
The science of networks has exploded in the information 
age, thanks to the unprecedented production and storage 
of data on almost all human activities. This is because 
networks are a simple yet effective way to model a large 
class of technological, social, economic and biological 
systems that can be described as a set of entities (nodes) 
with interactions between them (links). These interac-
tions represent the fundamental degrees of freedom of 
the network and can be of different types — undirected 
or directed, binary or valued (weighted) — depending 
on the nature of the system and the resolution used to 
describe it.

Notably, most of the networks observed in the real 
world fall within the domain of complex systems, 
because they exhibit strong and complicated interac-
tion patterns and feature collective emergent phenom-
ena that do not follow trivially from the behaviours of 
the individual entities1. For instance, many networks are 
scale- free2, meaning that the number of links incident 
to a node (the node’s degree) follows a power- law distri-
bution, so that most nodes have few links, but a few of 
them (the hubs) are highly connected. The distribution 
of the total weight of connections incident to a node (the 
node’s strength) likewise follows a power law in many 
cases3,4. In addition, most real- world networks are organ-
ized into modules or display a community structure5,6, 
and they possess a high level of clustering, because nodes 

tend to create tightly linked groups. However, real- world 
networks are also small worlds7–9, that is, the mean dis-
tance (in terms of the number of connections) between 
two nodes scales logarithmically with the system size. 
The observation of these universal features in complex 
networks has stimulated the development of a unify-
ing mathematical language to model their structure 
and understand the dynamical processes taking place 
on them, such as the flow of traffic on the Internet 
or the spreading of either diseases or information  
in a population10–12.

Two different approaches to network modelling can 
be pursued. The first one consists of identifying one or 
more microscopic mechanisms driving the formation of 
the network and using them to define a dynamic model 
that can reproduce some of the emergent properties of 
real systems. The small- world model7, the preferential 
attachment model2, the fitness model13–15, the relevance 
model16 and many others follow this approach, which 
is akin to kinetic theory. These models can handle only 
simple microscopic dynamics and thus, although they 
provide good physical insights, they need refinement to 
give quantitatively accurate predictions.

The other approach consists of identifying a set of 
characteristic static properties of real systems and then 
building networks that have the same properties but are 
otherwise maximally random. This approach is akin to 
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statistical mechanics and therefore is based on rigorous 
probabilistic arguments that can lead to accurate and 
reliable predictions. The mathematical framework is that 
of the exponential random graph (ERG) model, which 
was first introduced in the social sciences and statis-
tics17–25 as a convenient formulation that relies on numer-
ical techniques, such as Markov chain Monte Carlo 
(MCMC) algorithms. The interpretation of the ERG 
model in physical terms is due to Park and Newman26, 
who showed how to derive the ERG model from the 
principle of maximum entropy and the statistical  
mechanics of Boltzmann and Gibbs.

As formulated by Jaynes27, the variational principle 
of maximum entropy states that the probability distri-
bution that best represents the current state of knowl-
edge of a system is the one that maximizes the Shannon 
entropy, subject, in principle, to any prior information 
on the system itself. This means making self- consistent 
inference while assuming maximal ignorance about the 
unknown degrees of freedom of the system28. The max-
imum entropy principle is conceptually powerful and 
finds numerous applications in physics and in science 
in general29. In the context of network theory, the max-
imum entropy approach is used to obtain ensembles 
of random graphs with given aggregated macroscopic 
or mesoscopic properties. These ensembles have two 
related applications. On the one hand, when the micro-
scopic configuration of a real network is not accessible, 
the random graph ensemble describes the most probable 
network configuration: as is the case in traditional statis-
tical mechanics, the maximum entropy principle makes 
it possible to gain maximally unbiased information in 
the absence of complete knowledge. On the other hand, 
when the microscopic configuration of the network is 
known, the ensemble defines a null model that enables 
assessment of the significance of empirical patterns 
found in the network against the null hypothesis that the 
network structure is determined solely by its aggregated 
structural properties.

This Review presents theoretical developments and 
empirical applications for the statistical physics of real- 
world complex networks. We start by introducing the 

general mathematical formalism and, then, we focus on 
the analytic models obtained by imposing mesoscopic, 
that is, local, constraints, highlighting the novel phys-
ical concepts that can be learned from such models. 
After that, we present the two main fields of application 
for these models: detection of statistically significant 
patterns in empirical networks and reconstruction of 
network structures from partial information. We then 
discuss the models obtained by imposing semilocal net-
work features and, finally, the most recent developments 
on generalized network structures and simplices.

Statistical mechanics of networks
Exponential random graphs. The statistical physics 
approach defined by the ERG consists of modelling a 
network system G* using an ensemble Ω of graphs with 
the same number N of nodes and type of links as G* 
(Fig. 1). The model is specified by P(G), the occurrence 
probability of a graph G ∈ Ω. According to statistical 
mechanics and information theory27,30, the probability 
distribution that gives the most unbiased expectation of 
the microscopic configuration of the system under study 
is the one maximizing the Shannon entropy.

S
∈
∑ G GP P= − ( )ln ( ) (1)

G Ω

This maximization is subject to the normalization 
condition ∈ GP∑ ( ) = 1G Ω  and a collection of constraints 
c* that represent the macroscopic properties enforced 
on the system. These constraints define the sufficient 
statistics of the problem, that is, the model parameters 
depend only on the values of the constraints.

Imposing hard constraints, that is, assigning a uni-
form P(G) to each of the graphs G that satisfy c(G) = c*  
and zero probability to graphs that do not, leads to 
the microcanonical ensemble. Typically, this ensem-
ble is not amenable to analytical treatment beyond 
steepest descent approximations31 and is thus sampled 
numerically (see Box 1).

The canonical ensemble is instead obtained 
by imposing soft constraints, that is, by fixing the 
expected values of the constraints over the ensemble, 

∈ c G G cP∑ ( ) ( ) = *G Ω . Introducing the set of Lagrange 
multipliers θ, the constrained entropy maximization 
returns

∕G θ θP Z( ) = e ( ) (2)G θH− ( , )

where ⋅G θ θ c GH( , ) = ( ) is the Hamiltonian, θZ( ) 
∈= ∑ eG

G θ
Ω

H− ( , ) is the partition function and · represents 
the scalar product. Thus, the canonical G θP( ) depends 
on G only through c(G), which implies that graphs with 
constraints of the same value have equal probability. 
This means that the canonical ensemble is maximally 
non- committal with respect to the properties that are 
not enforced on the system32.

