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Abstract. We focus on answering the question posed for this special issue by elaborating a
specific perspective, involving information-enabled search, in which firms add capabilities
(or components) that expand what they can accomplish in the product market arena, and
the key strategic choices concern the kinds of capabilities that are added. We establish that
measuring how a new candidate component interacts with the components we already
have can be a reasonable proxy for how they will combine with new components which
we don’t yet have. This allows us to compare the performance of “impatient strategies”
focused on the current usefulness of a new component and “patient strategies” focused
on anticipated long-term usefulness. Their relative performance depends on how far the
innovation process has progressed, and on the structure of the innovation space itself.
In particular, a flattening in the increase of complexity implies an increase in the relative
attractiveness of patient strategies over impatient ones, i.e., constitutes a signal to a switch
strategies. It is therefore possible to construct information-based adaptive search strate-
gies, which outperform either random strategies or fixed (patient or impatient) strategies
for component selection. And there are broader implications for strategy as well.

Funding: T. Fink acknowledges support from the European Commission FP7 [Grant 611272] under the
Growth and Innovation Policy-Modelling project (GROWTHCOM).

Keywords: search • combinatorial innovation • irreversibility • uncertainty • adaptation • dynamic strategies

1. Introduction
Great strategies should be both impactful and inno-
vative. But where do such strategic innovations come
from? We explore the mathematics and empirics of a
component-based model of innovation, and we pro-
pose a new perspective that, while recognizing that
the search for innovations is inherently unpredictable,
shows that it has mathematically predictable features.
We show how these can be exploited to construct
advantaged strategies that are contingent on both the
characteristics of the search space and its degree of
maturity.
This paper is organized as follows. Section 2 reviews

the relevant literature and provides a rationale, from
a comparative perspective, for our specific angle of
attack. Section 3 presents illustrative examples that
help make our ideas more concrete. Section 4 presents
the basic model and some analytical results and cor-
roborates them with historical data. Section 5 provides
further discussion of the results and extensions, and
Section 6 concludes.

2. Links to Literature
The question of where great strategies comes from has
many answers, and there are theories and anecdotal
“origin stories” to support each of them. But there is a
fundamental tension between answers that emphasize

favorable outcomes under conditions of uncertainty
and those that assert intentionality (see Figure 1). Con-
sider below thumbnail sketches of six different types of
origin stories: while they are neithermutually exclusive
nor exhaustive, they help characterize the contributions
of this paper and relate them to the prior literature.

Luck, at the top of the wheel of fortune, underpins
the simplest type of origin story. How we assess the
contribution of luck depends on how far back we are
willing to unravel success stories (Barney 1986). But
systematic empirical analysis indicates that while luck
matters, it is not the only factor behind performance
differences between firms (e.g., Caves et al. 1977). This
paper shows that what may appear to be serendipity
actually has an underlying mathematical structure that
can be exploited.

Foresight rubs shoulders with luck-based explana-
tions, especially when the kind of foresight invoked
involves intuition. The distinction between the two is
sharpened by thinking of foresight as statistically sig-
nificant information about what will happen: superior
insight into how the future will unfold or a more com-
plete picture of the space of possibilities. It is obvious
that foresight can be the basis for superior performance
under conditions of uncertainty. What is more chal-
lenging, however, is identifying prescriptive steps for
how to achieve it. This paper sheds light onwhere such
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Figure 1. The Wheel of Fortune
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superior information might come from and how it can
be exploited to formulate a farsighted strategy.
Capabilities-based thinking emphasizes heterogene-

ity in firms’ opportunity sets. The analysis of capa-
bilities has historically focused on the deepening of
existing capabilities within predefined, well-bounded
domains. But, as Pisano (2017) has recently stressed,
there is an important distinction between deepening
existing capabilities and adding capabilities outside
the firm’s previous repertoire. While both options are
available to firms, the second one has received less
attention and is the one on which this paper focuses.
Design, at the bottom of the wheel of fortune, origi-

nally referred to a bespoke process of strategy design
directed by the CEO (Andrews 1971) to match a firm’s
distinctive competences and its external environment.
Porter’s (1996) work on activity systems elaborates
this idea but from a static perspective that empha-
sizes the linkages across choices at a point in time.
Some of his successors have adopted a more dy-
namic perspective—for example, Siggelkow’s (2002)
careful description of the evolution of Vanguard’s
“characteristic features.” This paper advances analysis
along these lines by examining how a field of strate-
gic possibilities can systematically be searched and
expanded, and how optimal strategies for doing so
vary over time.

