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1. Introduction

1.1. Representations of locally compact groups

1.1.1. What is representation theory about?

The main problem in the representation theory (RT) of a topological group G is
to find its unitary dual @, i.e., the set of all irreducible unitary representations of
the group G up to the equivalence relation and decompose any representation into
a direct sum or direct integral of irreducible ones. Almost all constructions in RT
for locally compact groups such as reqular, quasi-reqular and induced representations
are based on the existence of the Haar measure on a group G'. These constructions
allow us to find the unitary dual G for almost all locally compact groups G, except
for, e.g., the group SO(p,q).

1.1.2. Compact groups and the regular representation

The existence of the Haar measure was proved by A. Haar [10]. A. Weil [45] proved a
converse, namely that a group with a quasi-invariant measure that acts faithfully on
the L?-space is locally compact with respect to the strong operator topology from
U(L*(G)). The right p (resp. the left \) regular representation p, A : G — U(H)
of the group G is defined on the Hilbert space H = L*(G,h) by

(pef)(x) = f(xt), (/\sf)(:v):(dh(s‘lx)/dh(x))l/Qf(s_las), t,s,ze€G, feH. (1.1)

Since [py, As] = 0 for all t,s € G, both representations are reducible. When G
is compact, the decomposition of the right regular representation contains all the
irreducible representations:

p= @c,{p,{. (1.2)

ke@G

1.1.3. The Dixmier commutation theorem

Lemma 1.1. (The Dixmier commutation theorem, [8]) Let A% = (pi|t € G)”,
and A, = (N\s|s € G)" be the von Neumann algebras generated by the right and the
left reqular representations of a locally compact group G. Then

(A7) = Ags- (1.3)

This lemma is a cornerstone of our study of representations of infinite-dimensional
groups. The Ismagilov conjecture, see below, is a far-reaching generalization of this
statement.

1.1.4. Koopman’s representation

In order to construct a unitary representation of a topological group G (locally
compact or infinite-dimensional) we use a G-space (X, p) with a “good” measure
i. To be more precise, let o : G — Aut(X) be a measurable action of a group
G on a measurable space (X, pu) with G-quasi-invariant measure p, i.e, u® ~ pu
(~ means equivalent) for all ¢ € G, where Aut(X) is the group of all measurable
automorphisms of X. We use the notation pf(A) = p(f~H(A)) for f: X — X,
where A is a measurable set in X . To this data we associate the representation
TonX G — U(LQ(X, u)) of the group G given by the formula:

(70X (@) = (dp(apr (@) fdp(@)) 2 f o (2)), f € (X, ). (1.4)
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In the case of an invariant measure this representation is called Koopman’s repre-
sentation. We keep the same name for representation (1.4).

1.1.5. Quasi-regular representations

When the group is locally compact but not compact, the regular representation is not
sufficient to find all irreducible representations. One should generalize the regular
representation, for example, consider a quasi-regular or an induced representations,
as for the group SL(2,R), see [32]. A quasi-regular representations of the group G
is a particular case of Koopman’s representation (1.4) with X = H \ G the set of
right cosets (or X = G/H , the set of left cosets), where H is a closed subgroup of
G and p is a G-quasi-invariant measure on X . In case X = H \ G the group G
acts on X from the right, in case X = G/H it acts from the left.

1.1.6. Induced representation

To construct an induced representation of the group G we should fix a closed
subgroup H of the group G and a unitary representation S : H — U(V) of a
group H. The induced representation Indgs of the group G is defined on the
space L*(X,V,u), where X = H \ G, for details, see [33].

1.2. A brief history of the representations of infinite-dimensional
groups G = hgln Gp

The representation theory of infinite-dimensional groups is a very broad area. We
mention here only some results connected with unitary representations of inductive
limits of classical groups, and an interesting connection with random matrices.
Using his orbit method developed in [17], A. A. Kirillov described in [18] all unitary
irreducible representations of the group Uy (H), completion in the strong operator
topology of the group U(oo) = hgln U(n). The group U, (H) consists of all unitary
operators of the form 1+ a, where a is compact.

This approach was generalized by G.I. Ol’'shanskii for the inductive limits of other
classical groups K (oo):lign K(n), where K is U, O or Sp. In [38] the complete
classification of the so-called “tame” representations of the group K(oc) was ob-
tained, see also [34]. N.I.Nessonow [36] proved that a previously known list of
indecomposable spherical functions of the group GL(oc) that are bilaterally invari-
ant with respect to the unitary subgroup is complete. A.I. Bufetov [6] showed that
a Borel measure on the space of infinite Hermitian matrices, that is invariant under
the action of the infinite unitary group under additional conditions, is finite.

The aim of the book [41] by S.Stratila and D. Voiculescu is to study the factor
representations of the group U(co), see more details in the review by Ola Bratteli
(MR0458188).

In [35], K. H. Neeb describes the recent progress in the classification of bounded and
semibounded representations of infinite-dimensional Lie groups. He starts with a dis-
cussion of the semiboundedness condition and how the new concept of a smoothing
operator can be used to construct C*-algebras (so called host algebras) whose rep-
resentations are in one-to-one correspondence with certain semibounded representa-
tions of an infinite-dimensional Lie group GG'. This makes the full power of C*-theory
available in this context. Then he discusses the classification of bounded representa-
tions of several types of unitary groups on Hilbert spaces and of gauge groups. After
explaining the method of holomorphic induction as a means to pass from bounded
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representations to semibounded ones, he describes the classification of semibounded
representations for hermitian Lie groups of operators, loop groups (with infinite-
dimensional targets), the Virasoro group and certain infinite-dimensional oscillator
groups. The article [39] by G.I.Ol'shanskii deals with the representation theory
of the automorphism groups of infinite-dimensional Riemannian symmetric spaces.
The book [13] by R.S.Ismagilov is devoted to the representations of certain classes
of infinite-dimensional Lie groups: current group, diffeomorphism group and some
of their semidirect products.

Let S = U,>15, be the group of finite permutations of natural numbers. All
indecomposable central positive definite functions on S, , which are related to
factor representations of II;, were given by E.Thoma [42]. Later A.M. Vershik
and S.V.Kerov obtained the same result by a different method in [43] and gave
a realization of the representations of type II; in [44]. In [15] the generalized
regular representations {7, : z € C} of the group S, X S, were studied. These
representations are deformations of the biregular representation of S., in I*(S.).
A two-parameter family of the generalized regular representations 7, .. of the group
Ss was considered also in [15]. In [5] the corresponding spectral measure P, ., was
investigated. The correlation functions are of a determinantal form similar to those
studied in random matriz theory.

Borodin [4] studied the asymptotics of the Plancherel measures M, for the sym-
metric groups S,. He showed that M, converges to the delta measure supported
on a certain subset Q of R? closely connected to Wigner’s semicircle law for the
distribution of eigenvalues of random matrices thus giving a positive answer to the
conjecture of J. Baik, P. A. Deift and K. Johansson [2].

1.3. Our approach to representations of infinite-dimensional groups

We will consider infinite-dimensional non-locally compact groups. If the group is
not locally compact, there is no Haar measure on it, see [45]. The main idea of [26]
is to construct an analogue of the regular, quasi-regular and induced representations
and study their irreducibility. Our approach to representation theory is completely
different and is based on a wvariety of non-equivalent G-quasi-invariant measures
p on a G-space (X, pu). To study irreducibility we use the Ismagilov conjecture,
a generalization of Dixmier’s commutation theorem. This approach allows us to
prove that nonequivalent measures correspond to nonequivalent representations! See
Remark 1.3 below. Thus, the nonequivalent measures become essential ingredients
in the description of the dual G for infinite-dimensional groups G.

1.3.1. The Ismagilov conjecture

In order to construct an analogue of the reqular representation of an infinite-
dimensional group G, we can first try to find a triplet

(G, G, ), (1.5)

where G is some larger topological group containing G as a dense subgroup, and a
measure ;4 on G which is right or left G-quasi-invariant, i.e., pft* ~ p for all t € G,
(or uls ~ p for all s € G), here ~ means equivalence, for details see [26]. Consider
the right and the left actions Ry, Lg of the group G on G defined below:

R =at"', L, = sz, t,sEG,xEé.
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Denote by pf, u*s the images of the measure p under the maps Ry, L : G—G.
The right and the left representations 77 TEH : G — U(L*(G, ) are naturally
defined on the Hilbert space L?(G, 1) by the following formulas, compare with (1.1):

(T f)(x) = (dp(at) /du(x)) ' f (at), (1.6)
(T f) () = (du(s™ ') fdp(x)) /2 f (s ). (1.7)

In [26, Chapter 5, Theorem 5.2.11] we proved that for the group B} = ling B(n,R),
where B(n,R) is the group of upper-triangular real matrices with units on the diago-
nal, and a Gaussian product-measure 1, on the group BY the Dixmier commutation
theorem holds when ,u,fs ~ pp for all s € B} under some special conditions on the
measure p,. Here BY' (resp. BY) is a group of infinite real matrices of the form
I + x, where z is upper-triangular with a finite number of nonzero elements (resp.
T =) ., TinEkn is arbitrary upper-triangular) and

[ bkn  —bp (pn—a
:ub(x) = ®M(bkm0)($kn>v d:u’(bkmakn)(xkn) = %6 ben (@ Im)dekn- (18)

k<n

However, the right regular representation of an infinite-dimensional group can be
irreducible if no left actions are admissible for the measure p, i.e., when prs 1L
for all s € G\{e}. In this case the von Neumann algebra 2A7"" generated by the
left regular representation T is trivial:

Conjecture 1.2. (Ismagilov, 1985) The right regular representation defined by (1.6)

TR . G — UL*(G, 1))
is irreducible if and only if
(1) ph L forall se G\{e}, (where L stands for orthogonal measures),

(2) the measure p is G-ergodic.

Recall that the probability measure @ on a G-space X is called ergodic if any func-
tion f € L'Y(X,u) with property f(a;(z)) = f(z) modp is constant. Conditions
(1) and (2) are necessary irreducibility conditions, at least for Gaussian measures.
The challenge is to prove that they are sufficient too.

Remark 1.3.  Conjecture 1.2 was expressed by R. S. Ismagilov in his referee report
of the first author’s PhD Thesis, 1985. It was verified for a lot of particular cases by
the first author. In [20], see also [26, Theorem 2.1.1], he proved Conjecture 1.2 for
the group Bl and a Gaussian product-measure 1, on the group BY. Moreover, he
proved that two irreducible representations T%# and TH#* are equivalent if and
only if the corresponding measures p;, and uy are equivalent [26, Theorem 2.1.17].
In the general case, Conjecture 1.2 is an open problem, for details see [26].

1.3.2. Irreducibility of Koopman’s representation

If a G-space X has a “natural” right action of the group G and a left action
of another group Gy, such as in the case of Schur-Weil duality, and these actions
commute: [Ry, L] =0 forall t € G, s € Gy, then we can imagine that the Koopman
representation (1.4) is irreducilble if the left action is not admissible, i.e., pfs L p
for all s € G\ {e} and the measures p is G-right-ergodic, such as in the Ismagilov
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conjecture. The main result of this article, Theorem 2.1 is a particular case of this
situation. However, if we have only one action « : G — Aut(X), the right action
R(G) should be replaced by a(G) C Aut(X) and the left action L(G;) by the
centralizer of the subgroup a(G) in the group Aut(X). The following conjecture is
a natural generalization of Ismagilov’s conjecture.

Conjecture 1.4.  The representation (1.4) is irreducible if and only if

(1) p? Ly forall g€ Zyuix)(o(G))\{e},
(2) the measure p is G-ergodic.

Here Zg(H) is the centralizer of the subgroup H in the group G:
Zg(H)={g9g€ G |{g,a} =eforall a € H},

where {g,a} = gag~'a'. In general, Conjecture 1.4 is false. In the case of a finite

field F, we need some additional conditions for the irreducibility [25]. Our aim is
to determine them.

1.3.3. Representations of the groups G = @n Gp
Consider an inductive limit G = hgqn G, , with all é:l known.

Problem 1.5. Is it sufficient to determine @, i.e., whether G= l&nn é\n?

In the case of commutative groups G, = R" or G, =T" =T X---xT the answer to
Problem 1.5 is positive. In the first case we have G = L G = R*>. In the second

G = l&ln Gn = 7. If we have p, € Gn defined on the Hilbert space H, and there
is an embedding of Hilbert spaces 4, : H,, — H, .1, we can define the representation
p= hﬂ prn in the space H = @ H, = U,enH, and this representation should be
irreducible. But usually, the space H = li L H,, has no Hilbert structure see e.g.,
[46], like the space R = lim R". But when the representations T =lim T, can
be obtained as limits of Koopman’s representations 7,, = m®»*#»X» on the space
H, = L*(X,, jt,) and we have an additional structure:

in this case the final object hgln H, can be embedded in a Hilbert space @, , H (k)

The construction of von Neumann infinite tensor product of the Hilbert spaces H®)

He= Q) HY, (1.10)

k=1l,e

can be found in [3], but see also [16], here e = (f)52, is some stabilisation where
fr € H® | Two infinite products H. and H; corresponding to two different stabil-
isations are equivalent if and only if the corresponding stabilisations are equivalent
e ~ [. As it was shown in [26, Chapter 8] the answer to Problem 1.5 is negative, at
least for the group Bj = hgln G, where G,, = B(n,R). The dual G, is described
by the orbit method, but this procedure will not allow us to obtain all irreducible
representations, in particular, the regular representation. By [26, Theorem 2.1.1]
the representation T%# : BYY — U (L?*(B", 1)) is irreducible if and only if e Lo
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for all s€ By \ {e}, where p; is defined by (1.8). Denote by R, the regular repre-
sentation of the group B(n,R) in the Hilbert space H, = L?(G,,h,), where h,, is
the Haar measure on G,,. But the restriction T7# |5 is equivalent to the regular
representation R,, of G, all of which are reducible! We have T%# =lim R,,, for the
details see [26, Chapter 2.4]. So we can obtain the irreducible represen?ation as in-
ductive limits of reducible representations. Moreover, we prove [26, Theorem 2.1.17]
that two irreducible representations T and TT#v are equivalent if and only if
the corresponding measures p;, and gy are equivalent. Nonequivalent measures,
in fact, give us two nonequivalent infinite tensor products H. ¢ H;. This means
that different embeddings of the spaces i, : H, — H,1 can give nonequivalent
representations, see details in [26, Chapter §|.

1.3.4. The inductive limit of reducible Koopman representations
can be irreducible

In this article we consider Koopman representations of the inductive limit
GLo(200,R) = %ﬂn N GL(2n + 1,R)

with respect to the symmetric embedding (2.2). Theorem 2.1 states that T%#3
is irreducible if and only if (uf, )" L u(,) for all s € GL(3,R)\{e}. But the

restriction T%#3|q  of the representation 773 to the subgroup G,, is the Koopman
representation of ¢,,, which is reducible, since any action of the group GL(3,R) from

Ls
the left on the space X3, is admissible, i.e., <“?é2)> ~ ui’fa) for all s € GL(3,R).

1.4. The general idea to prove the irreducibility

Let G be some infinite-dimensional group acting on a G-space (X, ) equipped with
some quasi-invariant measure. In the concrete examples considered in [20]-[30] the
possibility to approximate a lot of functions in L>°(X, 1) using Lemma 6.1, follows
from the fact

lim (Cy(N) " 'an, a,) = 0o, where C,(\) =diag(A1,...,Ay) + Cn. (1.11)

n—oo
By Theorem 5.3 proved in [30], (see also Lemma 6.4 for m = 3), we have
(n) , (n) ()

B n n n det(Im+’Y(y1 yYg Ty Ym ))
Co(N) an, an) =A™, g,y = — 1. (1.12)
( ) b det(Ln—1 + 7", y)

Finally, by Lemma 1.2, [29] (see Lemmas 6.3 and 6.5 for m = 3) we get
llm det (Im + V(be)’ yén)v t 7y7(77ll)))

) NN
n—00 det<lm71 + 7(2/2 yers Ym ))

The article is organized as follows. The main result and the idea of the proof are
formulated in Section 2.2, the orthogonality problem in measure theory is studied in
Section 3, irreducibility is considered in Section 4 and the approximation of xy, or
Dy, in Section 5. In the Appendix we explain the use of the generalized characteristic
polynomial, the explicit expression for the minimum of the quadratic form restricted
to a hyperplane and present a result of independent interest on the height of an
infinite parallelotope. In Section 7 we indicate what we can do in the case m > 3.
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2. Representations of the group GLg(200,R)
2.1. Finite-dimensional case

Consider the space X,,, = {x = Z Z TrrErr, Trr € R}, where Ej,,

1<k<m —n<r<n

k,n € Z are infinite matrix unities, with the measure (see (2.5))

M?g:g) (l') - ® ® M(bkmakr)(xkr)'
k=1 r=—n

Two groups act on the space X, ,: GL(m,R) from the left, and GL(2n+1,R) from
the right, and their actions commute. Therefore, two von Neumann algebras 2, ,,
and 2, in the Hilbert space L*(X,, ., ,u?Z’Z)) generated respectively by the left and
the right actions of the corresponding groups have the property that 21}, C 24y,
where 2" is a commutant of a von Neuman algebra 2[. We study what happens as
n— oo. In the limit we obtain some unitary representation T%*™ (see (2.6)) of
the group G := GLy(200,R) =lim GL(2n + 1,R) acting from the right on X, .
In the generic case, the representation T%#™ is reducible. Indeed, if there exists
a non-trivial element s € GL(m,R) such that the left action is admissible for the
measure fi(, ., i.e., (uz’gﬂ))LS ~ () the operator TLrm naturally associated with
the left action, is well defined and [T;**™ TErm =0 for all te G, se GL(m,R).

Here, as in the case of the regular [19, 20] and quasi-regular representations of the
group B)', which is an inductive limit of upper-triangular real matrices, we obtain
the remarkable result that the irreducible representations can be obtained as the
inductive limit of reducible representations!

The action of GL(2n + 1,R) on the space X,,, can be seen as a product of the
natural action on R?*"!. To see this set

X’IS’]LC,)H = {x = Z kaEk’l”a xlﬂ“ e R} ~ R2n+17 Mz::ﬁk<x> = ®;L:_n/,b(bkmakr) ('rkT‘)

—n<r<n

m n m,n m n m,n,k
Then X = QR R L (X, i) = @ LA(RP™H, ).

2.2. The main result

Let us denote by Mat(200, R) the space of all real matrices that are infinite in both
directions:

Mat (200, R) = {x = Z TinFrn, Tin € R}. (2.1)

kn€eZ
The group GL(200,R) = lim . GL(2n + 1,R) is defined as the inductive limit
of the general linear groups G, = GL(2n + 1,R) with respect to the symmetric
embedding i°:
Gn ST ifL-l—l (IE) =+ E—(n-i—l),—(n—‘rl) + E’Vl-f—lﬂ’b-‘rl S Gn+1. (22)

For a fixed natural number m, consider a GG-space X,, as the following subspace of
the space Mat(200,R):

X,, = {:c € Mat(200,R) | x = Zm: ZxknElm} (2.3)

k=1 nez
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The right action of the group GLg(200,R) is correctly defined on the space X, by
the formula R;(z) = xt™', t € G, * € X,,. We define a Gaussian non-centered
product measure p := p™ = [{p,a) OD the space X,,

where dﬂ(bkn,akn)(mkn) = 4 /%e—bkn(ﬂckn—aknbdxkn (25)

and b = (bgn)kn, bkn > 0, a = (Akn)kn, akn € R, 1 < k < m,n € Z. Next we
define the unitary representation T7*™ of the group GLg(200,R) on the space
L2 (X, [} 4)) Dy the formula:

3,1 m m 1/2 m
(TtRM fz) = (dﬂ(b@)(xt)/d/i(b,a)(x)) flat), fe LQ(ijﬂ(b,a))- (2.6)

The centralizer Zaw(x,,)(R(G)) C Aut(X,,) contains the group L(GL(m,R)), i.e.,
the image of the group GL(m,R) with respect to the left action

L:GL(m,R) — Aut(X,,), Ls(z) = sz, s € GL(m,R), z € X,,.
Theorem 2.1.  The representation T™+#™ : GLo(200, R) — U (L?*(X,n, p{’gﬂ))) is
irreducible, for m = 3, if and only if
§) ()t L iy for all s € GL(m, R)\{e}

(ii) the measure pfy ) is G-ergodic.
In [26, 27] this result was proved for m < 2 . Note that Theorem 2.1 is a particular

case of a generalisation of the Ismagilov conjecture, see Conjecture 7.7 in [30], for
the group G acting on some space X .