Remarkably, for models of networks with an extensive 
number of constraints, the microcanonical and canoni-
cal ensembles turn out to be inequivalent in the thermo-
dynamic limit N→∞33–35. This is in contrast to the case 
of traditional statistical physics (except possibly at phase 

Key points

•	Statistical physics is a powerful framework to explain properties of complex networks, 
modelled as systems of heterogeneous entities whose degrees of freedom are their 
interactions rather than their states.

•	The statistical physics of complex networks has brought theoretical insights into 
physical phenomena that are different in heterogeneous networks than in 
homogeneous systems.

•	From an applied perspective, statistical physics defines null models for real- world 
networks that reproduce local features but are otherwise as random as possible.

•	These models have been used, on the one hand, to detect statistically significant 
patterns in real- world networks and, on the other, to infer the network structure when 
information is incomplete.

•	These applications are particularly useful in the current information age to make 
consistent inference from huge streams of continuously produced, high- dimensional, 
noisy data.

•	The statistical mechanics approach has also been extended using numerical 
techniques to reproduce semilocal network features and, more recently, to 
encompass structures such as multilayer networks and simplicial complexes.
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Also known as edges. 
Connections or interactions 
between two nodes or vertices 
of a network or graph, 
representing the fundamental 
degrees of freedom of the 
system.

Undirected
A type of network for which 
every link is bidirectional, such 
as a network of colleagues 
(Alice works with Bob implies 
that Bob works with Alice).

Directed
A type of network for which 
links have a direction, such as 
an ecological network in which 
links represent predation (lions 
eat antelopes, but antelopes 
do not eat lions).

Binary
A type of network for which 
links are unweighted, that is, 
they can be described by 
either a 1 (the link exists) or a 0 
(it does not).

Weighted
A type of network for which 
links have weights, which 
represent, for example, 
carrying capacities or 
interaction strengths.

Clustering
The tendency of node triples to 
be connected together, that is, 
to form triangles.

Graphs
The mathematical abstraction 
of a network comprising a set 
of N vertices and a set of E 
edges, each associated with 
two nodes.
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transitions), in which there is typically a finite number of 
constraints, such as total energy and total number of par-
ticles. In this sense, complex networks not only provide 
an important domain of application for statistical phys-
ics but can also expand our fundamental understanding 
of statistical physics itself and lead to new theoretical 
insights. Additionally, from a practical point of view, the 
breaking of ensemble equivalence in networks implies 
that the choice between microcanonical and canonical 
ensembles cannot be based solely on mathematical con-
venience, as is usually done, but rather should follow 
from a principled criterion. In particular, because the 
canonical ensemble describes systems subject to statis-
tical fluctuations, it is the more appropriate ensemble 
to use when the observed values of the constraints can 
be affected by measurement errors, missing and spuri-
ous data or simply stochastic noise. Fortunately, as we 
shall see, the canonical ensemble is more analytically  
tractable than the microcanonical ensemble.

The definition of the canonical ensemble in equation 2  
specifies the functional form of G θP( ) but leaves 
the Lagrange multipliers as parameters to be deter-
mined by the equations describing the constraints, 

∈ c G G θ cP∑ ( ) ( ) = *G Ω . In practical applications, the 
average values of the constraints are seldom available, but 
one possible strategy is to draw the Lagrange multipliers 
from probability densities chosen to induce archetypal 
classes of networks, such as regular graphs, scale- free 
networks and so on26,31,36. When instead the task is to 
fit the model to the observations ≡c c G( )* *  for a given 
empirical network G*, the optimal choice of the values θ* 
is those that maximize the likelihood functional37,38.

L θ G θP( ) = ln ( ) (3)*

This procedure results in a match between the ensem-
ble average and the observed value of each constraint: 

≡∈ c G G θ c GP∑ ( ) ( ) ( )* *G Ω .

www.nature.com/natrevphys

T e c h n i c a l  R e v i e w S

Real network G*

Constrained ensemble of networks

Microcanonical ensemble Canonical ensemble

Local rewiring algorithm

•••

••• •••

••• ••• ••• •••

••••••

Degree constraints

S = – Σ P(G)lnP(G) 
G

Shannon entropy maximization
and likelihood maximization

(θ) = lnP(G*|θ) 

Fig. 1 | Construction of the microcanonical and canonical ensemble of networks from local constraints. The real 
network G* is the source of constraints on the ensemble. In this case, the constraints are the degrees k* of G*. The 
microcanonical approach relies on the link rewiring method to numerically generate several network configurations, each 
with exactly the same degree sequence of G*. The probability P(G) of a network G in the ensemble is non- zero only for the 
subset of graphs that realize the enforced constraints exactly , as indicated by the schematic probability distribution. 
Provided the sampling is unbiased, P(G) is uniform for these graphs. The canonical approach obtains P(G) by maximizing 
the Shannon entropy S while constraining the expected degree values within the ensemble and then maximizing the 
likelihood L of P(G*) to find the ensemble parameters θ*, such that the expectation values of the degrees match the 
observations in G*. Thus, P(G) is non- zero for any graph, ranging from the empty to the complete one, as indicated by the 
schematic probability distribution.
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Imposing local constraints. Unlike most alternative 
approaches (briefly outlined in Box 1), the maximum 
entropy method is general and works for networks 
regardless of size, directedness, weighting, density, clus-
tering and other properties. However, determining the 
occurrence probability of a graph in the ensemble can 
be a challenging task. In a handful of cases, an analytical 
calculation of the partition function is feasible, so expec-
tation values and higher moments of any quantity in the 
ensemble can be analytically derived. As in conventional 
equilibrium statistical mechanics, whether such an ana-
lytical computation is possible depends on the particular 
constraints imposed. Analytical computation of the par-
tition function is possible in very simple models, such as 
the well- known Erdös–Rényi random graph39, as well as 
when the constraints are the degrees k* and strengths s* 
that describe the local network structure from the view-
point of each node26. In fact, imposing local constraints 
separately for each node is a minimum requirement to 
construct ERG ensembles that are both theoretically 
sound and practically useful, in the sense that they 
accurately replicate the observed heterogeneity of real- 
world networks. This is because degree and strength dis-
tributions in many real- world systems are scale- free — a 
property that distinguishes many networks from systems 

typically studied in physics, such as gases, liquids and lat-
tices — and scale- free degree and strength distributions 
cannot be obtained from simple models with global con-
straints. For instance, the Erdös–Rényi model is obtained 
in the ERG formalism by constraining the expected total 
number of links, and this global constraint leads to an 
ensemble in which each pair of nodes is connected with 
fixed probability p, implying that the degree distribu-
tion follows a binomial law, rather than a power law. 
Local constraints in turn make the ERG model analyti-
cal because of the independence of dyads: P(G) factor-
izes into link- specific terms, whose contribution to the 
partition function sum can be evaluated independently  
of the rest of the network. Note that local constraints lie 
at the mesoscopic level, between the microscopic degrees 
of freedom of the network (the individual links) and 
the macroscopic aggregation of all degrees of freedom 
into global quantities, such as the total number of links, 
which corresponds, for instance, to the total energy of 
the system in traditional statistical physics.