Innovation is often conceived of as searching for com-
ponents and experimenting with component combina-
tions (e.g., Schumpeter 1939, Stuart and Podolny 1996,
Fleming 2001, Arthur 2009). One mathematical struc-
ture that strategists have used in recent years to analyze
component combinations is NK-modeling of the sort
developed by Kauffman. But Kauffman himself notes,
in his recent paper with Felin et al. (2014, p. 262), that
“the focus on bounded rationality and search [of the
NK-approach] is highly problematic for the fields of
entrepreneurship and strategy and does not allow us
to explain the origins of economic novelty.” This paper

outlines a new kind of structure for modeling innova-
tion that avoids this problem.

Agility has probably received the least attention from
academic strategists, but it has recently attracted sub-
stantial interest from practitioners, with concepts such
as minimum viable products and lean strategies being
emphasized by a broad range of companies (e.g., Doz
and Kosonen 2008, Rigby et al. 2016). Arguments for
agility are usually tied to a sense of uncertainty that
is so overpowering that reacting quickly is the key.1
However, this literature has not pushed very far on
the analytical front. In this paper we make headway
by modeling consecutive component choices based on
the cumulative information about the unfolding inno-
vation space up to the most recent prior component
choice. The range of strategies we derive provides
guidance on when an agile strategy is appropriate and
when more complex strategies are optimal.

Underpinning this paper’s contributions is the idea
of leveraging the underlying mathematical structure of
a combinatorial innovation process by using the infor-
mation thrown off by an ongoing innovation search
process to create advantaged innovation strategies.
This approach has points of contact with several appar-
ently distinct answers to the question of where great
strategies come from. And it offers guidance both for
policies for component choice in the unfolding inno-
vation process and in the broader sense of how to
employ information-enabled search to achieve long-
term success.

3. Illustrative Examples
The combinatorial perspective on innovation adopted
in this paper can be illustrated with products and the
components used to make them in two different sec-
tors. In gastronomy, the products are 56,498 recipes
from the databases Allrecipes.com, Epicurious.com,
and Menupan.com, and the components are 381 ingre-
dients (Ahn et al. 2011). In technology, the products are
1,158 software products catalogued by StackShare.io,
and the components are 993 development tools used to
make them.

The usefulness of a component is defined in both
cases as the number of valid products we can make
that contain it. Analysis indicates that the relative use-
fulness of a component depends on how many other
components have already been acquired. For each of
the two sectors, Figure 2 displays the usefulness of
three typical components, averaged at each stage over
all possible choices of the other components that have
already been acquired.

One of the key insights from the two product
spaces considered concerns component crossovers: the
relative usefulness of different component building
blocks changes over time as the number of components
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Figure 2. (Color online) The Relative Usefulness of Different Components Can Cross as the Number of Components Increases
in Gastronomy (Left) and Technology (Right)
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Note. The top panels show the mean usefulness of three typical components, averaged over all possible sets of other components in the baskets
for each basket size; the bottom panels show the rank order of components by usefulness. Adapted from Fink et al. (2017).

increases. For example, given a small basket of ingre-
dients, adding cocoa to the basket generally boosts the
number of recipes that can be made more than adding
cayenne. But the reverse is true with a large basket of
ingredients: adding cayenne to the basket is generally
more advantageous than adding cocoa. In other words,
cayenne tends to be comparatively more useful in mak-
ing more complex recipes.
For a company-focused example of how to think

about innovation from this perspective, consider the
case of Apple. Mazzucato (2013) has argued that most
of the components that Apple assembled into its break-
through products were actually the preexisting fruits
of state-sponsored research (see Figure 3). Whether
one agrees with all the details of Mazzucato’s “origin
story” or not, the picture that she paints is consistent
with the component-based approach adopted here.
And more broadly, IBM’s Component Business Model,
which represents a business as a set of 25–30 build-
ing blocks, suggests the utility of a component-based
approach for strategy as well as product development.

Within such a setup, adding the most useful compo-
nent on offer is a good strategy for maximizing the size
of the product space immediately. But it is more com-
plicated tomake choices now that will most expand the
size of the product space in the future. To what extent
should an immediate boost to the size of the product
space be forgone in order to achieve a bigger, but less
certain, boost in the future?