Remark 2.2. Any Gaussian product-measure M) O0 Xy I8 GLo(200, R)-right-
ergodic [40, §3, Corollary 1]. For non-product-measures this is not true in general.

In order to study the condition (i )) L pfy 4y for t € GL(m,R) \ {e} set
t = (ts)—, € GL(m,R), B, = diag(bln,bgn, ...,bmn), X, (t) = BY?tB; Y2, (2.7)

Let M;f;; ;T( ) be the minors of the matrix ¢ with iy, s, ..., 4, rows and 7j1, ja, ..., Jr

columns, 1 <r <m. Let J,; be the Kronecker symbols.

Lemma 2.3 ([26], Lemma 10.2.3; [27], Lemma 2.2). For the measures p{, .y, with
m a natural number, the following relation holds true:

(u@a))h L ulpay forall t € GL(m,R)\{e}  if and only if

Hmdet(I+X* +ZZbM(Z rs— Ts)%n)Q:oo,

ne neZ r=1 s=1

det<I+X() >_1+Z Yo (X)) (28)

r=1 1<i1<ig<...<ip<m
1<j1<je<...<jr<m
Let us define the following measures on the spaces R and X,,:

D = QI i 00 ) = T b g

where a, = (a1p, ..., Gmpn) € R™ and B, =diag(bin, ..., bmn) € Mat(m,R).



272 KosyAK AND MOREE

—-1/2

det (I+X*(t)X,, (t))> . (2.9)

et H ) = ((f80) 3l 0) = (o

Remark 2.4. (Idea of the proof of irreducibility.) Let us denote by 2™ the
von Neumann algebra generated by the representation T%*™  that is, we have
A" = (T | te G)", where M’ is the commutant of the von Neunmann algebra
M C B(H). For a=(a)€{0,1}™ define the von Neumann algebra LS°(X,,, u™)
as follows:

"
L( X, p™) = (exp(itB,’jn) |1<k<m,teR, ne Z> :

where B,‘;‘n:{ Tiny A =0 and Dy, = 0/0%n — brn(Trn — apn) -

i_len, if ap=1

The proof of the irreducibility is based on four facts:

(1) We can approximate by the generators Ay, = AkRﬁm = Tﬁr‘; b |i=o the set of
operators (B )iL,, n€Z for some a€{0,1}"™ depending on the measure u"™ using
the orthogonality condition (u™)fs L u™ for all s € GL(m,R)\{e};

(2) it is sufficient to verify the approximation only for the cyclic vector 1(z)=1,
since the representation T%*™ is cyclic;

(3) the subalgebra L(X,, ™) is a mazimal abelian subalgebra in A™;
(4) the measure p™ is G-ergodic.

Here the generators Ay, are given by the formulas:

Almzz xrkDrn; ]{?, n e Z, where Dkn = 8/8Ikn - bjm(l'kn — akn). (210)

r=1

Remark 2.5. Scheme of the proof. We prove the irreducibility as follows

(4% L for all s € GL(3,R)\ {e}) ( o )& (2.11)

orthogonality

Lemma 6.3 some of AM, Ay
( about > => | the expressions A(D A, | = 1rredu(31b1hty,
three vectors f.g,h¢Zla are divergent: AB) Ay

where AD =AY YD v A =AY YY), (2.12)

? J

A(f,g,h) is defined by (2.15), and {3, j, k} is a cyclic permutation of {1,2,3}, see
for details Lemma 5.1, Lemma 5.2 and Lemma 5.4.

We use the following notation. For k vectors fi, fo, ..., fr € R™ with k <n set

det(I +~(f1, fo, -5 fx)) - .
A(fr, fay ooy fo)= o 1) 1, for k=23 (2.13)

det(I +~(f1, f2)) I+D(f1)+T(f2)+T(f1, f2)
A(f1, f2)= det(IJr’y(lfQ)Z) —1= ! I+F§f2) LELLS (2.14)
Ay, for fo) = f1)+F(f1,f2)+P(f1,f3)+1—‘(f17f2,f3)' (2.15)

14+ T(f2) + T(f3) + T(f2, f3)
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Remark 2.6. The fact that the conditions (uf, )" L pif, ) forall t € GL(3,R)\{e}
imply the possibility of the approximation of =z, or Dy, by combinations of
generators is based on Lemma 6.1 and Lemma 6.4 about explicit expression for
(C~Y(N)a,a), see [30], where C()) is defined by (6.3). Finally the last lemma
is based on some completely independent statement about three infinite vectors
f1, fo, f3 & 1o(N) such that Zi:l Crfr & 12(N), see Lemma 6.3 for general m in
[29]. These lemmas are the key ingredients of the proof of the irreducibility of the
representation.

Remark 2.7.  Note that in the case of the “nilpotent group” Bl and the infinite
product of arbitrary Gaussian measures on R™ (see [1]) the proof of the irreducibility
is also based on another completely independent statement namely, the Hadamard-
Fischer inequality, see Lemma 2.8.

Lemma 2.8. (Hadamard-Fischerinequality [11, 12]) For any positive definite ma-
triz C €eMat(m,R), meN, and any two subsets a and § with ) C o, B C {1,...,m}
the following inequality holds:

M)  M@OB)|_| A@)  A@Up)
M(alUB) M(5) ‘ o ‘ A(dmﬁ) A(B) >0, (2.16)

where M (o) = MS(C), A(a) = A%(C) are factors and cofactors of the matriz C
and &¢={1,....m} \ «.

2.3. Equivalent series and equivalent sequences

Definition 2.9. We say that two series ) _ya, and Y b, with positive
ay, b, are equivalent if they are divergent or convergent simultaneously. We will
write Y nGn ~ Y ,enbn. We say that two sequences (an)nen and (bp)nen are
equivalent if for some C7,Cy > 0 we have Ci1b, < a,, < Csb, for all n € N. We will
use the same notation a,, ~ b, .

Lemma 2.10. Let 1+¢, >0 for all n € Z. Then the following two series are

equivalent:
2
CTL .
N ::E Tt Yo .:E . (2.17)

nez ne”L

Proof. Fix some ¢ € (0,1) and a large enough N. We have three cases:
() 1+co€ (M),

(b) for an infinite subset Z; we have lim,cz, (1 + ¢,) = o0,

(c) for an infinite subset Z; we have lim,¢z, (1 + ¢,) = 0.

When we are not in the case (a) there is an infinite subset Z; C Z such that (b) or
(c) holds true. In the case (a) we have

;Zc2<zlfzcn <iye (2.18)

ne”L nez neZ

In the cases (b) and (c) both series are divergent. n

We will make systematic use of the following statement.
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Remark 2.11. ([26]) Let ay,b, > 0 for all n € N. The following two series are

equivalent
P P Z (2.19)

neN neN

3. Some orthogonality problems in measure theory

3.1. General setting

Our aim now is to find the minimal generating set of conditions for the orthogonality
(K, a))Lt L Uy q forall t € GL(m, R)\{e}. To be more precise, consider the following
more general Sltuatlon Let a : G — Aut(X) be a measurable action of a group G on
a measurable space (X, u) with the following property: p® L u for all t € G\ {e}.
Define a generating subset G*(p) in the group G as follows:

if p® Loy forall t € GH(p), then p™ Ly forall t e G\ {e}. (3.1)
Problem 3.1.  Find a minimal generating subset G () satisfying (3.1).

3.2. Orthogonality criteria p’t | p for t € GL(2,R) \ {e}

Remark 3.2. By Lemma 4.1 proved in [27] or Lemma 10.4.1 in [26] for m = 2 we
conclude that the minimal generating set G (1) = GL(2,R)5 (1) (see Problem (3.1))
is reduced to the following subgroups, families and elements:

exp(tEu) = I+tE12:< o )  exp(tEy) =1 + tEy = ( ;0 > . (32)
exp(tEus) Py = < o >  exp(tEn)Py — < . ) , (3.3)

) -
co=( 5, Yo (0 ) om0

The families (3.2) are one-parameter subgroups, the families (3.3) are just reflections
of (3.2) and the family (3.4) depends on two parameters. All elements are of
order 2 except the elements in subgroups given in (3.2). It suffices to verify the
conditions (3.2) only for some ¢ € R\ {0}. Actually, the family 7_(¢, s) coincides
with Dy(s)O(2) D5 (s) Py, where Dy(s) = diag(s,s™'). All points ¢ in (3.3) and all
points (¢, s) in (3.4) are essential, i.e., they cannot be removed.

The conditions for the orthogonality with respect to elements defined by (3.2)—(3.4)
are transformed in the divergence of the following series:

Shin) =2 (g + a3 ) » Shl) =D %2 (55— + ) (35)

nez nez
2
St () =53 P S M (204, + tagn)?, tER, (3.6)
mEZ nm meZ
Y5 (- (4, )) = sin® ¢ Xya(s) + S (7 L o e0,21), s> 0, (3.7)

where  19(s :: s°4 Zln Y 22” (3.8)
2n ln
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DI (7:(¢, s)) :Z (4b1n sin? ¢ —|—43 by, cos? ?) (aln sin % — 5%ag,, CoS (§>2 (3.9)

ne”L

Remark 3.3. [see [27]] The following three conditions are equivalent:

(i) plr—@ 1oy ¢ €[0,2m), s >0,
(i) Ei12(7-(¢,s)) =sin® ¢ X1a(s)+ X5 (7-(,5)) =00, ¢ €[0,27m), s >0,
(111) 212(8) + 212(01, CQ) = 00, s >0, (Cl, CQ) e R? \ {0},

where Y19(s) is defined by (3.8) and
212(01, 02) = Z(O%bln —+ C§b2n>(01a1n + Cgagn)2. (310)
nez

3.3. Orthogonality criteria p’t | ; for t € GL(3,R) \ {e}
Recall [27] that for m = 2 and dett > 0 we have

2% [dett | (Hp,(t) —1) = [(1—| dett |)?+ (t11 —t22)” 7512\/Z;T+t21\/:?
(X ()~ AU () + (MEX(0)~ AX@)? + (MO () - ABCX ()]

where H,,, () is defined by (2.9). For m = 3, using the relations of (2.7), we have
X (t) = BY*B~1/2 hence

by, 0 O Y2 t1n ti2 ti3 by, 0 0O e
X(t) = 0 bgn 0 tor tog tog 0 bgn 0
0 0 b, t31 132 133 0 0 b,
t11 Z;—:tlz Z;—Zhs
= Zf—ztm 22 zi—:t23
Zfz 3 22—21532 L33

Therefore, using (2.8) and the fact that X = X*(¢) X (t) we obtain
23 | dett | Hy2(t) = (14 | dett |2 442, + Qng2, g Ding2 oy bangz 4 2 bi"ﬁ
| dett | 3,n<)_ + | dett | +11+b2n12+ 13+b 21 Tl + 23

bsy, b3n 2 bop b n b3n
TRt gt + £+ (ME (1) + 72 (ME(0)” + 22 (M3 (1) + 32

(M) + Q30 + 22 (a3 )* + bB”(MfS( >> +ZZZ?><

(MEO) + (MEW)°) =1+ et P+ 3 ) (\T)}

=14 |dett P+ > (IMj(X ())I2+|AZ( ())I

1<i<j<3

Let A%(t) be the cofactors of a matrix t € GL(3,R).
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Using the notation t; = t;; and the relations
dett = tFA¥(t) +thAL(t) +thA5(t), k=1,2,3, we get

29 | dett | (H;2(t) — 1) = (1— | dett >+ 3 (Ml A;i(X(t)))

1<4,5<3
= (1 |dett )2+ Y (t b _ i 1) bj")2 (3.11)
1<i<j<3 TV by ! bin /- .
EASYAS

Similar to [27, Lemmas 2.22] in the case m = 2, or [26, Lemma 10.4.30] we get the
following lemma, for m = 3.

2

Lemma 3.4. Fort e GL(3,R)\ {e}, if dett >0, we have respectively

()™ L phoy < (3.12)
Z[(1—|dett| +Z<t7’:|:AZ > +Z ( \/7]”12() Z )2]200.
nez 1<i<3 1<i<j<3 mn

By Lemma 2.3 the following lemma holds true.
Lemma 3.5. Fort € GL(3,R) \ {e} we have

(o)™ L Hlyay o | dett |# 1.

If dett = £1, we have respectively

('uz())b,a))Lt 1 “?b,a) A Zi( t) = E (t) + Xo(t) = 00, where

Ei(t)= Z [Z(tkk—f“k +Y \/ A5y ] (3.13)

1<i<5<3
> . b; . b, 2

:Z [ (trr+AG (1) + ) (t}, / bjz +AL(t)4/ bz:) }, (3.14)
neL =1 1<i<j<3

() = [bln tin — 1)ar, + tigag, + t13a3n) + (3.15)

ne”L

2
ban (t21015 + (f22—1)az, + t23a3n) + bsn (t3101n + 3202, + (t33—1)as,) ] -
Remark 3.6. By Lemma 3.5, it suffices to verify, the condition of orthogonality

(:u’?b,a)>LZt 1 :u:()’b,a) for te GL(37 R) \ {6}

for the following two subsets of the group +SL(3,R):

Gi = {t € +SL(3,R) | txp = £AF(t), 1 <k < 3}. (3.16)
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Lemma 3.7. Ift € G5, we have respectively
(M(b,a)) tl :u(b,a) Ang Z:t t (t) + 22( ) o0,

() =
-y (tz\/»q:Al bﬂ”) Y os (3.17)
1<i<j<3 neZ 1<i<j<3

bzn

h0)=3 (12w Al(t) Zz:)z, (3.18)

neL gn

where 3y(t) is defined by (3.15).

Next we will show that the set G can be reduced to the six families of one-
parameter subgroups exp(tEy,.), 1 < k # r < 3, see (3.20), or the three families of
two-parameter subgroups, see (3.21). The set G5 can be reduced to the three two-
parameter family (3.22), reflections of (3.21) by P,. The remaining part is reduced
to the sets Ds(s)O(3)D3'(s)P, or five parameter family of elements 7.(t,s) =
D3(s)tD3 ' (s)P,, see (3.26).

Lemma 3.8.  In case m = 3 the minimal generating set GL(3,R)g (i) is defined
as follows (compare with Remark 3.2):

GL(3,R)qy (1) = {e.(t,s),e.(t,8)P.,| 1 <r <3, (t,5) € R?}
U {04(3), 1 <r <3}, where
ein(t) ;= exp(tEy,) = +tEy,, 1 <k#n<3 teR,

(3.19)
(3.20)
0 (3.21)
el(t,s)P1:<8 9) N _zlf) t,s)P?,:(égﬁl), (3.22)
100 100 10 0
r=(701). PF(S-&?)’ o= (413). (323
0(3) := {Ds(5)0(3)D5'(s) | Ds(s) € A} (3.24)
02(3) := {D3(s)0(3)D5*(s)P, | Ds(s) € A}, 1<r <3 (3.25)
7.(t,s) = D3(s)tD3 ' (s) Py, t € O(3), A := {Ds(s) =diag(s1, 52, 53)}. (3.26)
The families (3.20) give us respectively the divergence of the following series:
1
St =3 (2b + am> 1 <kr<3, k#n (3.27)
nez

The families (3.21) give us the divergence of the following series:

(2 by, s2b bin 9
St o3, t,s) = Z Zbi + %bi’ + %(—2a1n+ta2n+sa3n) ] : (3.28)
nez - 2n 3n
[+2 b s2 boy, bon, 2
Sha(tis) =Y | T+ T+ oy (fan — 2az, + sazn) ] . (3.29)
nez L 1in 3n
(12 b3, %D bsn 2
S5 12(pst,8) = Z 1 bs + S—bin + %(tam + Sagn — 2asy,) ] ; (3.30)
nez - in 2n
bT’n,
in particular SL (u) := STLSt(M, 0,0) = Z 5 a2, (3.31)

nez
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where (7, s,t) is a cyclic permutation of (1,2,3). The families (3.26) give us the
condition (3.34), see Lemma 3.9 below.

Proof.  Consider the subset GL(3,R)s(u) of GL(3,R) described by (3.19). The
fact that this set is minimal generating will follow from Lemma 4.1, more precisely,
from the following implications:

(th 1 p forall te GL(3,R)OL(;L)> = (irreducibihty) (3.32)
= (uL* 1 p for all ¢t € GL(3,R) \ {e}).

The first implication follows from Lemma 4.1, and the second from the irreducibility.

Indeed, suppose that GL(3,R)y(x) is not a minimal generating set, then we can
find an s € GL(3,R) \ {e} such that

(o)™ ~ o

Hence the non-trivial operator TX#3 can be defined by

_ 1/2,, _
(T5L7u73f)<x): (dluz())b,a)(s lx)/d:ui())b,a)(x)) f(S 1‘7:)’ f < LQ(X:S’N?I%G))' (333)
This operator commutes with the representations 773 :
[TtR’“’?’, TSL’“’3] =0 forall tedq,

contradicting the irreducibility. The relations (3.27)—(3.30) follows from (3.13)-
(3.15). The relation (3.29), for example, follows from (3.14) and (3.15). The relation

(3.34) is obtained from (3.13) for 7.(t,s), t€O(3), s€ (R*)3 defined by (3.26). m
Lemma 3.9. Set 7(s,t) := Ds(s)tD3'(s) and 7.(s,t) := 7(s,t)P, for t € +0(3),
Ds(s)=diag(sy, s2,53), s=(s1,82,53)€(R*)> and 1 <r < 3. Then
LTT s,t
(Hipay) ™ L iy 0y € X7 (725, 1)) + B (75, 1)) = o0, (3.34)
where Y3 (t) are defined by (3.17), and Xy(t) is defined by (3.15). In particular, if
we denote Sij = sl-sjfl we get
SE(r(t,5)) = () = th (1) + i Sus(515) + 525 (3:39)
Proof. For T :=7(s,t) and T(3) := 73(s,t) we have respectively:
tin Stz g
T = Ds(s)tD3'(s)= Ptor a2 Plog ), (3.36)
S3t31 Pz ts3
tin Tt —Phg
Plor tar — Pl | = Dg(S)thl(S)Pg =:T(3). (3.37)
a1 Ptz —tss
By Lemma 3.10 for ¢t € O(3) we have t;, = A¥(t), 1 < k,r < 3. Therefore, for T
and T'(3) we have for 1<k,r<3:
MH(T) = T =ty ANT) =245 "2 2ot MFT(3))  (3.39)
S, k k

= (1) ANT()= (DA = ()P . (339)

Sk Sk
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Finally, we get

SHT) =i () = [ 30 (ar f A7) ’Z:")T

neZ 1<i<j<3

[bin b n / /b n
_Z t%2 (812 812 i +t 813 3

—1%212 5157) + 12,503(5157) + 125505 (s547).

t23 523
b2n

Hence, 37 (7'(3)) = %QZ (31/2) + 12 213(8%2) + t%3223(3;§2)~ u

Lemma 3.10.  For an arbitrary orthogonal matriz t € £0(3) we have
tin tiz ti3
ten = :EAZ(t), 1< l{, n <3, where t = | to1 tog to3 | . (340)
t31 132 133

Proof. Denote the three rows of the matrix t by, respectively, ti,t,,t3 € R3.
Since t € £0(3) we get

It]|? = |[t2]]* = [It3]]* =1 and ¢ Lt,, [ #r. (3.41)

Moreover, since t; is orthogonal to the hyperplane V53 generated by the vectors o
and t3 and t € £0(3) we get respectively t, = %[t,,ts], where [z,y] is the vector
product or cross product of two vectors x,y € R? and the triple {/,r, s} denotes any
cyclic permutations of {1,2,3}. For ¢t € O(3) and [ =1 we get

ik
t1 = [to,t3] = |tar taz taz| =1 ?2 ?3 —J ;21 ?3 ?1 ?2 ) (3.42)
t31 t32 t33 32 33 31 33 31 32
where i, j, k is the standard orthonormal basis in R?, i.e.,
= (17070)7 j = (07 170)7 k= (0707 1)
Define X formally as the matrix:
i 7k
X = rr x2 I3, then tl = (tll,tlg,tlg) = (A%(X),A%(X),Aé(X)) .
Y Y2 Y3
This proves (3.40) for k = 1. For the other rows the proof is similar. ]

Remark 3.11.  For t € £0(n) we can prove a similar statement.

