ3
(b,a))

Lt ⊥ µ3
(b,a) if | det t |6= 1.

If det t = ±1, we have respectively

(µ3
(b,a))

Lt ⊥ µ3
(b,a) ⇔ Σ±(t) := Σ±

1 (t) + Σ2(t) =∞, where

Σ+
1 (t)=

∑
n∈Z

[ 3∑
k=1

(tkk−Ak
k(t))

2+
∑

1≤i<j≤3

(
tij

√
bin
bjn
−Ai

j(t)

√
bjn
bin

)2]
, (3.13)

Σ−
1 (t)=

∑
n∈Z

[ 3∑
k=1

(tkk+A
k
k(t))

2+
∑

1≤i<j≤3

(
tij

√
bin
bjn

+Ai
j(t)

√
bjn
bin

)2]
, (3.14)

Σ2(t
−1) =

∑
n∈Z

[
b1n
(
(t11 − 1)a1n + t12a2n + t13a3n

)2
+ (3.15)

b2n
(
t21a1n + (t22−1)a2n + t23a3n

)2
+ b3n

(
t31a1n + t32a2n + (t33−1)a3n

)2]
.

Remark 3.6. By Lemma 3.5, it suffices to verify, the condition of orthogonality

(µ3
(b,a))

Lt ⊥ µ3
(b,a) for t ∈ GL(3,R) \ {e}

for the following two subsets of the group ±SL(3,R) :

G±
3 := {t ∈ ±SL(3,R) | tkk = ±Ak

k(t), 1 ≤ k ≤ 3}. (3.16)
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Lemma 3.7. If t ∈ G±
3 , we have respectively

(µ3
(b,a))

Lt ⊥ µ3
(b,a) ⇔ Σ±(t) = Σ±

1 (t) + Σ2(t) =∞,

Σ±
1 (t) =

∑
1≤i<j≤3

∑
n∈Z

(
tij

√
bin
bjn
∓ Ai

j(t)

√
bjn
bin

)2
=
∑

1≤i<j≤3

Σ±
ij(t), (3.17)

Σ±
ij(t)=

∑
n∈Z

(
tij

√
bin
bjn
∓Ai

j(t)

√
bjn
bin

)2
, (3.18)

where Σ2(t) is defined by (3.15).

Next we will show that the set G+
3 can be reduced to the six families of one-

parameter subgroups exp(tEkr) , 1 ≤ k 6= r ≤ 3 , see (3.20), or the three families of
two-parameter subgroups, see (3.21). The set G−

3 can be reduced to the three two-
parameter family (3.22), reflections of (3.21) by Pr . The remaining part is reduced
to the sets D3(s)O(3)D−1

3 (s)Pr or five parameter family of elements τr(t, s) =
D3(s)tD

−1
3 (s)Pr , see (3.26).

Lemma 3.8. In case m = 3 the minimal generating set GL(3,R)⊥0 (µ) is defined
as follows (compare with Remark 3.2):

GL(3,R)⊥0 (µ) = {er(t, s), er(t, s)Pr, | 1 ≤ r ≤ 3, (t, s) ∈ R2}

∪ {OA
r (3), 1 ≤ r ≤ 3}, where (3.19)

ekn(t) := exp(tEkn) = I + tEkn, 1 ≤ k 6= n ≤ 3, t ∈ R, (3.20)

e1(t, s) =
(

1 t s
0 1 0
0 0 1

)
, e2(t, s) =

(
1 0 0
t 1 s
0 0 1

)
, e3(t, s) =

(
1 0 0
0 1 0
t s 1

)
, (3.21)

e1(t, s)P1=
(

−1 t s
0 1 0
0 0 1

)
, e2(t, s)P2=

(
1 0 0
t −1 s
0 0 1

)
, e3(t, s)P3=

(
1 0 0
0 1 0
t s −1

)
, (3.22)

P1 =
(

−1 0 0
0 1 0
0 0 1

)
, P2 =

(
1 0 0
0 −1 0
0 0 1

)
, P3 =

(
1 0 0
0 1 0
0 0 −1

)
, (3.23)

OA(3) := {D3(s)O(3)D−1
3 (s) | D3(s) ∈ A}, (3.24)

OA
r (3) := {D3(s)O(3)D−1

3 (s)Pr | D3(s) ∈ A}, 1 ≤ r ≤ 3, (3.25)

τr(t, s) = D3(s)tD
−1
3 (s)Pr, t ∈ O(3), A := {D3(s)=diag(s1, s2, s3)}. (3.26)

The families (3.20) give us respectively the divergence of the following series:

SL
kr(µ) =

∑
n∈Z

bkn
2

( 1

2brn
+ a2rn

)
, 1 ≤ k, r ≤ 3, k 6= r. (3.27)

The families (3.21) give us the divergence of the following series:

SL
1,23(µ, t, s) =

∑
n∈Z

[
t2

4

b1n
b2n

+
s2

4

b1n
b3n

+
b1n
2

(
−2a1n+ta2n+sa3n

)2]
, (3.28)

SL
2,31(µ, t, s) =

∑
n∈Z

[
t2

4

b2n
b1n

+
s2

4

b2n
b3n

+
b2n
2

(
ta1n − 2a2n + sa3n

)2]
, (3.29)

SL
3,12(µ, t, s) =

∑
n∈Z

[
t2

4

b3n
b1n

+
s2

4

b3n
b2n

+
b3n
2

(
ta1n + sa2n − 2a3n

)2]
, (3.30)

in particular SL
rr(µ) := SL

r,st(µ, 0, 0) =
∑
n∈Z

brn
2
a2rn, (3.31)
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where (r, s, t) is a cyclic permutation of (1, 2, 3) . The families (3.26) give us the
condition (3.34), see Lemma 3.9 below.

Proof. Consider the subset GL(3,R)⊥0 (µ) of GL(3,R) described by (3.19). The
fact that this set is minimal generating will follow from Lemma 4.1, more precisely,
from the following implications:(

µLt ⊥ µ for all t ∈ GL(3,R)⊥0 (µ)
)
⇒
(
irreducibility

)
(3.32)

⇒
(
µLt ⊥ µ for all t ∈ GL(3,R) \ {e}

)
.

The first implication follows from Lemma 4.1, and the second from the irreducibility.
Indeed, suppose that GL(3,R)⊥0 (µ) is not a minimal generating set, then we can
find an s ∈ GL(3,R) \ {e} such that(

µ3
(b,a)

)Ls ∼ µ3
(b,a).

Hence the non-trivial operator TL,µ,3
s can be defined by

(TL,µ,3
s f)(x)=

(
dµ3

(b,a)(s
−1x)/dµ3

(b,a)(x)
)1/2
f(s−1x), f ∈ L2(X3, µ

3
(b,a)). (3.33)

This operator commutes with the representations TR,µ,3 :

[TR,µ,3
t , TL,µ,3

s ] = 0 for all t ∈ G,

contradicting the irreducibility. The relations (3.27)–(3.30) follows from (3.13)–
(3.15). The relation (3.29), for example, follows from (3.14) and (3.15). The relation
(3.34) is obtained from (3.13) for τr(t, s), t∈O(3), s∈

(
R∗)3 defined by (3.26).

Lemma 3.9. Set τ(s, t) := D3(s)tD
−1
3 (s) and τr(s, t) := τ(s, t)Pr for t∈±O(3),

D3(s)=diag(s1, s2, s3), s=(s1, s2, s3)∈(R∗)3 and 1 ≤ r ≤ 3. Then(
µ3
(b,a)

)Lτr(s,t) ⊥ µ3
(b,a) ⇔ Σ±

1

(
τr(s, t)

)
+ Σ2

(
τr(s, t)

)
=∞, (3.34)

where Σ±
1 (t) are defined by (3.17), and Σ2(t) is defined by (3.15). In particular, if

we denote sij = sis
−1
j we get

Σ+
1

(
τ(t, s)

)
= Σ+

1 (t, s) = t212Σ12(s
1/2
12 ) + t213Σ13(s

1/2
13 ) + t223Σ23(s

1/2
23 ). (3.35)

Proof. For T := τ(s, t) and T (3) := τ3(s, t) we have respectively:

T = D3(s)tD
−1
3 (s)=

(
t11

s1
s2
t12

s1
s3
t13

s2
s1
t21 t22

s2
s3
t23

s3
s1
t31

s3
s2
t32 t33

)
, (3.36)

(
t11

s1
s2
t12 − s1

s3
t13

s2
s1
t21 t22 − s2

s3
t23

s3
s1
t31

s3
s2
t32 −t33

)
= D3(s)tD

−1
3 (s)P3 =: T (3). (3.37)

By Lemma 3.10 for t ∈ O(3) we have tkr = Ak
r(t), 1 ≤ k, r ≤ 3. Therefore, for T

and T (3) we have for 1≤k, r≤3 :

Mk
r (T ) = Tkr=

sk
sr
tkr, A

k
r(T )=

sr
sk
Ak

r(t)
(3.40)
=

sr
sk
tkr, Mk

r (T (3)) (3.38)

=(−1)δ3,r sk
sr
tkr, A

k
r(T (3))= (−1)δ3,r sr

sk
Ak

r(t) = (−1)δ3,r sr
sk
tkr. (3.39)
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Finally, we get

Σ+
1 (T ) = Σ+

1

(
τ(s, t)

)
=
∑
n∈Z

[ ∑
1≤i<j≤3

(
M i

j(T )

√
bin
bjn
− Ai

j(T )

√
bjn
bin

)2]
=
∑
n∈Z

[
t212

(
s12

√
b1n
b2n
−s−1

12

√
b2n
b1n

)2
+ t213

(
s13

√
b1n
b3n
−s−1

13

√
b3n
b1n

)2
+

t223

(
s23

√
b2n
b3n
−s−1

23

√
b3n
b2n

)2]
= t212Σ12(s

1/2
12 ) + t213Σ13(s

1/2
13 ) + t223Σ23(s

1/2
23 ).

Hence, Σ−
1 (T (3)) = t212Σ12(s

1/2
12 ) + t213Σ13(s

1/2
13 ) + t223Σ23(s

1/2
23 ) .

Lemma 3.10. For an arbitrary orthogonal matrix t ∈ ±O(3) we have

tkn = ±Ak
n(t), 1 ≤ k, n ≤ 3, where t =

t11 t12 t13
t21 t22 t23
t31 t32 t33

 . (3.40)

Proof. Denote the three rows of the matrix t by, respectively, t1, t2, t3 ∈ R3 .
Since t ∈ ±O(3) we get

‖t1‖2 = ‖t2‖2 = ‖t3‖2 = 1 and tl ⊥ tr, l 6= r. (3.41)

Moreover, since t1 is orthogonal to the hyperplane V23 generated by the vectors t2
and t3 and t ∈ ±O(3) we get respectively tl = ±[tr, ts] , where [x, y] is the vector
product or cross product of two vectors x, y ∈ R3 and the triple {l, r, s} denotes any
cyclic permutations of {1, 2, 3} . For t ∈ O(3) and l = 1 we get

t1 = [t2, t3] =

∣∣∣∣∣ i j k
t21 t22 t23
t31 t32 t33

∣∣∣∣∣ = i

∣∣∣∣t22 t23
t32 t33

∣∣∣∣− j ∣∣∣∣t21 t23
t31 t33

∣∣∣∣+ k

∣∣∣∣t21 t22
t31 t32

∣∣∣∣ , (3.42)

where i, j, k is the standard orthonormal basis in R3 , i.e.,

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

Define X formally as the matrix:

X =

(
i j k
x1 x2 x3

y1 y2 y3

)
, then t1 = (t11, t12, t13) =

(
A1

1(X), A1
2(X), A1

3(X)
)
.

This proves (3.40) for k = 1 . For the other rows the proof is similar.

Remark 3.11. For t ∈ ±O(n) we can prove a similar statement.

4. Irreducibility, the case m = 3

Lemma 4.1. If µLt ⊥ µ for all t ∈ GL(3,R) \ {e}, we can approximate by
the generators Akn defined by (2.10) at least one of the following eight triplets of
operators:

(x1n, x2n, x3n), (x1n, x2n, D3n), (x1n, D2n, x3n), (D1n, x2n, x3n),

(x1n, D2n, D3n), (D1n, x2n, D3n), (D1n, D2n, x3n), (D1n, D2n, D3n).
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Idea of the proof. By Lemma 3.7, the condition of orthogonality (µ3
(b,a))

Lt ⊥ µ3
(b,a)

for t ∈ ±SL(3,R) \ {e} are:

Σ±(t) = Σ±
1 (t) + Σ2(t) =∞, (4.1)

where Σ2(t) is defined by (3.15) and Σ±
1 (t) are defined by (3.17). Let A3 be the

von Neumann algebra generated by the representation.

Case 1/2. We write compactly Lemma 5.1 and Lemma 5.2 as follows, see Defini-
tion 4.7 for the notation η :

xrnxrt η A3 ⇔ ∆(r) =∞, Drn η A3 ⇔ ∆r =∞, (4.2)

where ∆(r) := ∆(Y (r)
r , Y (r)

s , Y
(r)
t ), ∆r := ∆(Yr, Ys, Yt), (4.3)

and {r, s, t} is a cyclic permutation of {1, 2, 3} . Here

‖Y (r)
s ‖2 =

∑
k∈Z

b2rk
B2

3k − (b21k + b22k + b23k − b2sk)
, 1 ≤ r, s ≤ 3, (4.4)

B3k = b1k + b2k + b3k, and ‖Yr‖2 =
∑
k∈Z

a2rk
1

2b1k
+ 1

2b2k
+ 1

2b3k

. (4.5)

Case 3. Approximation of Drn by xrkAkn and D3n by sin
(
sk(x3k − a3k)

)
Akn ,

(respectively by cos
(
sk(x3k − a3k)

)
Akn ). By Lemma 5.3 and Lemma 5.4 we have

Drn η A3 ⇔ ∆(Yrr, Yrs, Yrt) =∞,
D3n η A3 ⇔ Σ3(D, s) =∞, resp. Σ∨

3 (D, s) =∞,

where Ykr for 1 ≤ k, r ≤ 3 are defined by (5.13) and Σ3(D, s) and Σ∨
3 (D, s) are

defined by (5.18). The rest of this section is devoted to the proof of Lemma 4.1.

4.1. Notations and the change of the variables
In what follows we will systematically use the following notations:

Sr(3) =
∑
n∈Z

b2rn
b1nb2n + b1nb3n + b2nb3n

, 1 ≤ r ≤ 3, (4.6)

Σr :=
∑
n∈Z

brn
b1n + b2n + b3n

, 1 ≤ r ≤ 3, (4.7)

Σrs :=
∑
k∈Z

brk
bsk
, 1 ≤ r 6= s ≤ 3, Ck =

1

2b1k
+

1

2b2k
+

1

2b3k
, (4.8)

y123 = (y1, y2, y3), where yr := ‖Yr‖2, (4.9)

y(k)=(y
(k)
1 , y

(k)
2 , y

(k)
3 ) :=(‖Y (k)

1 ‖2, ‖Y
(k)
2 ‖2, ‖Y

(k)
3 ‖2), 1 ≤ k ≤ 3, (4.10)

y =

(
y(1)

y(2)

y(3)

)
=

 y
(1)
1 y

(1)
2 y

(1)
3

y
(2)
1 y

(2)
2 y

(2)
3

y
(3)
1 y

(3)
2 y

(3)
3

 , where y(r)s := ‖Y (r)
s ‖2, (4.11)

Σ123(s) = (Σ12(s12),Σ23(s23),Σ13(s13)), s = (s12, s23, s13). (4.12)

We show that Sr(3) is infinite for at least one 1 ≤ r ≤ 3 .
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Lemma 4.2. We have
S1(3) + S2(3) + S3(3) =∞, (4.13)
‖Y (r)

r ‖2 ∼ Sr(3) for all 1 ≤ r ≤ 3, (4.14)
‖Y (s)

r ‖2 <
1

2
Sr(3) for all 1 ≤ r 6= s ≤ 3, (4.15)

‖Y (i1)
1 ‖2 + ‖Y (i2)

2 ‖2 + ‖Y (i3)
3 ‖2 =∞, i1, i2, i3 ∈ {1, 2, 3}. (4.16)

Proof. Since 3(a2 + b2 + c2) ≥ 2(ab+ ac+ bc) we get

S1(3) + S2(3) + S3(3) =
∑
n∈Z

b21n + b22n + b23n
b1nb2n + b1nb3n + b2nb3n

≥
∑
k∈Z

2/3 =∞.

Further, by (4.4)

‖Y (r)
r ‖2 =

∑
n∈Z

b2rn
b2rn + 2(b1nb2n + b1nb3n + b2nb3n)

(2.19)∼ Sr(3),

‖Y (s)
r ‖2 =

∑
n∈Z

b2rn
b2sn + 2(b1nb2n + b1nb3n + b2nb3n)

<
1

2
Sr(3), s 6= r.

To prove (4.16) we observe that by (4.4)

‖Y (i1)
1 ‖2 + ‖Y (i2)

2 ‖2 + ‖Y (i3)
3 ‖2 =

3∑
r=1

∑
n∈Z

b2rn
b2irn + 2(b1nb2n + b1nb3n + b2nb3n)

>
∑
n∈Z

∑3
r=1 b

2
rn

(
∑3

r=1 brn)
2
=∞.

We make the following change of the variables:(
b1n b2n b3n
a1n a2n a3n

)
→
(
b′1n b′2n b′3n
a′1n a′2n a′3n

)
=

(
1 d2n := b2n

b1n
d3n := b3n

b1n
a1n
√
b1n a2n

√
b1n a3n

√
b1n

)
, (4.17)

motivated by the following formulas:

dµ(b,a)(x)=

√
b

π
exp(−b(x−a)2)dx=

√
1

π
exp(−(x′−a′)2)dx′=dµ(b′,a′)(x

′),

dµ(b2,a2)(x) =

√
b2
π
exp(−b2(x−a2)2)dx =

√
b2
b1π

exp
(
− b2
b1
(x′−a′2)2

)
dx′

= dµ(b′2,a
′
2)
(x′), (b′, a′) = (1, a

√
b), (b′2, a

′
2) =

(
b2/b1, a2

√
b1

)
.

Remark 4.3. All the expressions, given in the list (3.13) (3.14), (3.15) and (4.1)
are invariant under the transformations (4.17)

SL
kr(µ) =

∑
n∈Z

bkn
2

(
1

2brn
+ a2rn

)
, Yr =

(
ark

(
1

2b1k
+

1

2b2k
+

1

2b3k

)−1/2)
k∈Z

,

etc., and Sr(3) (as defined by (4.6)).

4.2. Approximation scheme
Remark 4.4. In what follows if some expression < ∞ (resp. = ∞), we denote
this case by 0 (respectively, by 1).
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We use the following notation S := (S1(3), S2(3), S3(3)) . By Lemma 4.2 we get∑3
r=1 Sr(3) = ∞ . Therefore, without loss of generality, it suffices to consider the

following three cases:

(1) S = (0, 0, 1), (2) S = (0, 1, 1), (3) S = (1, 1, 1). (4.18)

ByLemma 3.7, the condition of orthogonality (µ3
(b,a))

Lt⊥ µ3
(b,a) for t∈±SL(3,R)\{e} ,

i.e., Σ±(t) = Σ±
1 (t) + Σ2(t) =∞ , splits into two cases:

(A) Σ±
1 (t) =∞, Σ±

1 (t) =
∑

1≤i<j≤3Σ
±
ij(t),

(B) Σ±
1 (t) <∞, but Σ2(t) =∞,

(4.19)

where Σ±
1 (t), Σ±

ij(t) and Σ2(t) are defined by (3.17), (3.18) and (3.15).