The next section specifies a component-based model
of innovation that provides a quantitative means of
answering this question. It enables forecasts of the
future usefulness of components currently on offer, and
it suggests a spectrum of strategies whose optimality
depends on, among other things, the resources avail-
able to a firm and the maturity of the innovation space.

4. The Model and Analysis
As in the illustrative examples, products (or busi-
nesses) are assumed to be made up of distinct compo-
nents. A component can be a material object or a skill
or a routine. Capacity constraints are assumed away:
there is more than enough of each type of component
for our needs. Any subset of the components that have
already been acquired can be combined, but a combi-
nation either is—or is not—a valid product, according
to some universal recipe book of products. Suppose
further that there are a total of N possible compo-
nents in “God’s own cupboard,” but that, at any given
stage, a firm’s basket of components contains only n
of these N possible building blocks. At each stage, the
firm picks a new component to add to its basket.2

So there are twoessential elements to themodel. First,
there is a basket of different kinds of components that
grows with time as new components are added to it.
Second, there is a prespecified set of valid and invalid
combinations of these components, with the valid com-
binations representingviable products.Weassume that
the firm knowswhich combinations of the components
already in its basket, as well as combinations from the
existing basket with any single new component under
consideration for adoption, constitute viable products.
But, crucially, we assume no knowledge of the “recipe
book” beyond this—that is, we do not knowwhether or
not combinations containingmultiple components out-
side of our basket are viable.

The firm’s goal is to maximize the number of prod-
ucts that it can make—its product space—as it adds
more components to its basket. Themodel does not con-
sider the different values associated with specific prod-
ucts,whichwill dependon themarket environment and
may change over time. Instead, it simply seeks to max-
imize the number of viable products that it can make,
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Figure 3. Origins of Apple Products

(2001)

Army Research

Office

Source. Adapted from Mazzucato (2013) (p. 109, figure 13).

with the knowledge that, on average, somewillwin and
some will flop. In other words, the size of the product
space is treated as a reasonable proxy for competitive
position;wedonot get into the complexities of elaborat-
ing a full-fledged product-market subgame.3 Note that
a similar proxy is used in models of evolution, where
evolvability is defined as the number of new pheno-
types in the adjacent possible, or 1-mutation boundary,
of a given phenotype (Wagner 2008).

4.1. Complexity and Usefulness
In line with the illustrative examples, we introduce
two simple variables: the complexity of products
and the usefulness of components. As we will show,
understanding the relationship between these two
variables can help us forecast the usefulness of a com-
ponent in the future givenwhat we know about its use-
fulness now.

The notions of product complexity and component
usefulness are formalized as follows. The complexity
c of a product is the number of distinct components it
contains. Multiple occurrences of the same component
count once, so that theword “apple” is made up of four
different component letters, not five. As well as being
more mathematically tractable, this is also in keeping
with the lack of component capacity constraints that
we assumed earlier.

The usefulness uα of some component α is how
many more products we can make with α in our bas-
ket than without α in our basket. As we gather more
components and n increases, uα increases or stays the
same; it cannot decrease. We therefore write uα( ¯n) toindicate this dependence of the usefulness on

¯
n, where

¯
n is the set of n components in our basket.
This distinction between the basket of components

¯
n and the number of components in that basket n re-
minds us that the usefulness of component α depends
not just on howmany components we have but also on
the particular choice of those components. For exam-
ple, the usefulness of the letter c when our basket
contains a and b is greater than the usefulness of c
when our basket contains d and e (eight new words
versus five).

To sidestep this dependence of usefulness on the par-
ticular choice of components, we could, in principle,
average over all possible baskets of a given size. But
this is not computationally viable for even modest val-
ues of n. However, Fink et al. found a mathematical
shortcut for calculating this exactly, as described in the
methods section of Fink et al. (2017). Armed with this
technique, we define the mean usefulness ūα(n) in a
natural way: the average of the usefulness of α over
all choices of the n − 1 other components in our basket
from the N − 1 possible components. Notice that the
mean usefulness ūα depends only on the number of
components n rather than on the particular choice of
those components

¯
n.