4. Irreducibility, the case m = 3

Lemma 4.1. If p!* L u for all t € GL(3,R) \ {e}, we can approzimate by
the generators Ay, defined by (2.10) at least one of the following eight triplets of
operators:

(ﬂiln,xzmil??m), ($1n,$2n,D3n)7 ($1n,D2n,$3n), <D1n7x2nax3n)7

(xlnul)2nvl)3n)7(l)1n7x2n71)3n)7 (l)lnvl)2n713n)7 (ljlnal)2n7l)3n)'
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Idea of the proof. By Lemma 3.7, the condition of orthogonality (p?bﬂ))Lt 1 ,u?b’a)

for t € £SL(3,R) \ {e} are:
YEE) = 27 (t) + Sa(t) = oo, (4.1)

where Y,(t) is defined by (3.15) and ¥ (¢) are defined by (3.17). Let A® be the

von Neumann algebra generated by the representation.

Case 1/2. We write compactly Lemma 5.1 and Lemma 5.2 as follows, see Defini-
tion 4.7 for the notation 7:

Ty N A = A =00, DA e A, = o0, (4.2)
where A = AV YO v,y AL =AY, YL, V), (4.3)

and {r,s,t} is a cyclic permutation of {1,2,3}. Here

b2
Y(T) 2 — rk 1< < 4.4
17 ;Bg,k_(b%k"‘b%k‘f'b%k_bik)’ s, (4:4)
EZ

2

a
By, = big + bos + b, and  [[V,[7 =D — . (45)

keZ 2big + 2bag, + 2035,

Case 3. Approzimation of Dy, by @, Aw, and Ds, by sin (sp(zse — ask)) Akn
(respectively by cos (Sk<3§'3k — agk))A;m). By Lemma 5.3 and Lemma 5.4 we have
Dy, n mS ~ A(K’T‘?K’S)K‘t) = 00,
D3, n2A° &  33(D,s)=o00, resp. Xy(D,s)= o0,
where Yy, for 1 < k,r < 3 are defined by (5.13) and ¥3(D,s) and X3 (D,s) are
defined by (5.18). The rest of this section is devoted to the proof of Lemma 4.1.
4.1. Notations and the change of the variables

In what follows we will systematically use the following notations:
by,

— 1<r< 4.
S’I‘(3) % blnb2n + blnb?)n + b2nb3n’ == 37 ( 6)
b
E’F Zb1n+b2n+b3n’ 1_T_37 (47)
nez
rs brk 1 1 1
= i < < =
X Z ber’ l<r 7& 55 37 Ck 2b1 T 2b9j 2b3, (48)
keZ
Y123 = (y17y27y3>7 Where Yr = ||§/7'H27 (49)
k) (k) (K k k k
y ™ =, w8 o) = (PP YRR, 1<k <3, (4.10)
(1) BRI ORNG
= ( o > — [ WP W ). where o= VO @)
y BORMO) y§3)
Y123(8) = (Z12(s12), Xa3(s23), L13(s13)), s = (512, Sa3, S13)- (4.12)

We show that S,(3) is infinite for at least one 1 < r < 3.
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Lemma 4.2. We have
S1(3) + S2(3) + S5(3) = oo,
1Y, ~ S.(3) for all 1<7r <3,
V912 < 55,(3) for all 1<r+#s5<3,
VN2 4 Y22 4 (1Y) = 00, inin,ds € {1,2,3}.

Proof. Since 3(a® +b* + ¢?) > 2(ab+ ac + bc) we get

b3
S( )—|—52 —|—53 Zblann 2"+ 3n 22/3200.
keZ

+ blnb?m + banSn
Further, by (4.4)

2 b2, (2.19)
HY H b%” + 2(binbay + binbz, + banbsy) 5:(3),
2 1
o -3 o <35.3), s#r

bzn + Z(blann + blnb3n + anbSn)
nez
To prove (4.16) we observe that by (4.4)

I+ 0P+ ) =

bz, ZT by,
Z > b2+ 2(binban + binbsn + banbsn) Z Sy =00 ®

r=1 nez

We make the following change of the variables:

bin b bn) (U U B\ (1 =B den= ) g gy
aip Q2n  G3n a’/ln al2n a‘gn ainV bln az2nV bln a3nV bln ’

motivated by the following formulas:

b 1
Ay (T) = \/;exp(—b(x—af)dx = \/;exp(—(x'—a’)Q)dx’ =dp ) (2),

b b by , /
Ut (2) = | 2 xpl o)) = [ exp (= 32—
- d’u(bévalz)(l‘/)7 (b/7 CLI) = (]-7 CL\/[;), (bIQa CL2 <b2/b17 a2\/_>

Remark 4.3.  All the expressions, given in the list (3.13) (3.14), (3.15) and (4.1)
are invariant under the transformations (4.17)

L _ bin — 1 1 1 >_1/2>
Skr(ﬂ) = Z 9 (2% +arn> Y, = (ark(lek T 2boj + 2bay, kez’

nez

etc., and S,.(3) (as defined by (4.6)).

4.2. Approximation scheme

Remark 4.4. In what follows if some expression < oo (resp. = 00), we denote
this case by 0 (respectively, by 1).
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We use the following notation S := (51(3),52(3),53(3)). By Lemma 4.2 we get
S S,(3) = 0o. Therefore, without loss of generality, it suffices to consider the
following three cases:

(1) $=1(0,0,1), (2) S=(0,1,1), (3) S=(1,1,1). (4.18)

By Lemma 3.7, the condition of orthogonality (4, ,)"* L fif, o for t € £SL(3, R)\{e},
ie., XE(t) = BF(t) + Xa(t) = oo, splits into two cases:

(A) Zi(t) = oo, ST (1) = Yicicjes D5 (1),

| (4.19)
(B) X7(t) <oo, but 3(t) = oo,
where X7 (t), X7(t) and s(t) are defined by (3.17), (3.18) and (3.15).
4.3. Case S =(0,0,1)
Lemma 4.5.  The case S = (0,0,1) is equivalent with
2
B LTS oo, S(3) ~ S B = oo, (4.20)
blann
Proof.  To prove the first part of (4.20) we set ¢, = bb% and note that
1n 2n
(2.19)
o0 = Sl + 82 Z blnb2n + blnb3n + b2nb3n -
Z v, + b3, N Z (bin + b2n)? _
Z (bln + b2n + b?m) - bgn nel (bln + b2n + b?m) - bgn
B (2.19) bm + ban 13 23
P e D DIl DD D =59 +2

nez nez neZ nez

To prove the second part of (4.20) we have by the first part of (4.20)

s #, o
B < D1ban -+ Drnban +banban =2 bphan, bl“ e
nez

bsn, b3n neL

Lemma 4.6 ([27]). For any k € Z we have

r1pl € (zr1,1 | n € Z) < St (1) = oo.

Definition 4.7. A non necessarily bounded self-adjoint operator A in a Hilbert
space H , is said to be affiliated with a von Neumann algebra M of operators in H
if e € M for all t € R. This is denoted by A n M, see [7].

In the case S = (0,0,1) we have
3) () 13
AV YY) ~ A ~ Y = oo,

SO we can approximate xs,xs using Lemma 5.1 and after that we can approximate
Z3, using an analogue of Lemma 4.6. From now on we will say that we can
approximate xs3, using Lemma 5.1, without mentioning Lemma 4.6.
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We can not approximate xq, and s, using Lemma 5.1, since we have
A(Y'l(l)’ Y'Q(l)’ Yé)(l)) + A(}/é(z), YE))(Q), }/'1(2)) < 0.

We can try to approximate some of D,, for 1 < r < 3 using Lemma 5.2, see Section
4.4.4 for details. We have for 1 <k <3 (see (4.3)):

Din n A* & A =00, where A, :=A(Y;,Y,,Y,),

and {k,r,s} is a cyclic permutation of {1,2,3}. Recall that by X' + %13 < co we
get (see (4.5) for the expressions of ||Y,|[?, 1 <r < 3)

IYilP ~ D biad,, el ~ Y binds,,  [VIP~ D bind,. (4.21)

nez nez nez
By (4.20) we have ©1% + Y23 < 0o. We distinguish two cases:
(1) X2 <00, and (2) 22 =c0.
In case (1), since X2 4+ ¥13 < 0o we have

_ oL (3.28) t?bin | 2 by | bin 2
o0 = 51723(/1’7 t7 5) - ZZ [Za + Zbgin + 7( 2a1n+ta2n+8a3n) :|
ne

~ Y U (< 2an s tsasa)t L O+ O

neL

Finally, in the case (1) we can approximate all D,,, 1 < r < 3 using Lemma 5.2
and Lemma 6.3, and the proof is finished. The case (2) can be divided into three

. . by
cases, if necessary, we can choose an appropriate subsequence of < ~)

b2n
) (a) 0
lim bl—” = (b) b>0 . (4.22)
2n (C) 50

Case (c) is reduced to case (a) by exchanging (ba,,as,) with (by,,a1,). This
exchange does not change the first condition in (4.20). In the cases (2.a) and (2.b),
by (4.5) we obtain the following expressions for ||V, |, 1<r<3:

a? 201,02 »18«
ya* = Z 1 ™ - Z 1 bij 1nb1n ~ Zblna%na
ez, i 21;2 2b3 t ooty el
IYVall> ~ ) biaas,,  Ysl? =D binai,.
nez nez

Since [|[Y1|* ~ 32, oz binai, ~ Sti (1) = oo, we have in consequence four possibilities
for ya3 1= (y2,y3) € {0,1}? as in (4.52), see Section 4.4.4:

(1.0) (1.1) (1.2) (1.3)
g1 1 1 1
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We just follow the instructions given in Remark 4.17. We note that the cases (1.0)
and (1.1) can not occur since the following conditions are contradictory:

S ( ) Z ; <2b3 +a3n>:oo7 ||Y3H Zblna3n<00 Yo .

nez neEL

We have two cases (1.2.1) and (1.3.1) according to whether respectively the expres-
sions in (4.57) or (4.58) are divergent. We can approximate in these cases respec-
tively Dy, and Ds,, see (4.54), and all Dy, Da,, Ds,, see (4.55). The proof of irre-
ducibility is finished in both cases because we have w3, D3, 1 2® and the problem is
reduced to the case m = 2 [27], since Akn223:1 Trt Dy — x33, D3y, = 23:1 Tyt Dy, -

If the opposite holds, we have two different cases (1.2.0) and (1.3.0). We try to
approximate Ds, using Lemma 5.4. If one of the expressions ¥3(D, s) or X3 (D, s)
is divergent for some sequence s = (Sg)rez, We can approximate Dsj and the proof
is finished, since we have x3,, D3, n 2® and the problem is reduced to the case
m = 2. Let us suppose, as in Remark 4.21, that for every sequence s = (si)rez We

have
¥3(D, s) + X3 (D, s) < cc.

2
Then, in particular, we have for 53 = (s;)rez with ﬁ =1

00 > Y3(D, s) + SY(D,s®) ~ S3(D) + ZV(D)

Z 2b3k + a3k (2.19) Z gbgk + a3k
o 2

B Z b;,_: + 2b1ka§k
- 1+ 2b1kafk + Z;—: + 2b1ka§k

(4.22) 5 2b1a3, +
. 1+ 2b1ka%k + 2b1ka§k 3 ( )

Remark 4.8.  Finally, we have 335 (D) ~ 3, 175 — 25 since we take by, = 1

al +2a2 ’

by (4.17). In the case (1.2.0) we have ||Ya]]* ~ > _, blnagn < o0, and therefore

S3(D) ~ Y, 1+(;3’“2 , and hence X7 (D) = oo by Lemma 4.19. In the case (1.3.0)

we have az = ﬂ:al j: as + h or a3 — h = H+a; + as, see the proof of Lemma 4.20.
Therefore,

a? a?
0o > YT (D) ~ — 8k _ > 3k
5 (D) ;1+a%k+a§k _;1+afk+2|a1k|a2k+a§k,

2
= Z s 00 >N (D)~ Yy (4.23)
k

1+ |a1k\+|a2k|) 1+a%k+a§k

I S
- - L+a?, + a2 + (lak] — |azk])? - 1+ 2a2, — 2|aig||azk| + 2a3,

2

2
~ 3 ~ 3k . 4.24
zk: 1+ a3y, — 2|aix||agk| + a3, Zk: 2 ( )

1+ (lawk| — |azkl)

Hence, we have by (4.23) and (4.24)

2
00> Yf(D) =) %3k Z e (4.25)
k

1+(ia1k:|:a2k A agk—hk;)
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by Lemma 4.19, this is a contradiction. Therefore, in both cases we can approximate
D3, and the proof is finished.

4.4. Case S =(0,1,1)
Lemma 4.9. In the case S = (0,1,1) we have
lim dy,, = lim ds,, = oo. (4.26)

Proof.  Setting as before d,,, =b,,/b1,,, we obtain by (4.6) and (2.19)

1 (2.19) 1
= ~ 4.2
51(3) doy, +dsy, +dondsy, Z (1+d2n)(1+d3n) < % ( 7)
nez neL
d> (2.19) d3,
= n ~ 4.2
3) Z dan+dzn+dandsn Z (14day) (don+dsn) —% (4.28)
neL ne”Z
d? (2.19) d?
53(3) <z d2n+d3n+d2nd3n ;Z (1+d3n)(d2n+d3n) e ( 9)

Suppose that dy, < C for all n € Z. Then by (4.27) and (4.28) we conclude

1
S0~ 2 v Z Thdsn Z@@O 20 = 5(3)

ne”L

d3 d2 02 (2.19) 1
Z (1+d2n)(d2n+d3n) 7 d2n+d3n o C+d3n Z d3n ’

nel ne ne”Z ne”Z

which is a contradiction. We use the fact that for any fixed D > 0 the function

fo(x) = fo is strictly increasing when x > 0. Similarly, if we suppose that
ds, < C for all n € Z we will obtain a contradiction too. [ ]

Lemma 4.10.  The case S = (0,1,1) is equivalent with

b? 1
51(3)~Zb2nb3n<oo S5(3) ~ Z%—oo S5(3 Zd —oo0.  (4.30)

n

Proof. Recall that d, = zﬂ Denote D,, := 1+ d,! + d;. By Lemma 4.9 we

have > 1 1
1<D,=1+4d,, +d;, <C, forall neZ. (4.31)

Therefore, we get

B 1 B 1 1 b3,
3> - Z d2n + d3n +d2nd3n o Z DndanSn Z d2nd3n N b2nb3n7
neL n
J— d%n
3) _Z; dan +dsn+dands, Z D dzndg,n Z dn’
ne

neL
d? d3
S 3 — 3n _ M3n d ]
3( ) d2n+d3n+d2nd3n D d2nd3n Z
ne”L ne neZ

By Lemma 4.2, (4.15) we get HYI(T)H2 < 00, 1 <r <3, therefore, we get
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Lemma 4.11.  In the case S = (0,1,1) we have
AV VY YY) <00, AT VP V) ~ AP YY),
3 3 3 3 3
AV P ) ~ A v, (4.32)
Proof.  Set (fi, fa, f3) = (Y&, ¥, Y*)). Then

A(fr, for f3) (2.15) U(f1) +T(f1, fo) + T(f1, f3) + T(f1, f, f3)
»J2,J3 1+T(f2) + T(f3) +T(fa, f3)

L(f1) +T(f1, f3) U33) D) +T(f, fs) N
[T + TR + D f) — (DA + DGy ~ S

since fo €15(Z), see (2.14). Indeed, for f,g€l5(Z) and f€ly(Z),9 ¢ 12(Z) we have
respectively
L(f,9) <T(N)I(g) < oo, T(f,9) <T(/)I(g), where TI(f,g),  (4.33)
[(g) are defined by  T'(f, g) := EimT'(f(), 9(m)  T(g) = limT(gpm)),

and g = (gx)p__,, €R* 1. Similarly, set (fi, fo, f3):(Y2(2),Y})(2),Y1(2)), then

A(F1, for f2) (2.15) T(f1) +T(f1, f2) + T(f1, f3) + T(f1, f2, f3)
yJ25 /3 1+ T(f2) + T(f3) + T(fa, f3)

L(f1) +T(f1, f) U39 T(f)+T(ffe)
7 T + T + L f) — G LG+ 1() ~ AU F2)

since f3 € [3(Z). Finally, we derive both equivalences in (4.32). To prove
AV YO v) < 0o we set (f1, for f5) = (P, VY, vV), and note that
(215) T'(f1) +T(f1, f2) + T(f1, f3) + T(f1, f2, f3)
Alhs fa f3) 7= T+ D(fa) + T(fs) + T fo)

F(fl)(l +T(f2) +T(f3) + F(fmfs)) B
- L+T(f2) +T(f3) +T'(f2, f3) =R < oe. .

In order to approximate xy, or xs,, it remains to study the case

A Y =00, A YY) = o, (4.34)

where A(f1, f2) = f11):1£1((;;1)7 F2) . For 2 <r <3, denote

pr(C’g, 03) = ||CQ —|— 03 ||2 (CQ, 03) < RQ, (435)
U(Ch, Co, Cs) = ||C1Yr + CoYs + CsYa|%, (Ch, Co, Cy) € RE. (4.36)

Lemma 4.12.  In the case S = (0,1,1) we have

Co+Csd,)> Co+Csd,)>
pa(Co, Oy) o 37 (CHCT (0 ) o 37 Ty )
neZ nez " "

_Z lej;?’ . v(Cy,Cy, C) ~ me(ZCam). (4.38)

neL
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Proof.  Set as before d,, = 33—" . By (4.4) and (4.5) we get
2n
2 d2n d%n 1
||Y H Z; d2 +2 d2n + d3n+d2nd3n Z d2 +2D d2nd3n 2; Dndn’
ne ne
(2) 2 _ dgn _ d&n _ d2
||YE)) || - % d§n+2(d2n+d3n+d2nd3n) % d§71+2Dnd2nd3n o Z 1—|—2D”d ’
B2 _ d3,, _ d3,,
Y2711 = % d3,, + 2(don +dzn+dondsy) % d3, +2Dyd2ndsn Z d2+2D dn’
B2 _ d3,, d3,, dn
Y570 = ZZ d3,, + 2(dan+dsn+dands,) Z 3, +2Dpdandsy, ZZ D,’ (4.59)
ne ne
a3 2b1na 2b1na
) S ) P Iy LT L T (4.40)
ne€Z 2bin | 2ban | 2b3n  keZ Lt dyy + dsy, nez Dn
201,03, bina2,
Vel = 37 2t gz = § o,
nez " nez "
Recall that d,,, = brn By (4.31), we obtain
bln
@2 2 i
nez neL nEZ
2 1 3) 2
¥ Z—d2 e WP~ Zd
ne
[Yi]* ~ Zblnalnv [V2]|* ~ Zblna2n7 Y3l ~ > brads,,
nez nel nel
(4.31)
|C1Y1 + CoYs + C’:’)Y:’)H2 Z bln 01a1n+02a2n+03a3n) . (4.42)
nez
By (4.41) and (4.42) the proof is finished. ]
4.4.1. Approximation of x,,, x3,
To approximate Ta,, T3,, we need several lemmas. Denote [, = d!.
Lemma 4.13.  The following five series are equivalent:
Yy (CZ_CSdn)Z 2
nez ne”L
e . Cgl ng
(ili-iv) Z T Z e, (4.44)
nez nel
ban 2 bg,n>2 _ ( s \/E)Q
(v) IE ,/b?m Vi) = > ) (4.45)
nEZ nez
where
dn = CQC (1 -+ Cn), ln = CgC{l(l + €n), 54 = 02051 > 0, ln:d;I (446)



288 KosyAK AND MOREE

Proof.  To prove (4.43) and (4.44) we get by Lemma 2.10 using (4.46)

(Co—Cudn)” _ Csen
Z 1+ 2d, _%1+20203 (1+cn) Z Ens

ne”Z ne neZ
(Caln—C3)*
Z 1420, _Zl+203 Y1+ep) Ze
neL ne
To finish the proof we make use of the following lemma ]

Lemma 4.14.  Let (c,)nez be a sequence of real numbers with 14 ¢, >0 and
(1+¢n)(1+e,) =1. Then the following three series are equivalent:

Z ((1 +en)?—(1+ en)_l/2)2 , Zcfl and Zei

nez neL neL

Proof.  Set s* = C,Cy ', replacing 1+ ¢, by (1 +e,)"! in Lemma 6.7 gives

Sas(s) = D (L ea) 2= (1)) =S (14 e)? = (1+e,) V) .

nez nez

2

2
Therefore “n_ — “_ and hence, by Lemma 2.10, the two series are
’ Z 1+c, Z 1+e, » DY ’
neZ nez
equivalent: Y o c2~>" el n

4.4.2. Two remaining possibilities
By Lemma 4.13 there are only two cases:
(1) when py(Cy, C3) = p3(Cy, C3) = oo for all (Cy, C3) € R?\ {0},
(2) when both py(Cs, C3) and p3(Cy, Cs) are finite and hence, ¥o3(s) < 0.