4.3. Case S = (0, 0, 1)

Lemma 4.5. The case S = (0, 0, 1) is equivalent with

Σ13 + Σ23 <∞, S3(3) ∼
∑
n

b23n
b1nb2n

=∞. (4.20)

Proof. To prove the first part of (4.20) we set cn =
b3n

b1n + b2n
and note that

∞ > S1(3) + S2(3) =
∑
n∈Z

b21n + b22n
b1nb2n + b1nb3n + b2nb3n

(2.19)∼

∑
n∈Z

b21n + b22n
(b1n + b2n + b3n)2 − b23n

∼
∑
n∈Z

(b1n + b2n)
2

(b1n + b2n + b3n)2 − b23n
=

∑
n∈Z

1

(1 + cn)2 − c2n
=
∑
n∈Z

1

1 + 2cn

(2.19)∼
∑
n∈Z

1

cn
=
∑
n∈Z

b1n + b2n
b3n

= Σ13 + Σ23.

To prove the second part of (4.20) we have by the first part of (4.20)

S3(3)=
∑
n∈Z

b23n
b1nb2n+b1nb3n+b2nb3n

=
∑
n∈Z

1
b1nb2n
b23n

+ b1n
b3n

+ b2n
b3n

∼
∑
n∈Z

b23n
b1nb2n

.

Lemma 4.6 ([27]). For any k ∈ Z we have

x1k1 ∈ 〈x1kx1n1 | n ∈ Z〉 ⇔ SL
11(µ) =∞.

Definition 4.7. A non necessarily bounded self-adjoint operator A in a Hilbert
space H , is said to be affiliated with a von Neumann algebra M of operators in H
if eitA ∈M for all t ∈ R . This is denoted by A η M , see [7].

In the case S = (0, 0, 1) we have

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) ∼ ∆(Y

(3)
3 ) ∼ ‖Y (3)

3 ‖2 =∞,

so we can approximate x3nx3t using Lemma 5.1 and after that we can approximate
x3n using an analogue of Lemma 4.6. From now on we will say that we can
approximate x3n using Lemma 5.1, without mentioning Lemma 4.6.
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We can not approximate x1n and x2n using Lemma 5.1, since we have

∆(Y
(1)
1 , Y

(1)
2 , Y

(1)
3 ) + ∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ) <∞.

We can try to approximate some of Drn for 1 ≤ r ≤ 3 using Lemma 5.2, see Section
4.4.4 for details. We have for 1 ≤ k ≤ 3 (see (4.3)):

Dkn η A3 ⇔ ∆k =∞, where ∆k := ∆(Yk, Yr, Ys),

and {k, r, s} is a cyclic permutation of {1, 2, 3} . Recall that by Σ12 +Σ13 <∞ we
get (see (4.5) for the expressions of ‖Yr‖2, 1 ≤ r ≤ 3)

‖Y1‖2 ∼
∑
n∈Z

b1na
2
1n, ‖Y2‖2 ∼

∑
n∈Z

b1na
2
2n, ‖Y3‖2 ∼

∑
n∈Z

b1na
2
3n. (4.21)

By (4.20) we have Σ13 + Σ23 <∞ . We distinguish two cases:
(1) Σ12 <∞ , and (2) Σ12 =∞ .
In case (1), since Σ12 + Σ13 <∞ we have

∞ = SL
1,23(µ, t, s)

(3.28)
=
∑
n∈Z

[
t2

4

b1n
b2n

+
s2

4

b1n
b3n

+
b1n
2

(
−2a1n+ta2n+sa3n

)2]
∼
∑
n∈Z

b1n
2

(
−2a1n+ta2n+sa3n

)2 (4.21)∼ ‖C1Y1 +C2Y2+C3Y3‖2.

Finally, in the case (1) we can approximate all Drn, 1 ≤ r ≤ 3 using Lemma 5.2
and Lemma 6.3, and the proof is finished. The case (2) can be divided into three
cases, if necessary, we can choose an appropriate subsequence of

(
b1n
b2n

)
n
:

lim
n

b1n
b2n

=


(a) 0

(b) b > 0

(c) ∞
. (4.22)

Case (c) is reduced to case (a) by exchanging (b2n, a2n) with (b1n, a1n) . This
exchange does not change the first condition in (4.20). In the cases (2.a) and (2.b),
by (4.5) we obtain the following expressions for ‖Yr‖2, 1≤r≤3 :

‖Y1‖2 =
∑
n∈Z

a21n
1

2b1n
+ 1

2b2n
+ 1

2b3n

=
∑
k∈Z

2b1na
2
1n

1 + b1n
b2n

+ b1n
b3n

Σ13<∞∼
∑
n∈Z

b1na
2
1n,

‖Y2‖2 ∼
∑
n∈Z

b1na
2
2n, ‖Y3‖2 =

∑
n∈Z

b1na
2
3n.

Since ‖Y1‖2 ∼
∑

n∈Z b1na
2
1n ∼ SL

11(µ) =∞ , we have in consequence four possibilities
for y23 := (y2, y3) ∈ {0, 1}2 as in (4.52), see Section 4.4.4:

(1.0) (1.1) (1.2) (1.3)
y1 1 1 1 1
y2 0 1 0 1
y3 0 0 1 1
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We just follow the instructions given in Remark 4.17. We note that the cases (1.0)
and (1.1) can not occur since the following conditions are contradictory:

SL
13(µ)

(3.27)
=
∑
n∈Z

b1n
2

( 1

2b3n
+ a23n

)
=∞, ‖Y3‖2 ∼

∑
n∈Z

b1na
2
3n <∞, Σ13

(4.20)
< ∞.

We have two cases (1.2.1) and (1.3.1) according to whether respectively the expres-
sions in (4.57) or (4.58) are divergent. We can approximate in these cases respec-
tively D1n and D3n , see (4.54), and all D1n, D2n, D3n , see (4.55). The proof of irre-
ducibility is finished in both cases because we have x3n, D3n η A3 and the problem is
reduced to the case m = 2 [27], since Akn=

∑3
r=1 xrkDrn − x3kD3n =

∑2
r=1 xrkDrn .

If the opposite holds, we have two different cases (1.2.0) and (1.3.0). We try to
approximate D3n using Lemma 5.4. If one of the expressions Σ3(D, s) or Σ∨

3 (D, s)
is divergent for some sequence s = (sk)k∈Z , we can approximate D3k and the proof
is finished, since we have x3n, D3n η A3 and the problem is reduced to the case
m = 2 . Let us suppose, as in Remark 4.21, that for every sequence s = (sk)k∈Z we
have

Σ3(D, s) + Σ∨
3 (D, s) <∞.

Then, in particular, we have for s(3) = (sk)k∈Z with s2k
b3k
≡ 1

∞ > Σ3(D, s
(3)) + Σ∨

3 (D, s
(3)) ∼ Σ3(D) + Σ∨

3 (D)

=
∑
k

1
2b3k

+ a23k

Ck + a21k + a22k + a23k

(2.19)∼
∑
k

1
2b3k

+ a23k
1

2b1k
+ a21k +

1
2b2k

+ a22k

=
∑
k

b1k
b3k

+ 2b1ka
2
3k

1 + 2b1ka21k +
b1k
b2k

+ 2b1ka22k

(4.22)∼
∑
k

2b1ka
2
3k

1 + 2b1ka21k + 2b1ka22k
=: Σ+

3 (D).

Remark 4.8. Finally, we have Σ+
3 (D) ∼

∑
k

2a23k
1+2a21k+2a22k

, since we take b1n ≡ 1

by (4.17). In the case (1.2.0) we have ‖Y2‖2 ∼
∑

n∈Z b1na
2
2n < ∞ , and therefore

Σ+
3 (D) ∼

∑
k

2a23k
1+2a21k

, and hence Σ+
3 (D) = ∞ by Lemma 4.19. In the case (1.3.0)

we have a3 = ±a1 ± a2 + h or a3 − h = ±a1 ± a2 , see the proof of Lemma 4.20.
Therefore,

∞ > Σ+
3 (D) ∼

∑
k

a23k
1 + a21k + a22k

≥
∑
k

a23k
1 + a21k + 2|a1k||a2k|+ a22k

=
∑
k

a23k

1 +
(
|a1k|+ |a2k|

)2 , ∞ > Σ+
3 (D) ∼

∑
k

a23k
1 + a21k + a22k

(4.23)

≥
∑
k

a23k
1 + a21k + a22k + (|a1k| − |a2k|)2

∼
∑
k

a23k
1 + 2a21k − 2|a1k||a2k|+ 2a22k

∼
∑
k

a23k
1 + a21k − 2|a1k||a2k|+ a22k

∼
∑
k

a23k

1 +
(
|a1k| − |a2k|

)2 . (4.24)

Hence, we have by (4.23) and (4.24)

∞ > Σ+
3 (D) ≥

∑
k

a23k

1 +
(
± a1k ± a2k

)2 =
∑
k

a23k

1 +
(
a3k − hk

)2 =∞ (4.25)
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by Lemma 4.19, this is a contradiction. Therefore, in both cases we can approximate
D3n and the proof is finished.

4.4. Case S = (0, 1, 1)

Lemma 4.9. In the case S = (0, 1, 1) we have

lim
n
d2n = lim

n
d3n =∞. (4.26)

Proof. Setting as before drn=brn/b1n , we obtain by (4.6) and (2.19)

S1(3) =
∑
n∈Z

1

d2n+d3n+d2nd3n

(2.19)∼
∑
n∈Z

1

(1+d2n)(1+d3n)
<∞, (4.27)

S2(3)=
∑
n∈Z

d22n
d2n+d3n+d2nd3n

(2.19)∼
∑
n∈Z

d22n
(1+d2n)(d2n+d3n)

=∞, (4.28)

S3(3)=
∑
n∈Z

d23n
d2n+d3n+d2nd3n

(2.19)∼
∑
n∈Z

d23n
(1+d3n)(d2n+d3n)

=∞. (4.29)

Suppose that d2n ≤ C for all n ∈ Z . Then by (4.27) and (4.28) we conclude

S1(3) ∼
∑
n∈Z

1

(1+d2n)(1+d3n)
∼
∑
n∈Z

1

1+d3n
∼
∑
n∈Z

1

d3n
<∞, ∞ = S2(3)

∼
∑
n∈Z

d22n
(1+d2n)(d2n+d3n)

∼
∑
n∈Z

d22n
d2n+d3n

≤
∑
n∈Z

C2

C+d3n

(2.19)∼
∑
n∈Z

1

d3n
<∞,

which is a contradiction. We use the fact that for any fixed D > 0 the function
fD(x) = x2

x+D
is strictly increasing when x > 0 . Similarly, if we suppose that

d3n ≤ C for all n ∈ Z we will obtain a contradiction too.

Lemma 4.10. The case S = (0, 1, 1) is equivalent with

S1(3) ∼
∑
n

b21n
b2nb3n

<∞, S2(3) ∼
∑
n

1

dn
=∞, S3(3) ∼

∑
n

dn =∞. (4.30)

Proof. Recall that dn =
d3n
d2n

. Denote Dn := 1 + d−1
2n + d−1

3n . By Lemma 4.9 we
have

1 ≤ Dn = 1 + d−1
2n + d−1

3n ≤ C, for all n ∈ Z. (4.31)
Therefore, we get

S1(3)=
∑
n∈Z

1

d2n + d3n+d2nd3n
=
∑
n∈Z

1

Dnd2nd3n
∼
∑
n∈Z

1

d2nd3n
=
∑
n

b21n
b2nb3n

,

S2(3)=
∑
n∈Z

d22n
d2n+d3n+d2nd3n

=
∑
n∈Z

d22n
Dnd2nd3n

∼
∑
n∈Z

1

dn
,

S3(3) =
∑
n∈Z

d23n
d2n+d3n+d2nd3n

=
∑
n∈Z

d23n
Dnd2nd3n

∼
∑
n∈Z

dn.

By Lemma 4.2, (4.15) we get ‖Y (r)
1 ‖2 <∞, 1 ≤ r ≤ 3 , therefore, we get
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Lemma 4.11. In the case S = (0, 1, 1) we have

∆(Y
(1)
1 , Y

(1)
2 , Y

(1)
3 ) <∞, ∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ) ∼ ∆(Y

(2)
2 , Y

(2)
3 ),

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) ∼ ∆(Y

(3)
3 , Y

(3)
2 ). (4.32)

Proof. Set (f1, f2, f3) = (Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) . Then

∆(f1, f2, f3)
(2.15)
=

Γ(f1) + Γ(f1, f2) + Γ(f1, f3) + Γ(f1, f2, f3)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

>
Γ(f1) + Γ(f1, f3)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

(4.33)
≥ Γ(f1) + Γ(f1, f3)

(1 + Γ(f2))(1 + Γ(f3))
∼ ∆(f1, f3),

since f2∈ l2(Z) , see (2.14). Indeed, for f, g∈ l2(Z) and f ∈ l2(Z), g 6∈ l2(Z) we have
respectively

Γ(f, g) ≤ Γ(f)Γ(g) <∞, Γ(f, g) ≤ Γ(f)Γ(g), where Γ(f, g), (4.33)
Γ(g) are defined by Γ(f, g) := lim

n
Γ(f(n), g(n)) Γ(g) := lim

n
Γ(g(n)),

and g(n) :=(gk)
n
k=−n∈R2n+1 . Similarly, set (f1, f2, f3)=(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ) , then

∆(f1, f2, f3)
(2.15)
=

Γ(f1) + Γ(f1, f2) + Γ(f1, f3) + Γ(f1, f2, f3)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

>
Γ(f1) + Γ(f1, f2)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

(4.33)
≥ Γ(f1) + Γ(f1, f2)

(1 + Γ(f2))(1 + Γ(f3))
∼ ∆(f1, f2),

since f3 ∈ l2(Z) . Finally, we derive both equivalences in (4.32). To prove
∆(Y

(1)
1 , Y

(1)
2 , Y

(1)
3 ) <∞ we set (f1, f2, f3) = (Y

(1)
1 , Y

(1)
2 , Y

(1)
3 ) , and note that

∆(f1, f2, f3)
(2.15)
=

Γ(f1) + Γ(f1, f2) + Γ(f1, f3) + Γ(f1, f2, f3)

1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

≤
Γ(f1)

(
1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

)
1 + Γ(f2) + Γ(f3) + Γ(f2, f3)

= Γ(f1) <∞.

In order to approximate x2n or x3n , it remains to study the case

∆(Y
(2)
2 , Y

(2)
3 ) =∞, ∆(Y

(3)
3 , Y

(3)
2 ) =∞, (4.34)

where ∆(f1, f2) =
Γ(f1) + Γ(f1, f2)

1 + Γ(f2)
. For 2 ≤ r ≤ 3 , denote

ρr(C2, C3) := ‖C2Y
(r)
2 + C3Y

(r)
3 ‖2, (C2, C3) ∈ R2, (4.35)

ν(C1, C2, C3) := ‖C1Y1 + C2Y2 + C3Y3‖2, (C1, C2, C3) ∈ R3. (4.36)

Lemma 4.12. In the case S = (0, 1, 1) we have

ρ2(C2, C3) ∼
∑
n∈Z

(
C2+C3dn

)2
1 + 2dn

, ρ3(C2, C3) ∼
∑
n∈Z

(
C2+C3dn

)2
d2n + 2dn

(4.37)

=
∑
n∈Z

(
C2ln+C3

)2
1 + 2ln

, ν(C1, C2, C3) ∼
∑
n∈Z

b1n

( 3∑
r=1

Crarn

)2
. (4.38)
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Proof. Set as before dn =
d3n
d2n

. By (4.4) and (4.5) we get

‖Y (2)
2 ‖2=

∑
n∈Z

d22n
d22n +2(d2n + d3n+d2nd3n)

=
∑
n∈Z

d22n
d22n+2Dnd2nd3n

∼
∑
n∈Z

1

Dndn
,

‖Y (2)
3 ‖2 =

∑
n∈Z

d23n
d22n+2(d2n+d3n+d2nd3n)

=
∑
n∈Z

d23n
d22n+2Dnd2nd3n

=
∑
n∈Z

d2n
1+2Dndn

,

‖Y (3)
2 ‖2 =

∑
n∈Z

d22n
d23n + 2(d2n+d3n+d2nd3n)

=
∑
n∈Z

d22n
d23n+2Dnd2nd3n

=
∑
n∈Z

1

d2n+2Dndn
,

‖Y (3)
3 ‖2 =

∑
n∈Z

d23n
d23n + 2(d2n+d3n+d2nd3n)

=
∑
n∈Z

d23n
d23n+2Dnd2nd3n

∼
∑
n∈Z

dn
Dn

, (4.39)

‖Y1‖2 =
∑
n∈Z

a21n
1

2b1n
+ 1

2b2n
+ 1

2b3n

=
∑
k∈Z

2b1na
2
1n

1 + d−1
2n + d−1

3n

=
∑
n∈Z

2b1na
2
1n

Dn
, (4.40)

‖Y2‖2 =
∑
n∈Z

2b1na
2
2n

Dn
, ‖Y3‖2 =

∑
n∈Z

b1na
2
3n

Dn
.

Recall that drn =
brn
b1n

. By (4.31), we obtain

‖Y (2)
2 ‖2 ∼

∑
n∈Z

1

1 + 2dn
∼
∑
n∈Z

1

dn
, ‖Y (2)

3 ‖2 ∼
∑
n∈Z

d2n
1 + 2dn

, (4.41)

‖Y (3)
2 ‖2 ∼

∑
n∈Z

1

d2n + 2dn
, ‖Y (3)

3 ‖2 ∼
∑
n∈Z

d2n
d2n + 2dn

∼
∑
n∈Z

dn,

‖Y1‖2 ∼
∑
n∈Z

b1na
2
1n, ‖Y2‖2 ∼

∑
n∈Z

b1na
2
2n, ‖Y3‖2 ∼

∑
n∈Z

b1na
2
3n,

‖C1Y1 + C2Y2 + C3Y3‖2
(4.31)∼

∑
n∈Z

b1n
(
C1a1n+C2a2n+C3a3n

)2
. (4.42)

By (4.41) and (4.42) the proof is finished.

4.4.1. Approximation of x2n, x3n
To approximate x2n, x3n , we need several lemmas. Denote ln = d−1

n .

Lemma 4.13. The following five series are equivalent:

(i–ii)
∑
n∈Z

(
C2−C3dn

)2
1 + 2dn

∼
∑
n∈Z

c2n, (4.43)

(iii–iv)
∑
n∈Z

(
C2ln−C3

)2
1 + 2ln

∼
∑
n∈Z

e2n, (4.44)

(v) Σ23(s) =
∑
n∈Z

(
s2
√

b2n
b3n
− s−2

√
b3n
b2n

)2
=
∑
n∈Z

(
s2√
dn
−
√
dn
s2

)2
, (4.45)

where

dn = C2C
−1
3 (1 + cn), ln = C3C

−1
2 (1 + en), s

4 = C2C
−1
3 > 0, ln=d

−1
n . (4.46)
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Proof. To prove (4.43) and (4.44) we get by Lemma 2.10 using (4.46)∑
n∈Z

(
C2−C3dn

)2
1 + 2dn

=
∑
n∈Z

C2
2c

2
n

1 + 2C2C
−1
3 (1 + cn)

∼
∑
n∈Z

c2n,

∑
n∈Z

(
C2ln−C3

)2
1 + 2ln

=
∑
n∈Z

C2
3e

2
n

1 + 2C3C
−1
2 (1 + en)

∼
∑
n∈Z

e2n.

To finish the proof we make use of the following lemma

Lemma 4.14. Let (cn)n∈Z be a sequence of real numbers with 1+ cn > 0 and
(1 + cn)(1 + en) = 1. Then the following three series are equivalent:∑

n∈Z

(
(1 + en)

1/2 − (1 + en)
−1/2

)2
,
∑
n∈Z

c2n and
∑
n∈Z

e2n.

Proof. Set s4 = C2C
−1
3 , replacing 1 + cn by (1 + en)

−1 in Lemma 6.7 gives

Σ23(s) =
∑
n∈Z

(
(1 + cn)

−1/2 − (1 + cn)
1/2
)2

=
∑
n∈Z

(
(1 + en)

1/2 − (1 + en)
−1/2

)2
.