To make a product of complexity c, we must possess
all c of its distinct components. So making a complex
product is harder than making a simple one, because
there aremoreways that wemight bemissing a needed
component. We therefore group the products we can
make containing the component according to their
complexity. That is, the mean usefulness ūα(n , c) of a
component is how many more products of complex-
ity c we canmake, on average, with α in our basket than
without α in our basket. Summing ūα(n , c) over c gives
the mean usefulness ūα(n), as expected. The advantage
of thismore refined partitioning is that, by understand-
ing the behavior of ūα(n , c), we can understand the
more difficult ūα(n). Our key result, proved by Fink
et al. (2017), can be expressed as a conservation law:
for any stage n and some other stage n′, ūα(n , c)n/

(n
c

)
�

ūα(n′, c)n′/
(n′

c

)
, where

(n
c

)
is the binomial coefficient.
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When the number of components is big comparedwith
the product complexity (n , n′ � c, which tends to be
the case in practice), we can approximate

(n
c

)
and

(n′

c

)
by nc and by n′c , and therefore

ūα(n′, c) ' ūα(n , c)(n′/n)c−1. (1)

What this tells us is that the usefulness of some com-
ponent at the present (stage n) is not a good indicator
of its usefulness in the future (stage n′). The current
usefulness underestimates future usefulness by the fac-
tor (n/n′)c−1, which we see by solving Equation (1) for
stage n usefulness. Let us take a closer look at this dis-
torting factor. The more we look into the future, the
more it undervalues usefulness. But the distortion does
not apply to all products in a uniformway: it gets expo-
nentially worse with complexity, meaning that com-
plex products get undercounted much more than sim-
ple products. We call this distortion factor (n/n′)c−1 the
complexity discount, to highlight this unusual exponen-
tial dependence on complexity.
The correction to the complexity discount is just its

inverse—namely, (n′/n)c−1: the factor that shows up
in Equation (1). Applying this correction to our dis-
torted “vision” of the future based onwhat we see now,
we can make more farsighted choices than we other-
wise would. Early on, ūα(n , c) will tend to be small for
higher complexities, but depending on how far ahead
we look, the bigger growth rate can more than com-
pensate for this, as we see in Figure 2. Summing Equa-
tion (1) over size c, and noting that uα is an unbiased
estimate of its mean, we find

uα(n′) ' uα(n , 1)+ uα(n , 2)x + uα(n , 3)x2 . . . , (2)

where x � n′/n is the effective time, with x �1 being the
present time. Thus we can think of the future useful-
ness of component α as a polynomial in time, in which
the coefficients are just the current usefulnesses of α
for different complexities.
This approach is attractive, in part, because mean

usefulness does not depend on the correlations be-
tween components—for example, the higher chance of
finding onion in recipes that contain garlic. In other
words, we do not have to worry about the design struc-
ture matrices associated with all of our products. Cor-
relations do influence the size of fluctuations in the
usefulness u for a particular basket around the mean
usefulness ū, but they do not influence themean itself.4

4.2. Strategies
Our characterization of optimal strategies is based
on the complexity discount. Components that tend
to show up in complex products do not seem useful
early on, because we are likely to be missing other
components that those products require. The complex-
ity discount captures the extent to which focusing on

the current usefulness of components distorts percep-
tions of their future value. The key insight is that it
is possible to correct for this complexity discount by
using currently available information about the prod-
ucts that can be made.

Our research shows that the most important com-
ponents—materials, skills, and routines—when an
organization is less developed tend to be different
from when it is more developed. The relative useful-
ness of components changes over time in a statisti-
cally repeatable way. Equation (2) is important because
it enables harnessing these crossovers by anticipating
them before they happen.

By choosing those components at stage n that maxi-
mize the product space at some later stage n′, we have
a spectrum of strategies, depending on how far ahead
we set our sights. A shortsighted strategy (n′ close to n)
maximizes what a potential new component can do for
us now. It considers only the usefulness of a compo-
nent, because the effective time, x in Equation (2), is
close to 1. A farsighted strategy (n′ far from n) maxi-
mizes what a potential new component could do for us
later. It considers both the usefulness of a component
and the complexity of products containing it.

A farsighted strategy can outperform an impatient
strategy only to the extent that there are compo-
nent crossovers to forecast. Without crossovers, the
two strategies collapse into one. Therefore an impor-
tant characteristic of any sector is the prevalence of
crossovers in it, which can vary substantially. Figure 4
shows the top 40 most useful components as the size
of our basket goes from 1 to 381 ingredients (top) and
from 1 to 993 technology tools (bottom). Software tech-
nology turns out to exhibit more crossovers than gas-
tronomy (see Figure 4).

5. Discussion
The analysis in this paper emphasizes and extends
some classic insights about strategy and also develops
some new themes.