To illustrate this we start with the following example

Example 4.15. Set d, = n® for n € N with a € R. We have
o if a>0;
limd, = 1 if a=0; (4.47)
" 0 if a<0.

For the general sequence (d,)ncz we have four cases (if necessary, we can chose an
appropriate subsequence):

(a) oo

(b) d>0 with Y 2 =00
() d>0 with > ¢ <o0
(d) d=0

lim d,, = (4.48)
where d,, = d(1 + ¢,) and lim, ¢, = 0.
4.4.3. Cases (a), (b), (d)
Remark 4.16. In the case (a) we see by (4.37) that
pQ(CQ, 03) = pg(CQ, Cg) =00 forall (CQ, 03) < R2 \ {0}
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The case (d) is reduced to the case (a) by exchanging (bsy,, as,) with (bs,,as,). In
case (b) by Lemma 4.13 and (4.48) we conclude that

pa(Ca, —C3) = p3(Cy, =C3) =00 for  CHC5" > 0.

Hence, ps(Cy, C3) = p3(Cy, C3) = oo for all (Cy, C3) € R*\ {0}. Therefore, in cases
(a), (b) and (d) we get xay,, T3, 1 A>.

To finish the proof in these cases, it is sufficient to approximate one of the operators
Dy, 1<1r <3 by the operators (Ag,)rez using Lemmas 5.2, see Section 4.4.4. Al-
ternatively we can try to approximate Ds,, Dy, using Lemma 5.4 and its analogue,
see Section 4.4.5.

Note that by Lemma 4.9 we have lim,, by, = lim,, b3, = co. In the cases (a) and (b)
the conditions (4.30) are expressed by (4.48) as follows:

b = (1, ban, duban). Z ﬁ < 00, Z di =00, limd, =0,  (4.49)
b= (1,b9n, dbon (1 + c,)) Z <o Zc = 0. (4.50)

Indeed, to get (4.49) we observe that (4.30) are expressed as follows:

SI(B)NZ anlbgn _ Z b%,;ln <00, S3(3)~ Z i = 00.

n

The condition S5(3) ~ > d, = oo holds by lim,, d,, = co.
In order to get (4.50), we express the conditions (4.30) as follows:

Z bgndbgn 11 cn) Z p <o

Zd Zl+cn:oo7 53(3>den Z(1+Cn)200

The condition S(3) = oo holds by lim, ¢, = 0.

4.4.4. Approximation of D,,, 1 <r <3
By Lemma 5.2 we have for 1 < k < 3 (see (4.3)):

Din n AP & A =00, where A, :=A(Y;,Y,,Y,),

and {k,r, s} is a cyclic permutation of {1,2,3}. Recall that by (4.40)

IYilP ~ Y bimad,, Yell? ~ Y bindz,, (V3P ~ D bind,. (4.51)

ne” nez nez

Since ||Yi[|*~>", oz binai, ~ St; (1) =00, we have in consequence four possibilities
for yag3 1= (ya,y3) € {0, 1}%:
(1L0) (11) (1.2) (1.3)
w11 1 1

(4.52)
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In the case (1.0) we have A(Yy,Ys,Y3) ~ ||Y1]|? = oo, so we can approximate Dy,
using Lemma 5.3 and the proof is finished. We should consider the three following
cases: (1.1), (1.2), (1.3). In the cases (1.1), (1.2) and (1.3) we have respectively (see
the proof of Lemma 4.11)

A(Yb}é;}%) ~ A<}/h}/2>7 A(Y%YB’Yl) ~ A(B?E)? (453)
A(Y1,Y5,Y3) ~ A(Y1,Y3),  A(Y;, Y1,Y) ~ A(Y;, V7)), (4.54)
A(}/I7Y27}/E’))7 A(}/Q7Y37}/1)7 A(}/E%Yh}/é) (455)

By (4.40) and Lemma 4.9 we have respectively in the cases (1.1)—(1.3):

) 2
v12(Cy, Cy) := ||C1 Y1 + CoYsl|” ~ Z bin, (Clam + 02a2n) ) (4.56)

nez
2
v13(Cy, C3) == [|C1Y1 + C3Y3))* ~ Z bin (Olam + C3a3n) ) (4.57)
nez
2
I/(Ch 02, 03) = Z bln (01a1n+02a2n+03a3n> . (458)

nez

Remark 4.17. We have three cases (1.1.1), (1.2.1) and (1.3.1) according to
whether respectively the expressions in (4.56), (4.57) or (4.58) are divergent. We
can approximate in these cases respectively Dy, and Dy, in (4.53), Dj, and Ds,
in (4.54) all Dy, Da,, D3, in (4.55). The proof of irreducibility is finished in these
cases because we have D,,, Ta,, 13,723 for some 1 < r < 3. If the opposite holds,
we have three different cases:

(1.1.0)  [|C1Y1 + CyYs|| < oo for some (O, Cy) € R?\ {0},

(1.2.0) ||C1Y1 + CsYs|| < oo for some (Cy,C3) € R*\ {0},

(1.3.0) v(Cy,Cy,C5) < oo for some (Cy,Cy,Cs) € R? \ {0}.
Recall that by (3.28) we have

t2 b n 2 b n b n 2
SlL,23(Mat>5) = Z [45 + Szi + % (—2a1n+ta2n+5a3n) }
ne”Z n n

Remark 4.18. In the case (1.1.0) we have X" =~ 21—” = 00, because of
2n

Stag(pt,t,0) = 00, but v15(Cy, Cy) < 0o, and X' = oo, since

bin 1
SIL?)(M) = Z ; <2b3n +a§n> = 00,

nez
but ||Y3]|? ~ >°,.cz bina3, < 00; see (3.27) for the definition of SE (1).
In the case (1.2.0) we conclude that X' = oo, since Sy3(p,0,5) = oo, but

v13(C1, C3) < oo, and £!2 = oo, since

bin 1
Shin) =D % (5 +a3,) = o=,

neEZ

but [[Ya[* ~ 32

In the case (1.3.0) we have ¥'? = X% = oo, since S{p3(p, 1, 5) = 00, but we have

2
v(C1,Cy,C3) ~> 0 cpbin <Cla1n+02a2n+03a3n) < 00.

2
nez binas, < 00.
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So, it remains to consider only the three following cases, when Y!2=%13=00:
(1.1.0) (1.2.0) (1.3.0)
By Lemma 5.3 we have
Doy A & A(Yao,Yas, Yo1)=00, Dsnn A = A(Ys3,Y51,Ys5) =00
where the vectors Y, for 2 < r <3, 1 < s < 3 are defined by (5.12)—(5.13). We
can not prove that A(Yay, Yas, Y21) = oo or A(Yis, Y31, Yss) = oo. Therefore, in

order to approximate Djs, we are forced to prove Lemma 5.4 and its analogue for
D, , see Remark 4.21 below.

4.4.5. Two technical lemmas

Lemma 4.19. Let a1, ay € 15(Z) and Cyay+Chas €15(Z) for some (Cy, Cy) € R*\{0},
where a, = (arg)kez, 1 <1 < 2. Then we have

> Wi _ o, (4.59)
1+ a2,
keZ

Proof. We set Y, =a,, in the case (1.1.0) when C1Y;+C2Ys =h € [5(Z) with
C1C5y>0 (we have C7;Cy#0) we should take ay =—a;+h, in the case when C1Cy <0
2

we take ag=a;+h. The series ), , % will remain equivalent with the initial
2k

one, if we replace (C7,Cs) with (41,1) in the expression for h. Fix a small € >0
and a large NeN. Since |+ a+ b| < lal +1b|, we get

kEZ

(2.19) afk (2.17)
~ > =
keZZ 1+2|a1k||hk|+h2 Z 1+2|a1k|€+52 Z 1k

keZn

a
> 1k
ialk—Fhk) kZ: L+ a3y, + 2|aig||he| + R}

where Zy := {n € Z | In| > N}. The inequality (*) holds, since h € [y and we have
> ke i < € for sufficiently large N € N. n

Lemma 4.20. Let ay,as,a3 € l2(Z) and Cra; + Coas + Csag € I5(Z) for some
(C1,Cy,C3) € R3, C3 # 0, where a, = (ayx)rez for 1 <r < 3. Then we have

3 Gt B _ o, (4.60)
1+ a3,
keEZ
Proof. We set Y, = a,, in the case (1.3.0), we have Cia; + Caag + Csaz = h€ls(Z)
for some (Cy,Cy,C3) € R3, see Remark 4.17. We can take C3 = 1, then we have
a3 = —Cra; — Csags +h. When C; =0 or C’2 = (0 lemma is reduced to Lemma 4.19.
Suppose C1C; # 0. The series ), , ai’fﬁ’“ will remain equivalent with the initial
one, if we replace (Cy, Cy, Cs) with (%1, +1 ,1) in the expression for h. Fix a small
€ >0 and a large N € N. Suppose the opposite, i.e.,

2 2 2
00 > Z ajy + agy _, then oo > Z (|aik| + [azk|) ,
vez | (£ aik £ agp + hy) wez L (£ aik £ azk + hy)

y (] + lazel?
- —~ 1+ a?, + a2, + 2|laik||ask| + 2|a1k||hi| + 2]azk||hk] + B3
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(2.19) Z (laix] + |azx])? (;) Z (law] + |as])?
1+ 2]aig|[hr] + 2|azk||he| + b3 1+ 2(|arg] + [azk|)e + €2
= =
(2.17)

~' Y (k] + |azk])? = oo,

k€Zn

where Zy = {n € Z | |n| > N}, contradiction. The inequality (*) holds, since
h € l5(Z) and we have 37, _, hj < &* for sufficiently large N € N. n

Remark 4.21. It is possible to prove an analogue of Lemma 5.4 to approximate
D, with corresponding expressions Xo(D, s), X3y (D, s) and X3(D), 35 (D). If one
of the expressions 35(D,s), £3(D,s), X3(D,s) or Xy(D,s) is divergent for some
sequence s = (Sg)kez, we can approximate Dy, or Dsj and the proof is finished,
when S = (0,1, 1) in the cases (a) and (b). Suppose that for all sequence s = (si)rez
we have

Y9(D, s) + Xy (D, s) + 33(D, s) + ¥ (D, s) < cc.

Then, in particularly, we have for s = (s,4)pez, 2 < r < 3 with ’Q‘k =1
00 > y(D,s?) + %Y (D, sP) + 53(D, s%)) + %Y (D, sP)
~ 35(D) +35(D) + Eg(D) + 23(D) (4.61)
_ szk + a3, + 3 . T azy, (2.19) Z 2b2k + %k * 5, T O a3 . 2Y.(D)
g

Cr + afy + a2k + a3 % lek + alk ’

N Z blk + 2b1,a3;, + 7 bik £y 2b1ka3k (4.31) Z a2, +a3k . ¥a.(D).
1+ 2b1ka 1k k 1+ al

Remark 4.22. In case (1.1.0) (resp. case (1.2.0)) we have ||Y3]|* ~ >, ., a3, < oo
(resp. [|[Yal|® ~ >,z a3, < 00), therefore,

Cl2 Cl2
¥53(D) ~ E 1+22%k =00, Tresp. Xg3(D) ~ E 1+3sz = 00,
k ’ k

by Lemma 4.19, which is contradicting (4.61). In the case (1.3.0) we have four
possibilities:

(0) when 010203 7é 0, Char + Coas + O3CL3 =he lQ(Z),

(1) when C; =0 hence, CoC5 # 0, Coas + Csaz = h € 15(Z),

(2) when Cy =0 hence, C1C5 # 0, Cia; + Csaz = h € [5(Z),

(3) when Cg =0 hence, 0102 7é 0 Clal -+ CQCLQ =he¢€ lQ(Z)

In the case (0) we have 35,(D) = oo by Lemma 4.20, contradicting (4.61). In
the cases (2) and (3) we get X3,(D) = oo by Lemma 4.19, contradicting (4.61).
Therefore, one of the expressions y(D,s), X3(D,s), X3(D,s) or ¥y(D,s) is
convergent hence, we can approximate D, or Ds, and the proof is finished. To
study the case (1) we need the following lemma.
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Lemma 4.23.  Let C5Ys + C3Y3 = hog € Iy for some (Cy,C3) € (R {0})2 and
CY1+CyYs €1y or C1Y1+C5Y5 & 1y for all (C,C,) € (R \ {0}) then
AV, Y, Y3) = oo, (4.62)
Proof. To prove (4.62) we have by (2.15)

L(Y1) +T(Y1,Ys) + D(Y1,Ys) + (Y1, Ya, Y3)

AN, Y, Y;) = 14+ T(Y2) + T'(Y3) + (Y2, Ys)

) D(Y1,Y2)+T(Y1,Ys)  P(Y1,Y5) + T'(Y1, ¥s)
I

L4 (1+co)l(Y) +D(Ys) D(Yz) + IT(Y3)
(464) T(Y1,Ys) + T(Y3,Y3) (464) [(Y1,Y2)  P(Y1,Y5) _
2T (Y2) M) Ty O (4.63)
[(Yy)~T(Y3), since CyYs+ C3Y3=nh € ly. (4.64)

The relation (*) holds by the inequality T'(Ys,Y3) < eoI'(Y3), since CyYo+C3Y3€ sy,
the relation (4.63) holds by Lemma 6.3 for m = 2. To prove (4.64) we get since
Yé ¢ lQ and h € lz

L(Ys) _ ¥l _ [Yathl? _ <||Y2||+||h||>2 .
O I Y N Y e ]

If CyY; + CoYy & Iy for all (Cy,Cy) € (R\ {0})°, or if C1Y; + C5Y3 & Iy for all
(C1,C5) € (R {O})2, by Lemma 4.23 we get A(Y1,Ys,Y3) = oo hence, we can
approximate Dy, using Lemma 5.3 and the proof is finished. If C1Y;+ChY, =
hia € ly for some for (C,Cs) € (R \ {0})2 or ChY1+C3Ys = hig € [, for some

(Cl, Cg) S (R \ {0})2, then we have hiy + ahgs = C1Y1 + ChYs +Cg§/3 € Iy or
his + Bhis = C1Y1+C5Y, +C3Y5 € I, with C1C3C5 #£ 0 for an appropriate af # 0,
and we are in the case (0). [

4.4.6. Case (c)

In this case both po(Cy, —C3) and p3(Co, —C'3) are finite, i.e., we are in the case (2)
therefore, we can not approximate xs9,%o;, 3,73 by Lemma 5.1. By Lemma 4.13
Yo3(s) < oo and hence, Y93(Cy, C3) = co. Indeed, reasoning as in Remark 3.3, we
see that

MLT23(¢’S> Lo, ¢e€ [0,271'), s>0 & 223(8) + 223<02,C3):OO, s> 0, (465)

for (Cy,C3) € R?\ {0}, where To3(¢h, ), Ta3(s) and Xg3(Cy, C3) are defined as
follows:

cosd) s?sing 0 1 0 0
Ti2(p, 8)=1| s~ Sinqﬁ —cosqS 0 To3(¢,8)=10 cos¢  s’sing |, (4.66)
0 s

“2sing —coso

(s Jﬂ s e R\ {0}, (4.67)

'lﬂ

nEZ

neEL



294 KosyAK AND MOREE

In this case there are four possibilities for the pair (X%, %13):

(2.1) (B'%,21) =(0,0), i.e., 2 < 0o and B < 0o,

(2.2) (212, 213) =(0,1), i.e., Y12 < 00, but U3 = oo,
(2.3) (B'2,213) =(1,0), i.e., X = o0, but 1 < oo,
(24) (B212,28)=(1,1), ie, X =00 and T = 0o.

Lemma 4.24. In the case (2.1), i.e., when (X'2,X13) = (0,0), we can approxi-
mate D,, for 1 <r <3, hence the representation is irreducible.

Proof. Let X2 < 0o and '3 < 0o we have by (4.38)

v(Ch,Cy, C5) ~ Z bik(Cray, + Coragy + C3a3k)2
ke
t2 by | $2bie o bk

2.1 3.28
ST [Ee sl V(0 tan + sa)?] 2 St t,5) = oo
kEZ

Hence, D1, Ds,, Ds, n 23 and the proof is finished. ]

Remark 4.25.  The cases (2.2) and (2.3) do not occur.

Indeed, by Lemma 4.13 the three series Yp3(s) (defined by (4.67)), > _, 2 and

nezZ -n
4
> nez €o are equivalent where Sbﬂ = (14+¢,), see Lemma 4.14. In the case (c) we

3n

have >, ¢2 < oo, therefore, lim, ¢, = 0 and hence,

b2n

lim, d;! = lim, =s51>0.
3n
Recall that d, = 22 = 22" But this contradicts (X212, %13) = (0,1), or (X2, 213) =
3n 3n

(1,0), since the two series
=> dy and V=1 dy!

should be equivalent by lim,, ;li" = 5% > 0. In the case (2.4) we have

3n
223(8) < 00, 223(027 Cg) o0, Y2 =3B = . (469)
To approximate D,,,, we need to estimate v(Cy, Cy, C3) defined by (4.36). By (4.38)

we have
V(Cl,CQ,Cg Zb1n<zoarn> .

nez
Since |[Y1||* = Y, ez binat, ~ ST (1) = oo, in the case (2.4) we have four possibilities
for yas 1= (y2,y3) € {0,1}?:
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Remark 4.26.  The cases (2.4.1)-(2.4.3) are not compatible with the condition
223(02, 03) = oo for all (02, Cg) € RQ \ {O}

So it suffices to consider only the case (2.4.4) when y1235 = (1,1,1). The case (2.4.4)
splits into two subcases:

(2.4.4.1) when Xj5(s12) <00 (resp. Yi3(s13) <o0) for some 19, s13 > 0,
(2442) when both 212(812) = 213(813> = oo for all S19, S13 > 0.

The case (2.4.4.1) does not occur. Indeed, we have in this case X13(s12823) < 00
(resp. X12(s13853 ) <00) since

Y12(812) < 00 S [igst p.0) ~ H(be0),  223(523) < 00 S it p,0) ~ H(bs,0)
where 14, 0)=®nezip,,,0) for 1<r < 3. Therefore,
H((s12523)4b1,0) ™~ H(b3,0) Y13(5125923) <00

Similarly, if ¥13(s13) <oo and Ya3(s93) <oo we have

Histgbr0) ~ a0y Pisggha,0) ~ Hioa0) = H( ~ [i(b,0)

(8135531 )4by ,0)

hence, 212(31332_31) < 00. But condition X13(s12593) + 212(81332_31) < oo contradicts
the first condition of (4.30). Indeed, we have by Lemma 4.14

bln -2 b2n>2 2 2 bln
DY , [ == A\ ~ E c 00, SHu/—==1+4c
12 b2n bln " < ’ b2n + "
nez
bln -2 bi’m>2 2 2 bln
) )~ E <00, 8§4]/—==1
13 bsn V bu Zh ’ b I
ne

and lim,, ¢, = lim,, f,, = 0. This contradicts S1(3) ~ >_

< 00. Indeed,

'fle b3

2

lim n_ — 5~ lim (1+c)*(1+ f)=s*>0.

n—oo 021,03y n— 00

Finally, to finish the case S = (0,1,1), we need to consider only the case (2.4.4.2)
when 212(812)2213(813) = oo for all S12, S13 > 0.