Therefore,
∑
n∈Z

c2n
1+cn

=
∑
n∈Z

e2n
1+en

and hence, by Lemma 2.10, the two series are

equivalent:
∑

n∈Z c
2
n∼
∑

n∈Z e
2
n .

4.4.2. Two remaining possibilities
By Lemma 4.13 there are only two cases:
(1) when ρ2(C2, C3) = ρ3(C2, C3) =∞ for all (C2, C3) ∈ R2 \ {0} ,
(2) when both ρ2(C2, C3) and ρ3(C2, C3) are finite and hence, Σ23(s) <∞ .

To illustrate this we start with the following example

Example 4.15. Set dn = nα for n ∈ N with α ∈ R . We have

lim
n
dn =


∞ if α > 0;
1 if α = 0;
0 if α < 0.

(4.47)

For the general sequence (dn)n∈Z we have four cases (if necessary, we can chose an
appropriate subsequence):

lim
n
dn =


(a) ∞
(b) d > 0 with

∑
n c

2
n =∞

(c) d > 0 with
∑

n c
2
n <∞

(d) d = 0

(4.48)

where dn = d(1 + cn) and limn cn = 0 .

4.4.3. Cases (a), (b), (d)
Remark 4.16. In the case (a) we see by (4.37) that

ρ2(C2, C3) = ρ3(C2, C3) =∞ for all (C2, C3) ∈ R2 \ {0}.



Kosyak and Moree 289

The case (d) is reduced to the case (a) by exchanging (b2n, a2n) with (b3n, a3n) . In
case (b) by Lemma 4.13 and (4.48) we conclude that

ρ2(C2,−C3) = ρ3(C2,−C3) =∞ for C2C
−1
3 > 0.

Hence, ρ2(C2, C3) = ρ3(C2, C3) =∞ for all (C2, C3) ∈ R2 \ {0} . Therefore, in cases
(a), (b) and (d) we get x2n, x3n η A3 .
To finish the proof in these cases, it is sufficient to approximate one of the operators
Drn, 1≤ r≤3 by the operators (Akn)k∈Z using Lemmas 5.2, see Section 4.4.4. Al-
ternatively we can try to approximate D3n, D2n using Lemma 5.4 and its analogue,
see Section 4.4.5.

Note that by Lemma 4.9 we have limn b2n = limn b3n =∞ . In the cases (a) and (b)
the conditions (4.30) are expressed by (4.48) as follows:

b = (1, b2n, dnb2n),
∑
n

1

b22ndn
<∞,

∑
n

1

dn
=∞, lim

n
dn =∞, (4.49)

b =
(
1, b2n, db2n(1 + cn)

)
,
∑
n

1

b22n
<∞,

∑
n

c2n =∞. (4.50)

Indeed, to get (4.49) we observe that (4.30) are expressed as follows:

S1(3)∼
∑
n

1

b2nb3n
=
∑
n

1

b22ndn
<∞, S2(3) ∼

∑
n

1

dn
=∞.

The condition S3(3) ∼
∑

n dn =∞ holds by limn dn =∞ .
In order to get (4.50), we express the conditions (4.30) as follows:

S1(3)∼
∑
n

1

b2ndb2n(1 + cn)
∼
∑
n

1

b22n
<∞,

S2(3) ∼
∑
n

1

dn
=
∑
n

1

1 + cn
=∞, S3(3) ∼

∑
n

dn=
∑
n

(1 + cn)=∞.

The condition S2(3) =∞ holds by limn cn = 0 .

4.4.4. Approximation of Drn, 1 ≤ r ≤ 3

By Lemma 5.2 we have for 1 ≤ k ≤ 3 (see (4.3)):

Dkn η A3 ⇔ ∆k =∞, where ∆k := ∆(Yk, Yr, Ys),

and {k, r, s} is a cyclic permutation of {1, 2, 3} . Recall that by (4.40)

‖Y1‖2 ∼
∑
n∈Z

b1na
2
1n, ‖Y2‖2 ∼

∑
n∈Z

b1na
2
2n, ‖Y3‖2 ∼

∑
n∈Z

b1na
2
3n. (4.51)

Since ‖Y1‖2∼
∑

n∈Z b1na
2
1n∼SL

11(µ) =∞ , we have in consequence four possibilities
for y23 := (y2, y3) ∈ {0, 1}2 :

(1.0) (1.1) (1.2) (1.3)
y1 1 1 1 1
y2 0 1 0 1
y3 0 0 1 1

(4.52)
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In the case (1.0) we have ∆(Y1, Y2, Y3) ∼ ‖Y1‖2 = ∞ , so we can approximate D1n

using Lemma 5.3 and the proof is finished. We should consider the three following
cases: (1.1), (1.2), (1.3). In the cases (1.1), (1.2) and (1.3) we have respectively (see
the proof of Lemma 4.11)

∆(Y1, Y2, Y3) ∼ ∆(Y1, Y2), ∆(Y2, Y3, Y1) ∼ ∆(Y2, Y1), (4.53)
∆(Y1, Y2, Y3) ∼ ∆(Y1, Y3), ∆(Y3, Y1, Y2) ∼ ∆(Y3, Y1), (4.54)
∆(Y1, Y2, Y3), ∆(Y2, Y3, Y1), ∆(Y3, Y1, Y2). (4.55)

By (4.40) and Lemma 4.9 we have respectively in the cases (1.1)–(1.3):

ν12(C1, C2) := ‖C1Y1 + C2Y2‖2 ∼
∑
n∈Z

b1n

(
C1a1n + C2a2n

)2
, (4.56)

ν13(C1, C3) := ‖C1Y1 + C3Y3‖2 ∼
∑
n∈Z

b1n

(
C1a1n + C3a3n

)2
, (4.57)

ν(C1, C2, C3)=
∑
n∈Z

b1n

(
C1a1n+C2a2n+C3a3n

)2
. (4.58)

Remark 4.17. We have three cases (1.1.1), (1.2.1) and (1.3.1) according to
whether respectively the expressions in (4.56), (4.57) or (4.58) are divergent. We
can approximate in these cases respectively D1n and D2n in (4.53), D1n and D3n

in (4.54) all D1n, D2n, D3n in (4.55). The proof of irreducibility is finished in these
cases because we have Drn, x2n, x3nηA

3 for some 1 ≤ r ≤ 3 . If the opposite holds,
we have three different cases:

(1.1.0) ‖C1Y1 + C2Y2‖ <∞ for some (C1, C2) ∈ R2 \ {0},
(1.2.0) ‖C1Y1 + C3Y3‖ <∞ for some (C1, C3) ∈ R2 \ {0},
(1.3.0) ν(C1, C2, C3) <∞ for some (C1, C2, C3) ∈ R3 \ {0}.

Recall that by (3.28) we have

SL
1,23(µ, t, s) =

∑
n∈Z

[
t2

4

b1n
b2n

+
s2

4

b1n
b3n

+
b1n
2

(
−2a1n+ta2n+sa3n

)2]
.

Remark 4.18. In the case (1.1.0) we have Σ12 =
∑

n∈Z
b1n
b2n

= ∞ , because of
SL
1,23(µ, t, 0) =∞ , but ν12(C1, C2) <∞ , and Σ13 =∞ , since

SL
13(µ) =

∑
n∈Z

b1n
2

(
1

2b3n
+ a23n

)
=∞,

but ‖Y3‖2 ∼
∑

n∈Z b1na
2
3n <∞ ; see (3.27) for the definition of SL

kr(µ) .
In the case (1.2.0) we conclude that Σ13 = ∞ , since SL

1,23(µ, 0, s) = ∞ , but
ν13(C1, C3) <∞ , and Σ12 =∞ , since

SL
12(µ) =

∑
n∈Z

b1n
2

(
1

2b2n
+ a22n

)
=∞,

but ‖Y2‖2 ∼
∑

n∈Z b1na
2
2n <∞ .

In the case (1.3.0) we have Σ12 = Σ13 =∞ , since SL
1,23(µ, t, s) =∞, but we have

ν(C1, C2, C3) ∼
∑

n∈Z b1n

(
C1a1n+C2a2n+C3a3n

)2
<∞ .
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So, it remains to consider only the three following cases, when Σ12=Σ13=∞ :
(1.1.0) (1.2.0) (1.3.0)

By Lemma 5.3 we have
D2n η A3 ⇔ ∆(Y22, Y23, Y21)=∞, D3n η A3 ⇔ ∆(Y33, Y31, Y32)=∞,

where the vectors Yrs for 2 ≤ r ≤ 3, 1 ≤ s ≤ 3 are defined by (5.12)–(5.13). We
can not prove that ∆(Y22, Y23, Y21) = ∞ or ∆(Y33, Y31, Y32) = ∞ . Therefore, in
order to approximate D3n we are forced to prove Lemma 5.4 and its analogue for
D2n , see Remark 4.21 below.

4.4.5. Two technical lemmas
Lemma 4.19. Let a1, a2 6∈ l2(Z) and C1a1+C2a2∈ l2(Z) for some (C1, C2)∈R2\{0},
where ar = (ark)k∈Z, 1 ≤ r ≤ 2. Then we have∑

k∈Z

a21k
1 + a22k

=∞. (4.59)

Proof. We set Yr = ar , in the case (1.1.0) when C1Y1+C2Y2 = h ∈ l2(Z) with
C1C2>0 (we have C1C2 6=0) we should take a2=−a1+h , in the case when C1C2<0

we take a2=a1+h . The series
∑

k∈Z
a21k

1 + a22k
will remain equivalent with the initial

one, if we replace (C1, C2) with (±1, 1) in the expression for h . Fix a small ε> 0
and a large N ∈N . Since | ± a+ b| ≤ |a|+ |b| , we get∑

k∈Z

a21k
1 + a22k

=
∑
k∈Z

a21k

1 +
(
± a1k + hk

)2 ≥∑
k∈Z

a21k
1 + a21k + 2|a1k||hk|+ h2

k

(2.19)∼
∑
k∈Z

a21k
1 + 2|a1k||hk|+ h2

k

(∗)
>
∑
k∈ZN

a21k
1 + 2|a1k|ε+ ε2

(2.17)∼
∑
k∈ZN

a21k =∞,

where ZN := {n ∈ Z | |n| > N} . The inequality (*) holds, since h ∈ l2 and we have∑
k∈ZN

h2k < ε2 for sufficiently large N ∈ N .

Lemma 4.20. Let a1, a2, a3 6∈ l2(Z) and C1a1 + C2a2 + C3a3 ∈ l2(Z) for some
(C1, C2, C3) ∈ R3, C3 6= 0, where ar = (ark)k∈Z for 1 ≤ r ≤ 3. Then we have∑

k∈Z

a21k + a22k
1 + a23k

=∞. (4.60)

Proof. We set Yr = ar , in the case (1.3.0), we have C1a1+C2a2+C3a3 = h∈ l2(Z)
for some (C1, C2, C3) ∈ R3 , see Remark 4.17. We can take C3 = 1 , then we have
a3 = −C1a1−C2a2+h . When C1 = 0 or C2 = 0 lemma is reduced to Lemma 4.19.
Suppose C1C2 6= 0 . The series

∑
k∈Z

a21k+a22k
1+a23k

will remain equivalent with the initial
one, if we replace (C1, C2, C3) with (±1,±1, 1) in the expression for h . Fix a small
ε > 0 and a large N ∈ N . Suppose the opposite, i.e.,

∞ >
∑
k∈Z

a21k + a22k

1 +
(
± a1k ± a2k + hk

)2 , then ∞ >
∑
k∈Z

(|a1k|+ |a2k|)2

1 +
(
± a1k ± a2k + hk

)2
≥
∑
k∈Z

(|a1k|+ |a2k|)2

1 + a21k + a22k + 2|a1k||a2k|+ 2|a1k||hk|+ 2|a2k||hk|+ h2
k
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(2.19)∼
∑
k∈Z

(|a1k|+ |a2k|)2

1 + 2|a1k||hk|+ 2|a2k||hk|+ h2
k

(∗)
>
∑
k∈ZN

(|a1k|+ |a2k|)2

1 + 2
(
|a1k|+ |a2k|

)
ε+ ε2

(2.17)∼
∑
k∈ZN

(|a1k|+ |a2k|)2 =∞,

where ZN := {n ∈ Z | |n| > N} , contradiction. The inequality (*) holds, since
h ∈ l2(Z) and we have

∑
k∈ZN

h2k < ε2 for sufficiently large N ∈ N .

Remark 4.21. It is possible to prove an analogue of Lemma 5.4 to approximate
D2n with corresponding expressions Σ2(D, s), Σ

∨
2 (D, s) and Σ3(D), Σ∨

3 (D) . If one
of the expressions Σ2(D, s), Σ

∨
2 (D, s), Σ3(D, s) or Σ∨

3 (D, s) is divergent for some
sequence s = (sk)k∈Z , we can approximate D2k or D3k and the proof is finished,
when S = (0, 1, 1) in the cases (a) and (b). Suppose that for all sequence s = (sk)k∈Z
we have

Σ2(D, s) + Σ∨
2 (D, s) + Σ3(D, s) + Σ∨

3 (D, s) <∞.

Then, in particularly, we have for s(r) = (srk)k∈Z, 2 ≤ r ≤ 3 with s2rk
brk
≡ 1

∞ > Σ2(D, s
(2)) + Σ∨

2 (D, s
(2)) + Σ3(D, s

(3)) + Σ∨
3 (D, s

(3))

∼ Σ2(D) + Σ∨
2 (D) + Σ3(D) + Σ∨

3 (D) (4.61)

=
∑
k

1
2b2k

+ a22k +
1

2b3k
+ a23k

Ck + a21k + a22k + a23k

(2.19)∼
∑
k

1
2b2k

+ a22k +
1

2b3k
+ a23k

1
2b1k

+ a21k
=: Σ∨

23(D)

∼
∑
k

b1k
b2k

+ 2b1ka
2
2k +

b1k
b3k

+ 2b1ka
2
3k

1 + 2b1ka21k

(4.31)∼
∑
k

a22k + a23k
1 + a21k

=: Σa
23(D).

Remark 4.22. In case (1.1.0) (resp. case (1.2.0)) we have ‖Y3‖2 ∼
∑

n∈Z a
2
3n <∞

(resp. ‖Y2‖2 ∼
∑

n∈Z a
2
2n <∞), therefore,

Σa
23(D) ∼

∑
k

a22k
1 + a21k

=∞, resp. Σa
23(D) ∼

∑
k

a23k
1 + a21k

=∞,

by Lemma 4.19, which is contradicting (4.61). In the case (1.3.0) we have four
possibilities:
(0) when C1C2C3 6= 0 , C1a1 + C2a2 + C3a3 = h ∈ l2(Z) ,
(1) when C1 = 0 hence, C2C3 6= 0 , C2a2 + C3a3 = h ∈ l2(Z) ,
(2) when C2 = 0 hence, C1C3 6= 0 , C1a1 + C3a3 = h ∈ l2(Z) ,
(3) when C3 = 0 hence, C1C2 6= 0 C1a1 + C2a2 = h ∈ l2(Z) .

In the case (0) we have Σa
23(D) = ∞ by Lemma 4.20, contradicting (4.61). In

the cases (2) and (3) we get Σa
23(D) = ∞ by Lemma 4.19, contradicting (4.61).

Therefore, one of the expressions Σ2(D, s) , Σ∨
2 (D, s) , Σ3(D, s) or Σ∨

3 (D, s) is
convergent hence, we can approximate D2n or D3n and the proof is finished. To
study the case (1) we need the following lemma.
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Lemma 4.23. Let C2Y2 + C3Y3 = h23 ∈ l2 for some (C2, C3) ∈
(
R \ {0}

)2 and
C1Y1+C2Y2 6∈ l2 or C1Y1+C3Y3 6∈ l2 for all (C1, Cr) ∈

(
R \ {0}

)2 , then

∆(Y1, Y2, Y3) =∞. (4.62)

Proof. To prove (4.62) we have by (2.15)

∆(Y1, Y2, Y3) =
Γ(Y1) + Γ(Y1, Y2) + Γ(Y1, Y3) + Γ(Y1, Y2, Y3)

1 + Γ(Y2) + Γ(Y3) + Γ(Y2, Y3)

(∗)
>

Γ(Y1, Y2)+Γ(Y1, Y3)

1 + (1 + c2)Γ(Y2) + Γ(Y3)
∼ Γ(Y1, Y2) + Γ(Y1, Y3)

Γ(Y2) + Γ(Y3)

(4.64)∼ Γ(Y1, Y2) + Γ(Y1, Y3)

2Γ(Y2)

(4.64)∼ Γ(Y1, Y2)

Γ(Y2)
+

Γ(Y1, Y3)

Γ(Y3)
=∞, (4.63)

Γ(Y2)∼Γ(Y3), since C2Y2 + C3Y3 = h ∈ l2. (4.64)

The relation (*) holds by the inequality Γ(Y2, Y3) ≤ c2Γ(Y2) , since C2Y2+C3Y3∈ l2 ,
the relation (4.63) holds by Lemma 6.3 for m = 2 . To prove (4.64) we get since
Y2 6∈ l2 and h ∈ l2

Γ(Y3)

Γ(Y2)
=
‖Y3‖2

‖Y2‖2
=
‖Y2 + h‖2

‖Y2‖2
≤
( ‖Y2‖+ ‖h‖

‖Y2‖

)2
= 1.

If C1Y1 + C2Y2 6∈ l2 for all (C1, C2) ∈
(
R \ {0}

)2 , or if C1Y1 + C3Y3 6∈ l2 for all
(C1, C3) ∈

(
R \ {0}

)2 , by Lemma 4.23 we get ∆(Y1, Y2, Y3) = ∞ hence, we can
approximate D1n using Lemma 5.3 and the proof is finished. If C1Y1+C2Y2 =

h12 ∈ l2 for some for (C1, C2) ∈
(
R \ {0}

)2 or C1Y1+C3Y3 = h13 ∈ l2 for some
(C1, C3) ∈

(
R \ {0}

)2 , then we have h12 + αh23 = C1Y1+C2Y2 +C3Y3 ∈ l2 or
h12 + βh13 = C1Y1+C2Y2 +C3Y3 ∈ l2 with C1C2C3 6= 0 for an appropriate αβ 6= 0 ,
and we are in the case (0).

4.4.6. Case (c)
In this case both ρ2(C2,−C3) and ρ3(C2,−C3) are finite, i.e., we are in the case (2)
therefore, we can not approximate x2nx2t, x3nx3t by Lemma 5.1. By Lemma 4.13
Σ23(s) < ∞ and hence, Σ23(C2, C3) = ∞ . Indeed, reasoning as in Remark 3.3, we
see that

µLτ23(ϕ,s) ⊥ µ, ϕ ∈ [0, 2π), s > 0 ⇔ Σ23(s) + Σ23(C2, C3)=∞, s > 0, (4.65)

for (C2, C3) ∈ R2 \ {0} , where τ23(ϕ, s), Σ23(s) and Σ23(C2, C3) are defined as
follows:

τ12(ϕ, s)=

(
cosϕ s2 sinϕ 0

s−2 sinϕ − cosϕ 0
0 0 1

)
, τ23(ϕ, s)=

(
1 0 0
0 cosϕ s2 sinϕ
0 s−2 sinϕ − cosϕ

)
, (4.66)

Σij(s) =
∑
n∈Z

(
s2
√

bin
bjn
− s−2

√
bjn
bin

)2
, s ∈ R \ {0}, (4.67)

Σij(Ci, Cj) =
∑
n∈Z

(C2
i bin + C2

j bjn)(Ciain + Cjajn)
2. (4.68)
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In this case there are four possibilities for the pair (Σ12,Σ13) :
(2.1) (Σ12,Σ13) = (0, 0) , i.e., Σ12 <∞ and Σ13 <∞ ,
(2.2) (Σ12,Σ13) = (0, 1) , i.e., Σ12 <∞ , but Σ13 =∞ ,
(2.3) (Σ12,Σ13) = (1, 0) , i.e., Σ12 =∞ , but Σ13 <∞ ,
(2.4) (Σ12,Σ13) = (1, 1) , i.e., Σ12 =∞ and Σ13 =∞ .