The ERG model obtained by constraining the degrees 
≡c k* * is known as the (canonical) binary configura-

tion model (BCM). In the simplest undirected case, the 
entropy maximization procedure returns an ensemble 
connection probability between any two nodes i and j:

p
x x

x x
=

1 + (4)ij
i j

i j

where x are the (exponentiated) Lagrange multipliers26.
The weighted configuration model (WCM)40 is 

instead obtained by constraining the strengths ≡c s* *.  
In the simpler undirected case and considering inte-
ger weights, the connection probability between any 
two nodes i and j is given by pij = yiyj, where y are the 
(exponentiated) Lagrange multipliers. The probability 
distribution and the ensemble average for the weight 
of the link between i and j (or, equivalently, for how 
many links are established between the two nodes) are  
qij(w)=(yiyj)w(1−yiyj) and

w
yy

yy
=

1−
(5)ij

i j

i j

These two models recall traditional statistical 
mechanics for systems of non- interacting particles, if 
connections are interpreted as particles in a quantum 
gas and pairs of nodes as single- particle states. Indeed, 
in binary networks, each pair of nodes can be connected 
by at most one link, or equivalently, each single- particle 
state can be occupied by at most one particle. Therefore, 
for binary networks, equation 4 results in fermionic 
statistics. However, weighted networks correspond to 
particle systems for which single- particle states can 
be occupied by an arbitrary number of particles, so  
equation 5 describes a system of bosons. For these sys-
tems, Bose–Einstein condensation can occur between 
very strong nodes for which yiyj → 1 (REF.26).

Notably, a mixed Bose–Fermi statistics is obtained 
when degrees and strengths are imposed simultane-
ously36, as in the enhanced configuration model (ECM)41. 

Box 1 | Alternative ensemble constructions

various methods have been proposed to define ensembles of graphs with local 
constraints, as alternatives to maximum entropy. Here we briefly present them for the 
case of binary undirected graphs, which is by far the simplest and most frequently 
explored situation.

Computational methods explicitly generate several random networks with the 
desired degree sequence. The bottom- up approach initially assigns to each node a 
number of link stubs equal to its target degree, and pairs of stubs are then randomly 
matched without allowing the formation of self- loops and multilinks157–159. 
Unfortunately, this procedure very often gets stuck in configurations in which nodes 
requiring additional connections have no more eligible partners, unacceptably leading 
to many sample rejections45. The top- down approach instead starts from a realized 
network and generates a set of randomized variants by iteratively applying a link 
rewiring algorithm that preserves the degree distribution42,58,160,161. The drawback of the 
top- down approach is that the number of rewirings needed to generate a single 
configuration is very large and not rigorously specified162. Additionally, the algorithm 
may fail to sample the ensemble uniformly unless it employs a rewiring acceptance 
probability that depends on the current network configuration126–128,163. other 
computational methods rely on theorems that set necessary and sufficient conditions 
for a degree sequence to be graphic, that is, realized by at least one graph, and exploit 
such conditions to define biased sampling algorithms and sampling probabilities164–166. 
These approaches are, however, rather costly, especially for highly heterogeneous 
networks (see REF.38 and references therein).

Analytic methods instead define explicit expressions for expected values of network 
properties as a function of the imposed constraints. A standard approach relies on the 
generating function = ∑g z z P k( ) ( )k

k  for the degree distribution P(k)157,167. The generating 
function is rigorously defined only for infinite and locally tree- like networks, although it 
often works surprisingly well for real networks168. A popular alternative approach is 
based on the explicit expression for the connection probability between any two nodes 
i and j in the randomized ensemble, = ∕* * *p k k Eij i j

1
2

, where E* is the total number of 
links67. This model defines systems with self- loops as well as multilinks37,40,43. Indeed, 
because pij may exceed 1 for pairs of high- degree nodes, the model requires that i and j 
should be connected by more than one link to realize the imposed constraints. The 
model predicts multilinks with non- negligible frequency in scale- free networks with 
P(k) ≈ k−γ for which the natural cut- off ~N1/(γ−1) is larger than the structural cut- off (~N1/2 
for uncorrelated networks)169,170, where N is the number of nodes in the network and γ is 
the exponent of the power- law.

Density
The fraction of possible 
connections that are actually 
realized in a network. Real- 
world networks are typically 
sparse, as their density is much 
smaller than 1.

Erdös–Rényi model
The random graph model in 
which a link between any two 
nodes exists with constant 
probability p, independent of 
all other links.

  volUme 1 | JANUARY 2019 | 61



www.nature.com/natrevphys

T e c h n i c a l  R e v i e w S

In the simplest undirected case, using (exponentiated) 
Lagrange multipliers x and y, respectively, for degrees  
and strengths, one gets ∕p x x yy x x yy yy=( ) ( − +1)ij i j i j i j i j i j   
and q w p yy yy( >0)= ( ) (1− )ij ij i j

w
i j

−1 . Hence, the ECM differs  
from the WCM in the way the first link established  
between any two nodes is treated: the processes of cre-
ating a connection from scratch and of reinforcing an 
existing one obey intrinsically different rules. The con-
nection creation process serves to satisfy the degree 
constraints, and the reinforcement process serves to 
fix the values of the strengths. Like the ensemble non- 
equivalence mentioned above, this mechanism and the 
resulting mixed statistics constitute new physical pheno-
mena that the statistical physics approach to networks 
can unveil.