By (4.30) and all the previous considerations we have the conditions:

81(3)N anbsn <00, SQ( ) biTZOO’ Sg(S)N bz—nzoo,
S(Cy, C) = 00, X2 = %?:m,zwz Zj:m, (4.70)

212(812)2213(813)200 for all S12, S13 > 0, 223(823) < oo for some So3 > 0.

Remark 4.27. By (4.17) we can suppose that (by,,bay,, bs,) is replaced with
(1, doy, ds,) without loss of generality. Since ¥a3(s) < oo, using notations (4.45)
and (4.46) of Lemma 4.13

_ 5> Vd, 2 [dan QM%Y
Z23(5) = ; (ﬁ &2 s )

and taking into consideration (4.70), we can choose dy, and ds, as follows:
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d, = jz—zzs‘*(lwn), D el <o, Z% < oo, Zdi = dy=oc0. (471)

b,
n b2nb3n

) 1
Since Y. 2 < co we have ) ~ E . and the measures fi(4es ) and
n
n

fas,0) are equivalent, where

H(ds®,0) = Pnlb(sidan (14cn),0)>  H(d5,0) = Onll(s1da,,0)5

hence, we can choose ¢, = 0 and s = 1. So, to finish the case S = (0,1,1) we
should prove the irreducibility for b = (1, day,, doy)nez with the only condition:

Zd;,f < 0o0. Since d, =1, we have Zd;l = Zdn:oo. (4.72)

Example 4.28. The pairwise conditions

3
1C Y, + CYs||? =00 for1 <r<s<3 donotimply || X:C’TY}H2 = 00.
r=1
Let a,, = ar_, for n € N and a19 = 1, agp = 2, agp = 3. We define a,, for
n € N as follows

2 n=2k+1 1 n=2k+1 _
aln_{l n = 2k ’ a2n_{2 n = 2k ) a3n:3- (473)

Then we have clearly for arbitrary (C,Cs, C3) € R?\ {0}

||Cl(11+020,2||2200, ||016L1+C3a3||2200, ||CQCLQ+C3CL3||2:OO7 (474)

but a;+ay —a3=0 hence, |la;+ay—asl|*=0. (4.75)

Example 4.29. Let us consider the measure ,u?bm with a = (am)rn from
Example 4.28 and b = (byy, bay, b3,) defined as follows:

bln = 1, dQn = dgn = \n\ for neZ \ {O}, dzo = dgo = 1. (476)

Lemma 4.30. In Example 4.28 we have (for n € N only)
A(al,aQ,ag) = 2, A(ag,ag,al) = 2, A((Ig,al,QQ) = 2, (477)
where a, = (A )nen, 1 <1 < 3.

Proof. Set a.(n) = (ay)j; for 1 <r <3 and n € N, then for 1 <k <r <3

D(ag(m)~T (a1 (n) + ax(m)) ~n, T(a(n), a,(n)) ~ ")

We observe that I'(ag, ar + a,) = ['(ag, a,) for k # r. Since a3 = a1 + ay we get

, (a1, az,a3)=0.

I(a1) +T'(a1,a2) + (a1, a3) + (a1, as,a3)

A(a1,G27a3) = 1+ T(az) +T(a3) +T'(az,as3)

['(ay) +T(ay, a2) + '(ay, a1 + az) + (a1, a2,a1 + az)
1 +T(az) +T(a1 + a2) + I'(az, a1 + az)

_ F(al) =+ 2F(CL1, 0,2)
1+ F(ag) -+ F(a1 + (LQ) + I‘(al, (12)

=2
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I'(ag) + I'(as, a3) + ['(ag,a1) + T'(ag, as, a1)

Alaz, az,a,) = 14T (a3) + T'(a1) + I'(as, a1)

F(az) —+ F(ag, a1 + (12) —+ F(GQ, al) + F(a27a1 —+ as, (11)
1+T(a1 +a2) +I(a1) + (a1 + a2, a1)

_ F(a2) + 2F((12, (11) —9
1+ T(a; + az) +T'(a1) + T(az,a1) ’

Alag, ay,a9) = I'(a3) +T'(as, a1) + (a3, a2) + ['(as, a1,a2)
3y W1, U2 1+F(a1)+r(a2)+r(alaa2)

I(a1 +a2) +T'(a1 + az,a1) + T'(a1 + a2, a2) + T'(a1 + a2, a1, a2)
1+ F(al) + F(CLQ) + F(al,ag)

_ F(a1 +a2) +2F(a1,a2)
1+ F(al) + F((IQ) + F(al, CLQ)

= 2.

We use two facts for 1 <r < 2:

1_‘(a/la a2)

o) = and I'(a; +az) < T(ar) +T'(az) +2¢/T(a1)I(az).

The first relation follows from Lemma 6.3 for m = 2, since ||Cia; + Coasl|* = co.

We get F(ah GQ) . P(al(n)v a2(n))
T(a) Jim. ~ T(a(n))

Recall that ['(a) = ||a]|?. The inequality follows from ||a; + as|| < [Ja1|| + [Jaz||, i-e.,

\/F(al + CLQ) S \/I‘(al) + \/F(ag) |

By Lemma 3.5 we have

= OQ.

(o)™ L 1oy & EE() = TF(1) + Sa(t) = o0,

where Y (t) and X,(t71) are defined by (3.18) and (3.15). In Example 4.29 we can
not approximate x»,, xs3,, since in this case we have

AN YY) =1 AP )= 1 (4.78)
Indeed, by (4.34) we have

3 3 3
_ o)+, v

2 2 2
) = L) +T (3>, v4?)

AP Y A V)

1+ (V) 1+ DY)
In Example 4.29 we have d,, = %= =1 and hence, by (4.41) we have
dan
@2 1\t @2 d, _ N1
nez nez nez nez
W~ g =2 I~ Y =
2 a2 + 2d, 37 3 d2 + 2d, 3
nez nez nez nez
Therefore, I'(Y;?, Y3(2)) = T(Y?)(?’),YQ(S)) =0, and
AV Y@y DD Ay@ yy o DY)
2073 Lr(v®) 502 1+1(v,)
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Since by, =1, by (4.42) we get

I~ Y, Yl ~ Y, VI~ S ad,, s we have

nez nez ne”L

(4.38) > 2 ’ 2

V<01702703) ~ Zbln<zcrarn) = Z < Crarn> .
nel r=1 neZ r=1

But in Example 4.28 there does not exist some ¢t € £SL(3,R) \ {e} such that
v(C1, Cy, C3) =00 for all (Cy,Cy, C3) eR3\{0} to approximate some D,,,.

4.4.7. Approximations of zo,z9, + 3,23 in the case (c)

Since we can not approximate s,Ts, T3,T3 using Lemma 5.1 in the case (c), we
shall try to approximate xoys, +s*ws,23. by an appropriate combination of Ay, A,
for n € Z. Let s =1, the general case is similar.

Lemma 4.31.  For any k,r € Z one has
(mzka:2r+x3k:c3T)1 S <AknArn1 | n e Z) = A(Y(Q), Y(1)>:OO, (479)

T b’l"’n
where Y( )= <m>nEZ’ 1<r<2, /\n:(bln + bap + b3n)2 - b%n

Proof. The proof of Lemma 4.31 is based on Lemma 6.5 for m = 1. We study
when (2orxo, + T3p23.)1 € (ApnAml | n € Z). Since
AknArn = (xllen + kaD2n + x3kD3n)<x1rD1n + xQ’I‘DQH + xSrDBn)
= z121, DY, + Toror D, + 2333, D3, + (216T2r + Toy1r) Din Doy,
+ (z1p23r + T3k21y) DinDan + (T2x23 + T3622,) Don Dan,

and MD? 1= —b,,/2, for 2 <r <3 we take t = (t,)" as follows:

n=—m

(t, bz) = (t, bg) = 1, where ¢ = (tn)m b2 = —(bgn/Q);n:_m, b3 = —(bgn/Q);n:_m.

k=—m>

We have [|[ Y tnApnArn — (22172, + 2362s,) | 1]

n=—m

=13 tulewes DY, + aaas (D3, + %) + 2y (D + %)

+ (z1xT2r + T2k ®1y) D1n Do+ (21523, + T3521,) D1 D3y
+ (zorxs, + I3k$2r)D2nD3n] 1

- Z (fos fOtnti=: (Agmpat, 1), where Agpi1=(fn, fi)ni=—m> (4.80)
—m<n,l<m
=1 1<i<i<3

f:‘zj = (fL'ik:ij + xjkxir)DinDj"]"

for 1 <i<3,1<i<j<3.Since fi' L f9,  f9 1L f9 for different (ij), (i'5'),

n
writing 1

Ckn, = kanHZ — T + azn,

we get
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(fos fn) = ZHJ”HQ S A = ewen3 () + exen2( )

2
1<i<j<3
b3n\ 2 bin ban
+ C3kc3r2(7) + (C1rCar + CopCrr + 201,02, G201, ) > 5
bin b3n
+ (C1wesr + cspcrr + 2a15a3,a301,) ; ;
bon b3n
+ (CorCsr + CaxCor + 2a04a3,a5a2, ) ; ;
bin b
~ (bln + b2n + bSn)27 (fna fl) = (frafl ) = C1kC1r ; ?1! ~ blnbll-
FinauYa we get (fna fn) ~ (bln + b2n + b3n>27 (fn7 fl) ~ blnblla n 7é L. (482)
Set /\n = (bln + an + bSn>2 - b%na gn = (bln)7 (483)
then (fas fo) ~ A+ (Gny gn)y (fas 1) ~ (g, G1)- (4.84)

For Agmi1=((fn, f1)),__ and by=by=—(by,/2)__, € R¥™! we have

A2m+1 - Z AnEnn—i_’Y(gfm:?gOaagm)

n=-—m

To finish the proof, it suffices to use Lemma 6.5 for m = 1. [ |

Remark 4.32. In case (c) we can approximate TopZa, + T3pZs. since we have
AY®, YD) = o0

By (4.79) we have

A(Y®,y Wy = IVE)HTE®,v) - L)

[+ Ty ES VL)
since T'(Y®) =00 by Y T < oo and I'(YW) < 0o. Indeed,

(2) — ~ d%n (2 19) —
) Z)\ Z 1+2d2n — do,, + d3, D dan = o0,

ne”L nez nez

(4.79) 1 (471)
ryw) =y L (H%n Zd2n+d2 Z

ne”

2007

Lemma 4.33.  Let {r,s} be a cyclic permutation of {2,3}, then for all k € Z

2
Tkl € ((Topoy + Tapxsn)l |n €Z) < o,.(u) = Z 1#"2 = 00. (4.85)
nez 2brn Con
Proof. Recall the notation ¢,, = %—i—afm. Since we have Mxs5,1 = as,, we take
t=(t,)™ _  asfollows: (t,as) =1, where ay = (ag,)™ _, . For r =2 we get

| [Z tn (TonTon+T3k23n ) — Tapton | 1))* = || [Z tn (T2n(T2n — a0 ) + 3523, | 1]

n=—m n=-—m

= [lwa 1] Z (o — a20) 1] + [Jza 1| Z tawsn 1

n=—m n=—m

By (6.1) we get (4.85). ]
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Remark 4.34. Suppose that o9(p)+0o3(p) < co. This contradicts Yo3(Co, C3) = 00
for (CQ, 03) € R? \ {O}, where 223(02, Cg) is defined by (468)

Proof. Indeed, we have

az, az,
OO>02<M)+U3(M):Z 1 _'_21 2 +Z 1 ; ~

_1 _1 2
€7 2b2n, 2b3n + a3n €7 2b2n + 2b3n + a2n
2 2 2 2
A5, + A3y, -~ Ao, + A3, (4.71) 2 b (a2 s )
§:1+1+a2—|—a2 2:1 1 _1—1—3—42:2” 2n 3n/-
cZ 2b2n 2b3n 2n 3n c7Z 2b2n 2b3n nez

This contradicts Y93(Cs, C3)=00. Indeed, by bs, = sy, (see (4.71)) we have

223(02, 03) = Z (022 + C§s4)b2n(C’2a2n + Cgagn)2 < 0. |
nez
Finally, we have oy(u) + o3(u) = oo, and therefore we have z,,n A* for some

2 <r < 3. Let z3,n A3, then we can approximate x, by combinations of xa,Tas,
k € 7Z using an analogue of Lemma 4.6. To approximate D,,, 1 < r < 3 we again
proceed as in Section 4.4.4. As in (4.51) we get

P~ ) ad, Vel ~ ) as,, [IVa]*~ ) a3,
Y1l
ne’l neL nel

Indeed, for example, by (4.5) we get

a? a? 472
M= e = e Y Yl

1
nez len 2b2n 2b3n nez 2 d2n nez

Again, as in (4.52) we have four possibilities: (1.0), (1.1), (1.2) and (1.3). The
corresponding expressions in (4.56), (4.57), (4.58) become as follows:

2
v12(Cy, Cy) = ||C1 Y1 + 02Y2H2 ~ Z (Clam + 02a2n) )

ne”

2
113(Cy, Cs) = ||C1 Y1 + C’3Y},||2 ~ Z (Claln + Csa3n> ;

ne”L

v(Ch,Cy, C3) = Z <C1aln+02a2n+c3a3n> 2-

nezZ

To study the cases (1.1.1)—(1.3.1) we should use Remark 4.17. We can approxi-
mate in these cases respectively Dy, and Dy, in (4.53), Di, and Ds, in (4.54)
all Dy, Day,, D3, in (4.55). The proof of irreducibilty is finished in these cases
because we have D, Ton, T3, n A® for some 1 < r < 3. Following Remark 4.21
we can use Lemma 5.4 and its analogue to approximate D,, and Ds, with cor-
responding expressions Yo(D, s), X3 (D,s) and X3(D), X¥(D). If one of the ex-
pressions Yo(D,s), 3Y(D, s), X3(D,s) or X3(D,s) is divergent for some sequence
s = (Sg)kez, we can approximate Do, or D and the proof is finished. Suppose
that for any sequence s = (si)rez We have

Y9(D, s) + Xy (D, s) + 33(D, s) + £ (D, s) < cc.
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Then, by (4.61) we have

1 2 1 2 1 2 2
> SY(D) = Soor T G2k T 35, T A3k Zon T Q2 T a3 (4.72)
o0 23 - 1 +a2 - 1 +a2
i b1 1k & 2 1k
2 2
E :a2k+a3k —.ya (D
- 1+a%k . 23( )

To study cases (1.1.0)—(1.3.0) we should follow Remark 4.22.
4.5. Case S = (1,1,1)
Denote by Y123(8) = (Z12(s1), Las(s2), L13(s3)), (4.86)

where s = (s1, s2,53) and X;;(s) are defined by (4.67) for 1 <i < j < 3. In terms
of Remark 4.4, we have 2% possibilities for ¥193(s) € {0,1}3:

0) M 2 B @) 6) ©) (7
212(81) 0 0 0 0 1 1 1 1
223(82) 0 0 1 1 0 0 1 1
213(53) 0 1 0 1 0 1 0 1

The cases (1), (2) and (4) and respectively the cases (3), (5) and (6) result from
cyclic permutations of three measures (D, 1?43 defined as follows:

M(r) = ®7LGZILL(b'rn7a'rn)’ ]' S r S 37 Mér) - ®nEZM(bT’nvO)’ 1 S r S 3 (487)

The cases (1), (2) and (4) can not be realized. We prove this only in the case (1). By

Lemma 6.6 we have Y15(s1) < 00 < u((]l) ~ uéz) and Yo3(sg) < 00 & ,ugf) ~ ,u(()g)

hence, u(gl) ~ u((f), that contradicts ¥q3(s2) = 0o & u(()l) L ,u(()?’). Finally, we are left
with the three cases (0), (3) and (7
the case (0), i.e., X123(s) = (0,0,0
the case (3), i.e., X123(s) = (0,1,1
(s

the case (7), i.e., X1a3(s) = (1,1,1

)

)

4.5.1. Case Xjo3(s) = (0,0,0)
In the case (0), we have for some s = (s1, 2, 53) € (R+)3
212(81) < 00, 223(82) < 00, 213(83) < Q0.

In this case we get Mél) ~ /182) ~ Mé3). By (4.17) we can make the following change

of the variables:

ban b3n
bln b2n b?m RN blln b%n bg/‘)n — 1 12?7 17?7 .
A1n  A2n  A3n a/ln Qon,  A3p AinV bin, aon V bin asn \% bin
Remark 4.35. By Lemma 6.7, we can suppose that

b:(blna b2n7 bSn)nEZ:(1> 1 + Cn, 1 + en)néZa Zci < 00, Zei < 0. (488)
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But the two measures fi(4) and prq) are equivalent, where b is defined by (4.88)

d
o T:= (1,1, 1)nez. (4.89)

Finally, it is sufficient to consider the measure ji,).

Example 4.36. Let by, = by, = b3, =1, n € Z.
(a) Take a, = (a1p, agn, as,), n € Z as it was defined in Example 4.28:

|2 n=2k+1 1 n=2k+1 _
Q1p = 1 n=2k ) 2n — 2 n =2k 3 azp =

Then a; + ay — az = 0, where a, = (a4 )nez-

(b) Take any a, = (ayn)nez such that ay,as, a3 ls(Z), but Cra;+Coas+Csas €15(7Z)
for some (Cy,Cy, C3) € R3\ {0}.

Example 4.37.  Let by, = by, = b3, =1, n € Z and a = (a1, azn, a3, )nez such
that ay,aq,as & l2(Z), but the measure uf’b o) satisfies the orthogonality conditions.
The case ¥193(s) = (0,0,0) is reduced to this example.

Remark 4.38.  Since the measure 0) is standard in Example 4.36 and 4.37,

b
i.e., it is invariant under rotations £0O(3), we have
(u?ho))Lt = gy forall te=£0(3). (4.90)

By Le‘mma 3.7, the orthogonality condition (4, )" L i, ) for t € £0(3)\ {e},
is equivalent to
ZT(t) + Ba(t) = oo,

where X7 (¢), ¥ (t) are defined by (3.17) and X5(#) is defined by (3.15). By (4.90)
we get YE(t) < oo in Example 4.36 and 4.37 hence the orthogonality condition
(U3 )"t L 13y gy for t € £0(3)\ {e} is equivalent to Yia(t) = co. Further, to prove
the irreducibility in Example 4.36 and 4.37 we should show that 3,(t) = oo for all
t € £0(3) \ {e} implies

||Cl}/1+02§/2+03y})||2 =00 for all (Cl,CQ,Cg) ER3\{O}

Lemma 4.39. (1) The representations corresponding to the measures in Exam-
ple 4.36 (a) and (b) are reducible.

(2) The representations corresponding to the measures in Example 4.37 are irre-
ducible.

Proof.  To prove part (1) of the lemma, by Remark 4.38 and (4.90), we should find
for the measure in Example 4.36 an element ¢t € £0(3) \ {e} such that ¥o(t) <oo.

This will imply (,u?bm)]“f ~ ,u:(”b@) hence, the reducibility.
Finally, it is sufficient to find t€ £0(3) \ {e} such that
MC MOy M\Cs
t—1= (201 XC X\C;|, (4.91)

A3C1 AsCy A3Cs
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where (C1, Cy, C3) = (1,1, —1), in part (a), or for an arbitrary (Cy, Cy, C3) € R*\{0}
in the part (b). Such an element exists by Lemma 4.40 below. For such an element
t we get respectively in the cases (a), (b) and Example 4.37 (see (3.15)):

So(t71) = 3 (010A? + 02023 + b3,A2) (a1 + 20 — a30)” = 0,

nel
Zg(t_l) = Z(bln)\% + bgn)\g + bgn)\g) (Cﬂlln + Cgagn + C3(13n)2 < oo,
neEL
Eg(t_l) = Z(blnA% +b2n)\§+b3n>\§) (Cla1n+02a2n+03a3n) 2 =00. (492)
ne’

Note that the measure in Example 4.36 does not satisfy the orthogonality conditions.