Lemma 4.24. In the case (2.1), i.e., when (Σ12,Σ13) = (0, 0), we can approxi-
mate Drn for 1 ≤ r ≤ 3, hence the representation is irreducible.

Proof. Let Σ12 <∞ and Σ13 <∞ we have by (4.38)

ν(C1, C2, C3) ∼
∑
k∈Z

b1k(C1a1k + C2a2k + C3a3k)
2

(2.1)∼
∑
k∈Z

[
t2

4

b1k
b2k

+
s2

4

b1k
b3k

+
b1k
2
(−2a1k + ta2k + sa3k)

2
] (3.28)

= SL
1,23(µ, t, s)=∞.

Hence, D1n, D2n, D3n η A3 and the proof is finished.

Remark 4.25. The cases (2.2) and (2.3) do not occur.

Indeed, by Lemma 4.13 the three series Σ23(s) (defined by (4.67)),
∑

n∈Z c
2
n and∑

n∈Z e
2
n are equivalent where s4b2n

b3n
= (1+ cn) , see Lemma 4.14. In the case (c) we

have
∑

n∈Z c
2
n <∞ , therefore, limn cn = 0 and hence,

limn d
−1
n = limn

b2n
b3n

= s−4 > 0 .

Recall that dn =
d2n
d3n

=
b2n
b3n

. But this contradicts (Σ12,Σ13) = (0, 1) , or (Σ12,Σ13) =

(1, 0) , since the two series

Σ12 =
∑
n

d−1
2n and Σ13 =

∑
n

d−1
3n

should be equivalent by limn
d2n
d3n

= s−4 > 0 . In the case (2.4) we have

Σ23(s)<∞, Σ23(C2, C3) =∞, Σ12 = Σ13 =∞. (4.69)

To approximate Drn , we need to estimate ν(C1, C2, C3) defined by (4.36). By (4.38)
we have

ν(C1, C2, C3) ∼
∑
n∈Z

b1n

( 3∑
r=1

Crarn

)2
.

Since ‖Y1‖2 =
∑

n∈Z b1na
2
1n ∼ SL

11(µ) =∞ , in the case (2.4) we have four possibilities
for y23 := (y2, y3) ∈ {0, 1}2 :

(2.4.1) (2.4.2) (2.4.3) (2.4.4)
y1 1 1 1 1
y2 0 1 0 1
y3 0 0 1 1
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Remark 4.26. The cases (2.4.1)–(2.4.3) are not compatible with the condition
Σ23(C2, C3) =∞ for all (C2, C3) ∈ R2 \ {0} .

So it suffices to consider only the case (2.4.4) when y123 = (1, 1, 1) . The case (2.4.4)
splits into two subcases:
(2.4.4.1) when Σ12(s12)<∞ (resp. Σ13(s13)<∞) for some s12, s13 > 0 ,
(2.4.4.2) when both Σ12(s12) = Σ13(s13) =∞ for all s12, s13 > 0 .
The case (2.4.4.1) does not occur. Indeed, we have in this case Σ13(s12s23) <∞
(resp. Σ12(s13s

−1
23 )<∞) since

Σ12(s12) <∞⇔ µ(s412b1,0)
∼ µ(b2,0), Σ23(s23) <∞⇔ µ(s423b2,0)

∼ µ(b3,0)

where µ(br,0)=⊗n∈Zµ(brk,0) for 1≤r ≤ 3 . Therefore,

µ((s12s23)4b1,0) ∼ µ(b3,0) ⇔ Σ13(s12s23)<∞.

Similarly, if Σ13(s13)<∞ and Σ23(s23)<∞ we have

µ(s413b1,0)
∼ µ(b3,0), µ(s423b2,0)

∼ µ(b3,0) ⇒ µ(
(s13s

−1
23 )4b1,0

) ∼ µ(b2,0)

hence, Σ12(s13s
−1
23 ) <∞ . But condition Σ13(s12s23) + Σ12(s13s

−1
23 ) <∞ contradicts

the first condition of (4.30). Indeed, we have by Lemma 4.14

Σ12(s) =
∑
n∈Z

(
s2
√

b1n
b2n
− s−2

√
b2n
b1n

)2
∼
∑
n∈Z

c2n <∞, s2
√

b1n
b2n

= 1 + cn,

Σ13(s) =
∑
n∈Z

(
s2
√

b1n
b3n
− s−2

√
b3n
b1n

)2
∼
∑
n∈Z

f 2
n <∞, s2

√
b1n
b3n

= 1 + fn,

and limn cn = limn fn = 0 . This contradicts S1(3) ∼
∑

n
b21n

b2nb3n
<∞ . Indeed,

lim
n→∞

b21n
b2nb3n

= s−4 lim
n→∞

(1 + cn)
2(1 + fn)

2 = s−4 > 0.

Finally, to finish the case S = (0, 1, 1) , we need to consider only the case (2.4.4.2)
when Σ12(s12)=Σ13(s13) =∞ for all s12, s13 > 0 .
By (4.30) and all the previous considerations we have the conditions:

S1(3)∼
∑
n

b21n
b2nb3n

<∞, S2(3)∼
∑
n

b2n
b3n

=∞, S3(3)∼
∑
n

b3n
b2n

=∞,

Σ23(C2, C3) =∞, Σ12 =
∑
n

b1n
b2n

=∞, Σ13 =
∑
n

b1n
b3n

=∞, (4.70)

Σ12(s12)=Σ13(s13)=∞ for all s12, s13 > 0, Σ23(s23)<∞ for some s23 > 0.

Remark 4.27. By (4.17) we can suppose that (b1n, b2n, b3n) is replaced with
(1, d2n, d3n) without loss of generality. Since Σ23(s) < ∞ , using notations (4.45)
and (4.46) of Lemma 4.13

Σ23(s) =
∑
n∈Z

(
s2√
dn
−
√
dn
s2

)2
=
∑
n∈Z

(
s2
√

d2n
d3n
− s−2

√
d3n
d2n

)2
,

and taking into consideration (4.70), we can choose d2n and d3n as follows:
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dn =
d3n
d2n

=s4(1 + cn),
∑
n

c2n <∞,
∑
n

1

d22n
<∞,

∑
n

1

dn
=
∑
n

dn=∞. (4.71)

Since
∑

n c
2
n < ∞ we have

∑
n

b21n
b2nb3n

∼
∑
n

1

d22n
and the measures µ(dc,s3 ,0) and

µ(ds3,0)
are equivalent, where

µ(dc,s3 ,0) = ⊗nµ(s4d2n(1+cn),0), µ(ds3,0)
= ⊗nµ(s4d2n,0),

hence, we can choose cn ≡ 0 and s = 1 . So, to finish the case S = (0, 1, 1) we
should prove the irreducibility for b = (1, d2n, d2n)n∈Z with the only condition:∑

n

d−2
2n <∞. Since dn ≡ 1, we have

∑
n

d−1
n =

∑
n

dn=∞. (4.72)

Example 4.28. The pairwise conditions

‖CrYr + CsYs‖2 =∞ for 1 ≤ r < s ≤ 3 do not imply ‖
3∑

r=1

CrYr‖2 =∞.

Let ar,n = ar,−n for n ∈ N and a1,0 = 1, a2,0 = 2, a3,0 = 3 . We define ar,n for
n ∈ N as follows

a1n =

{
2 n = 2k + 1
1 n = 2k

, a2n =

{
1 n = 2k + 1
2 n = 2k

, a3n ≡ 3. (4.73)

Then we have clearly for arbitrary (C1, C2, C3) ∈ R3 \ {0}

‖C1a1+C2a2‖2=∞, ‖C1a1+C3a3‖2=∞, ‖C2a2+C3a3‖2=∞, (4.74)
but a1 + a2 − a3 = 0 hence, ‖a1 + a2 − a3‖2 = 0. (4.75)

Example 4.29. Let us consider the measure µ3
(b,a) with a =

(
arn
)
r,n

from
Example 4.28 and b = (b1n, b2n, b3n) defined as follows:

b1n ≡ 1, d2n = d3n = |n| for n ∈ Z \ {0}, d20 = d30 = 1. (4.76)

Lemma 4.30. In Example 4.28 we have (for n ∈ N only)

∆(a1, a2, a3) = 2, ∆(a2, a3, a1) = 2, ∆(a3, a1, a2) = 2, (4.77)
where ar = (arn)n∈N, 1 ≤ r ≤ 3.

Proof. Set ar(n) = (arl)
n
l=1 for 1 ≤ r ≤ 3 and n ∈ N , then for 1 ≤ k < r ≤ 3

Γ(ak(n))∼Γ(a1(n) + a2(n)) ∼ n, Γ(ak(n), ar(n)) ∼
n(n−1)

2
, Γ(a1, a2, a3)=0.

We observe that Γ(ak, ak + ar) = Γ(ak, ar) for k 6= r . Since a3 = a1 + a2 we get

∆(a1, a2, a3) =
Γ(a1) + Γ(a1, a2) + Γ(a1, a3) + Γ(a1, a2, a3)

1 + Γ(a2) + Γ(a3) + Γ(a2, a3)

=
Γ(a1) + Γ(a1, a2) + Γ(a1, a1 + a2) + Γ(a1, a2, a1 + a2)

1 + Γ(a2) + Γ(a1 + a2) + Γ(a2, a1 + a2)

=
Γ(a1) + 2Γ(a1, a2)

1 + Γ(a2) + Γ(a1 + a2) + Γ(a1, a2)
= 2,
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∆(a2, a3, a1) =
Γ(a2) + Γ(a2, a3) + Γ(a2, a1) + Γ(a2, a3, a1)

1 + Γ(a3) + Γ(a1) + Γ(a3, a1)

=
Γ(a2) + Γ(a2, a1 + a2) + Γ(a2, a1) + Γ(a2, a1 + a2, a1)

1 + Γ(a1 + a2) + Γ(a1) + Γ(a1 + a2, a1)

=
Γ(a2) + 2Γ(a2, a1)

1 + Γ(a1 + a2) + Γ(a1) + Γ(a2, a1)
= 2,

∆(a3, a1, a2) =
Γ(a3) + Γ(a3, a1) + Γ(a3, a2) + Γ(a3, a1, a2)

1 + Γ(a1) + Γ(a2) + Γ(a1, a2)

=
Γ(a1 + a2) + Γ(a1 + a2, a1) + Γ(a1 + a2, a2) + Γ(a1 + a2, a1, a2)

1 + Γ(a1) + Γ(a2) + Γ(a1, a2)

=
Γ(a1 + a2) + 2Γ(a1, a2)

1 + Γ(a1) + Γ(a2) + Γ(a1, a2)
= 2.

We use two facts for 1 ≤ r ≤ 2 :
Γ(a1, a2)

Γ(ar)
=∞ and Γ(a1 + a2) ≤ Γ(a1) + Γ(a2) + 2

√
Γ(a1)Γ(a2).

The first relation follows from Lemma 6.3 for m = 2 , since ‖C1a1 + C2a2‖2 = ∞ .
We get

Γ(a1, a2)

Γ(ar)
= lim

n→∞

Γ(a1(n), a2(n))

Γ(ar(n))
=∞.

Recall that Γ(a) = ‖a‖2 . The inequality follows from ‖a1 + a2‖ ≤ ‖a1‖+ ‖a2‖ , i.e.,√
Γ(a1 + a2) ≤

√
Γ(a1) +

√
Γ(a2) .

By Lemma 3.5 we have

(µ3
(b,a))

Lt ⊥ µ3
(b,a) ⇔ Σ±(t) := Σ±

1 (t) + Σ2(t) =∞,

where Σ±
1 (t) and Σ2(t

−1) are defined by (3.18) and (3.15). In Example 4.29 we can
not approximate x2n, x3n , since in this case we have

∆(Y
(2)
2 , Y

(2)
3 ) = 1, ∆(Y

(3)
3 , Y

(3)
2 )= 1. (4.78)

Indeed, by (4.34) we have

∆(Y
(2)
2 , Y

(2)
3 ) =

Γ(Y
(2)
2 )+Γ(Y

(2)
2 , Y

(2)
3 )

1 + Γ(Y
(2)
3 )

, ∆(Y
(3)
3 , Y

(3)
2 ) =

Γ(Y
(3)
3 )+Γ(Y

(3)
3 , Y

(3)
2 )

1 + Γ(Y
(3)
2 )

.

In Example 4.29 we have dn = d3n
d2n
≡ 1 and hence, by (4.41) we have

‖Y (2)
2 ‖2 ∼

∑
n∈Z

1

1 + 2dn
=
∑
n∈Z

1

3
, ‖Y (2)

3 ‖2 ∼
∑
n∈Z

d2n
1 + 2dn

=
∑
n∈Z

1

3
,

‖Y (3)
2 ‖2 ∼

∑
n∈Z

1

d2n + 2dn
=
∑
n∈Z

1

3
, ‖Y (3)

3 ‖2 ∼
∑
n∈Z

d2n
d2n + 2dn

=
∑
n∈Z

1

3
.

Therefore, Γ(Y (2)
2 , Y

(2)
3 ) = Γ(Y

(3)
3 , Y

(3)
2 ) = 0 , and

∆(Y
(2)
2 , Y

(2)
3 ) =

Γ(Y
(2)
2 )

1 + Γ(Y
(2)
3 )

= 1, ∆(Y
(3)
3 , Y

(3)
2 ) =

Γ(Y
(3)
3 )

1 + Γ(Y
(3)
2 )

= 1.
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Since b1n ≡ 1 , by (4.42) we get

‖Y1‖2 ∼
∑
n∈Z

a21n, ‖Y2‖2 ∼
∑
n∈Z

a22n, ‖Y3‖2 ∼
∑
n∈Z

a23n, so we have

ν(C1, C2, C3)
(4.38)∼

∑
n∈Z

b1n

( 3∑
r=1

Crarn

)2
=
∑
n∈Z

( 3∑
r=1

Crarn

)2
.

But in Example 4.28 there does not exist some t ∈ ±SL(3,R) \ {e} such that
ν(C1, C2, C3)=∞ for all (C1, C2, C3)∈R3\{0} to approximate some Drn .

4.4.7. Approximations of x2kx2r + x3kx3r in the case (c)
Since we can not approximate x2nx2t, x3nx3t using Lemma 5.1 in the case (c), we
shall try to approximate x2kx2r+s4x3kx3r by an appropriate combination of AknArn

for n ∈ Z . Let s = 1 , the general case is similar.

Lemma 4.31. For any k, r ∈ Z one has
(x2kx2r+x3kx3r)1 ∈ 〈AknArn1 | n ∈ Z〉 ⇔ ∆(Y (2), Y (1))=∞, (4.79)
where Y (r)=

(
brn√
λn

)
n∈Z

, 1 ≤ r ≤ 2, λn=(b1n + b2n + b3n)
2 − b21n.

Proof. The proof of Lemma 4.31 is based on Lemma 6.5 for m = 1 . We study
when (x2kx2r + x3kx3r)1 ∈ 〈AknArn1 | n ∈ Z〉 . Since

AknArn = (x1kD1n + x2kD2n + x3kD3n)(x1rD1n + x2rD2n + x3rD3n)

= x1kx1rD
2
1n + x2kx2rD

2
2n + x3kx3rD

2
3n + (x1kx2r + x2kx1r)D1nD2n

+ (x1kx3r + x3kx1r)D1nD3n + (x2kx3r + x3kx2r)D2nD3n,

and MD2
rn1 = −brn/2 , for 2 ≤ r ≤ 3 we take t = (tn)

m
n=−m as follows:

(t, b2)=(t, b3)=1, where t=(tn)
m
k=−m, b2=−(b2n/2)mn=−m, b3=−(b3n/2)mn=−m.

We have ‖
[ m∑
n=−m

tnAknArn −
(
x2kx2r + x3kx3r

)]
1‖2

= ‖
m∑

n=−m

tn
[
x1kx1rD

2
1n + x2kx2r

(
D2

2n +
b2n
2

)
+ x3kx3r

(
D2

3n +
b3n
2

)
+ (x1kx2r + x2kx1r)D1nD2n+(x1kx3r + x3kx1r)D1nD3n

+ (x2kx3r + x3kx2r)D2nD3n

]
1‖2

=
∑

−m≤n,l≤m

(fn, fl)tntl=:(A2m+1t, t), where A2m+1=(fn, fl)
m
n,l=−m, (4.80)

fn =
3∑

i=1

f i
n +

∑
1≤i<j≤3

f ij
n , f i

n = xikxir

(
D2

in +
bin
2
(1− δi1)

)
1, (4.81)

f ij
n = (xikxjr + xjkxir)DinDjn1,

for 1 ≤ i ≤ 3, 1 ≤ i < j ≤ 3 . Since f i′
n ⊥ f ij

n , f ij
n ⊥ f i′j′

n for different (ij), (i′j′) ,
writing

ckn = ‖xkn‖2 =
1

2bkn
+ a2kn,

we get
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(fn, fn) =
3∑

i=1

‖f i
n‖2 +

∑
1≤i<j≤3

‖f ij
n ‖2 = c1kc1r3

(b1n
2

)2
+ c2kc2r2

(b2n
2

)2
+ c3kc3r2

(b3n
2

)2
+
(
c1kc2r + c2kc1r + 2a1ka2ra2ka1r

)b1n
2

b2n
2

+
(
c1kc3r + c3kc1r + 2a1ka3ra3ka1r

)b1n
2

b3n
2

+
(
c2kc3r + c3kc2r + 2a2ka3ra3ka2r

)b2n
2

b3n
2

∼ (b1n + b2n + b3n)
2, (fn, fl) = (f 1

n, f
1
l ) = c1kc1r

b1n
2

b1l
2
∼ b1nb1l.

Finally, we get (fn, fn) ∼ (b1n + b2n + b3n)
2, (fn, fl) ∼ b1nb1l, n 6= l. (4.82)

Set λn = (b1n + b2n + b3n)
2 − b21n, gn = (b1n), (4.83)

then (fn, fn) ∼ λn + (gn, gn), (fn, fl) ∼ (gn, gl). (4.84)

For A2m+1=
(
(fn, fl)

)m
n,l=−m

and b2=b3=−(b2n/2)mn=−m ∈ R2m+1 we have

A2m+1 =
m∑

n=−m

λnEnn + γ(g−m, . . . , g0, . . . , gm).

To finish the proof, it suffices to use Lemma 6.5 for m = 1 .

Remark 4.32. In case (c) we can approximate x2kx2r + x3kx3r since we have
∆(Y (2), Y (1)) =∞ .

By (4.79) we have

∆(Y (2), Y (1)) =
Γ(Y (2))+Γ(Y (2), Y (1))

1 + Γ(Y (1))
>

Γ(Y (2))

1 + Γ(Y (1))
=∞,

since Γ(Y (2)) =∞ by
∑

n
1

d22n
<∞ and Γ(Y (1)) <∞ . Indeed,

Γ(Y (2))=
∑
n∈Z

b22n
λn

=
∑
n∈Z

d22n
(1 + 2d2n)2−1

∼
∑
n∈Z

d22n
d2n + d22n

(2.19)∼
∑
n∈Z

d2n =∞,

Γ(Y (1))
(4.79)
=
∑
n∈Z

1

(1 + 2d2n)2 − 1
∼
∑
n∈Z

1

d2n + d22n
<
∑
n

1

d22n

(4.71)
< ∞.

Lemma 4.33. Let {r, s} be a cyclic permutation of {2, 3}, then for all k ∈ Z

xrk1 ∈ 〈(x2kx2n + x3kx3n)1 | n ∈ Z〉 ⇔ σr(µ) =
∑
n∈Z

a2rn
1

2brn
+ c2sn

=∞. (4.85)

Proof. Recall the notation crn=
1

2brn
+a2rn . Since we have Mx2n1 = a2n we take

t = (tn)
m
n=−m as follows: (t, a2) = 1 , where a2 = (a2n)

m
n=−m . For r = 2 we get

‖
[ m∑
n=−m

tn
(
x2kx2n+x3kx3n

)
−x2kx2n

]
1‖2 = ‖

[ m∑
n=−m

tn
(
x2k(x2n−a2n)+x3kx3n

)]
1‖2

= ‖x2k1‖2‖
m∑

n=−m

tn(x2n − a2n)1‖2 + ‖x3k1‖2‖
m∑

n=−m

tnx3n1‖2

= c2k

m∑
n=−m

t2n
1

2b2n
+ c3k

m∑
n=−m

t2nc3n ∼
m∑

n=−m

t2n
( 1

2b2n
+ c23n

)
.