A key insight from the analysis is that there are dif-
ferent frames of reference for prioritizing a set of com-
ponents. The most useful components in one frame, or
innovation stage, need not be the same as in another.
No single frame is inherently more valid than any
other; the frame we prioritize depends on our cur-
rent stage and how far into the future we wish to and
are able to look. In broad terms, this frame depen-
dence is reminiscent of special relativity, in which
distances, times, and the order of events depend on
the inertial frame of reference. In our work, different
stage frames are related by the transformation in Equa-
tion (2), whereas in special relativity, different inertial
frames are related by the Lorentz transformation. In
our work, ūα(n , c)n/

(n
c

)
is invariant, whereas in spe-

cial relativity, the speed of light is invariant. It does

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

83
.2

16
.9

4.
21

0]
 o

n 
17

 J
an

ua
ry

 2
01

8,
 a

t 0
4:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Fink, Ghemawat, and Reeves: Searching for Great Strategies
Strategy Science, 2017, vol. 2, no. 4, pp. 272–281, ©2017 INFORMS 277

Figure 4. (Color online) The Dependence of the Relative Usefulness of Different Components on the Number of Components
Acquired in Gastronomy (Top) and Technology (Bottom)
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not make sense to ask what the most important com-
ponents are without specifying a frame: the number
of components already acquired. This runs counter to
intuition, or at least convenience: we typically regard as
absolute the most important ingredients in a kitchen,
or tools for survival, or skills in a company.
A second key insight is related to contingency, one of

the oldest themes in the strategy literature. Our strate-
gic approach to component acquisition is contingent
on factors internal to a firm as well as external to it.
Internally, the optimal strategy depends on resource
constraints and, more broadly, the objectives of the
firm, which are related to its governance.5 Resource-
constrained firms tend to favor an impatient strategy
and immediately reap the value of new components,
whereas wealthier firms likely favor a farsighted strat-
egy and, after a stagnant period assembling needed
components, expect to achieve greater growth as the
value of those components kicks in. A similar con-
trast is to be expected between, on the one hand, busi-
nesses overseen by private-equity firms that, given the
finite duration of limited partnerships, typically seek
to complete their buy-to-sell cycle over a several-year
period and, on the other hand, family-owned firms,
which are typically supposed to be more interested in
long-term growth and resilience than immediate value
maximization. And looking externally, the decision to
adopt a farsighted strategy depends on aspects of the
sector that are beyond the firm’s control—namely, the
extent to which it exhibits crossovers in component
value. A farsighted strategy outperforms an impatient
one only to the extent that there are important compo-
nent crossovers that can be anticipated and exploited.6
Third, our analysis stresses the importance of trade-

offs, but with a clearly dynamic twist. Trade-offs rep-
resent a familiar theme in the strategy literature, but
one that has most often been discussed in a static con-
text (e.g., Porter’s 1980 work on cost versus differenti-
ation). The analysis in this paper, by contrast, takes a
dynamic perspective on trade-offs that has relatively
few precedents in at least the analytical branch of the
strategy literature. The distinction between impatient
and farsighted strategies more closely resembles the
distinction in evolutionary biology between r-selection
(more offspring) and K-selection (better offspring). The
r-selection approach, similar to our impatient strategy,
invests little in nurturing individual progeny, focusing
instead on fast, immediate growth.

Fourth, our analysis fits with recent academic and
practical work on strategy dynamics emphasizing the
importance of both irreversibility and uncertainty for
dynamic thinking about strategy to really be required
(Ghemawat 2016). In regard to the former, Arrow (1964,
1968) noted half a century ago that without irreversibil-
ity of any sort, choices could be reversed costlessly
and therefore be made myopically, without penalty.

Ghemawat (1991) applied these ideas to dynamic strat-
egy. Our model exhibits irreversibility but of a par-
ticular sort. The extent to which a new component
increases our product space is critically dependent on
which components we already have in our basket. This
is an example of what Page (2006) has called “phat-
dependence,” to emphasize that what matter are the
components that are available at a point in time rather
than the order in which they were acquired. In other
words, we assume, as is common in economics and
control theory (but not necessarily business strategy),
state dependence rather than full-blown path depen-
dence. Despite this weaker form of path dependence,
recognizing the role of irreversibility proves to be crit-
ically important in our model to the formulation of a
successful strategy. Every choice of component impacts
not only our immediate product space—in how it com-
bines with the components we already have—but also,
more importantly, our product space into the future—
by combining as well with the components we have yet
to acquire. The second condition for dynamic think-
ing to really be required, uncertainty, is inherent in
our model through the assumed lack of knowledge of
which combinations of components outside of those in
our basket form products. It is this that prevents us
from computing the optimal strategy at any point in
time with certainty. This theme is particularly worth
highlighting given the strong bias toward underesti-
mating uncertainty and overestimating the ability to
control outcomes. A Boston Consulting Group survey
of 120 companies in 10 industry sectors suggests a
strong intellectual and behavioral bias toward classical
strategic planning, even in environments where a more
adaptive approach would seem optimal (Reeves et al.
2012).