(2) Irreducibility. In Example 4.37 we can not approximate z,, by Lemma 5.1,
since all the expressions

1 1 1 2 2 2 3 3 3
AV Y VY, AP v v ), A v v

are bounded. To approximate D,,, using Lemma 5.2 we should estimate the follow-
ing expressions:

A(‘Yi’}/é,}/é), A(E?%?H)? A(%?E?E)'

Following Lemma 6.3 for m = 2, all these expressions are infinite, if we have for all
(01, 02, 03) eR? \ {0}

) (Cla1n+C2a2n+C3a3n)2
v(C1,Cy, Cs) = [|[C1Y1 + CoYp + CYa|P =) = = o0,
nez 2b1n 2b2n, 2b3n,

In Examples 4.37 we have

v(Cy,Cy, C3)=||C1Y7 + CoYs + 0353||2NZ bin(Crayy, + Coagy, + Caazy,)?

kEZ

~ Z(bmﬁ + ban A3 + b3, A3) (Cras, + Caasy, + 03a3n)2 =t N =0cc. =

nez

Lemma 4.40.  For an arbitrary element (Cy, Cy, C3) € R3\ {0}, and an arbitrary
Ds(s) = diag(si, s2,83) with (s1,82,83) € (Ry)3, there exists a unique element
te+0(3) \ {e} and (A, A2, A3) € R*\ {0} such that

. AMC1 ACo N\ C3 A 0 0 111 cCi 00
Ds3(s)tD3'(s) — 1= (,\201 A2C> )\203> :< 0 A2 0 ) (1 1 1) ( 0 Cy 0 ) : (4.93)
A3C1 A3Ch A3C3 0 0x/ \111 0 0 Cs

Proof. By (4.93) we get
€1 tll tlg t13 C'l)\l +1 %02)\1 %03)\1
ex | i=t=|tar tox toz | = | 2C1Aa Cada+1  32C3A | (4.94)
es 31 t32 33 SCA3 203 Cshz+1
where |lex]*=1 and e, Le, 1<k<r<3, (4.95)
By (4.94) and the first relations in (4.95) we get

28%019
s2C% + 5303 + s3C3 7

Ao = — 1<k<3. (4.96)
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Then the matrix elements ¢ = (t4)},_, are defined by (4.94). To verify ¢, L e, we
need to show that

(8%012 + 83022 + S%C%)/\l)\g S%Cl/\Q + S%CQ/\l

(617 62) = + = 07
5182 S182

(61, 63) _ (5%012 + 83022 + S%C%)/\l)\g + 5%01/\3 + S%C;;/\l _ 0’
5153 5153

(62, 63) — (8%012 + 5%022 + SgCg)Ag)\g + 5§CQA3 + S%CQA?) — 0
S$283 5253

Indeed, for example, for (e, e3) we have

5152 8152

(e1,62) =

1 2 92 2 2 2 2
= 4s7s5 — (2s5s 2s755))C1Cy = 0.
3132(s§05+s§c§+s§cg)( 153 — (2753 + 25753) ) (1C

The proofs of e; L e3 and ey L e3 are similar. [ ]
Similarly, for any m > 2 we can prove the following lemma:

Lemma 4.41.  For an arbitrary (Cy)i, € R™\ {0}, and D,,(s) = diag(sx)p-,
with s, € Ry, 1 < k < m there exists a unique element t € £0(m) \ {e} and
(M), € R™\ {0} such that

MC MGy o MG,
D(s)tD, ) (s) — 1= | 21 A0 AOn (4.97)
AnC1 AnCa oot ACpy

The formulas for the corresponding A\, are as follows:

- —QSick(i 5203) Col<k<m (4.98)
r=1

4.5.2. Case 2123(8) = (O, 17 1)
We have for some s; € R, and all (s9,s3) € (R+)2: Yo3(s2) = 00, Xi3(s3) = .

Remark 4.42.  Since ¥15(s;) <00, by (4.17) and Lemma 6.7, we can suppose

b= (blna b2n7 b3n)n€Z: (L 5411(1+Cn)7 b3n)ﬂ627 Z Ci < 00.

n

Therefore, we can take b = (1,1,b3,)nez, s=1, ¢, =0.

2

Since Li3(s) = 3,0y (= — X ban )2 = 00, we have as in (4.48) three cases:

Vb3, 52
(a) oo
limbs, =¢ (b) b>0 with 3 b= oo, (4.99)
! () 0

where b3, = b(1 4+ b,) with lim, b, = 0 in the case (b).
Note that condition S5(3) = oo, implies > b3, = co. Indeed, by (4.6) we have

b, (217)
51(3)252(3):Zm:oo, co=S55(3)=) il > 6, (4.100)

nel nez nez
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b2
By (4.4) we have Y2 = rk
v (44) Il % b2, + 2(binbon + binbsn + banbsy,)’

b2
Y2 = rk SFET.
H " H kEZZ bgk + 2(b1nb2n + blann + b2nb3n) ’ #
Let us denote

Y(l) Y(l) Y(l) S S _ 1 b3n
n 2n 3n \/3-5‘147@%1 \/3+14b3n \/73;41;3”
3n
Yl(i) Yz(j) Y:),(j) = /3+4b3, V3+4b3, V3+4bs,, (4.101)
Y(3) Y(3) Y(3) 1 1 b3n
In 2n 3n Vb3, +4bsn+2 /b3, +4bsn+2 /b3 +4bg,+2

We have AV, vV, v{Y) = A2, V{2 ¥?) < 00, indeed, since ¥? =¥,? we
get for example
AFD, YO vy = (v ) + T(v?, v?)

< 1.
1+ T + () + (v, v )

Lemma 4.43.  In the cases (a), (b) and (c) given by (4.99) we have

AV VP 7)) = . (4.102)
Proof. In all these cases we have Y1(3) = Y2(3) hence, F(YB(?’), Yl(g), Y2(3)) =0 and
T'(v\® v®) = 0. Therefore, by (2.15)

3 3 3 3 3
) + (v, v + rv?, vi?)
1+ D) + (v

3 3 3
AW YY) =

) +or @ v ) Ay, (4.103)
1+2F(Y1(3)) 3 41

We have two cases:

(a.1) when ||Y1(3)|| < 00, and (a.2) when ||Y1(3)|| = 00. In the case (a.1) we have

A(Y})(?’),Yl(g)) ~ F(}g(3)) = 00. Therefore, (4.102) holds. In the case (a.2) we should
verify that

1C1YY + O3V Y|P =00 forall (Cy,Cy) € R?\ {0}. (4.104)
Then this will imply (4.102). We have

2
Ite: v® 4o Y(3)||2 _ Z (C1 + Csbsy) _. Zg
1 373 — Bt by +2 T

If C; =0 or C5 =0 the later expression is divergent since Yl(?’) = Y3(3) = 00. Let
C1C3#£0. In this case lim, g, = C% > 0 since lim,, b3, = oo, case (a).

Therefore, » _, gn=00. By Lemma 6.3 for m=1, this implies A(Y}fg), Yl(?’)) =00,
therefore, (4.102). In the case (b) we have by (4.103)

AV Y ) ~ A v ).

To prove that A(}g(?’),yl(?’)) = oo using Lemma 6.3 for m = 1 we should verify
(4.104). We have ||Y{¥||2 = oo since S = (0,1,1). By (4.101)

)2 _ 1 -~ 1 _
V= 02+ dbay + 2 P Rk
nez neL
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The expression [|C;Y,® + C'3Y3(3) |? can be finite only for (C}, C3) = A(b, —1). Take
A =1, we get in the case (b)

2 _bdn b2b$7«
HOI +C3 H 252 + 4bs,, + 2 Z b2(1 +b,)2 +4b(1 +b,) + 2

(2.19) b2 (2.17) 2 _
Z(4b+2b2)bn+b2+4b+2 Zb”_oo‘
neL nez

In the case (c), we have by (4.103)
A(Y3(3)7 Yl(?))7 Y2(3)) ~ A(Y})(g), Y1(3)>‘

To prove that A(Y(3 (3)) = oo using Lemma 6.3 for m = 1, we should verify
(4.104). Again, we have ||Y |2 = oo since S = (0,1,1). Because of lim, by, = 0,

we have by (4.101)
@3)2 _ 1 ~N 1o
¥ _%b§n+4b3n+2 Zz_oo’

neZ
Let C1C3 # 0, then since lim, b3, = 0 we get
2 —1\2
(3) 32 (C1+C3b3n) o C3 (b3n+C103 ) o -
GV + Y71 = 3 b3, +4bg,+2 2 0, +dbg 2

nez ne

By Lemma 4.43 we can approximate z3,. By (4.5) we have

2
2 ai, o a1 _ 2b3na%n
I =3 P = Y e = Y
3n

nez 2b1n 2b2n kEZ 2b3n kEZ
2 2
||Y'2||2 o Aoy, o 2b3na%n ||YE’;||2 - § : gy, o § : 2b3na§n
_§ : 1 _§:1+Qb ) o 1 1+ 2bsy,
nez 1+ 2b3n  keZ an nez 1+ 230 keZ an

Therefore, in the cases (a) and (b) we have

Vi~ at, Vel ~ ) a3, Vsl ~ ) dd,,

keZ keZ keZ
In the case (c) we get

IVilP ~ Y banatns 1¥ell? ~ D bandd,,  [Y5] ~ ) bsndd,.
kEZ keZ kEZ

Since in the cases (a) and (b)

||}/1||2 ~ Zaln Zblnaln ~ S )

neL nez
”}/2”2 ~ Zagn = Zb2nagn = S%Q(IU’) =
neL neZ

we have two possibilities for ys3 := (y2,y3) € {0,1}?, see Section 4.4.4:

(1.1) (1.3)
Y1 1 1
Y2 1 1
ys 0 1
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In the case (c) we have ||Y3]]* ~ Zbgnagn ~ Sk(u) = oo.
neZ
Therefore, we have four possibilities for yi := (y1,y2) € {0,1}?, see (4.52),

(1.0) (1.1) (1.2) (1.3)

yi O 1 0 1
ys 1 1 1 1

Further, in the cases (a) and (b) we have four possibilities: (1.1.1), (1.3.1) and
(1.1.0), (1.3.0), see Remark 4.17. In the case (1.1.1) we can approximate D1, Da,,
in the case (1.3.1) we can approximate all D,,,, 1 <r < 3. In these cases the proof is

finished, since we get respectively Dy, Doy, 3, n213. The cases (a) and (b) subcases
(1.1.0) and (1.3.0) are considered below.

In the case (c) subcase (1.0) we can approximate Ds, using Lemma 5.2, since
A(Y3,Y5,Y)) ~ ||V3]|* = oo, so we have Ds,,x3, 72>, and the proof is finished.
Further, in the case (c¢) we have six cases (1.1.1), (1.2.1), (1.3.1) and (1.1.0), (1.2.0),
(1.3.0), according to whether the corresponding expressions are divergent, see Re-
mark 4.17. We can approximate in the three first cases by respectively Dy, and
D3, in the case (1.1.1), Dy, and D3, in the case (1.1.2) and all Dy, Da,, D3,
n (1.1.3). The proof of irreducibilty is finished in these cases because we have
respectively Dy, Dap, 23, 0243, Doy, Day, 23, nA3, or Dy, Doy, Day, 23, 7 2A3.

If the opposite holds, in the cases (a), (b) or (c), i.e., we are in the cases (1.1.0),
(1.2.0) and (1.3.0) respectively, we try to approximate Ds, using Lemma 5.4. If one
of the expressions X3(D, s) or Xy (D, s) is divergent, we can approximate Dgj, and
the proof is finished, since we have s, Ds, n 23. Let us suppose, as in Remark 4.8,
that for every sequence s = (sy)rez

Y3(D, s) + X3 (D, s) < cc.

2
Then, in particularly, we have for s©) = (s;)zez With ;—kk =1

1
5o T a
2b 3k
00>%3(D, s+ 5y (D, s®) ~55(D) + S5 (D Z Ck+a%2+a§k+a§k
i

(2.19) o agk oo a3 vt
~y =y e =Sy (D). (4.105)
— 5 tal g tay, S 1+af +ag,

In the case (a), (b) and (c) we have respectively

1 2

5o T a
Vit (DY) ~ YD) — 2a3;, VD) = N sk | 3k
(D) Z3(D)_Z1+2a§k+2a§k,’ = (D) Zl+afk+a§k'

In particular, in the case (c) we have by (4.105)

+ a 2
o= Z Sy T O S Z — %k ~%(D). (4.106)
k

1+ a? + a3, 1+ a3, + a3,

The cases (a), subcase (1.1.0), where ||Y3||* < 0o can not occur, because conditions
Y19(s1) < 0o and v13(Ch, Cy) < oo defined by (4.56), contradict the orthogonality
condition for the matrix 715(¢, s) defind by (4.66).
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Indeed, by Remark 3.3 (instead of uf, , we can write uf, )

()27 L iy 0y Sa(s) + S1a(Cr, C) = 00
where X9 is defined by (4.67), and ¥,5(C1, Cs) is defined by (4.68).
212((717 02) = Z(C%bln—i-cgbgn)(Cla1n+02a2n)2 ~ 1/12(017 6’2)7

ne’l

oo > 212(8) =+ V12(01, Cg) ~ 212(8) + 212(01, CQ) = 00, (4107)
which is a contradiction. In the case (a), (b), subcase (1.3.0) we get X3 (D) = oo by
Lemma 4.20, a contradiction with (4.105) hence, D3, n2?. In the case (c), subcases
(1.1.0) and (1.2.0) we have respectively ||Y5]|?> < oo and ||Y1]|*> < oo hence,

2 2
S(D)~ Y B =00, (D)~ Y o = oo
k k

1+a3, 1+a3;,

by Lemma 4.19, one gets again a contradiction with (4.105) hence, D, n2A3. In the
case (c), subcase (1.3.0) we get

2
BHD) = Y e =
k

1+ af), + a3,
by Lemma 4.20, which is contradictory with (4.105) hence, D3, n2>.
4.5.3. Case Xqa3(s) = (1,1,1)
We have for all s = (s12, 523, 513) € R \ {0}
Yia(s12) = 00,  Yoz(se3) =00,  Xi3(s13) = 00, (4.108)
b= (b1n, ban, b3n)nez v (1, dan, d3n)nez-
Recall that, see (4.31), we denote D,, := d;! 4+ ds + 1 and d,, = Zg—z. Set

1) (1) ) - Lo i

Y, Y, Y, V2D dandsn V2D ndandsn VI2Dndandsn
(2) (2) 2) | _ 20 &n
3 3 3 2n 3n

Yy, Yy, Ys,

Remark 4.44. For (r,s) such that 1 < r < s < 3 the following equivalence

hold:
Yrs(sps) <00 & Zcﬁs7n<oo & Zcﬁm<oo, where (4.110)

neZ nel

brn — bsn : brn
b = S?“s4<]' + CT'S7n)7 b :Sﬁs(]‘_’—csﬁn)’ hnl b
sn rn n sn

€ (0,00).  (4.111)

Proof. By Lemma 6.7 we have

b’r‘n — STL TS ,n
er(srs = 72"5“ ben 2\/ Tn 1+crsn NZ Crsm
nez nez nez
ZST(Sil 72 T"’L V :Z 1 +82:f' n ~ Z srn'
nGZ
Note also that 1= dmben _ (14cps, n)(l—i—cs,,n) ] (4.112)

S
(=

3

sn ¥r
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By Remark 4.44, the condition ¥,4(s,s) = oo holds in the following cases:

(a) o0
4 ~ 2 _
lg :=lim = = EE)) Srs 0> 0 with 3 ez € = 0. (4.113)
(d)  lim does not exist

Remark 4.45. In the case (d) we can use the fact that some subsequence of
(b—"> has property (a), (b) or (c¢). We can avoid the case (c¢). Namely, if I, =0
€z

brn

for some pair (r,s) with 1 < r < s < 3, we can exchange the two lines (b, as,)
and (b, a.,) to obtain Iy = oo,

Formally, we have 3% = #(A)#5) possibilities where A = {(21),(32),(31)} and
B = {(a), (b),(d)}. Since l32lo; = l31 we get only the following cases:

e\(rs) (21) (32) (31)
(1) b b b
(2) a a a
(3) a b a
(4) b a b

To be able to approximate x,, for 1 < r < 3 we should study when the following
expressions are infinite:

pe(Ch, Ca, C3) = [|C1 Y + CoY" + Covi7 |12, (4.114)

By (4.109) we have

C1 + Caday, + Csdsy,
pr(C1, Cy, C3) = Z‘l = sdanl”, (4.115)

Where Cln = 1+2Dnd2nd3na an = d%n—l—QDndgndgn, an = d§n+2Dnd2nd3n

Consider the case (1)=(bbb). We prove the following lemma.

Lemma 4.46.  Assume, that (4.108) holds for all s = (S12, Sa3, S13) € (R+)3.
Then A,V v, V) = AW v 7)) = AV vV vi) = 0. (4.116)

Proof. For 1<r <s<3 set

bsn
b’!"ﬂ

:Sﬁs(l_’_csr,n) with Z C?r,n = 00, lim Csrn = 0.

n—00
nez

For by, =1 we have

bay, = 5112(1 + Co1n), b3n = 5%3(1 + C31.m)s

4
bsn,  sT3l+cain
ban, sty 1+ co1n

} : } : 1+c31, )2 2 :<631n—021n>2 } : 2
c ( _ e Pt A Lo ~ C —C =OQ.
32,n 1+C21n 1_"_0217” ( 21,n 31,n)
n

n

= 533(1 + C300), Cson =
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Finally, we get

Zcmn 00, Zc3ln—oo 2021” C31.n)% = 00. (4.117)

n

By (4.114) and (4.115) we get

pr(Ch, G, C) = |C1Y," +CoYy " 4+ oYy | = Z'Cﬁ(’?dgﬁ%'

_ Z |C1 + Casiy(1 + ca1n) + Cssi5(1 + c31,0)[?
CTTL )

n

The latter expression is divergent if Cy + Cysy + Cssi3 # 0 since lim,, Com =
lim, o0 c31., = 0 and Ay < G,y < Ay If Cy + Costy + Casiy = 0 we get

pr(Cr, Gy, Cg) = 3 1otz - Cosiseanl’ _ ) (0, Cy). (4.118)
neZ ™

The latter expression is divergent by the first two relations in (4.117) when 1)

0203>O,2) ng()andC’g#O,?)) CQ%O&HngIO. IfC203<OW€
have by the last relation in (4.117)

\0284112021 n — 035%3631.71|2 4 4 2

E : — ~ E |02512C21,n - 03313631,n = 00,
Crn

nez nez

since (12, $13) = i(52,33) € (R*)? are arbitrary.
Consider the case (2)=(aaa). Now, see (4.113), we have

=00, Ilz=lim Z— =00, therefore, Iy =lim 23" =00. (4.119)
n in n 2n 1n

Since by, = 1 we conclude that

loy=limdy, = o0 and I3 =limds, = oco. (4.120)
Therefore, we get for some C' >0 and all n € Z
1< Dy =14 (dan) ™ + (dsy) " < C. (4.121)

By (4.114) and (4.115) we obtain

|C1 + Caday, + 03d3n|2
C’I‘Tl

pr(Cr, G, Cy) = OV +CoY D+ CoyV P =3

n

C—i—Cdn—i—Cdn
-y Ol Gl 0, 0,

Where C;”n =1+ ngndgn, C;n = d%n + 2d2nd3n, Cl d?’)n + 2d2nd3n.

™™

We should study when p/(C}, Cs, C3) = 0o for some 1 < r < 3:

Z |C1 4 Coday,+Csdsn|? Z |C1 4+ Caday+ Csdsy|? Z |C1 4 Coday,+Csdsn|?
1+ 2ds,dsy, d%n + 2ds,, dsn, d%n + 2ds,d3n,
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d3n

Writing as before d,, = 5. -1, we get
1 (C1, Co, C ):Z |C1+Cadap +Csdgy, |* _Z |d - +02+O3d ? Z |Ca+Csd,|?
P11, L2, Us 1+ 2dondsn d2 + 2d, 2dp, 7
n 2n

/ _ |C1+Cadan+Csdgn|* | -+ +Csdy 2
p2(017 027 03) - Z d%n + 2d2nd3n - Z 1+ an

n

|CQ+03d | / o |Cl+C2d2n+CBd3n|2
Z 1+2d, ° Pa(Cr; Ca, Cs) = Z 42, + 2dapday,

¥ | CL 4 Co+Csd,|? Z |Co+Cd, |2 Z |Caly+C5?
& 1 2d, &2 + 2d, 1+20,
n

By Lemma 4.13 we get when C,C3' > 0

, Co— 03d 2N IC=Cady?