By (6.1) we get (4.85).
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Remark 4.34. Suppose that σ2(µ)+σ3(µ) <∞ . This contradicts Σ23(C2, C3) =∞
for (C2, C3) ∈ R2 \ {0} , where Σ23(C2, C3) is defined by (4.68).

Proof. Indeed, we have

∞ > σ2(µ) + σ3(µ) =
∑
∈Z

a22n
1

2b2n
+ 1

2b3n
+ a23n

+
∑
∈Z

a23n
1

2b2n
+ 1

2b3n
+ a22n

∼

∑
∈Z

a22n + a23n
1

2b2n
+ 1

2b3n
+ a22n + a23n

∼
∑
∈Z

a22n + a23n
1

2b2n
+ 1

2b3n

(4.71)
=

2

1+s−4

∑
n∈Z

b2n(a
2
2n + a23n).

This contradicts Σ23(C2, C3)=∞ . Indeed, by b3n=s
4b2n (see (4.71)) we have

Σ23(C2, C3) =
∑
n∈Z

(
C2

2 + C2
3s

4
)
b2n
(
C2a2n + C3a3n

)2
<∞.

Finally, we have σ2(µ) + σ3(µ) = ∞ , and therefore we have xrn η A3 for some
2 ≤ r ≤ 3 . Let x3n η A3 , then we can approximate x2n by combinations of x2nx2k ,
k ∈ Z using an analogue of Lemma 4.6. To approximate Drn, 1 ≤ r ≤ 3 we again
proceed as in Section 4.4.4. As in (4.51) we get

‖Y1‖2 ∼
∑
n∈Z

a21n, ‖Y2‖2 ∼
∑
n∈Z

a22n, ‖Y3‖2 ∼
∑
n∈Z

a23n.

Indeed, for example, by (4.5) we get

‖Y1‖2 =
∑
n∈Z

a21n
1

2b1n
+ 1

2b2n
+ 1

2b3n

=
∑
n∈Z

a21n
1
2
+ 1

d2n

(4.72)∼
∑
n∈Z

a21n.

Again, as in (4.52) we have four possibilities: (1.0), (1.1), (1.2) and (1.3). The
corresponding expressions in (4.56), (4.57), (4.58) become as follows:

ν12(C1, C2) := ‖C1Y1 + C2Y2‖2 ∼
∑
n∈Z

(
C1a1n + C2a2n

)2
,

ν13(C1, C3) := ‖C1Y1 + C3Y3‖2 ∼
∑
n∈Z

(
C1a1n + C3a3n

)2
,

ν(C1, C2, C3)=
∑
n∈Z

(
C1a1n+C2a2n+C3a3n

)2
.

To study the cases (1.1.1)–(1.3.1) we should use Remark 4.17. We can approxi-
mate in these cases respectively D1n and D2n in (4.53), D1n and D3n in (4.54)
all D1n, D2n, D3n in (4.55). The proof of irreducibilty is finished in these cases
because we have Drn, x2n, x3n η A3 for some 1 ≤ r ≤ 3 . Following Remark 4.21
we can use Lemma 5.4 and its analogue to approximate D2n and D3n with cor-
responding expressions Σ2(D, s), Σ

∨
2 (D, s) and Σ3(D), Σ∨

3 (D) . If one of the ex-
pressions Σ2(D, s), Σ

∨
2 (D, s), Σ3(D, s) or Σ∨

3 (D, s) is divergent for some sequence
s = (sk)k∈Z , we can approximate D2k or D3k and the proof is finished. Suppose
that for any sequence s = (sk)k∈Z we have

Σ2(D, s) + Σ∨
2 (D, s) + Σ3(D, s) + Σ∨

3 (D, s) <∞.
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Then, by (4.61) we have

∞ > Σ∨
23(D) =

∑
k

1
2b2k

+ a22k +
1

2b3k
+ a23k

1
2b1k

+ a21k
=
∑
k

1
d2k

+ a22k + a23k
1
2
+ a21k

(4.72)∼

∑
k

a22k + a23k
1 + a21k

=: Σa
23(D).

To study cases (1.1.0)–(1.3.0) we should follow Remark 4.22.

4.5. Case S = (1, 1, 1)

Denote by Σ123(s) = (Σ12(s1),Σ23(s2),Σ13(s3)), (4.86)

where s = (s1, s2, s3) and Σij(s) are defined by (4.67) for 1 ≤ i < j ≤ 3 . In terms
of Remark 4.4, we have 23 possibilities for Σ123(s) ∈ {0, 1}3 :

(0) (1) (2) (3) (4) (5) (6) (7)
Σ12(s1) 0 0 0 0 1 1 1 1
Σ23(s2) 0 0 1 1 0 0 1 1
Σ13(s3) 0 1 0 1 0 1 0 1

The cases (1), (2) and (4) and respectively the cases (3), (5) and (6) result from
cyclic permutations of three measures µ(1), µ(2), µ(3) defined as follows:

µ(r) = ⊗n∈Zµ(brn,arn), 1 ≤ r ≤ 3, µ
(r)
0 = ⊗n∈Zµ(brn,0), 1 ≤ r ≤ 3. (4.87)

The cases (1), (2) and (4) can not be realized. We prove this only in the case (1). By
Lemma 6.6 we have Σ12(s1) < ∞ ⇔ µ

(1)
0 ∼ µ

(2)
0 and Σ23(s2) < ∞ ⇔ µ

(2)
0 ∼ µ

(3)
0

hence, µ(1)
0 ∼ µ

(3)
0 , that contradicts Σ13(s2) =∞⇔ µ

(1)
0 ⊥ µ

(3)
0 . Finally, we are left

with the three cases (0), (3) and (7):
the case (0), i.e., Σ123(s) = (0, 0, 0) ,
the case (3), i.e., Σ123(s) = (0, 1, 1) ,
the case (7), i.e., Σ123(s) = (1, 1, 1) .

4.5.1. Case Σ123(s) = (0, 0, 0)

In the case (0), we have for some s = (s1, s2, s3) ∈
(
R+

)3
Σ12(s1) <∞, Σ23(s2) <∞, Σ13(s3) <∞.

In this case we get µ(1)
0 ∼ µ

(2)
0 ∼ µ

(3)
0 . By (4.17) we can make the following change

of the variables:(
b1n b2n b3n
a1n a2n a3n

)
→
(
b′1n b′2n b′3n
a′1n a′2n a′3n

)
=

(
1 b2n

b1n
b3n
b1n

a1n
√
b1n a2n

√
b1n a3n

√
b1n

)
.

Remark 4.35. By Lemma 6.7, we can suppose that

b=(b1n, b2n, b3n)n∈Z=(1, 1 + cn, 1 + en)n∈Z,
∑
n

c2n <∞,
∑
n

e2n <∞. (4.88)



302 Kosyak and Moree

But the two measures µ(b,a) and µ(I,a) are equivalent, where b is defined by (4.88)
and

I := (1, 1, 1)n∈Z. (4.89)
Finally, it is sufficient to consider the measure µ(I,a) .

Example 4.36. Let b1n = b2n = b3n ≡ 1, n ∈ Z .
(a) Take an = (a1n, a2n, a3n), n ∈ Z as it was defined in Example 4.28:

a1n =

{
2 n = 2k + 1
1 n = 2k

, a2n =

{
1 n = 2k + 1
2 n = 2k

, a3n ≡ 3.

Then a1 + a2 − a3 = 0 , where ar = (arn)n∈Z .
(b) Take any ar=(arn)n∈Z such that a1, a2, a3 6∈ l2(Z) , but C1a1+C2a2+C3a3∈ l2(Z)
for some (C1, C2, C3) ∈ R3 \ {0} .

Example 4.37. Let b1n = b2n = b3n ≡ 1, n ∈ Z and a = (a1n, a2n, a3n)n∈Z such
that a1, a2, a3 6∈ l2(Z) , but the measure µ3

(b,a) satisfies the orthogonality conditions.
The case Σ123(s) = (0, 0, 0) is reduced to this example.

Remark 4.38. Since the measure µ3
(b,0) is standard in Example 4.36 and 4.37,

i.e., it is invariant under rotations ±O(3) , we have

(µ3
(b,0))

Lt = µ3
(b,0) for all t ∈ ±O(3). (4.90)

By Lemma 3.7, the orthogonality condition (µ3
(b,a))

Lt ⊥ µ3
(b,a) for t ∈ ±O(3) \ {e} ,

is equivalent to
Σ±

1 (t) + Σ2(t) =∞,
where Σ+

1 (t), Σ
−
1 (t) are defined by (3.17) and Σ2(t) is defined by (3.15). By (4.90)

we get Σ±
1 (t) < ∞ in Example 4.36 and 4.37 hence the orthogonality condition

(µ3
(b,a))

Lt ⊥ µ3
(b,a) for t ∈ ±O(3) \ {e} is equivalent to Σ2(t) =∞ . Further, to prove

the irreducibility in Example 4.36 and 4.37 we should show that Σ2(t) =∞ for all
t ∈ ±O(3) \ {e} implies

‖C1Y1 + C2Y2 + C3Y3‖2 =∞ for all (C1, C2, C3) ∈ R3 \ {0}.

Lemma 4.39. (1) The representations corresponding to the measures in Exam-
ple 4.36 (a) and (b) are reducible.
(2) The representations corresponding to the measures in Example 4.37 are irre-
ducible.
Proof. To prove part (1) of the lemma, by Remark 4.38 and (4.90), we should find
for the measure in Example 4.36 an element t∈ ±O(3) \ {e} such that Σ2(t)<∞ .
This will imply (µ3

(b,a))
Lt ∼ µ3

(b,a) hence, the reducibility.
Finally, it is sufficient to find t∈ ±O(3) \ {e} such that

t− 1 =

(
λ1C1 λ1C2 λ1C3

λ2C1 λ2C2 λ2C3

λ3C1 λ3C2 λ3C3

)
, (4.91)
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where (C1, C2, C3) = (1, 1,−1) , in part (a), or for an arbitrary (C1, C2, C3) ∈ R3\{0}
in the part (b). Such an element exists by Lemma 4.40 below. For such an element
t we get respectively in the cases (a), (b) and Example 4.37 (see (3.15)):

Σ2(t
−1) =

∑
n∈Z

(b1nλ
2
1 + b2nλ

2
2 + b3nλ

2
3)
(
a1n + a2n − a3n

)2
= 0,

Σ2(t
−1) =

∑
n∈Z

(b1nλ
2
1 + b2nλ

2
2 + b3nλ

2
3)
(
C1a1n + C2a2n + C3a3n

)2
<∞,

Σ2(t
−1)=

∑
n∈Z

(b1nλ
2
1+b2nλ

2
2+b3nλ

2
3)
(
C1a1n+C2a2n+C3a3n

)2
=∞. (4.92)

Note that the measure in Example 4.36 does not satisfy the orthogonality conditions.
(2) Irreducibility. In Example 4.37 we can not approximate xrn by Lemma 5.1,
since all the expressions

∆(Y
(1)
1 , Y

(1)
2 , Y

(1)
3 ), ∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ), ∆(Y

(3)
3 , Y

(3)
1 , Y

(3)
2 )

are bounded. To approximate Drn using Lemma 5.2 we should estimate the follow-
ing expressions:

∆(Y1, Y2, Y3), ∆(Y2, Y3, Y1), ∆(Y3, Y1, Y2).

Following Lemma 6.3 for m = 2 , all these expressions are infinite, if we have for all
(C1, C2, C3) ∈ R3 \ {0} :

ν(C1, C2, C3) := ‖C1Y1 + C2Y2 + C3Y3‖2=
∑
n∈Z

(
C1a1n+C2a2n+C3a3n

)2
1

2b1n
+ 1

2b2n
+ 1

2b3n

=∞.

In Examples 4.37 we have

ν(C1, C2, C3)=‖C1Y1 + C2Y2 + C3Y3‖2∼
∑
k∈Z

b1n(C1a1k + C2a2k + C3a3k)
2

∼
∑
n∈Z

(b1nλ
2
1 + b2nλ

2
2 + b3nλ

2
3)
(
C1a1n + C2a2n + C3a3n

)2
=Σ2(t

−1) =∞.

Lemma 4.40. For an arbitrary element (C1, C2, C3) ∈ R3\{0}, and an arbitrary
D3(s) = diag(s1, s2, s3) with (s1, s2, s3) ∈ (R+)

3 , there exists a unique element
t∈±O(3) \ {e} and (λ1, λ2, λ3) ∈ R3 \ {0} such that

D3(s)tD
−1
3 (s)− I =

(
λ1C1 λ1C2 λ1C3
λ2C1 λ2C2 λ2C3
λ3C1 λ3C2 λ3C3

)
=
(

λ1 0 0
0 λ2 0
0 0 λ3

)(
1 1 1
1 1 1
1 1 1

)(
C1 0 0
0 C2 0
0 0 C3

)
. (4.93)

Proof. By (4.93) we get(
e1
e2
e3

)
:= t =

(
t11 t12 t13
t21 t22 t23
t31 t32 t33

)
=

(
C1λ1 + 1 s2

s1
C2λ1

s3
s1
C3λ1

s1
s2
C1λ2 C2λ2 + 1 s3

s2
C3λ2

s1
s3
C1λ3

s2
s3
C2λ3 C3λ3 + 1

)
, (4.94)

where ‖ek‖2 = 1 and ek ⊥ er, 1 ≤ k < r ≤ 3. (4.95)

By (4.94) and the first relations in (4.95) we get

λk = −
2s2kCk

s21C
2
1 + s22C

2
2 + s23C

2
3

, 1 ≤ k ≤ 3. (4.96)
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Then the matrix elements t = (tkr)
3
k,r=1 are defined by (4.94). To verify ek ⊥ er we

need to show that
(e1, e2) =

(s21C
2
1 + s22C

2
2 + s23C

2
3 )λ1λ2

s1s2
+

s21C1λ2 + s22C2λ1

s1s2
= 0,

(e1, e3) =
(s21C

2
1 + s22C

2
2 + s23C

2
3 )λ1λ3

s1s3
+

s21C1λ3 + s23C3λ1

s1s3
= 0,

(e2, e3) =
(s21C

2
1 + s22C

2
2 + s23C

2
3 )λ2λ3

s2s3
+

s22C2λ3 + s23C2λ3

s2s3
= 0.

Indeed, for example, for (e1, e2) we have

(e1, e2) =
(s21C

2
1 + s22C

2
2 + s23C

2
3 )λ1λ2

s1s2
+

s21C1λ2 + s22C2λ1

s1s2

=
1

s1s2(s21C
2
1 + s22C

2
2 + s23C

2
3 )

(
4s21s

2
2 − (2s21s

2
2 + 2s21s

2
2)
)
C1C2 = 0.

The proofs of e1 ⊥ e3 and e2 ⊥ e3 are similar.

Similarly, for any m ≥ 2 we can prove the following lemma:

Lemma 4.41. For an arbitrary (Ck)
m
k=1 ∈ Rm \ {0}, and Dm(s) = diag(sk)

m
k=1

with sk ∈ R+, 1 ≤ k ≤ m there exists a unique element t ∈ ±O(m) \ {e} and
(λk)

m
k=1 ∈ Rm \ {0} such that

Dm(s)tD
−1
m (s)− I =

λ1C1 λ1C2 . . . λ1Cm

λ2C1 λ2C2 . . . λ2Cm

. . .
λmC1 λmC2 . . . λmCm

 . (4.97)

The formulas for the corresponding λk are as follows:

λk = −2s2kCk

( m∑
r=1

s2rC
2
r

)−1

, 1 ≤ k ≤ m. (4.98)

4.5.2. Case Σ123(s) = (0, 1, 1)

We have for some s1 ∈ R+ and all (s2, s3) ∈
(
R+

)2 : Σ23(s2) =∞ , Σ13(s3) =∞ .

Remark 4.42. Since Σ12(s1)<∞ , by (4.17) and Lemma 6.7, we can suppose

b=(b1n, b2n, b3n)n∈Z=(1, s41(1+cn), b3n)n∈Z,
∑
n

c2n <∞.

Therefore, we can take b = (1, 1, b3n)n∈Z, s = 1, cn ≡ 0 .

Since Σ13(s) =
∑

n∈Z
( s2√

b3n
−
√
b3n
s2

)2
=∞ , we have as in (4.48) three cases:

lim
n
b3n =


(a) ∞
(b) b > 0 with

∑
n b

2
n =∞,

(c) 0
(4.99)

where b3n = b(1 + bn) with limn bn = 0 in the case (b).
Note that condition S3(3) =∞ , implies

∑
n b

2
3n =∞ . Indeed, by (4.6) we have

S1(3)=S2(3)=
∑
n∈Z

1

1+2b3n
=∞, ∞=S3(3)=

∑
n∈Z

b23n
1+2b3n

(2.17)∼
∑
n∈Z

b23n. (4.100)
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By (4.4) we have ‖Y (r)
r ‖2 =

∑
k∈Z

b2rk
b2rk + 2(b1nb2n + b1nb3n + b2nb3n)

,

‖Y (s)
r ‖2 =

∑
k∈Z

b2rk
b2sk + 2(b1nb2n + b1nb3n + b2nb3n)

, s 6= r.

Let us denoteY
(1)
1n Y

(1)
2n Y

(1)
3n

Y
(2)
1n Y

(2)
2n Y

(2)
3n

Y
(3)
1n Y

(3)
2n Y

(3)
3n

=


1√

3+4b3n

1√
3+4b3n

b3n√
3+4b3n

1√
3+4b3n

1√
3+4b3n

b3n√
3+4b3n

1√
b23n+4b3n+2

1√
b23n+4b3n+2

b3n√
b23n+4b3n+2

 (4.101)

We have ∆(Y
(1)
1 , Y

(1)
2 , Y

(1)
3 ) =∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 )<∞ , indeed, since Y (2)

1 = Y
(2)
2 we

get for example
∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ) =

Γ(Y
(2)
2 ) + Γ(Y

(2)
2 , Y

(2)
3 )

1 + Γ(Y
(2)
3 ) + Γ(Y

(2)
1 ) + Γ(Y

(2)
3 , Y

(2)
1 )

< 1.

Lemma 4.43. In the cases (a), (b) and (c) given by (4.99) we have

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) =∞. (4.102)

Proof. In all these cases we have Y (3)
1 = Y

(3)
2 hence, Γ(Y (3)

3 , Y
(3)
1 , Y

(3)
2 ) = 0 and

Γ(Y
(3)
1 , Y

(3)
2 ) = 0 . Therefore, by (2.15)

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) =

Γ(Y
(3)
3 ) + Γ(Y

(3)
3 , Y

(3)
1 ) + Γ(Y

(3)
3 , Y

(3)
2 )

1 + Γ(Y
(3)
1 ) + Γ(Y

(3)
2 )

=
Γ(Y

(3)
3 ) + 2Γ(Y

(3)
3 , Y

(3)
1 )

1 + 2Γ(Y
(3)
1 )

∼ ∆(Y
(3)
3 , Y

(3)
1 ). (4.103)

We have two cases:
(a.1) when ‖Y (3)

1 ‖ < ∞ , and (a.2) when ‖Y (3)
1 ‖ = ∞ . In the case (a.1) we have

∆(Y
(3)
3 , Y

(3)
1 ) ∼ Γ(Y

(3)
3 ) =∞ . Therefore, (4.102) holds. In the case (a.2) we should

verify that
‖C1Y

(3)
1 + C3Y

(3)
3 ‖2 =∞ for all (C1, C3) ∈ R2 \ {0}. (4.104)

Then this will imply (4.102). We have

‖C1Y
(3)
1 + C3Y

(3)
3 ‖2 =

∑
n∈Z

(
C1 + C3b3n

)2
b23n + 4b3n + 2

=:
∑
n∈Z

gn.