Pattern validation
Null models for networks. Validating models, that is, 
comparing their statistical properties with measure-
ments of real- world systems, is an essential activity of 
theoretical physics. In the context of networks and com-
plex systems, apart from looking for what a model is able 
to explain, much research has been devoted to identify-
ing properties in real- world networks that deviate from 
a benchmark model42–50. This is because possible devia-
tions are likely to contain important information about 
the unknown formation process of a network or one of 
its functions.

Maximum entropy models are perfectly suited for 
this task. Starting from a real network G*, they are used 
to derive the null hypothesis (that is, the benchmark 
model) using the set of properties c(G*) as constraints. 
Otherwise, no other information about the system is 
assumed. In other words, the null hypothesis is that the 
chosen constraints are the only explanatory variables 
for the network at hand. The other properties of G* can 
then be statistically tested and validated against this  
null hypothesis. For instance, a null model that is 
derived by imposing the total number of links as a 
(macro scopic) constraint is typically used to reject a 
homogeneity hypothesis for the degree distribution. 
Instead, when imposing local constraints, the aim is 
to check whether higher- order patterns of a real net-
work (such as reciprocity, clustering, assortativity, motifs 
and so on) are statistically significant beyond what can 
be expected from the heterogeneity of the degrees or 
strengths themselves. Because an ensemble given by 
local constraints can be analytically characterized, the 
expectation values and standard deviations of most 
quantities of interest can be explicitly derived, therefore 
hypothesis testing based on standard scores can be eas-
ily performed38. When the ensemble distribution of the 
considered quantity is not normal, sampling of the con-
figuration space using explicit formulas for P(G) makes 
it straightforward to perform statistical tests based  
on P values.

In the context of pattern validation, one of the most 
studied systems, which we also discuss here as an illus-
trative example, is the World Trade Web (WTW), which 
is the network of trade relationships between countries 
in the world51,52. The network exhibits disassortativity, in 
that countries with many trade partners are connected 

on average to countries with few partners53,54. This pat-
tern is statistically explained to good approximation by 
the degree sequence38. An analogous situation also exists 
for the clustering coefficient38. These two observations 
exclude the presence of meaningful indirect economic 
interactions on top of the direct economic interactions 
in the WTW.

The situation changes, however, when the weighted 
version of the WTW network is analysed44,55,56. The net-
work is still disassortative, in that countries with large 
export volumes are connected on average to countries 
with small export volumes. However, this pattern is 
not compatible with that of the WCM null model. 
Concerning the weighted clustering coefficient57, the 
agreement between the empirical network and the model 
is only partial. These findings point to the fact that, 
unlike in the binary case, knowledge of the strengths 
conveys only limited information about the higher- order 
weighted structure of the network. Together with the fact 
that basic topological properties, such as the link density, 
are not reproduced by the WCM (as discussed below), 
this suggests that even in weighted analyses, the binary 
structure plays an important role, irreducible to what 
local weighted properties can explain.

Network motifs and communities. Motifs58,59 are pat-
terns of interconnections involving a small subset of 
nodes in the network, thus generalizing the concept 
of clustering. Typically, the null model used to study 
motifs in directed networks is obtained by constrain-
ing, in addition to the degrees, the number of reciprocal 
links per node60–62. Indeed, reciprocity is meaningful in 
many contexts. For instance, in food webs, the pres-
ence of bidirected predator–prey relations between two 
species strongly characterizes an ecosystem63. In inter-
bank networks, the presence of mutual loans between 
two banks is a signature of trust between them, and 
in fact, the appearance of the motif corresponding to 
three banks involved in a circular lending loop with 
no reciprocation provides important early warnings of 
financial turmoil64.

Community structure instead refers to the presence 
of large groups of nodes that are densely connected 
within the group but sparsely connected to nodes out-
side the group6. Most methods to find communities in 
networks are based on optimization of a functional. 
The most prominent example of such a functional is the 
modularity5, which compares the number of links fall-
ing within and between groups with the expectation 
of such numbers under a null network model. The 
comparison with a null model is a fundamental step 
in the procedure, because even random graphs possess  
an intrinsic yet trivial community structure65,66. Indeed, 
in its original formulation, the modularity is defined 
on top of the configuration model by Chung and Lu67 
(see Box 1). This model is fast and analytic but generates 
self- loops and multilinks, and thus it gives an accurate 
benchmark only when these events are rare, such as in 
very large and sparse networks. More generally, the max-
imum entropy approach (for example, the configuration 
model of equation 4), although more demanding from 
a practical viewpoint, can provide an appropriate null 

Reciprocity
The tendency of nodes in a 
directed network to be 
mutually linked.

Assortativity
The tendency of nodes to be 
linked to other nodes with 
similar degrees. Conversely, 
disassortativity is the tendency 
of nodes to be linked to other 
nodes with dissimilar degrees.
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model that discounts the degree heterogeneity as well as 
other properties of the network38,68.

The ERG framework can be directly used to gener-
ate networks with a community structure by specifying 
the average number of links within and between each  
community. In this way, the ensemble becomes equiva-
lent to the stochastic block model, in which each node 
is assigned to one of B blocks (communities) and links 
are independently drawn between pairs of nodes, with  
probabilities that are a function of only the block member-
ship of the nodes69. This means that equation 4 becomes 
p q=ij b bi j

, where bi denotes the block member ship  
of node i, or ∕p x x q x x q q= ( ) ( +1− )ij i j b b i j b b b bi j i j i j

 for the  
degree-corrected block model70–72, in which the node 
degrees are also constrained.

Bipartite networks and one- mode projections. In 
bipartite networks, nodes can be divided into two dis-
joint sets, such that links exist only between nodes 
belonging to different sets73. Typical examples of these 
systems include affiliation networks, in which individ-
uals are connected with the groups of which they are a 
member, and ownership networks, in which individuals 
are connected with the items they collected. The bipar-
tite configuration model (BiCM)74 extends the BCM 
to this class of networks. The BiCM method has been 
used, for instance, to study the network of countries and 
products they export, that is, the bipartite representa-
tion of the WTW75,76, and to detect temporal variations 
related to the occurrence of global financial crises77. 
More recently, the BiCM has been applied to show that 
the degree sequence of interacting species in mutualis-
tic ecological networks is sufficient to induce a certain 
amount of nestedness of the interactions78.

To directly show the structure of relationships among 
one of the two sets of nodes, a bipartite network can be 
compressed into its one- mode projection. This is a net-
work containing only the nodes of the considered set, 
connected with weights that depend on how many com-
mon neighbours the nodes have in the other set79. The 
problem of building a statistically validated one- mode 
projection of a bipartite network is similar in spirit to 
that of extracting the backbone from standard weighted 
networks80–83.