)01(01,027 Z Z 1+ 2d, ZC ~ 223
Co—Csd,

ph(C1, Cy, — Z' i+23d i Zc ~ Yas(s (4.122)
Col, —Cs3)?

pg(Cla027 Z | i+2l 3| Zen ~ 223(8),

n

where d,, = CoCy (1 +en), by =030 (1+e,), s'=C05! >0.
But Yy3(s) = oo for all s > 0, therefore for C,C3' > 0 we have
pr(Cy, Coy, —C3) ~ os(s) = oc. (4.123)
If C,C5* > 0, by (4.122) we get

|02+03dn‘2 ‘02_C3d|
> 1+ 2d, >Z 1+ 2d, ZC Bas(s
n

|02+C3dn‘2 |02_C3d"| b
Z 1+ 2d, Z 1+ 2d, ZC 2(

|Cal, +cg|2 |Caly, —C? _
Z 1+20, Z 1+ 20, ~ 2 Taals) = oo

n

Therefore, pr(Cl,CQ,CE}):OO for every (C1,Cy, C3) eR?*\{0}.
Consider the case (3)=(aba). Now, see (4.113), we have
{57 =1lim Z— =00, I3p=lim ban < 00, therefore, I3;=Ilim Z?’—" =00.
n In n 2n n In

So, we have again, see (4.120)

l21 =lim dgn = 00, and lgl =lim dgn = OQ.

We are reduced to the case (2).
Consider the case (4)=(baa). Now, see (4.113), we have

lo1=limdsy, < o0, and [3;=limds3, = oo.
n n

Hence (4.121) holds too and we can use all estimations of the case (1). ]

Remark 4.47. In the cases (1)-(4) by Lemma 4.46 and Lemma 5.1 we can
approximate x,, for all 1 <r <3 and n € Z and the irreducibility is proved.
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5. Approximation of Dy, and xg,

5.1. Approximation of z, by A,.Au

For m = 3, consider three rows as follows

bin bz ... biy
b21 b22 e an
bs1 bz ... bay

Set A7) = (by, + b 4 bap)® — (B2 + b3 + 0% —0%), r=1,2.3, k€ Z.  (5.1)
Denote by V) the following vectors:
ffi? = b/ )‘1(:)7 kez, Y= (xsg))kez. (5.2)
Lemma 5.1.  Forany n,t € Z and 1 <r <3 one has
TenTpl € (AnApl [k € Z) & AY YD ¥") = oo,
where {r,s,l} is a cyclic permutation of {1,2,3}.

Proof. The proof of Lemma 5.1 for » = 1 is also based on Lemma 6.5 for m = 2.
We study when z1,21,1 € (A Al | kK € Z). Since

Ak Ave = (21, D1k + T2n Do + 35, Dag) (216 D1 + T2t Do + 3¢ D3y
= xlnxltD%k + l’znﬂ?%D%k + SUsnSUsthk + (1ot + Tanw1t) D1 Do +

(123t + T3nT14) D1k D + (Xonxar + T3nT2r) Dok Dy,

and MD?1 = —”17’“, we take t = (t;) as follows:

-3 al =) =1,
k=—m
b m m
where t = (t;)7~_,, and b’ = —(%k)k:_m ~b=(big)p_,,-

We have

m m b
H[ Z tkAnkAtk_xlnwlt}]-HZZH Z 173 [x1n$1t<D%k+%k> +$2n$2tD%k

k=—m k=—m

+$3n$3tD32,k+(901n$2t + 2on014) D1 Doy + (21023t + T3n,211) D1 Dy,

+<:U2nx3t + x3nx2t)D2kD3k:| ]-HQ = Z (flm fr)tktr = (AZm—i-lt? t)a

—m<k,r<m

where Aoyt = ((fi, fr)):;:,m and fr =301 ff + Dicicjes [y
. by ij
fk = TrnLyt <D3k + 7k51r> 1, k] = (ﬂ?mxjt + ﬂfjnﬂfit)Diijkl (5-3)

for 1 <r<3, 1<i<j<3.
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Since f; L f,ij, f,ij s f,ilj/ for different (i), (i'j'), writing
1

Ckn = ”I‘kn||2 - % + azrﬂ
we get
3 i i 2 bus 2 bk 2
o f) =M+ X 1 = emen2(22) + canear3(2) + cancass
r=1 1<i<j<3
bar \ big b
X (%’“) + (clnc%—i-clthn + 2a1na2ta1ta2n) %k%k-k (C1nC3t+C3t01n+2a1na3ta3ta1n)
bix b bag b
X %’“%’“ + (C2n63t+63t62n+2a2na3ta3ta2n) %k%k ~ (big + box, + b3k)27

boy. bay b3k b3,
(fr, fr) = (f;i f,?) + (f;?, ff) = CZnCZt%k% + CSnCSt%k% ~ bagbar + b3iba,.

Finally, we have
(fis fr) ~ (bug + bag + bax)?,  (fr, fr) ~ Dogbar + bagbs,, &k #r. (5.4)

Set Ai = (big + bog + bsp)? — (02, + %), gk = (bag, bsp), (5.5)
then (fk7 fk) ~ )\k + (gkagk)a (fka f?“) ~ (gk? TT)' (56)

For Asmir = ((fir fr)) o and b= —(by/2)_,, € R¥™ ! we have

A2m+1 = Z AkEkk+7(g—maagO>7gm)

k=—m
To finish the proof, it suffices to invoke Lemma 6.5 for m = 2. [ |

5.2. Approximation of D,, by A,

We will formulate several useful lemmas for the approximation of the independent
variables xy, and operators Dy, by combinations of the generators A;,. The
generators Ay, have the following form:

Agn = 16 D1n + Top Dan + T3 D3y, k,n € Z.
For m = 3, consider three rows as follows

aij; a2 ... Qip

B 1 1 1
21 Q922 ... Q92p ... and set )\k = 21x + P + 2bgk. (57)
aszr azz ... Qgp
Denote by Y7, Y, and Y3 the three following vectors:
LTrf = drk ke Z, Y, = (xrk)kez. (58)

Vol
The proofs of Lemma 5.2 and 5.1 are based on Lemma 6.5 for m = 2.
Lemma 5.2.  For any | € Z we have

Dyle(Ayl | keZ) < A(Y,, YY) =o,
where {r,s,t} is a cyclic permutation of {1,2,3}.
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Proof. Without loss of generality we may assume that » = 1. We determine
when the inclusion

D1 € <Akn1 = (xlkDIn + Top Doy, + ZL’3kD3n)1 | ke Z>

holds. Fix m € N, since Mz, = ay, we put » -~ tpay, = (t,b) = 1, where
t=(tp)r_,, and b= (a1x)7~_,,. We have

m

I Z tr(z1 D1 + ToxDan + w36 D3n) — D1y ] 1]

k=—m

= | Z trl(@1k — a1x) D1n + T2x Dan 4 w3 D3] 1|

k=—m

= Z (.fka fr)tktr = (AZm—i-lt; t)a
—m<k,r<m
where Agpni1 = ((fi, fr)):;:_ma and fi = [(z1x — a1x) Din + Top Dan + 31 D3,]1.

1 b
201, 2

L 2 bQJ <L 2 )b3n ~ 1 1 1 2 2
+ (25% + a2k> 2 + 2b3g, T s 2 2b15, + Qb + 2bak + ay, + agy,
(fis fr) = ([(%k — a1) D1n + 2ok, Day, + ZE3]€D37J 1, [(mlr — ay,) D1y,

+ Z9r Doy + 933rD3n] 1) = (zox1, w2, 1)(Dan1, Doy 1) + (2341, 23,1)

We get (fi, fx) = || [(z1r — a1x) D1p + 2oy Doy, + 23, D3] 1] =

an bSn
X (D3n1, D3, 1) = Qo Q2r == + Asklsr =~ ~ A2ka2r + A3kA3;-

Finally, we have

1 1 1
(fis i)~ o=+ 5 —+ 5 +azet+asy, (fur fr) ~aokas, + aspas., k#r.  (5.9)
1k 2k 3k
1 1 1
If we denote AL = R + ST gk = (Qak, asi), (5.10)
then we have (fes o) ~ M+ (gks 9x), (o fr) ~ (Gks 9r)- (5.11)

For Ay, 1 = ((fk,fr»kmrz_ma and b = (a1x)7~_,, € R**! we have

AQm—l—l - Z AkEkk+7(g—ma7907vgm)

k=—m

To finish the proof, it suffices to apply Lemma 6.5 for m = 2. [ |

5.3. Approximation of Dy, by z,.tAk,
Set for {r,s,t} a cyclic permutation of {1,2,3}:

3 3
r 1 1
)\,(€ ) — (2brk —l—afk) (Ck—l— E alzk,> —a,%k( E a?k), Cr= E T (5.12)

I=1,l#r I=1,l%#r =1

1 2
- +aj ks Ao Qi
YTTZ(W) 7Ym:( rk _’f) : Yrt:(””_") . (5.13)
A ke VA kez VA S ke
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Lemma 5.3. Foranyn € Z and 1 <r <3 we have
Dl € (xp Al |k €Z) < AY,, Y, V) =0
where {r,s,t} is a cyclic permutation of {1,2,3}.
Proof. We prove for r = 1. We determine when the following
D11 € (21 Apnl = (22, D1y, + 21420 Doy + 113031 D3)1 | k € Z)

holds. Fix m € N, since Mz3, = +a1k D cg, weput (6,0) = >0 ey =1,
where t = (t;)7~_, and b= (clk) We have

k=—m k=—m"

I Z tr(23, D1 + 1ok Doy + 213236 D3s) — D1y ] 12

k=—m

= || Z Uk [(ﬁk — c1k) D1p + 21322k Doy, + xlka‘SkD?m} 1|?

k=—m

= > (fe fo)tete = (At 1), where Agpyr = ((fi fo)) 10

—m<k,r<m

and fx = [(fﬁfk — Clk>D1n + 21Tk Doy + 931k$3kD3n] 1.

Since M|y — M|||* = My?* — |[My|* we have

2 3 1 2 4 2 1
M a2, — cpl® = Mzt — 2, = — 2 = 7< 1 )
‘xlk Clk‘ Ty — Clg e +62b1k ayy, + g — Ciy 51 \ 21k + 4afy

hence, we get

(fos f) = || [(37%1@ — 1) Din + 21021 Doy + xlkﬂfszsn] 1) =

1 bin by, ba
2b1k <2b1k +4 1k> +C1kC2k +Clk703k ~ Cig <Ck —+ a2k —+ a3k>
1
(fis fr) = <[($1k - <2b + a1k>>D1n + X1k Zok Dan + 371k5133kD3n} 1,

[(ZE%T N <2b + a1r>>D1n + mlTxQTDQn + xlrx3rD3ni| 1) —
1r
(x1£1, 21,1) (xor 1, X9, 1) (Do 1, Doy 1)+ (2151, 21, 1) (2311, 23, 1) (D3, 1, D3, 1)

boy, bay,
= Q1k01, Aok G2y =" + Q1pG1rAgklsr = > Q101 (Qokao, + A3kas3,).

2

Finally, we have
~( L 2 L 1 1 2 2 )
(fx, fr) <2b1k + a1k> (2b1k 3 T g TG T a3 (5.14)

(fis fr) ~ a1rar,(agkas, + agpas,), k # 1.

Set

W _ (1 1 1 1 2 2 ) 2.2 2
A’ = ( ta )(%lk T Son T 2y T %2k T Bk ayy(ayy, + azy),

Ik = alk(agk, asy), then (5.15)
(fir fi) = AV + (g, 08) (oo fo) ~ (g 90), K #7
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For Agpy1 = ((fk,fr))zlr:7m, and b= (ay) = € R*™ ! we have

A2m—|—1 - Z AkEkk_{—’y(g—mang?agm)

k=—m

To finish the proof, it suffices to apply Lemma 6.5 for m = 2. [ |
5.4. Approximation of D,, by exp (isk(xrk — ark))A;.m

Lemma 5.4. We have

D31 € (sin (sp(zs — ask)) Awnl | k € Z) & 3(D, s) = oo, (5.16)
D31 € (cos (sp(zsr — ask)) Akl | k € Z) & E§(D,s) = oo, (5.17)
where ¥3(D, s) %W, Z ITE;Z?”“S:’“”Q ) (5.18)
moreover, Y3(D,s®) Z Ck+a1:j:ka2k T (5.19)
and %Y (D, s®) Z ck+a1ﬁka2k+a3k (5.20)
where s8) = (s31)r with Z‘E—: =1, k € Z and n3x(sk), 13x(Sk), gr(sk), g (sk) are

defined by (5.26)—(5.28).

Proof. = We shall try to obtain separately the real part and imaginary part of
ME&s(s), where E3p.(sy) = ixsy, exp (z’sk(x;;k — agk)) . Setting

Fy(s) = / exp (is(z — a))dpgp,q) (),
R
. 52
we obtain Fy(s) = / exp (isz)dpp,0)(z) = exp < - @>, (5.21)
R
where dpip.q) () and dpe)(z) are defined by

b _bz—a b —bo
dpvp,a) () = \/;e ==0)’ gz and dpvp,0) () = \/; b . (5.22)

Therefore,  H,p(s) :/imeis(m_a)du(bﬂ)(x):/i(x—i—a)eismd,u(b,o)(x) (5.23)
R R

de()erF() (_%Jria)exp(_%, (5.24)

Recall the Euler formulas

e =cost+isint, e " =cost—isint, (5.25)
eit 4 =it ] ot _ it
cost = sint = .
2 ’ 24

More precisely, we denote for 1 <r <3

Nek(8) = Xpp, COS (sk(xgk — agk)), N (8) = @,y cos <8k($3k — agk)). (5.26)
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We determine when the inclusion holds:
D31 € (sin (Sk($3k — agk))Aknl = (:clk sin (sk(xg,k - CI,3k>)D1n
+ T sin (s (s, — ask)) Dan + T sin (sk (23, — CL3k))D3n> 1|kez),
D31 € (cos (Sk(l’gk — a3k)>Akn1 = (xlk cos (Sk(ﬂfgk — agk))Dm
+ 9y €08 (s (23 — asr)) Dan + 3y, cos (s (w3 — ng))D3n> 1|keZ).

Set
gr(sk) = (mk(sk)Dln + 2k (sk) Dan + [13 (55) — Mg (si) | D3n> 1, (5.27)

¥ (51) = (M (1) i+ (51) Dan+ [ () = Mg (50)] Dan )1, (5.28)

We show that

1 2
Mipge(s) = =5 (Haol) + Hoo(5)) = gexp (= 5= ), (5:29)

M) = 5 (Hasls) = Hoa(9)) = amesp (= ). (5.30)

Using the function Fy(s) defined by (5.21) we get
Mn(s) = / Z sin (s(x — a))du(b,a) () = /(x + a) sin(sx)dpp,0) ()
R R

sz _ gmisw 1 . ST —1ST
= /R(l' + a)%du(bﬁo) () = -3 /Rz(x +a) (e —e )d,u(b,o)(x)

= —E(H b(s) + H, (8)) = iexp(— i)
2\ b 2b )’

implying (5.29). Similarly we get

MnY(s) = /Rxcos (s(z — a))dpp.a(z) = /(SL’ + a) cos(sx)dpup,0) ()

R

1

=5 / i(z+a) <em + e_isx)dﬂ(b,o)(m) = %(Ha,b(s) - Ha,b(8)> = ae_fTbv
R 1

implying (5.29).
Fix m € N, we put >, t;Mnsp(sg) = (¢t,b) = 1, where t = ()7 _,, and
b= (Mns(sk))i_,,- We have

10D tesin (se(wsk — azk)) A — Do) 117

k=—m
= 3t () Du + mon () Do + [ (51 — Mingi(58)] Do ) 1)1
k=—m
= 3" Ellge(si)l?. since (Dml,Dln1>:O, 1<r<i<3 (5.31)
k=—m

where the g;.(si) are defined by (5.27). In order to calculate ||gx(sx)||* note that
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lge(s)* = (gi(s). 9e(50))

= ((mr(51) Drv -+ () Do + [1oe(s1) = Moae(s1)] Do) 1,
(m0e(51) D + 1 (31) Don + (1) = Maa(s1)] Dan) 1)

= [z 2|1* [l sin (i (w3x—aze) ) L[| DreL |+ oo 17 | sin (si (256 —az) ) 1| Dae 1|

1 bin
* <M|nk”(3k)|2 - |M771m(3k:)|2> Dy 1[f* = <72b1k + a%k) ="
ban, bs,,
* (2b2 T 2k)[3 : <M|77kn(5k>|2 — \Mn,m(sk)]Q)%. (5.32)

We need to calculate Iy = || sin (s (zs, — ask)) 1%, M|nea(sk)* and [ Mg, (sk)[*.
On setting a := asg, b:= b3y, we get

—isT ,—1iST __ ,iST

I3 = || sin (sk(xgk — agk))1||2 = / € _2: ¢ _22.6 dp,0) ()
R

o 1 eQism_"_e—Qisr (521) 1_6_%
T2 /R<1‘ ) dneo (@) 2 (5.33)
M S _ Sk 4
Minn(s0)|? = / (o + 200+ a?) T T (@)

R 1 —21

1 eQis;c + 6—21'31:

= /(1:2 + 27a + a?) (1 — f>d,u(b7o)(x)
R
1 2isx —2isx
=3 [/(xQ + a2)d,u(b,0) (r) — /(m2 + cﬁ)% dptp.0) (:13)]
R R

_ 1L 2 EER(2s) o } “ﬁl)l[i 2_ 1 [(25>2_2}
2 [2b + g2 Oh2s)| =g g e g b
,ﬁ 2 ,ﬁ 1 1 2 ,ﬁ 52 ,ﬁ
xe b —a‘e b}:ﬁ[(%+a)(1—e b)—i—b—Qe b} (5.35)
Finally, we have
2 2 1 1 2 ,ﬁ 82 ,ﬁ 82 ,ﬁ
M (i)l = Mg ()2 = 5[ (5 + ) (L= e %)+ S | = 2 e, (5.36)

By (5.39),(5.32), (5.33), (5.36) and (6.2) we prove (5.16), where
2 sk

Z | M 1er (s1)]
ae(si)l2 H2
Sk ko7 23y,

:Z 4b

iz (i +ah) s + (7 + a%)fs%n - (Mn(50) 12 = [Mrpn(50)]?) e

2

Sk
5k by,
w2, ©
~> . —=
_ %k 52 52 s
k€Z 1-e "3k 1 e AP St T
5 Cik + car ) + 5 |eau(l —e 3k)+@e w| = gpe T
2
x% e ’%k

1 1—e—%h Tk a2 oy Ik
Cig + con ) 3 [car(1—e ’“)"’@6 Ml T @6



KosyAKk AND MOREE 319

2
S .
where 7 = o and ¢ = ﬁ +a?,. For 23 = (x3), with 2, = 1 we get

1
e 2
2?)(D7 I(3)) = Z l—e—1 1 1 1
keZ ~ (Clk+c2k> [Csk( —e )+ @671] T € 2
1 -1

_ Z T
1—e—1
2

1 — 1, -1
kez <Clk + car, + C3k> + @(e I—3e 2)

1
(2.11) 2b3k 2035,
~Y pr— pr— Z D .
Z Z Ck + alk 3( )

2 2 2
e Ci1i + Cop + C3 + a5 + Qs

So, we have proved (5.19) for © = (z), with xx = 1. To approximate Ds, in terms
of functions involving cosine, fix m € N, and put > ;" t,Mny (sx) = (t,b) =
where t = ()0~ _,, and b= (Mn3,(sk))i We have

k=—m"

[ Z ty. cos (Sk<.’ll'3k — agk))Akn - D?m] 1"2

k=—m

= 3 (0 Du + 155 Do+ [0 (51) — Mg (54)] Do ) 1)1
k=—m

= Z 2119 (sk)||?, since (Dml,DZn1> =0, 1<r<1<3, (5.37)

k=—m
where the g)(s;) are defined by (5.27). To calculate ||g)(sx)]|*> we have
lgi (si)lI* = (gx (i), g¢ (sx))
= <(771k(5k)D1n + 11, (3) Dan + [130(s8) — Mz (s1)] Dan) 1,
(7% (5%) D1 + 3, (51) Do + [n3(s%) — Mngk(sk)}D?m)l)
= llz1k1]1? [ cos (sk(wse —azk)) LI | DueL||*+ (o2 1]*]] cos (se(wae —ask)) 1| Do ]*

1 bin
+ (Ml ()P = (M, () ) Dot = (55— +ab ) 25

1 ban, bs,
+ (W + a§k> L=+ (M|77z¥n(8k)l2 - IMnZn(sk)F) - (5.38)
2k

I* =

We need to calculate Iy = || cos (isk(zsr — asi)) 1%, MnY,(se)|* and [MnY,(si)]*.