If C1 = 0 or C3 = 0 the later expression is divergent since Y (3)
1 = Y

(3)
3 = ∞ . Let

C1C3 6=0 . In this case limn gn = C2
3 > 0 since limn b3n =∞ , case (a).

Therefore,
∑

n∈Z gn=∞ . By Lemma 6.3 for m=1 , this implies ∆(Y
(3)
3 , Y

(3)
1 )=∞ ,

therefore, (4.102). In the case (b) we have by (4.103)

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) ∼ ∆(Y

(3)
3 , Y

(3)
1 ).

To prove that ∆(Y
(3)
3 , Y

(3)
1 ) = ∞ using Lemma 6.3 for m = 1 we should verify

(4.104). We have ‖Y (3)
3 ‖2 =∞ since S = (0, 1, 1) . By (4.101)

‖Y (3)
1 ‖2=

∑
n∈Z

1

b23n + 4b3n + 2
∼
∑
n∈Z

1

b2 + 4b+ 2
=∞.
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The expression ‖C1Y
(3)
1 +C3Y

(3)
3 ‖2 can be finite only for (C1, C3) = λ(b,−1) . Take

λ = 1 , we get in the case (b)

‖C1Y
(3)
1 + C3Y

(3)
3 ‖2 =

∑
n∈Z

(b− b3n)
2

b23n + 4b3n + 2
=
∑
n∈Z

b2b2n
b2(1 + bn)2 + 4b(1 + bn) + 2

(2.19)∼
∑
n∈Z

b2n
(4b+ 2b2)bn + b2 + 4b+ 2

(2.17)∼
∑
n∈Z

b2n =∞.

In the case (c), we have by (4.103)

∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) ∼ ∆(Y

(3)
3 , Y

(3)
1 ).

To prove that ∆(Y
(3)
3 , Y

(3)
1 ) = ∞ using Lemma 6.3 for m = 1 , we should verify

(4.104). Again, we have ‖Y (3)
3 ‖2 = ∞ since S = (0, 1, 1) . Because of limn b3n = 0 ,

we have by (4.101)
‖Y (3)

1 ‖2 =
∑
n∈Z

1

b23n + 4b3n + 2
∼
∑
n∈Z

1

2
=∞,

Let C1C3 6= 0 , then since limn b3n = 0 we get

‖C1Y
(3)
1 +C3Y

(3)
3 ‖2 =

∑
n∈Z

(
C1+C3b3n

)2
b23n+4b3n+2

=
∑
n∈Z

C2
3

(
b3n+C1C

−1
3

)2
b23n+4b3n+2

=∞.

By Lemma 4.43 we can approximate x3n . By (4.5) we have

‖Y1‖2 =
∑
n∈Z

a21n
1

2b1n
+ 1

2b2n
+ 1

2b3n

=
∑
k∈Z

a21n
1 + 1

2b3n

=
∑
k∈Z

2b3na
2
1n

1 + 2b3n
,

‖Y2‖2 =
∑
n∈Z

a22n
1 + 1

2b3n

=
∑
k∈Z

2b3na
2
2n

1 + 2b3n
, ‖Y3‖2 =

∑
n∈Z

a23n
1 + 1

2b3n

=
∑
k∈Z

2b3na
2
3n

1 + 2b3n
.

Therefore, in the cases (a) and (b) we have

‖Y1‖2 ∼
∑
k∈Z

a21n, ‖Y2‖2 ∼
∑
k∈Z

a22n, ‖Y3‖2 ∼
∑
k∈Z

a23n,

In the case (c) we get

‖Y1‖2 ∼
∑
k∈Z

b3na
2
1n, ‖Y2‖2 ∼

∑
k∈Z

b3na
2
2n, ‖Y3‖2 ∼

∑
k∈Z

b3na
2
3n.

Since in the cases (a) and (b)

‖Y1‖2 ∼
∑
n∈Z

a21n =
∑
n∈Z

b1na
2
1n ∼ SL

11(µ) =∞,

‖Y2‖2 ∼
∑
n∈Z

a22n =
∑
n∈Z

b2na
2
2n = SL

22(µ) =∞,

we have two possibilities for y23 := (y2, y3) ∈ {0, 1}2 , see Section 4.4.4:

(1.1) (1.3)
y1 1 1
y2 1 1
y3 0 1
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In the case (c) we have ‖Y3‖2 ∼
∑
n∈Z

b3na
2
3n ∼ SL

33(µ) =∞ .

Therefore, we have four possibilities for y12 := (y1, y2) ∈ {0, 1}2 , see (4.52),

(1.0) (1.1) (1.2) (1.3)
y1 0 1 0 1
y2 0 0 1 1
y3 1 1 1 1

Further, in the cases (a) and (b) we have four possibilities: (1.1.1), (1.3.1) and
(1.1.0), (1.3.0), see Remark 4.17. In the case (1.1.1) we can approximate D1n, D2n ,
in the case (1.3.1) we can approximate all Drn, 1 ≤ r ≤ 3 . In these cases the proof is
finished, since we get respectively D1n, D2n, x3n ηA

3 . The cases (a) and (b) subcases
(1.1.0) and (1.3.0) are considered below.
In the case (c) subcase (1.0) we can approximate D3n using Lemma 5.2, since
∆(Y3, Y2, Y1) ∼ ‖Y3‖2 = ∞ , so we have D3n, x3n ηA

3 , and the proof is finished.
Further, in the case (c) we have six cases (1.1.1), (1.2.1), (1.3.1) and (1.1.0), (1.2.0),
(1.3.0), according to whether the corresponding expressions are divergent, see Re-
mark 4.17. We can approximate in the three first cases by respectively D1n and
D3n in the case (1.1.1), D2n and D3n in the case (1.1.2) and all D1n, D2n, D3n

in (1.1.3). The proof of irreducibilty is finished in these cases because we have
respectively D1n, D3n, x3n ηA

3 , D2n, D3n, x3n ηA
3 , or D1n, D2n, D3n, x3n ηA

3 .
If the opposite holds, in the cases (a), (b) or (c), i.e., we are in the cases (1.1.0),
(1.2.0) and (1.3.0) respectively, we try to approximate D3n using Lemma 5.4. If one
of the expressions Σ3(D, s) or Σ∨

3 (D, s) is divergent, we can approximate D3k and
the proof is finished, since we have x3n, D3n η A3 . Let us suppose, as in Remark 4.8,
that for every sequence s = (sk)k∈Z

Σ3(D, s) + Σ∨
3 (D, s) <∞.

Then, in particularly, we have for s(3) = (sk)k∈Z with s2k
b3k
≡ 1

∞>Σ3(D, s
(3))+Σ∨

3 (D, s
(3))∼Σ3(D) + Σ∨

3 (D)=
∑
k

1
2b3k

+ a23k

Ck+a21k+a
2
2k+a

2
3k

(2.19)∼
∑
k

1
2b3k

+ a23k
1

2b1k
+ a21k +

1
2b2k

+ a22k
=
∑
k

1
2b3k

+ a23k

1 + a21k + a22k
=: Σ∨,+

3 (D). (4.105)

In the case (a), (b) and (c) we have respectively

Σ∨,+
3 (D) ∼ Σ+

3 (D) =
∑
k

2a23k
1 + 2a21k + 2a22k

, Σ∨,+
3 (D) =

∑
k

1
2b3k

+ a23k

1 + a21k + a22k
.

In particular, in the case (c) we have by (4.105)

∞ >
∑
k

1
2b3k

+ a23k

1 + a21k + a22k
>
∑
k

a23k
1 + a21k + a22k

∼ Σ+
3 (D). (4.106)

The cases (a), subcase (1.1.0), where ‖Y3‖2 <∞ can not occur, because conditions
Σ12(s1) < ∞ and ν12(C1, C2) < ∞ defined by (4.56), contradict the orthogonality
condition for the matrix τ12(ϕ, s) defind by (4.66).
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Indeed, by Remark 3.3 (instead of µ2
(b,a) we can write µ3

(b,a) )(
µ3
(b,a)

)Lτ12(ϕ,s) ⊥ µ3
(b,a) ⇔ Σ12(s) + Σ12(C1, C2) =∞,

where Σ12 is defined by (4.67), and Σ12(C1, C2) is defined by (4.68).

Σ12(C1, C2) :=
∑
n∈Z

(C2
1b1n+C

2
2b2n)(C1a1n+C2a2n)

2∼ν12(C1, C2),

∞ > Σ12(s) + ν12(C1, C2) ∼ Σ12(s) + Σ12(C1, C2) =∞, (4.107)
which is a contradiction. In the case (a), (b), subcase (1.3.0) we get Σ+

3 (D) =∞ by
Lemma 4.20, a contradiction with (4.105) hence, D3n ηA

3 . In the case (c), subcases
(1.1.0) and (1.2.0) we have respectively ‖Y2‖2 <∞ and ‖Y1‖2 <∞ hence,

Σ+
3 (D) ∼

∑
k

a23k
1 + a21k

=∞, Σ+
3 (D) ∼

∑
k

a23k
1 + a22k

=∞.

by Lemma 4.19, one gets again a contradiction with (4.105) hence, D3n ηA
3 . In the

case (c), subcase (1.3.0) we get

Σ+
3 (D) =

∑
k

a23k
1 + a21k + a22k

=∞

by Lemma 4.20, which is contradictory with (4.105) hence, D3n ηA
3 .

4.5.3. Case Σ123(s) = (1, 1, 1)

We have for all s = (s12, s23, s13) ∈ R3
+ \ {0}

Σ12(s12) =∞, Σ23(s23) =∞, Σ13(s13) =∞, (4.108)

b=(b1n, b2n, b3n)n∈Z
(4.17)
= (1, d2n, d3n)n∈Z.

Recall that, see (4.31), we denote Dn := d−1
2n + d−1

3n + 1 and dn = d3n
d3n

. SetY
(1)
1n Y

(1)
2n Y

(1)
3n

Y
(2)
1n Y

(2)
2n Y

(2)
3n

Y
(3)
1n Y

(3)
2n Y

(3)
3n

=


1√
1+2Dnd2nd3n

d2n√
1+2Dnd2nd3n

d3n√
1+2Dnd2nd3n

1√
d22n+2Dnd2nd3n

d2n√
d22n+2Dnd2nd3n

d3n√
d22n+2Dnd2nd3n

1√
d23n+2Dnd2nd3n

d2n√
d23n+2Dnd2nd3n

d3n√
d23n+2Dnd2nd3n

 . (4.109)

Remark 4.44. For (r, s) such that 1 ≤ r < s ≤ 3 the following equivalence
hold:

Σrs(srs)<∞ ⇔
∑
n∈Z

c2rs,n<∞ ⇔
∑
n∈Z

c2sr,n<∞, where (4.110)

brn
bsn

=: s−4
rs (1 + crs,n),

bsn
brn

=s4rs(1+csr,n), lim
n

brn
bsn
∈ (0,∞). (4.111)

Proof. By Lemma 6.7 we have

Σrs(srs) =
∑
n∈Z

(
s2rs

√
brn
bsn
− s−2

rs

√
bsn
brn

)2
=
∑
n∈Z

c2rs,n
1 + crs,n

∼
∑
n∈Z

c2rs,n,

Σsr(s
−1
rs ) =

∑
n∈Z

(
s−2
rs

√
bsn
brn
− s2rs

√
brn
bsn

)2
=
∑
n∈Z

c2sr,n
1 + csr,n

∼
∑
n∈Z

c2sr,n.

Note also that 1 =
brn
bsn

bsn
brn

= (1+crs,n)(1+csr,n). (4.112)
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By Remark 4.44, the condition Σrs(srs) =∞ holds in the following cases:

lsr := lim
n

bsn
brn

=


(a) ∞
(b) s4rs > 0 with

∑
n∈Z c

2
sr,n =∞.

(c) 0
(d) lim does not exist

(4.113)

Remark 4.45. In the case (d) we can use the fact that some subsequence of(
bsn
brn

)
n∈Z

has property (a), (b) or (c). We can avoid the case (c). Namely, if lsr = 0

for some pair (r, s) with 1 ≤ r < s ≤ 3 , we can exchange the two lines (bsn, asn)
and (brn, arn) to obtain lsr =∞ .

Formally, we have 33 = #(A)#(B) possibilities where A = {(21), (32), (31)} and
B = {(a), (b), (d)} . Since l32l21 = l31 we get only the following cases:

e \ (rs) (21) (32) (31)
(1) b b b
(2) a a a
(3) a b a
(4) b a b

.

To be able to approximate xrn for 1 ≤ r ≤ 3 we should study when the following
expressions are infinite:

ρr(C1, C2, C3) = ‖C1Y
(r)
1 + C2Y

(r)
2 + C2Y

(r)
3 ‖2. (4.114)

By (4.109) we have

ρr(C1, C2, C3) =:
∑
n

|C1 + C2d2n + C3d3n|2

Crn
, (4.115)

where C1n = 1+2Dnd2nd3n, C2n = d22n+2Dnd2nd3n, C3n = d23n+2Dnd2nd3n.

Consider the case (1)=(bbb). We prove the following lemma.

Lemma 4.46. Assume, that (4.108) holds for all s = (s12, s23, s13) ∈
(
R+

)3 .

Then ∆(Y
(3)
3 , Y

(3)
1 , Y

(3)
2 ) = ∆(Y

(2)
2 , Y

(2)
3 , Y

(2)
1 ) = ∆(Y

(1)
1 , Y

(1)
2 , Y

(1)
3 ) =∞. (4.116)

Proof. For 1 ≤ r < s ≤ 3 set
bsn
brn

=s4rs(1+csr,n) with
∑
n∈Z

c2sr,n =∞, lim
n→∞

csr,n = 0.

For b1n ≡ 1 we have

b2n = s412(1 + c21,n), b3n = s413(1 + c31,n),

b3n
b2n

=
s413
s412

1 + c31,n
1 + c21,n

= s423(1 + c32,n), c32,n =
1 + c31,n
1 + c21,n

− 1, s23 =
s13
s12
,∑

n

c232,n=
∑
n

(
1 + c31,n
1 + c21,n

−1
)2
=
∑
n

(
c31,n−c21,n
1 + c21,n

)2
∼
∑
n

(c21,n−c31,n)2=∞.
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Finally, we get∑
n

c221,n =∞,
∑
n

c231,n =∞,
∑
n

(c21,n − c31,n)2 =∞. (4.117)

By (4.114) and (4.115) we get

ρr(C1, C2, C3)=‖C1Y
(r)
1 +C2Y

(r)
2 +C2Y

(r)
3 ‖2=

∑
n

|C1 + C2d2n + C3d3n|2

Crn

=
∑
n

|C1 + C2s
4
12(1 + c21,n) + C3s

4
13(1 + c31,n)|2

Crn
.

The latter expression is divergent if C1 + C2s
4
12 + C3s

4
13 6= 0 since limn→∞ c21,n =

limn→∞ c31,n = 0 and A1 ≤ Crn ≤ A2 . If C1 + C2s
4
12 + C3s

4
13 = 0 we get

ρr(C1, C2, C3) =
∑
n∈Z

|C2s
4
12c21,n + C3s

4
13c31,n|2

Crn
=: ρr(C2, C3). (4.118)

The latter expression is divergent by the first two relations in (4.117) when 1)
C2C3 > 0 , 2) C2 = 0 and C3 6= 0 , 3) C2 6= 0 and C3 = 0 . If C2C3 < 0 we
have by the last relation in (4.117)∑

n∈Z

|C2s
4
12c21,n − C3s

4
13c31,n|2

Crn
∼
∑
n∈Z

|C2s
4
12c21,n − C3s

4
13c31,n|2 =∞,

since (s12, s13) =
1
s1
(s2, s3) ∈ (R∗)2 are arbitrary.

Consider the case (2)=(aaa). Now, see (4.113), we have

l21=lim
n

b2n
b1n

=∞, l32=lim
n

b3n
b2n

=∞, therefore, l31=lim
n

b3n
b1n

=∞. (4.119)

Since b1n ≡ 1 we conclude that

l21=lim
n
d2n =∞ and l31=lim

n
d3n =∞. (4.120)

Therefore, we get for some C > 0 and all n ∈ Z

1 ≤ Dn = 1 +
(
d2n
)−1

+
(
d3n
)−1 ≤ C. (4.121)

By (4.114) and (4.115) we obtain

ρr(C1, C2, C3)=‖C1Y
(r)
1 +C2Y

(r)
2 +C2Y

(r)
3 ‖2=

∑
n

|C1 + C2d2n + C3d3n|2

Crn

∼
∑
n

|C1 + C2d2n + C3d3n|2

C ′
rn

=: ρ′r(C1, C2, C3),

where C ′
rn = 1 + 2d2nd3n, C ′

rn = d22n + 2d2nd3n, C ′
rn = d23n + 2d2nd3n.

We should study when ρ′r(C1, C2, C3) =∞ for some 1 ≤ r ≤ 3 :∑
n

|C1+C2d2n+C3d3n|2

1 + 2d2nd3n
,
∑
n

|C1+C2d2n+C3d3n|2

d22n + 2d2nd3n
,
∑
n

|C1+C2d2n+C3d3n|2

d23n + 2d2nd3n
.
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Writing as before dn =
d3n
d2n

=: l−1
n , we get

ρ′1(C1, C2, C3)=
∑
n

|C1+C2d2n+C3d3n|2

1 + 2d2nd3n
=
∑
n

| C1

d2n
+C2+C3dn|2
1

d2
2n

+ 2dn
∼
∑
n

|C2+C3dn|2

2dn
,

ρ′2(C1, C2, C3) =
∑
n

|C1+C2d2n+C3d3n|2

d22n + 2d2nd3n
=
∑
n

| C1

d2n
+C2+C3dn|2

1 + 2dn

∼
∑
n

|C2+C3dn|2

1 + 2dn
, ρ′3(C1, C2, C3) =

∑
n

|C1+C2d2n+C3d3n|2

d23n + 2d2nd3n

=
∑
n

| C1

d2n
+C2+C3dn|2

d2n + 2dn
∼
∑
n

|C2+C3dn|2

d2n + 2dn
=
∑
n

|C2ln+C3|2

1 + 2ln
.

By Lemma 4.13 we get when C2C
−1
3 > 0

ρ′1(C1, C2,−C3) ∼
∑
n

|C2−C3dn|2

2dn
>
∑
n

|C2−C3dn|2

1 + 2dn
∼
∑
n

c2n ∼ Σ23(s),

ρ′2(C1, C2,−C3) ∼
∑
n

|C2−C3dn|2

1 + 2dn
∼
∑
n

c2n ∼ Σ23(s), (4.122)

ρ′3(C1, C2,−C3) ∼
∑
n

|C2ln−C3|2

1 + 2ln
∼
∑
n

e2n ∼ Σ23(s),

where dn = C2C
−1
3 (1 + cn), ln = C3C

−1
2 (1 + en), s4 = C2C

−1
3 > 0.

But Σ23(s) =∞ for all s > 0 , therefore for C2C
−1
3 > 0 we have

ρr(C1, C2,−C3) ∼ Σ23(s) =∞. (4.123)
If C2C

−1
3 > 0 , by (4.122) we get∑

n

|C2+C3dn|2

1 + 2dn
>
∑
n

|C2−C3dn|2

1 + 2dn
∼
∑
n

c2n ∼ Σ23(s) =∞,∑
n

|C2+C3dn|2

1 + 2dn

∑
n

|C2−C3dn|2

1 + 2dn
∼
∑
n

c2n ∼ Σ23(s) =∞,∑
n

|C2ln+C3|2

1 + 2ln
>
∑
n

|C2ln−C3|2

1 + 2ln
∼
∑
n

e2n ∼ Σ23(s) =∞.