Our approach is particularly suited to adaptive nav-
igation through large, dynamic search spaces, where
simple deductive frameworks are likely to be inade-
quate. As such, this approach builds a bridge between
cross-sectional work on strategy that is preoccupied
with high dimensionality (e.g., Porter’s 1996 detailed
activity systems) with dynamic perspectives that typi-
cally posit few dimensions because of the difficulty in
navigating high-dimensional landscapes. By eschew-
ing deductive models and grounding our choices on
information accumulated up to the present moment,
we are able to provide a quantitative model for inno-
vation while acknowledging the complex and shifting
environment in which real companies operate.

We now return to the six origin stories that we briefly
outlined in Section 2, adding to each some specific con-
tributions from the analysis in this paper.

Without discounting the role of luck, our under-
standing of component crossovers offers new insight
into serendipity: the fortunate but unforeseen events
that many firms identify as key to some of their best
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products. Components that depend on the presence of
many others can be of little benefit early on. But as
the innovation process unfolds and these dependent
components pay off, the results will seem serendipi-
tous, because a number of previously low-value com-
ponents become more valuable. In this context, what
appears to be serendipity is actually the delayed
fruition of components reliant on the presence of oth-
ers. Also note that while the word “serendipity” does
not have a well-established antonym (though “zem-
blanity,” which means foreseeable misfortune, comes
close), for every beneficial shift in a crossover, there is a
detrimental one. Each opportunity for serendipity goes
hand-in-hand with a chance for “antiserendipity”: the
acquisition of components useful now but less useful
later. Avoiding these overvalued components can be as
important as acquiring undervalued ones in order to
secure a large future product space.
In terms of superior foresight, the analysis suggests

ways of correcting for the complexity discount by using
information about the products that we can already
make, to make farsighted component choices. Many
innovators already have the tools to do so. Compa-
nies routinely reengineer competitors’ products, ana-
lyze the patent landscape, and conduct interviewswith
technology experts to guide their operational deci-
sions. At the same time, there is an ongoing explosion
of digital information about products, competitors, and
users. Companies can use these tools and information
to guide their strategy by methodically measuring the
evolution of product complexity in their space. This
requires, in the first instance, the development of a tax-
onomy of not only physical components but also intan-
gible ones such as skills and routines.
Capabilities, likematerial objects andprocesses, canbe

seen as a particular manifestation of components. Our
approach reinforces the importance recently stressed
by Pisano (2017) but inherent to Penrose’s (1959) orig-
inal conception of firms’ opportunity sets expanding
over time, of thinking about broadening capabilities as
well as the more customary focus on deepening them.
While both are important, the digitalization of busi-
ness arguably expands the range of component choices
and increases the interconnectability of those compo-
nents, leading to an explosion of combinatorial pos-
sibilities. A strategic understanding of which compo-
nents to adopt, andwhen to adopt them, ismore crucial
than ever. And while the capabilities literature, includ-
ing Pisano (2017), has tended to focus on specialization
versus fungibility, ouranalytical approach suggests that
some additional characteristics of capabilities, such as
the average complexity of products containing them,
are key to effective capability development.
In regard to design, we normally take the com-

plete space of products as a given, to be successfully
navigated through an appropriately ordered choice of

components. But in some instances, the entire prod-
uct space forms the effective product, and we have
the design opportunity to reverse engineer it so as to
promote optimal navigation. Consider software, where
different commands (components) can be combined in
different ways to perform tasks (products). Learning
new commands requires effort, and if the amount of
return on effort (the number of new tasks that can
be achieved after learning a particular command) is
not high enough, the user is liable to give up. Thus it
is important to design software so that the “product
space” of the user grows at a rate sufficient to motivate
persistence with learning new “components.” More
generally, by connecting strategy problems with their
underlying information problems, our approach repre-
sents one step toward many product-based businesses
reconceiving themselves as information businesses.