The typical approach involves determining which 
links are significant using a threshold, which is either 
unconditional or dependent on the degree of nodes in 
the projected set84–88. However, unlike weighted net-
works, one- mode projections should be assessed against 
null models that constrain the local information of both 
sets of the original bipartite network. Unfortunately, 
these models are difficult to derive. For instance, the use 
of computational link rewiring methods for one- mode 
projections89,90 is even more impractical and biased91 
than for standard networks. Other null models require 
multiple observations of the empirical network92.

The null model for bipartite network projections 
derived from the maximum entropy principle is instead 
obtained by one- mode projecting the BiCM, that is, by 
computing the expected distribution for the number of 
common neighbours between nodes on the same layer93,94 
(Fig. 2). This null model has been used, for instance, to 

analyse the one- mode projection of the bipartite WTW. 
This analysis allows detection of modules of countries 
that have similar industrial systems, construction of a 
hierarchical structure of products94 and tracing of spe-
cializations that emerge from the baseline diversifica-
tion strategy of countries95. The same null model has 
also been used to study the patterns of asset ownership 
by financial institutions. In this case, the analysis allows 
identification of significant portfolio overlaps that bear 
the highest risk of fire- sale liquidation and forecast of 
market crashes and bubbles93. More recently, a null 
model obtained by pairwise projection of multiple bipar-
tite networks has been successfully applied to identify 
significant innovation patterns involving the interplay  
of scientific, technological and economic activities96.

Network reconstruction
The problem of partial information. Many dynam-
ical processes of critical importance, such as disease 
spreading or information diffusion, are sensitive to 
the topology of the network of interactions on which 
they occur97. However, in many situations, the structure 
of the network is at least partially unknown. A classic 
example is that of financial networks. Financial insti-
tutions publicly disclose their aggregate exposures in 
their balance sheets, but individual exposures (who is 
lending how much to whom) remain confidential98–100. 
Another example is that of social networks, which are 
too large in scale to allow exhaustive crawling and for 
which only aggregate information is typically released 
owing to privacy issues101,102. For natural and biolo-
gical networks, measuring all possible interactions is 
difficult because of technological limitations or high 
experimental costs103,104. Thus, reconstruction of the 
network structure when only limited information is 
available is a problem that is relevant across several 
domains and represents one of the major challenges for  
complexity science.

When the task is to predict individual missing con-
nections in partially known networks, one talks about 
link prediction105. Here, we instead discuss the funda-
mentally different task of reconstructing a whole net-
work from partial information on the system, aggregated 
at the mesoscopic and macroscopic level106. As with the 
other problems discussed in this Review, the key to 
success is to make optimal use of what is known about 
the system and to make the most unbiased estimate of 
what is not known. This is naturally achieved using tech-
niques based on the maximum entropy principle: the 
probability distribution that best represents the current 
state of knowledge on the network is the one with the 
largest uncertainty that also satisfies the constraints cor-
responding to the available information. Note that the 
ERG approach has the additional advantage of defining 
not a single reconstructed network instance but instead 
an ensemble of plausible configurations with related 
probabilities. In this way, it can handle spurious or 
fluctuating data and obtain robust confidence intervals 
for the outcomes of a given dynamical process on the 
(unknown) network.

However, different kinds of local constraints lead to 
substantially different outcomes for the reconstruction 

Nestedness
The pattern in which the 
interactions of nodes with low 
degree are a subset of the 
interactions of nodes with high 
degree.

Backbone
The core component of the 
network that is extracted by 
filtering redundant information.
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process. For a variety of networks of different nature 
(such as economic, financial, social or ecological net-
works), constraining the degrees, as in the BCM, typi-
cally returns a satisfactory reconstruction of the binary 
network features. However, constraining the strengths, 
as in the WCM, almost always leads to a poor weighted 
reconstruction38,41. This is because the entropy maximi-
zation procedure is unbiased by not assuming any rela-
tionship between the strength of a node and the number 
of connections that node can establish. Hence, out of 
the many possible ways to redistribute the strength  

of each node over all possible links, the method chooses 
the most even one, so the probability of assigning zero 
weight to a link is extremely small; the reconstructed net-
work becomes almost fully connected, regardless of the 
link density of the original network. This phenomenon 
shows that degrees and strengths carry different kinds of 
information and constrain the network in fundamentally 
different ways. To reconstruct sparse weighted networks, 
both are required47,49, as in the ECM41. This is quanti-
tatively shown using information- theoretic criteria (see 
REF.41 and Box 2).
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Fig. 2 | One- mode projection of the network of countries and products they export and its statistical validation 
against a null hypothesis derived from the BiCM. In this example, the existence of a link between the US and Italy  
(red boxes in the networks) in the one- mode projection is determined. Step 1: the real- world bipartite network is 
compared with the bipartite configuration model (BiCM) ensemble (dashed box), which is derived by constraining the 
degrees of both countries and products. The ensemble gives a connection probability for any country–product pair 
analogous to that of equation 4. Step 2: for the pair of countries under consideration, the actual number of products they 
both export (red links on the real- world network) is assessed using the probability distribution obtained from the BiCM.  
In this example, the observed value is statistically significant, that is, the null hypothesis that the value is explained by the 
degrees of both countries and products is rejected, and thus a link connecting the two countries is placed in the one- 
mode validated projection. This procedure can be repeated for each pair of countries to obtain the projection on the 
country set of the real- world trade web. This projection identifies communities of countries that have similar industrial 
systems. Instead, the projection performed on the product set highlights classes of products that require similar 
technological capabilities. Adapted from REF.94, CC-BY-4.0.
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The fitness ansatz. Unfortunately, in many situations 
— and typically for financial networks — the node 
degrees are also unknown. A possible solution comes 
from the observation that in many real networks, the 
nodes can be allocated fitnesses, from which connection 
probabilities between nodes and node degrees can be 
obtained14,52,107–109. The strengths themselves work well 
as fitnesses in many cases44. The fitness ansatz assumes 
that the strength of a node is a monotonic function of 
the Lagrange multiplier x controlling the degree of that 
node. Assuming the simplest linear dependence s* ∝ x  
(other functional forms are, in principle, allowed), 
equation 4 becomes110–112

p
zs s

zs s
=

1 +
(6)

* *

* *ij
i j

i j

The proportionality constant z can be easily found 
using maximum likelihood arguments together with a 
bootstrapping approach to assess the network density113, 
which relies on the hypothesis that subsets of the net-
work are representative of the whole system, regardless 
of the specific portion that is observed. Node degrees 
estimated from the fitness ansatz are then used as inputs 
to the ECM to obtain the ensemble of reconstructed net-
works111 (Fig. 3). Alternatively, heuristic techniques can 
be employed to reduce the complexity of the method by 
replacing the construction of the ECM ensemble with a 
density- corrected gravity model that obtains weights as 
wij ∝ z s s+ * *i j

−1  with probabi lity pij (REF.112). The method 
is also readily extended to bipartite networks114.