Therefore, ρr(C1, C2, C3)=∞ for every (C1, C2, C3)∈R3 \{0} .
Consider the case (3)=(aba). Now, see (4.113), we have

l21=lim
n

b2n
b1n

=∞, l32=lim
n

b3n
b2n

<∞, therefore, l31=lim
n

b3n
b1n

=∞.

So, we have again, see (4.120)
l21=lim

n
d2n =∞, and l31=lim

n
d3n =∞.

We are reduced to the case (2).
Consider the case (4)=(baa). Now, see (4.113), we have

l21=lim
n
d2n <∞, and l31=lim

n
d3n =∞.

Hence (4.121) holds too and we can use all estimations of the case (1).

Remark 4.47. In the cases (1)–(4) by Lemma 4.46 and Lemma 5.1 we can
approximate xrn for all 1 ≤ r ≤ 3 and n ∈ Z and the irreducibility is proved.
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5. Approximation of Dkn and xkn

5.1. Approximation of xkn by AnkAtk

For m = 3 , consider three rows as follows ... b11 b12 ... b1n ...
... b21 b22 ... b2n ...
... b31 b32 ... b3n ...

 .

Set λ(r)k = (b1k + b2k + b3k)
2 − (b21k + b22k + b23k − b2rk), r = 1, 2, 3, k ∈ Z. (5.1)

Denote by Y
(s)
r the following vectors:

x
(s)
rk = brk/

√
λ
(s)
k , k ∈ Z, Y (s)

r = (x
(s)
rk )k∈Z. (5.2)

Lemma 5.1. For any n, t ∈ Z and 1 ≤ r ≤ 3 one has

xrnxrt1 ∈ 〈AnkAtk1 | k ∈ Z〉 ⇔ ∆(Y (r)
r , Y (r)

s , Y
(r)
l ) =∞,

where {r, s, l} is a cyclic permutation of {1, 2, 3}.

Proof. The proof of Lemma 5.1 for r = 1 is also based on Lemma 6.5 for m = 2 .
We study when x1nx1t1 ∈ 〈AnkAtk1 | k ∈ Z〉 . Since

AnkAtk = (x1nD1k + x2nD2k + x3nD3k)(x1tD1k + x2tD2k + x3tD3k)

= x1nx1tD
2
1k + x2nx2tD

2
2k + x3nx3tD

2
3k + (x1nx2t + x2nx1t)D1kD2k +

(x1nx3t + x3nx1t)D1kD3k + (x2nx3t + x3nx2t)D2kD3k

and MD2
1k1 = − b1k

2
, we take t = (tk) as follows:

−
m∑

k=−m

tk
b1k
2

= (t, b′) = 1,

where t = (tk)
m
k=−m and b′ = −( b1k

2
)mk=−m ∼ b = (b1k)

m
k=−m .

We have

‖
[ m∑
k=−m

tkAnkAtk−x1nx1t
]
1‖2=‖

m∑
k=−m

tk
[
x1nx1t

(
D2

1k+
b1k
2

)
+x2nx2tD

2
2k

+x3nx3tD
2
3k+(x1nx2t + x2nx1t)D1kD2k + (x1nx3t + x3nx1t)D1kD3k

+(x2nx3t + x3nx2t)D2kD3k

]
1‖2 =

∑
−m≤k,r≤m

(fk, fr)tktr =: (A2m+1t, t),

where A2m+1 =
(
(fk, fr)

)m
k,r=−m

and fk =
∑3

r=1 f
r
k +

∑
1≤i<j≤3 f

ij
k ,

f r
k = xrnxrt

(
D2

rk +
brk
2
δ1r

)
1, f ij

k = (xinxjt + xjnxit)DikDjk1 (5.3)

for 1 ≤ r ≤ 3, 1 ≤ i < j ≤ 3 .
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Since f r
k ⊥ f ij

k , f ij
k ⊥ f i′j′

k for different (ij), (i′j′) , writing

ckn = ‖xkn‖2 =
1

2bkn
+ a2kn ,

we get

(fk, fk) =
3∑

r=1

‖f r
k‖2 +

∑
1≤i<j≤3

‖f ij
k ‖

2 = c1nc1t2
(
b1k
2

)2
+ c2nc2t3

(
b2k
2

)2
+ c3nc3t3

×
(
b3k
2

)2
+
(
c1nc2t+c1tc2n + 2a1na2ta1ta2n

)b1k
2

b2k
2
+
(
c1nc3t+c3tc1n+2a1na3ta3ta1n

)
× b1k

2

b3k
2

+
(
c2nc3t+c3tc2n+2a2na3ta3ta2n

)b2k
2

b3k
2
∼(b1k + b2k + b3k)

2,

(fk, fr) = (f 2
k , f

2
r ) + (f 3

k , f
3
r ) = c2nc2t

b2k
2

b2r
2

+ c3nc3t
b3k
2

b3r
2
∼ b2kb2r + b3kb3r.

Finally, we have

(fk, fk) ∼ (b1k + b2k + b3k)
2, (fk, fr) ∼ b2kb2r + b3kb3r, k 6= r. (5.4)

Set λk = (b1k + b2k + b3k)
2 − (b22k + b23k), gk = (b2k, b3k), (5.5)

then (fk, fk) ∼ λk + (gk, gk), (fk, fr) ∼ (gk, rr). (5.6)

For A2m+1 =
(
(fk, fr)

)m
k,r=−m

, and b = −(b1k/2)mk=−m ∈ R2m+1 we have

A2m+1 =
m∑

k=−m

λkEkk + γ(g−m, . . . , g0, . . . , gm).

To finish the proof, it suffices to invoke Lemma 6.5 for m = 2 .

5.2. Approximation of Drn by Akn

We will formulate several useful lemmas for the approximation of the independent
variables xkn and operators Dkn by combinations of the generators Akn . The
generators Akn have the following form:

Akn = x1kD1n + x2kD2n + x3kD3n, k, n ∈ Z.

For m = 3 , consider three rows as follows ... a11 a12 ... a1n ...
... a21 a22 ... a2n ...
... a31 a32 ... a2n ...

 and set λk =
1

2b1k
+

1

2b2k
+

1

2b3k
. (5.7)

Denote by Y1, Y2 and Y3 the three following vectors:

xrk =
ark√
λk

, k ∈ Z, Yr = (xrk)k∈Z. (5.8)

The proofs of Lemma 5.2 and 5.1 are based on Lemma 6.5 for m = 2 .

Lemma 5.2. For any l ∈ Z we have

Drl1 ∈ 〈Akl1 | k ∈ Z〉 ⇔ ∆(Yr, Ys, Yt) =∞,

where {r, s, t} is a cyclic permutation of {1, 2, 3}.
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Proof. Without loss of generality we may assume that r = 1 . We determine
when the inclusion

D1n1 ∈ 〈Akn1 = (x1kD1n + x2kD2n + x3kD3n)1 | k ∈ Z〉

holds. Fix m ∈ N , since Mx1k = a1k , we put
∑m

k=−m tka1k = (t, b) = 1, where
t = (tk)

m
k=−m and b = (a1k)

m
k=−m . We have

‖
[ m∑
k=−m

tk(x1kD1n + x2kD2n + x3kD3n)−D1n

]
1‖2

= ‖
m∑

k=−m

tk[(x1k − a1k)D1n + x2kD2n + x3kD3n]1‖2

=
∑

−m≤k,r≤m

(fk, fr)tktr =: (A2m+1t, t),

where A2m+1 =
(
(fk, fr)

)m
k,r=−m

, and fk = [(x1k − a1k)D1n + x2kD2n + x3kD3n]1 .

We get (fk, fk) = ‖ [(x1k − a1k)D1n + x2kD2n + x3kD3n]1‖2 =
1

2b1k

b1n
2

+
(

1

2b2k
+ a22k

)
b2n
2

+
(

1

2b3k
+ a23k

)
b3n
2
∼ 1

2b1k
+

1

2b2k
+

1

2b3k
+ a22k + a23k,

(fk, fr) =
([

(x1k − a1k)D1n + x2kD2n + x3kD3n

]
1,
[
(x1r − a1r)D1n

+ x2rD2n + x3rD3n

]
1
)
= (x2k1, x2r1)(D2n1, D2n1) + (x3k1, x3r1)

× (D3n1, D3n1) = a2ka2r
b2n
2

+ a3ka3r
b3n
2
∼ a2ka2r + a3ka3r.

Finally, we have

(fk, fk)∼
1

2b1k
+

1

2b2k
+

1

2b3k
+a22k+a

2
3k, (fk, fr)∼a2ka2r + a3ka3r, k 6= r. (5.9)

If we denote λk =
1

2b1k
+

1

2b2k
+

1

2b3k
, gk = (a2k, a3k), (5.10)

then we have (fk, fk) ∼ λk + (gk, gk), (fk, fr) ∼ (gk, gr). (5.11)

For A2m+1 =
(
(fk, fr)

)m
k,r=−m

, and b = (a1k)
m
k=−m ∈ R2m+1 we have

A2m+1 =
m∑

k=−m

λkEkk + γ(g−m, . . . , g0, . . . , gm).

To finish the proof, it suffices to apply Lemma 6.5 for m = 2 .

5.3. Approximation of Dkn by xrkAkn

Set for {r, s, t} a cyclic permutation of {1, 2, 3} :

λ
(r)
k =

(
1

2brk
+a2rk

)(
Ck+

3∑
l=1,l ̸=r

a2lk

)
−a2rk

( 3∑
l=1,l ̸=r

a2lk

)
, Ck=

∑
l=1

1

2blk
, (5.12)

Yrr=

(
1

2brk
+ a2rk√
λ
(r)
k

)
k∈Z
, Yrs=

(
arkask√

λ
(r)
k

)
k∈Z

, Yrt=

(
arkatk√

λ
(r)
k

)
k∈Z

. (5.13)
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Lemma 5.3. For any n ∈ Z and 1 ≤ r ≤ 3 we have

Drn1 ∈ 〈x1kAkn1 | k ∈ Z〉 ⇔ ∆(Yrr, Yrs, Yrt) =∞,

where {r, s, t} is a cyclic permutation of {1, 2, 3}.

Proof. We prove for r = 1 . We determine when the following

D1n1 ∈ 〈x1kAkn1 = (x21kD1n + x1kx2kD2n + x1kx3kD3n)1 | k ∈ Z〉

holds. Fix m ∈ N , since Mx21k =
1

2b1k
+a21k =: c1k , we put (t, b) =

∑m
k=−m tkc1k = 1 ,

where t = (tk)
m
k=−m and b = (c1k)

m
k=−m . We have

‖
[ m∑
k=−m

tk(x
2
1kD1n + x1kx2kD2n + x1kx3kD3n)−D1n

]
1‖2

= ‖
m∑

k=−m

tk
[(
x21k − c1k

)
D1n + x1kx2kD2n + x1kx3kD3n

]
1‖2

=
∑

−m≤k,r≤m

(fk, fr)tktr =: (A2m+1t, t), where A2m+1 =
(
(fk, fr)

)m
k,r=−m

,

and fk =
[(
x21k − c1k

)
D1n + x1kx2kD2n + x1kx3kD3n

]
1.

Since M |ψ −M |ψ||2 =Mψ2 − |Mψ|2 we have

M
∣∣x21k − c1k∣∣2 =Mx41k − c21k =

3

(2b1k)2
+ 6

1

2b1k
a21k + a41k − c21k =

1

2b1k

(
2

2b1k
+ 4a21k

)
,

hence, we get

(fk, fk) = ‖
[
(x21k − c1k)D1n + x1kx2kD2n + x1kx3kD3n

]
1‖2 =

1

2b1k

(
2

2b1k
+4a21k

)
b1n
2
+c1kc2k

b2n
2
+c1k

b3n
2
c3k ∼ c1k

(
Ck + a22k + a23k

)
,

(fk, fr) =
([(

x21k −
(

1

2b1k
+ a21k

))
D1n + x1kx2kD2n + x1kx3kD3n

]
1,[(

x21r −
(

1

2b1r
+ a21r

))
D1n + x1rx2rD2n + x1rx3rD3n

]
1
)
=

(x1k1, x1r1)(x2k1, x2r1)(D2n1, D2n1)+(x1k1, x1r1)(x3k1, x3r1)(D3n1, D3n1)

= a1ka1ra2ka2r
b2n
2

+ a1ka1ra3ka3r
b3n
2
' a1ka1r(a2ka2r + a3ka3r).

Finally, we have

(fk, fk)∼
(

1

2b1k
+ a21k

)(
1

2b1k
+

1

2b2k
+

1

2b3k
+ a22k + a23k

)
, (5.14)

(fk, fr) ∼ a1ka1r(a2ka2r + a3ka3r), k 6= r.

Set
λ
(1)
k =

(
1

2b1k
+ a21k

)(
1

2b1k
+

1

2b2k
+

1

2b3k
+ a22k + a23k

)
− a21k(a22k + a23k),

gk = a1k(a2k, a3k), then (5.15)

(fk, fk) = λ
(1)
k + (gk, gk) (fk, fr) ∼ (gk, gr), k 6= r.
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For A2m+1 =
(
(fk, fr)

)m
k,r=−m

, and b = (a1k)
m
k=−m ∈ R2m+1 we have

A2m+1 =
m∑

k=−m

λkEkk + γ(g−m, . . . , g0, . . . , gm).

To finish the proof, it suffices to apply Lemma 6.5 for m = 2 .

5.4. Approximation of Drn by exp
(
isk(xrk − ark)

)
Akn

Lemma 5.4. We have

D3k1 ∈ 〈sin
(
sk(x3k − a3k)

)
Akn1 | k ∈ Z〉 ⇔ Σ3(D, s) =∞, (5.16)

D3k1 ∈ 〈cos
(
sk(x3k − a3k)

)
Akn1 | k ∈ Z〉 ⇔ Σ∨

3 (D, s) =∞, (5.17)

where Σ3(D, s)=
∑
k∈Z

|Mη3k(sk)|2

‖gk(sk)‖2
, Σ∨

3 (D, s)=
∑
k∈Z

|Mη∨3k(sk)|2

‖g∨k (sk)‖2
, (5.18)

moreover, Σ3(D, s
(3)) ∼ Σ3(D) :=

∑
k

1
2b3k

Ck + a21k + a22k + a23k
, (5.19)

and Σ∨
3 (D, s

(3)) ∼ Σ∨
3 (D) :=

∑
k

a23k
Ck + a21k + a22k + a23k

, (5.20)

where s(3) = (s3k)k with s23k
b3k
≡ 1, k ∈ Z and η3k(sk), η

∨
3k(sk), gk(sk), g

∨
k (sk) are

defined by (5.26)–(5.28).

Proof. We shall try to obtain separately the real part and imaginary part of
Mξ3k(s) , where ξ3k(sk) = ix3k exp

(
isk(x3k − a3k)

)
. Setting

Fb(s) =

∫
R
exp

(
is(x− a)

)
dµ(b,a)(x),

we obtain Fb(s) =

∫
R
exp

(
isx
)
dµ(b,0)(x) = exp

(
− s2

4b

)
, (5.21)

where dµ(b,a)(x) and dµ(b,0)(x) are defined by

dµ(b,a)(x) =

√
b

π
e−b(x−a)2dx and dµ(b,0)(x) =

√
b

π
e−bx2

dx. (5.22)

Therefore, Ha,b(s) =

∫
R
ixeis(x−a)dµ(b,a)(x)=

∫
R
i(x+a)eisxdµ(b,0)(x) (5.23)

=
dFb(s)

ds
+ iaFb(s) =

(
− s

2b
+ ia

)
exp

(
− s2

4b

)
. (5.24)

Recall the Euler formulas

eit = cos t+ i sin t, e−it = cos t− i sin t, (5.25)

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
.

More precisely, we denote for 1 ≤ r ≤ 3

ηrk(s) = xrk cos
(
sk(x3k − a3k)

)
, η∨rk(s) = xrk cos

(
sk(x3k − a3k)

)
. (5.26)
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We determine when the inclusion holds:

D3k1 ∈ 〈sin
(
sk(x3k − a3k)

)
Akn1 =

(
x1k sin

(
sk(x3k − a3k)

)
D1n

+x2k sin
(
sk(x3k − a3k)

)
D2n + x3k sin

(
sk(x3k − a3k)

)
D3n

)
1 | k ∈ Z〉,

D3k1 ∈ 〈cos
(
sk(x3k − a3k)

)
Akn1 =

(
x1k cos

(
sk(x3k − a3k)

)
D1n

+x2k cos
(
sk(x3k − a3k)

)
D2n + x3k cos

(
sk(x3k − a3k)

)
D3n

)
1 | k ∈ Z〉.

Set
gk(sk)=

(
η1k(sk)D1n + η2k(sk)D2n+

[
η3k(sk)−Mη3k(sk)

]
D3n

)
1, (5.27)

g∨k (sk)=
(
η∨1k(sk)D1n+η

∨
2k(sk)D2n+

[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1, (5.28)

We show that
Mη3k(s) = −

1

2

(
Ha,b(s) +Ha,b(s)

)
=

s

2b3k
exp

(
− s2

4b3k

)
, (5.29)

Mη∨3k(s) =
1

2i

(
Ha,b(s)−Ha,b(s)

)
= a3k exp

(
− s2

4b3k

)
. (5.30)

Using the function Fb(s) defined by (5.21) we get

Mη(s) =

∫
R
x sin

(
s(x− a)

)
dµ(b,a)(x) =

∫
R
(x+ a) sin(sx)dµ(b,0)(x)

=

∫
R
(x+ a)

eisx − e−isx

2i
dµ(b,0)(x) = −

1

2

∫
R
i(x+ a)

(
eisx − e−isx

)
dµ(b,0)(x)

= −1

2

(
Ha,b(s) +Ha,b(s)

)
=

s

2b
exp

(
− s2

4b

)
,

implying (5.29). Similarly we get

Mη∨(s) =

∫
R
x cos

(
s(x− a)

)
dµ(b,a)(x) =

∫
R
(x+ a) cos(sx)dµ(b,0)(x)

=
1

2i

∫
R
i(x+ a)

(
eisx + e−isx

)
dµ(b,0)(x) =

1

2i

(
Ha,b(s)−Ha,b(s)

)
= ae−

s2

4b ,

implying (5.29).
Fix m ∈ N , we put

∑m
k=−m tkMη3k(sk) = (t, b) = 1 , where t = (tk)

m
k=−m and

b = (Mη3k(sk))
m
k=−m . We have

‖
[ m∑
k=−m

tk sin
(
sk(x3k − a3k)

)
Akn −D3n

]
1‖2

= ‖
m∑

k=−m

tk

(
η1k(sk)D1n + η2k(sk)D2n +

[
η3k(sk)−Mη3k(sk)

]
D3n

)
1‖2

=
m∑

k=−m

t2k‖gk(sk)‖2, since
(
Drn1, Dln1

)
=0, 1 ≤ r < l ≤ 3, (5.31)

where the gk(sk) are defined by (5.27). In order to calculate ‖gk(sk)‖2 note that
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‖gk(sk)‖2 = (gk(sk), gk(sk))

=
((
η1k(sk)D1n + η2k(sk)D2n +

[
η3k(sk)−Mη3k(sk)

]
D3n

)
1,(

η1k(sk)D1n + η2k(sk)D2n +
[
η3k(sk)−Mη3k(sk)

]
D3n

)
1
)

= ‖x1k1‖2‖ sin
(
sk(x3k−a3k)

)
1‖2‖D1k1‖2+‖x2k1‖2‖ sin

(
sk(x3k−a3k)

)
1‖2‖D2k1‖2

+
(
M |ηkn(sk)|2 − |Mηkn(sk)|2

)
‖D3k1‖2 =

(
1

2b1k
+ a21k

)
I3

b1n
2

+
(

1

2b2k
+ a22k

)
I3

b2n
2

+
(
M |ηkn(sk)|2 − |Mηkn(sk)|2

)
b3n
2
. (5.32)

We need to calculate I3 = ‖ sin
(
sk(x3k − a3k)

)
1‖2, M |ηkn(sk)|2 and |Mηkn(sk)|2 .