Our model of innovation is fundamentally compo-
nent based, but the word “component” belies the gen-
erality of the concept. A component can be a physical
building block, such as the multitouch screen in Fig-
ure 3, but it can also be a skill, such as advertising on
social media, or a routine, such as a client survey. Our
key insight is the subjectivity of any one frame of refer-
ence for ordering component building blocks, and we
elaborate on this and its consequences elsewhere. This
applies as much to business processes and strategic
frameworks as it does to new technologies.

Finally, as far as agility is concerned, our approach,
with its emphasis on the dependence of an organi-
zation’s priorities on its maturity, provides a contin-
gent perspective on whether agile/lean approaches
make sense. Our analysis supports such approaches
to building companies and launching products when
resources are in short supply and time horizons are
short. Without the resources to sustain a farsighted
approach, many start-ups do need to bring a simple
product to market very quickly. On the other hand,
firms that can weather an initial dearth of new prod-
ucts are likely to see their sacrifice pay off when their
farsighted approach kicks in.

6. Conclusion
The editors of the special issue invited us to adopt
a prescriptive approach to identifying where great
strategies come from. What would we tell our students
in response to this question? There is a broad range
of answers, some of which we outlined in the intro-
ductory wheel of fortune. While they have some over-
lap, the six origin stories make different assumptions
and offer markedly diverse insights. This paper takes a
step toward developing a unifying perspective, starting
from the context of a component model of innovation.
Our main insight is that the most important objects,
skills, and routines are not static but depend on how far
along the innovation process a firm has progressed. By
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quantifying the relative usefulness of components at
different stages, our analysis helps interpret aspects of
luck, foresight, and agility on the one hand and design,
capabilities, and innovation on the other, in the context
of the same underlying mathematical structure.
Our model is amenable to additional elaboration.

Consider three directions that we have not examined in
detail but that seem worthy of additional exploration.
First, in his classic account of the evolution of technol-
ogy, Arthur (2009) adopts a component model of tech-
nology, but one that allows recursion: every product
can be used as a component in making new products.
Incorporating recursion into our framework affords a
basis for reconceptualizing the popular idea of disrup-
tive innovation, in which the complexity of swathes of
product space can be reduced by a single substitution.
Second, in practice, adopting each new component has
a cost to be offset against the payoff from the expanding
space of products. Making this exchange explicit pro-
vides a model for quantifying poverty traps: the self-
reinforcingmechanism in which governments invest in
inferior capabilities with a limited, short-term payoff.
Without the resources to weather the delayed payoff of
a farsighted strategy, this can give rise to a vicious circle
of decline. Third, andmost ambitious, is the injection of
competition into the picture. With multiple firms each
competing for not only large but also distinct prod-
uct spaces, learning about others’ product spaces can
be as important as forecasting one’s own. This opens
up consideration of concepts such as imitation and
cooperation.
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Endnotes
1Of course, with even more uncertainty, we would come full circle,
back to luck.
2While we at no point posit knowledge of N , the number of possible
components, we take it to be much larger than n, the number of
components we have acquired. This means that we are at no point
picking among the dregs of dead-end components. This is key to the
validity of our conclusions.
3Theoretical predictions regarding product market subgames in the
presence of product differentiation tend to be very sensitive to the
modeling assumptions employed (e.g., Anderson et al. 1992). But
with Bertrand competition in prices and less than complete coverage
of product space (i.e., fewer products on offer, overall, than in the
universal recipe book), the firm capable of making more products
should expect to earn higher operating profits—although even this
conclusion abstracts away from prior strategizing, in an interactive
sense, about product (component) selection and introduction.
4The predictive capability of our method of forecast rests on the
assumption that the fluctuations around the mean are small com-
pared with some relevant change in the mean itself. We have mea-
sured this for specific gastronomy components, and it tends to be
valid.

5While this point has gotten obscured by the recent emphasis in strat-
egy on shareholder value maximization, Andrews (1971), one of the
founding fathers of the strategy field, noted to one of us (Ghemawat)
20 years ago how surprised he was that the concept of strategy had
gotten divorced from consideration of purpose.
6Although we do not consider this possibility here, the ability of a
farsighted strategy to outperform may also depend on the maturity
of the innovation space in sectors in which the number of possible
components is sufficiently limited to be exhausted.
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