Note that despite having only the strengths as the 
input, the reconstruction method described above is 
different from the WCM because it uses these strengths 
not to directly reconstruct the network but to estimate 
the degrees first and only then to build the maximum 
entropy ensemble. In this way, it can generate sparse 
and non- trivial topological structures and can be used 
to faithfully reconstruct complex network systems100,106.

Beyond local constraints
Approximate and numerical methods. Whether an 
ERG model is analytically tractable depends on whether 
a closed- form expression of its partition function Z can 
be derived. As we have seen, this is indeed possible in 
the case of local linear constraints, for which Z factorizes 
into link- specific terms. In some other cases, it may be 
possible to obtain approximate analytic solutions using a 
variety of techniques, such as mean- field theory, saddle- 
point approximation, diagrammatic perturbation theory 
and path integral representations. These situations have 
been explored in the literature and include the degree- 
correlated network model115, the reciprocity model and 
the two- star model116,117, the Strauss model of cluster-
ing118, models of social collaboration119, models of com-
munity structure31, hierarchical topologies120, models 
with spatial embedding121 and rich- club features122, and 
models constraining both the degree distribution and 
degree–degree correlations, which are known under 
the name of tailored random graphs123–125. If analytic 
approaches for computing Z are intractable, the ensem-
ble can still be populated using Monte Carlo simulations. 
These simulations can be used either to explicitly sample 
the configuration space — taking care to avoid sampling 
biases by using ergodic Markov chains fulfilling detailed 
balance126–128 — or to derive approximate maximum 
likelihood estimators — taking care to avoid degenerate 
regions of the phase space, which often lead to trapping 
in local minima129–135. Such a variety of techniques is 
what makes the ERG model an extremely flexible and 
powerful framework for complex network modelling.

Markov chain Monte Carlo. In the MCMC method 
for ERG models, a new network ∈′G Ω is proposed 
by taking a network ∈G Ω and shuffling two links 
chosen at random. The shuffling is performed so 
as to preserve a given network property, such as the 
degree sequence of the network. The proposed net-
work is accepted with the Metropolis–Hastings prob-
ability → ′

′Q = min{1, e }G G
G GH H( )− ( ) 136, where H is the 

Hamiltonian containing the Lagrange multipliers that 
take the role of inverse temperatures used for simulated 
annealing. The process is repeated from ′G  if the proposal 
is accepted and from G if the proposal is rejected. The 
moves fulfil ergodicity and detailed balance, and thus, 
for sufficiently long times, the values of the constraints 
in the sampled networks are distributed according  
to the prescription of the canonical ensemble.

However, the time to reach the correct distribution 
grows exponentially with system size, leading to failure 
of the MCMC method in practice. This happens when-
ever P(G) possesses more than one local maximum, 
which happens for instance when using ERG models 
to generate ensembles of networks with desired degree 
distribution, degree–degree correlations and clustering 
coefficient (within the so- called dk- series approach)137,138. 
Indeed, rewiring methods that are biased by aiming at 
a given level of clustering display strong hysteresis phe-
nomena: cluster cores of highly interconnected nodes 
do emerge during the process, but once formed, they are 
very difficult to remove in realistic sampling timescales, 
leading to a breaking of ergodicity139. Multicanonical 

Box 2 | Comparing models from different constraints

Competing models that result from different choices of constraints can be compared 
using various likelihood- based statistical criteria. This, in turn, means assessing the 
informativeness of different network properties. Consider two models, M1 and M2. When 
these models are nested, meaning that M2 contains extra parameters θ* with respect to 
M1 or equivalently that M1 is a special case of M2, a comparison can be made through the 
likelihood ratio test (lRT)171; if θ θ= − −∕ L LM M M M( ) ( )* *LRT 2[ ]1 21 2 1 2

 is smaller than a given 
significance level, M2 should be rejected even though its likelihood is, by definition, higher 
than that of M1. This is because M2 overfits the data by using redundant parameters that 
have intercorrelations and that thus provide spurious information on the system172.

When M1 and M2 are not nested, the Akaike information criterion (AIC)173 ranks them 
in increasing order of θ= −LM M M *KAIC 2[ ( )]rr r r

, where MK r
 is the number of parameters 

of model Mr. For R competing models, Akaike weights ω = ∕ ∑− ∕
=

− ∕
M

M M( ) ( )e er
RAIC 2

1
AIC 2

r
r r  

quantify the probability that each model is the most appropriate to describe the data174.
The Bayesian information criterion (BIC)175 is similar to the AIC but accounts for the 

number n of empirical observations as θ= − LM M M ( )*K nBIC ln 2 rr r r
. Bayesian weights 

can be also defined, analogously to Akaike weights. The BIC is believed to be more 
restrictive than the AIC, but which criterion performs best and under which conditions 
is still debated (see (REF.172) and references therein).

We note that other model selection methods have also been proposed, such as 
multimodel inference, in which a sort of average over different models is performed172.
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sampling has been proposed to overcome this issue of 
phase transitions140. The idea is to explore the original 
canonical ensembles without being restricted to the most 
probable regions, which requires sampling networks 
uniformly on a predefined range of constraint values. 
This is achieved using Metropolis–Hastings steps based 
on a microcanonical density of states estimated using the 
Wang–Landau algorithm141.

Generalized network structures
Networks of networks. Many complex systems are not 
simply isolated networks but are better represented by 
networks of networks142–144 (see Fig. 4). The simplest and 

most studied situation is the so- called multiplex (Fig. 4a), 
in which the same set of nodes interacts on several lay-
ers of networks. For example, in social networks, each 
individual has different kinds of social ties; in urban 
systems, locations can be connected by different means 
of transportation; and in financial markets, institutions 
can exchange different kinds of financial instruments.