On setting a := a3k, b := b3k , we get

I3 = ‖ sin
(
sk(x3k − a3k)

)
1‖2 =

∫
R

eisx − e−isx

2i

e−isx − eisx

−2i
dµ(b,0)(x)

=
1

2

∫
R

(
1− e2isx + e−2isx

2

)
dµ(b,0)(x)

(5.21)
=

1− e−
s2

b

2
, (5.33)

|Mηkn(sk)|2 =
s2k
4b23k

exp
(
− s2k

2b3k

)
, (5.34)

M |ηkn(sk)|2 =
∫
R
(x2 + 2xa+ a2)

eisx − e−isx

2i

e−isx − eisx

−2i
dµ(b,0)(x)

=
1

2

∫
R
(x2 + 2xa+ a2)

(
1− e2isx + e−2isx

2

)
dµ(b,0)(x)

=
1

2

[ ∫
R
(x2 + a2)dµ(b,0)(x)−

∫
R
(x2 + a2)

e2isx + e−2isx

2
dµ(b,0)(x)

]
=

1

2

[
1

2b
+ a2 − d2Fb(2s)

ds2
− a2Fb(2s)

] (5.21)
=

1

2

[
1

2b
+ a2 − 1

(2i)2

[(
2s

b

)2
− 2

b

]
×e−

s2

b − a2e−
s2

b

]
=

1

2

[(
1

2b
+ a2

)
(1− e−

s2

b ) +
s2

b2
e−

s2

b

]
. (5.35)

Finally, we have

M |ηkn(sk)|2 − |Mηkn(sk)|2 =
1

2

[(
1

2b
+ a2

)
(1− e−

s2

b ) +
s2

b2
e−

s2

b

]
− s2

4b2
e−

s2

2b . (5.36)

By (5.39),(5.32), (5.33), (5.36) and (6.2) we prove (5.16), where

Σ3(D, s) =
∑
k∈Z

|Mηkn(sk)|2

‖gk(sk)‖2

=
∑
k∈Z

s2k
4b23k

e
− s2k

2b3k(
1

2b1k
+ a21k

)
I3

b1n
2

+
(

1
2b2k

+ a22k

)
I3

b2n
2

+
(
M |ηkn(sk)|2 − |Mηkn(sk)|2

)
b3n
2

∼
∑
k∈Z

s2k
4b23k

e
− s2k

2b3k

1−e
−

s2
k

b3k

2

(
c1k + c2k

)
+ 1

2

[
c3k(1− e

−
s2
k

b3k ) +
s2k
b23k
e
−

s2
k

b3k

]
− s2k

4b23k
e
−

s2
k

2b3k

=
∑
k∈Z

x2
k

4b3k
e−

x2k
2

1−e
−x2

k

2

(
c1k + c2k

)
+ 1

2

[
c3k(1−e−x2

k) +
x2
k

b3k
e−x2

k

]
− x2

k

4b3k
e−

x2
k
2

=: Σ3(D, x),
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where x2k =
s2k
b3k

and crk =
1

2brk
+ a2rk . For x(3) = (xk)k with xk ≡ 1 we get

Σ3(D, x
(3)) =

∑
k∈Z

1
4b3k

e−
1
2

1−e−1

2

(
c1k + c2k

)
+ 1

2

[
c3k(1− e−1) + 1

b3k
e−1
]
− 1

4b3k
e−

1
2

=
∑
k∈Z

1
4b3k

e−
1
2

1−e−1

2

(
c1k + c2k + c3k

)
+ 1

2b3k

(
e−1 − 1

2
e−

1
2

)
(2.11)∼

∑
k∈Z

1
2b3k

c1k + c2k + c3k
=
∑
k∈Z

1
2b3k

Ck + a21k + a22k + a23k
= Σ3(D).

So, we have proved (5.19) for x = (xk)k with xk ≡ 1 . To approximate D3n in terms
of functions involving cosine, fix m ∈ N , and put

∑m
k=−m tkMη∨3k(sk) = (t, b) = 1 ,

where t = (tk)
m
k=−m and b = (Mη∨3k(sk))

m
k=−m . We have

‖
[ m∑
k=−m

tk cos
(
sk(x3k − a3k)

)
Akn −D3n

]
1‖2

= ‖
m∑

k=−m

tk

(
η∨1k(sk)D1n + η∨2k(sk)D2n +

[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1‖2

=
m∑

k=−m

t2k‖g∨k (sk)‖2, since
(
Drn1, Dln1

)
=0, 1 ≤ r < l ≤ 3, (5.37)

where the g∨k (sk) are defined by (5.27). To calculate ‖g∨k (sk)‖2 we have

‖g∨k (sk)‖2 = (g∨k (sk), g
∨
k (sk))

=
((
η∨1k(sk)D1n + η∨2k(sk)D2n +

[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1,(

η∨1k(sk)D1n + η∨2k(sk)D2n +
[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1
)

= ‖x1k1‖2‖ cos
(
sk(x3k−a3k)

)
1‖2‖D1k1‖2+‖x2k1‖2‖ cos

(
sk(x3k−a3k)

)
1‖2‖D2k1‖2

+
(
M |η∨kn(sk)|2 − |Mη∨kn(sk)|2

)
‖D3k1‖2 =

(
1

2b1k
+ a21k

)
I∨3

b1n
2

+
(

1

2b2k
+ a22k

)
I∨3

b2n
2

+
(
M |η∨kn(sk)|2 − |Mη∨kn(sk)|2

)
b3n
2
. (5.38)

We need to calculate I∨3 = ‖ cos
(
isk(x3k − a3k)

)
1‖2, M |η∨kn(sk)|2 and |Mη∨kn(sk)|2 .

Let us set b := b3k . To approximate D3n in terms of functions involving the cosine,
fix m ∈ N , and put

∑m
k=−m tkMη∨3k(sk) = (t, b) = 1 , where t = (tk)

m
k=−m and

b = (Mη∨3k(sk))
m
k=−m . We have

‖
[ m∑
k=−m

tk cos
(
sk(x3k − a3k)

)
Akn −D3n

]
1‖2

= ‖
m∑

k=−m

tk

(
η∨1k(sk)D1n + η∨2k(sk)D2n +

[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1‖2

=
m∑

k=−m

t2k‖g∨k (sk)‖2, since
(
Drn1, Dln1

)
=0, 1 ≤ r < l ≤ 3, (5.39)
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where the g∨k (sk) are defined by (5.27). To calculate ‖g∨k (sk)‖2 we have
‖g∨k (sk)‖2 = (g∨k (sk), g

∨
k (sk))

=
((
η∨1k(sk)D1n + η∨2k(sk)D2n +

[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1,(

η∨1k(sk)D1n + η∨2k(sk)D2n +
[
η∨3k(sk)−Mη∨3k(sk)

]
D3n

)
1
)

= ‖x1k1‖2‖ cos
(
sk(x3k − a3k)

)
1‖2‖D1k1‖2

+ ‖x2k1‖2‖ cos
(
sk(x3k − a3k)

)
1‖2‖D2k1‖2

+
(
M |η∨kn(sk)|2 − |Mη∨kn(sk)|2

)
‖D3k1‖2 =

(
1

2b1k
+ a21k

)
I∨3

b1n
2

+
(

1

2b2k
+ a22k

)
I∨3

b2n
2

+
(
M |η∨kn(sk)|2 − |Mη∨kn(sk)|2

)
b3n
2
. (5.40)

We need to calculate I∨3 = ‖ cos
(
sk(x3k − a3k)

)
1‖2, M |η∨kn(sk)|2 and |Mη∨kn(sk)|2 .

Setting a := a3k, b := b3k , we get

I∨3 = ‖ cos
(
sk(x3k − a3k)

)
1‖2 =

∫
R

eisx + e−isx

2

e−isx + eisx

2
dµ(b,0)(x)

=
1

2

∫
R

(
1 +

e2isx + e−2isx

2

)
dµ(b,0)(x)

(5.21)
=

1 + e−
s2

b

2
, (5.41)

|Mη∨kn(sk)|2 = a23k exp
(
− s2k

2b3k

)
, (5.42)

M |η∨kn(sk)|2 =
∫
R
(x2 + 2xa+ a2)

eisx + e−isx

2

e−isx + eisx

2
dµ(b,0)(x)

=
1

2

∫
R
(x2 + 2xa+ a2)

(
1 +

e2isx + e−2isx

2

)
dµ(b,0)(x)

=
1

2

[ ∫
R
(x2 + a2)dµ(b,0)(x) +

∫
R
(x2 + a2)

e2isx + e−2isx

2
dµ(b,0)(x)

]
=

1

2

[
1

2b
+ a2 +

d2Fb(2s)

ds2
+ a2Fb(2s)

] (5.21)
=

1

2

[
1

2b
+ a2 +

1

(2i)2

[(
2s

b

)2
− 2

b

]
×e−

s2

b + a2e−
s2

b

]
=

1

2

[(
1

2b
+ a2

)
(1 + e−

s2

b )− s2

b2
e−

s2

b

]
. (5.43)

Finally, we get

M |η∨kn(sk)|2− |Mη∨kn(sk)|2=
1

2

[(
1

2b
+ a2

)
(1 + e−

s2

b )− s2

b2
e−

s2

b

]
− e−

s2

2b . (5.44)

By (5.37), (5.38), (5.41), (5.44) and (6.2) we prove (5.17), where

Σ∨
3 (D, s) =

∑
k∈Z

|Mη∨kn(sk)|2

‖g∨k (sk)‖2

=
∑
k∈Z

a23k exp(−s2k/2b3k)(
1

2b1k
+a21k

)
I∨3

b1n
2
+
(

1
2b2k

+ a22k
)
I∨3

b2n
2
+
(
M |η∨kn(sk)|2−|Mη∨kn(sk)|2

)
b3n
2

∼
∑
k∈Z

a23k exp(−
s2k
2b3k

)

1+exp(−
s2
k

b3k
)

2

(
c1k+c2k

)
+ 1

2

[
c3k(1+exp(− s2k

b3k
))− s2k

b23k
exp(− s2k

b3k
)
]
−a23k exp(−

s2k
2b3k

)

=
∑
k∈Z

a23k exp(−x2k/2)
1−e

−x2
k

2

(
c1k+c2k

)
+ 1

2

[
c3k(1 + e−x2

k)− x2
k

b3k
e−x2

k

]
−a23ke−

x2
k
2

= Σ3(D, x), (5.45)
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where x2k =
s2k
b3k

and crk =
1

2brk
+ a2rk . For x(3) = (xk)k with xk ≡ 1 we get

Σ∨
3 (D, x

(3)) =
∑
k∈Z

a23ke
− 1

2

1+e−1

2

(
c1k + c2k

)
+ 1

2

[
c3k(1 + e−1)− 1

b3k
e−1
]
− a23ke−

1
2

=
∑
k∈Z

a23ke
− 1

2

1+e−1

2

(
c1k + c2k + c3k

)
−
(

1
2b3k

e−1 + a23ke
− 1

2

)
(2.11)∼

∑
k∈Z

a23k
c1k + c2k + c3k

=
∑
k∈Z

a23k
Ck + a21k + a22k + a23k

= Σ∨
3 (D). (5.46)

So, we have proved (5.20) for x = (xk)k with xk ≡ 1 .

6. Appendix

6.1. Some estimates and the generalized characteristic polynomial

Lemma 6.1 ([23]). For a strictly positive operator A (i.e., (Af, f)>0 for f 6= 0)
acting on Rn and a vector b ∈ Rn\{0}, we have

min
x∈Rn

(
(Ax, x) | (x, b) = 1

)
=

1

(A−1b, b)
. (6.1)

The minimum is obtained for x =
A−1b

(A−1b, b)
. In the particular case A = diag(ak)

n
k=1

we get
min
x∈Rn

( n∑
k=1

akx
2
k |

n∑
k=1

xkbk = 1
)
=
( n∑

k=1

b2k
ak

)−1

. (6.2)

Definition 6.2. For a matrix C ∈ Mat(n,C) and λ = (λk)
n
k=1 ∈ Cn define the

generalization of the characteristic polynomial pC(t) = det (tI−C), t ∈ C as follows,

see [26]: PC(λ) = detC(λ), where C(λ) = diag
(
λ1, . . . , λn

)
+ C. (6.3)

We calculated in [30] PC(λ), C
−1(λ) and (C−1(λ)a, a) for an arbitrary n .

Fix two natural numbers n,m ∈ N with m ≤ n , two matrices Amn and Xmn ,
vectors gk ∈ Cm−1, 1 ≤ k ≤ n and a ∈ Cn as follows

Amn =


a11 a12 ... a1n
a21 a22 ... a2n

...
am1 am2 ... amn

 ,

gk =


a2k
a3k
...
amk

 ∈ Cm−1, a = (a1k)
n
k=1 ∈ Cn. (6.4)

Set C = γ(g1, g2, . . . , gn) =


(g1, g1) (g1, g2) . . . (g1, gn)
(g2, g1) (g2, g2) . . . (g2, gn)

. . .
(gn, g1) (gn, g2) . . . (gn, gn)

 . (6.5)
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Consider the matrix

Xmn=


x11 x12 ... x1n
x21 x22 ... x2n

...
xm1 xm2 ... xmn

 , where xrk=
ark√
λk

, (6.6)

x̄k := (xrk)
m
r=2 =

gk√
λk

∈Cm−1, yr=(xrk)
n
k=1∈Rn. (6.7)

6.2. Properties of m infinite vectors
In fact, the statements below hold for arbitrary m , see [29, 30].

Lemma 6.3 ([29]). Let f0, f1, f2 be three infinite real vectors fr = (frk)k∈N , where
0 ≤ r ≤ 2. Then for all r, s with 0 ≤ r < s ≤ 2 one has

Γ(f0, f1, f2)

Γ(fr, fs)
:= lim

n→∞

Γ(f
(n)
0 , f

(n)
1 , f

(n)
2 )

Γ(f
(n)
r , f

(n)
s )

=∞, (6.8)

if and only if for all (C0, C1, C2) ∈ R3 \ {0} one has
∑2

r=0Crfr 6∈ l2(N) and
Crfr + Csfs 6∈ l2(N) for all 0 ≤ r < s ≤ 2 and all (Cr, Cs) ∈ R2 \ {0}, where
f
(n)
r = (frk)

n
k=1 .

Lemma 6.4 ([30], Theorem 5.3). For m = 3 we have

(C−1(λ)a, a) = ∆(y1, y2, y3)
(2.13)
=

det
(
I3 + γ(y1, y2, y3)

)
det
(
I2 + γ(y2, y3)

) − 1, (6.9)

where a = (a1k)k∈Z, yr = (xrk)k∈Z are defined by (6.6) and λ = (λk)k∈Z .

Lemma 6.5 ([29]). Let (yk)
3
k=1 be 3 real vectors such that

∑3
k=1Ckyk 6∈ l2(Z)

for any nontrivial combination (Ck)
3
k=1 ∈ R3 \ {0}, then

det
(
I3 + γ(y1, y2, y2)

)
det
(
I2+γ(y2, y3)

) = lim
n→∞

det
(
I3 + γ(y

(n)
1 , y

(n)
2 , y

(n)
3 )

)
det
(
I2 + γ(y

(n)
2 , y

(n)
3 )

) =∞, (6.10)

where y
(n)
r = (xrk)

n
k=−n ∈ R2n+1 .

Proof. The proof follows from Lemma 6.3 and (2.8).

6.3. Comparison of two Gaussian measures
For two centered Gaussian measures µ(b,0) and µ(b′,0) on the real line R defined by
(2.5) it is well known that

H(µ(b,0), µ(b′,0)) =
( 4bb′

(b+ b′)2

)1/4
. (6.11)

By Kakutani’s criterion for product measures on RN [14], and (6.11) we see that the
following lemma holds true.
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Lemma 6.6. Two Gaussian measures µ(b,0) = ⊗n∈Zµ(b,0) and µ(b′,0) = ⊗n∈Zµ(b′,0)

are equivalent if and only if the product∏
n∈Z

4bnb
′
n

(bn + b′n)
2

(6.12)

does not converge to 0. An equivalent condition is∑
n∈Z

(√
bn
b′n
−
√

b′n
bn

)2
<∞. (6.13)

Consider two measures: µ(I,0)=⊗n∈Zµ(1,0) and µ(I+c,0)=⊗n∈Zµ(1+cn,0) on the space
X1 , where the measure µ(b,a) on the real line R is defined by (2.5).

Lemma 6.7. The two measures µ(I,0) and µ(I+c,0) are equivalent if and only if∑
n∈Z c

2
n <∞.

Proof. By Lemma 6.6 and (6.13),

µ(I,0) ∼ µ(I+c,0) ⇔
∑
n∈Z

(
1√

1 + cn
−
√
1 + cn

)2

=
∑
n∈Z

c2n
1 + cn

<∞.

By Lemma 2.10, two series
∑

n∈Z
c2n

1+cn
and

∑
n∈Z c

2
n are equivalent.

The next lemma is also a consequence of Kakutani’s criterion [14].

Lemma 6.8. Two Gaussian measures µm
(b,0) and µm

(b′,0) are equivalent if and only
if the product m∏

r=1

∏
n∈Z

4brnb
′
rn

(brn + b′rn)
2

(6.14)

does not converge to 0. An equivalent condition is
m∑
r=1

∑
n∈Z

(√
brn
b′rn
−
√

b′rn
brn

)2

<∞. (6.15)

Lemma 6.9. For t∈GL(m,R)\{e} we have (µm
(b,a))

Lt⊥µm
(b,a) if and only if

(µm
(b,0))

Lt ⊥ µm
(b,0) or µm

(b,Lta) ⊥ µm
(b,a). (6.16)

7. Conclusion

To prove the irreducibility of the representation TR,µ,m defined by (2.6) for general
m ∈ N we need:

1. to know the minimal generating set of conditions for the orthogonality

(µm
(b,a))

Lt⊥µm
(b,a)

for all t ∈ GL(m,R) \ {e} , see Section 3. In fact it is sufficient to replace
the group GL(m,R) by ±SL(m,R) , see Remark 3.6. These conditions will be
expressed in terms of some divergent series

(
Sβ(µ)

)
β∈B ;
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2. to find an appropriate combinations of generators Akn of all one-parameter
subgroups or an appropriate functions of generators. This combination will
be expressed in terms of a divergent series

(
Σα(A)

)
α∈A ;

3. to show that 1 implies 2.

What we know now is the following.

1. If we have some continuous finite-dimensional group G acting on an infinite-
dimensional space X with a measure µ and we are interested in the “admis-
sible” action, i.e., such that µαt ∼ µ for every t ∈ G , the problem is much
easier, here α : G→ Aut(X) . To find a minimal set it is sufficient to verify the
equivalence only on the one-parameter subgroups gk(t) generating the group
G . This follows from the transitivity of the relation of the equivalence on the
sets of a probability measures µ ∼ ν . But the relation of the orthogonality
on the sets of measures is not transitive. That is why the description of the
minimal set is so complicated. When m = 1 the minimal subset is reduced to
−1 ∈ GL(1,R) .
When m = 2 the description of the minimal generating set is given in Remark
3.2. The families (3.2) are one-parameter subgroups, the families (3.3) are
just reflections of (3.2) and the family (3.4) depends on two parameters. All
elements are of order 2 except the elements in subgroups given in (3.2).
When m = 3 the description of the minimal generating set is given in Lemma
3.8 and it involves a families (3.19)–(3.31) depending respectively on two, three
and five parameters, see remarks after Lemma 3.7.
When m = 4 we still do not know the answer.

2. When m = 1 and m = 2 it was sufficient for the approximation of xkr or Dkr

to use the linear combinations of products of two generators AknArn for n ∈ Z .
When m = 3 we were not able to use only quadratic functions in generators.
As Lemma 5.4 demonstrates, we were forced to use exp

(
isk(xrk−ark)

)
Akn in

order to approximate Drn .

3. This relies mainly on the properties of the generalized characteristic polyno-
mial, on the explicit expression for the quadratic form on a hyperplane, and
on a theorem regarding the height of an infinite parallelotope. Everything is
done for general m .
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