Let us set b := bs;. To approximate Ds, in terms of functions involving the cosine,

fix m € N, and put > 7"t Mny.(sx) = (t,b) = 1, where t = (t,)j~_,, and
b= (Mngy.(sk))i_,,. We have
[ zm: tj. cos (Sk([[‘gk — a3k>)Akn — Dgn} 1/
k=—m
=17 (1) D1+ mi(50) D + (1) = Mgy (50)] Do ) 1
k=—m
= zm: 2 lg (s)||?, since (Dml,Dln1> =0, 1<r<i<3, (5.39)

k=—m
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where the g)/(s;) are defined by (5.27). To calculate ||g)(sx)||* we have

)
l9x (se) 12 = (g1 (51), g (51))
(5 D+ 15, (91) Do + [l (51) = Mg (56)] Dan) 1,
(1Y (58) D + 15, (51) Do + [1m5() = M ()] D) 1)
= sl cos (se(wan — azi)) 1P| Dt
+ [l LI cos (s(war — age)) 1 Dar |
+ (Miny ()2 = (Mg (30) ) [ Daed | = (55— + b ) 1y 22
(g + a3 ) 12+ (M, (s = M () 22 (5.40)
We need to calculate Iy = || cos (sp(zsr — ase)) 1%, Mny,(sk)|* and [Mny,(sk)]?.

Setting a := asg, b:= b3, we get

isx+ —1isT —isa:+ 15T
Iy = [lcos (su(am. — aa)1* = [ AL g 0)
R

2 2
1 622'5:6 _|_672isx (5.21) 1+ 67%
= 2/R <1 + f> dppoy(z) =" =, (5.41)
2
M ()2 = adexp (= o5 ), (5.42)
2b3y
v 9 9 9 eisw+e—isw e—isw+eisx
Ml (0 = [ @+ 200+ a2) 2 = (@)
R

1 2isx —2isx
=5 /(352 + 2za + a?) (1 + %) dvp,0) ()
R

2isx —2isx

1 +
=3[ [@ + duoafe) + [ (@ +at) EEE ; e
R R
171 9 d?Fy(2s) 9 } (5.21) 1[ [<2s>2 _ 2}
_s2 _s2 1{/1 _s2 2 2
xe v +a’e b]:§[<2—b—l—a2>(l+e b)—Z—Qe b]. (5.43)

2b ds?
Finally, we get

v 2 v 2 1 1 2 _s2 s2 _s2 2
Min (sl = M ()P =3 | (55 + @) 1+ e7%) = o] -5 (5.44)

By (5.37), (5.38), (5.41), (5.44) and (6.2) we prove (5.17), where

\ |M771m Sk
%5 (D, s) Z o ||2

_ Z azy, exp(—si/2bsk)

= (g rad) I+ (g +a3) Iy 5+ (Ml (si) [P = [ Mg, (si)[2) %

2
azy, eXP(_QZﬁ)

~Y

$2
1+exp(f—k) $2 $2 $2 $2
Tb(clwc%)% [eon(1rexp(— k) — 7 exp(— k)| — a exp(— k)
a2, exp(—x2/2)
_ Z 3 T = =Ny(D,2), (5.45)
kE€Z (Clk —I—c%) —|—% [C3k(1 +e ) — ﬁe‘xk] —a%ke_T
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3)

2
S .
where 72 = & and ¢, = ﬁ +a?,. For 23 = (x3), with 2, = 1 we get

b3

v 3)) —
E3<D,ZE )_Z 1

1+ _ 1 _ 9 1
keZ ; <C1k +Czk) + = |:Cgk( +e 1) _ ae 1} — a5e 2

D=

2
a3i€

1

az.e"?
- Z +671 1

kez “3 (Clk + cor, + 03k> - (ﬁe—l + a%ke—§>
@I\~ e a2, V(D )
%Clk‘f’cgk—‘ngk B Z Ck+a1k+a2k+a3k - 3( ) (5 6)
So, we have proved (5.20) for x = (zy) with x = 1. -

6. Appendix

6.1. Some estimates and the generalized characteristic polynomial

Lemma 6.1 ([23]). For a strictly positive operator A (i.e., (Af, f)>0 for f #0)
acting on R™ and a vector b € R"\{0}, we have

. 1
min ((Aa:,a:) | (z,b) = 1) = @) (6.1)
-1
The minimum s obtained for x = (Afilbbb) . In the particular case A = diag(ax)}_,

we get

i%%ll (Zakxk | kabk = 1> (Z 21) : (6.2)

Definition 6.2.  For a matrix C' € Mat(n,C) and A = (A\;)}_; € C" define the
generalization of the characteristic polynomial pc(t) = det (tI—C'), t € C as follows,

see [26]:  Po(M) =detC()\), where C(X)=diag(A1,..., )+ C. (6.3)

We calculated in [30] Po(A), C71(\) and (C~'(N)a,a) for an arbitrary n.

Fix two natural numbers n,m € N with m < n, two matrices A,,, and X,.,,
vectors g, € C™ 1, 1 <k <n and a € C" as follows

a1 a2 ... Qip
Amn _ a921 a9 Aon ’
Umi Ama - Qmn
5]
=] ® |ecm?, a=(an)r, eCm (6.4)
Amk
(91,91) (91,92) -~ (91,9n)
ot C = (g1, Gor s ) — (92,91) (92:92) -+ (92,90) | (6.5)

(G0 9) (Grg2) - (gr )
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Consider the matrix

T11 T192 .. Tin
T21 T29 e X9 Qrl

Xon= "1, where z,= N (6.6)
Iml Tm2 -+ Tmn

Ty 1= (xrk);":Q = j/%c GCm_l, yr:(xrk)zzl eR". (67)

6.2. Properties of m infinite vectors

In fact, the statements below hold for arbitrary m, see [29, 30].

Lemma 6.3 ([29]). Let fo, f1, fo be three infinite real vectors f,. = (fux)ren, where
0<r<2. Then for all r,s with 0 <r < s <2 one has

L'(fo, f1, f2) — Lim F(fon)7 fn)afz(n))
F(fT‘afs) n—00 F(fr")7f§n))

= 00, (6.8)

if and only if for all (Cy,Cy,Cy) € R*\ {0} one has Y2, Cofr & 1a(N) and
Cofr+ Csfs & 1b(N) for all 0 < r < s <2 and all (C,,C,) € R*\ {0}, where

= (i
Lemma 6.4 ([30], Theorem 5.3).  For m = 3 we have

Cil )\ _ A (2;3) det(]g+’y(y17y27y3)) _ 1 69
(C7(Na,a) (Y1, Y2, y3) det (12 +7(y2,y3)) ’ (09

where a = (a1x)kez, Yr = (Trr)rez are defined by (6.6) and X\ = (A\g)gez -

Lemma 6.5 ([29]).  Let (y)3_, be 3 real vectors such that S s_, Cryr & 12(Z)
for any nontrivial combination (Cy)i_, € R\ {0}, then

det (I3 +y(y1,92,92) _ 1. det(ls +y(" ys" vs™) o (6.10)
, .

det(+7(y2,y3))  n=oo det(Iy + (5", y5™))

where Y\ = (z,)"__, € R

Proof.  The proof follows from Lemma 6.3 and (2.8). ]

6.3. Comparison of two Gaussian measures

For two centered Gaussian measures fi0) and p ) on the real line R defined by
(2.5) it is well known that

4bb"  \1/4
)

H(M(b,o), M(b',o)) = (7

R (6.11)

By Kakutani’s criterion for product measures on RY [14], and (6.11) we see that the
following lemma holds true.
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Lemma 6.6.  Two Gaussian measures [ip,0) = Qnezfbpv,0) and [y 0) = Qnezih®’.0)
are equivalent if and only if the product
by b,
1T ETAL (6.12)
nez

does not converge to 0. An equivalent condition is

z;(\/g— Z/:>2<oo. (6.13)

Consider two measures: fur,0) = ®nezfi(1,0) a0d [l(14c,0) = Rnezf(1+4c,,0) ON the space
X1, where the measure piq) on the real line R is defined by (2.5).

Lemma 6.7.  The two measures prpoy and paico) are equivalent if and only if
> ez Co < 00.

Proof. By Lemma 6.6 and (6.13),

2
2
cn
Km0y ~ K(I+c,0) g E <m - 1+Cn> = E 1+c, < 0

ne’

By Lemma 2.10, two series ), % and )", 2 are equivalent. ]

The next lemma is also a consequence of Kakutani’s criterion [14].

Lemma 6.8. Two Gaussian measures I45.0) and [y 0y aTe equivalent if and only
if the product
H | (6.14)
bT’ﬂ + b;‘n
r=1nez

does not converge to 0. An equivalent condition is

2
(,/bj" ) < 00. (6.15)
r= 1 nez

Lemma 6.9. For te GL(m,R)\{e} we have (,u’&f’a))Lt L ulyqy if and only if

(1ho) ™ L iy O 1 Lya) L Ky (6.16)

7. Conclusion

To prove the irreducibility of the representation T%#™ defined by (2.6) for general
m € N we need:

1. to know the minimal generating set of conditions for the orthogonality

(:U’?;,a) )Lt 1 N?Z,a)

for all t € GL(m,R) \ {e}, see Section 3. In fact it is sufficient to replace
the group GL(m,R) by £SL(m,R), see Remark 3.6. These conditions will be

expressed in terms of some divergent series (Sg(u)) seB’
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. to find an appropriate combinations of generators Ay, of all one-parameter

subgroups or an appropriate functions of generators. This combination will

be expressed in terms of a divergent series (X4(4)) cns

to show that 1 implies 2.

What we know now is the following.

1]

1.

If we have some continuous finite-dimensional group G acting on an infinite-
dimensional space X with a measure p and we are interested in the “admis-
sible” action, i.e., such that u® ~ p for every ¢t € GG, the problem is much
easier, here o : G — Aut(X). To find a minimal set it is sufficient to verify the
equivalence only on the one-parameter subgroups g¢x(t) generating the group
G. This follows from the transitivity of the relation of the equivalence on the
sets of a probability measures p ~ v. But the relation of the orthogonality
on the sets of measures is not transitive. That is why the description of the
minimal set is so complicated. When m = 1 the minimal subset is reduced to

—1 € GL(1,R).

When m = 2 the description of the minimal generating set is given in Remark
3.2. The families (3.2) are one-parameter subgroups, the families (3.3) are
just reflections of (3.2) and the family (3.4) depends on two parameters. All
elements are of order 2 except the elements in subgroups given in (3.2).

When m = 3 the description of the minimal generating set is given in Lemma
3.8 and it involves a families (3.19)—(3.31) depending respectively on two, three
and five parameters, see remarks after Lemma 3.7.

When m = 4 we still do not know the answer.

When m = 1 and m = 2 it was sufficient for the approximation of x, or Dy,
to use the linear combinations of products of two generators Ag, A, for n € Z.
When m = 3 we were not able to use only quadratic functions in generators.
As Lemma 5.4 demonstrates, we were forced to use exp (isk(xrk — a,,k))A;m in
order to approximate D,.,.

This relies mainly on the properties of the generalized characteristic polyno-
mial, on the explicit expression for the quadratic form on a hyperplane, and
on a theorem regarding the height of an infinite parallelotope. Everything is
done for general m.

References

S. Albeverio, A.Kosyak: Quasiregular representations of the infinite-dimensional
nilpotent group, J. Funct. Anal. 236 (2006) 634—681.

J.Baik, P.Deift, K.Johansson: On the distribution of the length of the longest
increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999) 1119-
1178.

Yu. M. Berezanskii: Selfadjoint Operators in Spaces of Functions of Infinitely Many
Variables, translated from the Russian by H. H. McFaden, Translations of Mathemat-
ical Monographs 63, American Mathematical Society, Providence (1986).



[21]
[22]
[23]

[24]

KosyAKk AND MOREE 325

A.Borodin, A.Okounkov, G.Ol'shanskii: Asymptotics of Plancherel measures for
symmetric groups, J. Amer. Math. Soc. 13 (2000) 481-515 (electronic).

A.Borodin, G. Ol’'shanskii: Point processes and the infinite symmetric group, Math.
Res. Lett. 5 (1998) 799-816.

A. 1. Bufetov: Finiteness of ergodic unitarily invariant measures on spaces of infinite
matrices, Ann. Inst. Fourier (Grenoble) 64 (2014) 893-907.

J. Dixmier: Les Algébres d’Opérateurs dans I’Espace Hilbertien, 2nd ed., Gauthier-
Villars, Paris (1969).

J. Dixmier: Les C*-Algébres et leurs Représentations, Gauthier-Villars, Paris (1969).

R.F.Gantmacher: Matrizenrechnung. Teil 1, Deutscher Verlag der Wissenschaften,
Berlin (1958).

A.Haar: Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Annals of
Mathematics, Ser. 2, 34/1 (1933) 147-169.

R.A.Horn, C.R. Jonson: Matriz Analysis, Cambridge University Press, Cambridge
(1989).

R.A.Horn, C.R.Jonson: Topics in Matriz Analysis, Cambridge University Press,
Cambridge (1991).

R.S.Ismagilov: Representations of Infinite-Dimensional Groups, Translations of
Mathematical Monographs Vol. 152, American Mathematical Society, Providence
(1996).

S. Kakutani: On equivalence of infinite product measures, Ann. Math. 4 (1948) 214—
224,

S.Kerov, G.Ol'shanskii, A.Vershik: Harmonic analysis on the infinite symmetric
group. A deformation of the reqular representation, C. R. Acad. Sci. Paris Sér. 1, 316
(1993) 773-778.

Yu. Khrennikov, A.V.Kosyak, V.M. Shelkovich: Wavelet analysis on adeles and
pseudo-differential operators, J. Fourier Anal. Appl. 18/6 (2012) 1215-1264.

A. A Kirillov: Unitary representations of nilpotent Lie groups, Usp. Mat. Nauk 17/4
(1962) 57-110.

A. A Kirillov: Representations of infinite-dimensional unitary groups, Dokl. Akad.
Nauk SSSR 212/2 (1973) 288-290; English transl. in Sov. Math. Dokl. 14 (1974)
1355-1358.

A.V.Kosyak: Irreducibility criterion for reqular Gaussian representations of groups
of finite upper triangular matrices, Funct. Anal. Appl. 24/3 (1990) 243-245.

A.V.Kosyak: Criteria for irreducibility and equivalence of reqular Gaussian repre-
sentations of group of finite upper triangular matrices of infinite order, Sel. Math.
Sov. 11 (1992) 241-291.

A.V.Kosyak: Irreducible regular Gaussian representations of the group of the interval
and the circle diffeomorphisms, J. Funct. Anal. 125 (1994) 493-547.

A.V.Kosyak: Irreducibility criterion for quasiregular representations of the group of
finite uppertrianguler matrices, Funct. Anal. Appl. 37/1 (2003) 65-68.

A.V.Kosyak: Quasi-invariant measures and irreducible representations of the induc-
tive limit of the special linear groups, Funct. Anal. Appl. 38/1 (2004) 67—68.

A.V.Kosyak: Induced representations of infinite-dimensional groups I, J. Funct.
Anal. 266 (2014) 3395-3434.



[39]

KosyAK AND MOREE

A.V.Kosyak: The Ismagilov conjecture over a finite field F,, arXiv: 1612.01109
[math.RT] (2016).

A.V.Kosyak: Regular, Quasi-Regular and Induced Representations of Infinite-
Dimensional Groups, EMS Tracts in Mathematics Vol. 29, European Mathematical
Society, Berlin (2018).

A.V.Kosyak: Criteria of irreducibility of the Koopman representations for the group
GLo(200,R), J. Funct. Anal. 276/1 (2019) 78-126.

A.Kosyak, P.Moree: Irreducibility of the Koopman representations for the group
GLo(200,R) acting on three infinite rows, arXiv: 2307.11198 [math.RT] (2023).

A.V.Kosyak: The height of an infinite parallelotope is infinite, Linear Algebra Appl.
709 (2025) 18-39.

A.V.Kosyak: The generalized characteristic polynomial and corresponding resolvent
with applications, arXiv: 2310.17351 [math.RT] (2023).

H.H.Kuo: Gaussian Measures in Banach Spaces, Lecture Notes Mathematics 463,
Springer, Berlin (1975).

S.Lang: SLy(R), Addison-Wesley, Reading (1975).

G.W.Mackey: The Theory of Unitary Group Representations, The University of
Chicago Press, Chicago (1976).

K.H.Neeb: Unitary representations of unitary groups, in: Developments and Ret-
rospectives in Lie Theory. Geometric and Analytic Methods, G.Mason et al. (eds.),
Developments in Mathematics 37, Springer, Cham (2014) 197-243.

K.-H. Neeb: Bounded and semi-bounded representations of infinite dimensional Lie
groups, in: Representation Theory — Current Trends and Perspectives, P. Littelmann
et al. (eds.), EMS Series of Congress Reports, European Mathenatical Society, Ziirich
(2017) 541-563.

N.I. Nessonov: Complete classification of representations of GL(o0) containing the
identity representation of the unitary subgroup (Russian), Mat. Sb. (N.S.) 130(172)
(1986) 131-150, 284; English translation in Math. USSR Sb. 58 (1987) 127-147.

G. 1. Olshanskii: Unitary representations of (G, K)-pairs that are connected with
the infinite symmetric group S(oco) (Russian), Algebra Analiz 1/4 (1989) 178-209;
English translation in Leningrad Math. J. 1/4 (1990) 983-1014.

G. 1. Ol’'shanskii:  Representations of infinite-dimensional classical groups, lim-
its of enveloping algebras, and Yangians, in: Topics in Representation Theory,
A. A Kirillov (ed.), Advances in Soviet Mathematics Vol. 2, American Mathemat-
ical Society, Providence (1991) 1-66.

G.I. OlUshanskii: Unitary representations of infinite-dimensional pairs (G,K) and
the formalism of R. Howe, in: Representation of Lie Groups and Related Topics,
A.M. Vershik et al. (eds.), Advanced Studies Contemporary Mathematics Vol. 7,
Gordon and Breach, New York (1990) 269-463.

G. E.Shilov, Fan Dik Tun’: Integral, Measure, and Derivative on Linear Spaces
(Russian), Nauka, Moscow (1967).

S. Stratila, D. Voiculescu: Representations of AF-Algebras and of the Group U(0),
Lecture Notes in Mathematics 486, Springer, Berlin (1975).

E. Thoma: Die unzerlegbaren, positive-definiten Klassenfunktionen der abzdhlbar un-
endlichen, symmetrischen Gruppe, Math. Zeitschrift 85 (1964) 40-61.



KosyAKk AND MOREE 327

[43] A.M. Vershik, S.V.Kerov: Asymptotic theory of characters of the symmetric group,
Funct. Anal. Appl. 15 (1981) 246-255.

[44] A.M. Vershik, S. V.Kerov: Characters and factor representations of the infinite sym-
metric group, Soviet Math. Dokl. 23 (1981) 389-392.

[45] A.Weil: L’Intégration dans les Groupes Topologique et ses Applications, 2nd ed.,
Hermann, Paris (1953).

[46] J.A.Wolf: Principal series representations of direct limit groups, Compos. Math.
141/6 (2005) 1504-1530.

Alexander Kosyak, Royal Institution, London Institute for Mathematical Sciences, London,
United Kindom; and: Institute of Mathematics, Ukrainian National Academy of Sciences,
Kyiv, Ukraine; kosyak02@gmail.com.

Pieter Moree, Max-Planck-Institut fiir Mathematik, Bonn, Germany; moree@mpim-bonn.mpg.de.

Received April 27, 2024
and in final form January 18, 2025