Mathematically, a multiplex 
→
G  is a system of N nodes 

and M layers of interactions. Each layer, labelled α = 1, 
…, M, consists of a network Gα. When modelling such a 
system, the simplest hypothesis is that the various layers 
are uncorrelated. In ERG terms, this means that the prob-
ability of the multiplex factorizes into the probabilities  
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Fig. 3 | Statistical reconstruction of an interbank network given by bilateral exchanges among banks. The method 
takes as input the total exposure of each bank , that is, its total interbank assets A and liabilities L, obtained from publicly 
available balance sheets (upper panel), which correspond to the out- strength and in- strength s* of the node. Two entropy 
maximization steps are performed. The first step is to estimate the node degrees 

∼
k, that is, the number of loans for each 

bank. These are unknown because the balance sheets list only the total amount of assets and liabilities. The estimate is 
performed using the fitness assumption that the Lagrange multiplier x controlling the out- degree and in- degree k* of a 
node scale with the total interbank assets and liabilities, respectively (middle panel), which results in a connection 
probability pij between nodes i and j of the form of equation 6. Node degrees can then be estimated using these 
probabilities. The second step reconstructs the full weighted topology of the network. One method for doing this is to use 
an enhanced configuration model with constraints on both the degrees 

∼
k estimated from the first step and empirical 

strengths s* (REF.111). Another method is to use a heuristic density- corrected gravity approach112 to place weights on 
realized connections. The outcome of the reconstruction process is a probability distribution over the space of networks 
compatible with the constraints (lower panel). Scatter plots adapted from REF.112, CC-BY-4.0.
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of each network layer: 
→
G GP P( ) = ∏ ( )α

α
M

α=1
145,146. This 

happens whenever the constraints imposed on the multi-
plex are linear combinations of constraints on individual 
network layers, which includes the situation in which 
local constraints are imposed separately for each net-
work layer. For instance, imposing the degrees in each 
layer leads to M independent BCMs, one for each layer. 
The connection probability between any two nodes  
i and j in layer α reads ∕( ) ( )p x x x x= 1 +ij

α
i
α

j
α

i
α

j
α , where 

xα are layer- specific Lagrange multipliers. As a result, the 
existence of a link is independent of the presence of any 
other link in the multiplex. In this situation, the overlap 
of links between pairs of sparse network layers vanishes 
in the large N limit.

In more realistic models of correlated multiplexes, 
the existence of a link in one layer is correlated with the 
existence of a link in another layer. Such models can 
be generated by constraining the multilink structure 
of the system145. A multilink m is an M- dimensional 
binary vector m indicating a given pattern of connec-
tions between a generic pair of nodes in the various lay-
ers. The multidegree k(m) of a node in a given graph 
configuration is then the total number of other nodes 

with which the multilink m is realized. Constraining 
the multidegree sequence of the network, which 
requires imposing 2M constraints per node, leads to a 
probability for a multilink m between node i and node 
j given by ∕p x x x x= ( ) (∑ )m m m

m
m m

ij i j i j . This method can 
be used to build systems made up of sparse layers with  
non- vanishing overlap.

For weighted multiplexes, it is simple to impose 
either the strengths alone or both degrees and strengths 
on each layer. Doing this leads to uncorrelated layers147. 
However, the situation is far more complicated if layers 
are correlated: no closed- form solution for 

→
GP( ) has 

been obtained to date, and thus a sampling procedure 
has been devised148. An interesting related case is pro-
vided by systems of aggregated multiplexes, which are 
simple networks given by the sum of the various layers 
of the multiplex. For aggregated multiplexes, constrain-
ing the aggregated local structure leads to the traditional 
canonical ensemble. For instance, constraining the sum 
of the weights of connections incident to each node in 
each layer leads to the standard WCM.

However, if the number of layers of the original 
multiplex is known, the model can be built using a 
layer- degeneracy term for each link, which counts the 
number of ways its weight can be split across the lay-
ers. Doing this leads to a WCM(M) model, for which 
the weight distribution is a negative binomial, with the 
geometric distribution of the standard WCM being  
the special case M = 1.

Furthermore, if it is known that links in each layer 
have a different nature, a good modelling framework  
is equivalent to that of multi- edge networks149,150, for 
which links belonging to different layers can be distin-
guished (Fig. 4b). To deal with this distinguishability, it 
is necessary to introduce another degeneracy term that 
counts all the network configurations giving rise to the 
same P(G). The solution of the model is then obtained 
using a mixed ensemble with a hard constraint for the 
total network weight and soft constraints for node 
strengths. This leads to Poisson statistics (independent 
of M) for link weights and ⟨w Myy=ij i j

 ∝ s s* *i j , a rather 
different situation than the outcome of either WCM or 
WCM(M)151.

We note that it can be tricky to decide which statistics 
to use in a specific case. For instance, mobility or origin– 
destination networks, consisting of number of trips 
between locations (nodes) aggregated over observation 
periods (layers), are better modelled by multi- edge net-
works, as long as each trip is distinguishable. For the 
aggregated WTW, the situation is less clear: whereas 
commodities are, in principle, distinguishable, trade 
transactions are much less so, and in fact, neither the 
WCM, WCM(M) or the multi- edge model can repro-
duce it well. A possible solution here is again to constrain 
both strengths and degrees simultaneously152.

Simplicial complexes. Simplicial complexes are gen-
eralized network structures that describe interactions 
between more than two nodes. They can be used to 
describe a wide variety of complex interacting systems, 
such as collaboration networks in which works result 
from two or more actors working together, protein 

c   Simplicial complex

a   Multiplex network

b   Interacting networks

Fig. 4 | Generalized network structures. a | A multiplex  
(or ‘link- coloured ’) network consists of various layers with 
the same set of nodes and specific interaction patterns in 
each layer. b | An interacting (or multilayer) network 
consists of various layers, each with its own nodes,  
with interactions existing within and between layers.  
c | A simplicial complex represents the different kinds of 
interactions (simplices) between groups of d nodes: 
isolated nodes (d = 0), pairwise interactions (d = 1, grey 
lines), triangles (d = 2, blue) and tetrahedra (d = 3, red).
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interaction networks in which complexes often consist 
of more than two proteins, economic systems of finan-
cial transactions often involving several parties and 
social systems in which groups of people are united by 
common motives or interests. Simplicial complexes can 
involve any number of nodes. For instance, simplices of 
dimension d = 0, 1, 2 and 3 are nodes, links, triangles and 
tetrahedra, respectively, and d- dimensional simplices are 
their d- dimensional generalizations. The δ- dimensional 
faces of a d- dimensional simplex (δ < d) are all the sim-
plices formed by subsets of δ + 1 nodes. A simplicial 
complex represents the different kinds of interactions 
within groups of d nodes. It is a collection of simplices of 
different dimensions that are connected such that every 
face of a simplex in the complex is in the complex and 
the intersection of every pair of simplices in the complex 
is a face of both simplices (Fig. 4c).

Exponential random simplicial complexes have 
been recently introduced as a higher- dimensional gen-
eralization of ERGs. They enable generation of random 
simplicial complexes in which each simplex has its own 
independent probability of appearance, conditioned 
to the presence of simplex boundaries, which become 
additional constraints on the model153. Explicit calcula-
tion of the partition function is possible when consid-
ering random simplicial complexes formed exclusively 
by d- dimensional simplices154. Indeed, by constraining 

the generalized degree (the number of d- dimensional 
simplices incident to a given δ- dimensional face), 
the graph probability becomes a product of marginal 
probabilities for individual d- dimensional simplices. 
Alternatively, an appropriate MCMC sampling scheme 
can be used to populate a microcanonical ensem-
ble of simplicial complexes formed by simplices of  
any dimension155.

Perspectives and conclusion
Complex networks are different from the systems tra-
ditionally studied in equilibrium statistical physics 
in two key ways. One is that the microscopic degrees 
of freedom of networks are the interactions between  
the nodes making up the system and not the states of the 
nodes themselves. The other is that in real- world net-
works, nodes are typically heterogeneous, both in terms 
of intrinsic characteristics and connectivity features, 
such that networks cannot be assigned a typical scale. 
Maximum entropy models of networks based on local 
constraints are founded on these two facts, because they 
define probability distributions on the network connec-
tions and do not distinguish nodes beyond their local 
features. As we reviewed here, these models have found 
a wide range of practical applications. This is because 
they can often be analytically characterized; they are 
able to include higher- order network features, such as 
assortativity, clustering and community structure, using 
stochastic sampling; and they can model even more 
complex structures such as networks of networks and 
simplicial complexes.

However, there are limitations to the maximum 
entropy model approach. In the models discussed here, 
the constraints that can be imposed must be static topo-
logical properties of the network. Dynamical constraints 
have been considered only recently, using either the 
principle of maximum caliber — which is to dynamical 
pathways what the principle of maximum entropy is to 
equilibrium states29,156 — or by using definitions of the 
entropy functional alternative to Shannon’s definition 
(see Box 3). Another limitation of maximum entropy 
network models is that the possibility of considering 
semilocal network properties relies heavily on numer-
ical sampling, which becomes unfeasible or strongly 
biased for non- trivial patterns involving more than two 
or three nodes. However, these patterns can be impor-
tant in situations in which the network structure is 
determined by complex optimization principles, such 
as subunits of an electrical circuit, biochemical reac-
tions in a cell or neuron firing patterns in the brain. 
The field of statistical physics of networks will need to 
face the challenge of developing more sophisticated net-
work models for these kinds of structures. Nevertheless, 
maximum entropy models based on local constraints 
provide effective benchmarks to detect and validate 
such structures.

We remark that, from a practical point of view, the pos-
sibility of quantifying the relevance of a set of observed fea-
tures and extracting meaningful information from huge 
streams of continuously produced, high- dimensional, 
noisy data is particularly relevant in the present era 
of big data. On the one hand, the details and facets of 

Box 3 | Boltzmann, von Neumann and Kolmogorov entropies

Alternatives to Shannon entropy are used in statistical physics of networks for  
various purposes.

The Boltzmann entropy is the logarithm of the number of network configurations 
belonging to a microcanonical ensemble. like the Shannon entropy for a canonical 
ensemble, the Boltzmann entropy can be used to quantify the complexity of the 
ensemble, that is, to assess the role of different constraints in terms of information 
they carry about the network structure31,120. Indeed, the more informative the 
constraints in shaping the network structure are, the smaller the effective number  
of graphs with the imposed features, and thus the lower the Boltzmann entropy of  
the corresponding ensemble. Using these arguments, it is possible to show that 
homogeneous degree distributions are the most likely outcome when the Boltzmann 
entropy of the microcanonical configuration model ensemble is large, whereas 
scale-free degree distributions naturally emerge for network ensembles with minimal  
Boltzmann entropy121.

The von Neumann entropy describes the amount of information encrypted in a 
quantum system composed of a mixture of pure quantum states33,176–178. It is given by  
−Tr(ρ lnρ), where ρ is the density matrix of the system and is equal to the Shannon 
entropy of the eigenvalue distribution of ρ. For undirected binary networks, a 
formulation of this entropy that satisfies the sub- additivity property can be given in 
terms of the combinatorial graph laplacian L = diag(k) − G, by defining ρ = ∕ τ τ− −e Tr(e )L L 179. 
The resulting von Neuman entropy thus depends on the eigenvalue spectrum of the 
laplacian and can be viewed as the result of constraining the properties of diffusion 
dynamics on the network180,181.

Finally, the Kolmogorov entropy generalizes the Shannon entropy by describing the 
rate at which a stochastic process generates information. Consider for simplicity a 
markovian ergodic stochastic process described by the matrix Φ ϕ= { }

ij
 of transition 

rates {i→j} and by the stationary asymptotic probability distribution {πi}. In this case, the 
dynamical entropy is defined as ϕ ϕ− ∑ π logij i ij ij

, that is, the average of the Shannon 
entropies of rows of Φ, each weighted by the stationary distribution of the 
corresponding node182. The Kolmogorov entropy is related, on the one hand, to the 
capacity of the network to withstand random structural changes182 and, on the other 
hand, to the Ricci curvature of the network183. This connection is particularly intriguing 
because the Ricci curvature has been used to differentiate stages of cancer from gene 
co- expression networks184, as well as to give hallmarks of financial crashes from stock 
correlation networks185.
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information that can now be extracted have reached 
levels never seen before, which means that increasingly 
complex data structures and models are needed in order 
to represent and comprehend them. On the other hand, 
the quantity of information available requires effective 
and scalable ways to let the signal emerge from the noise 

originating from the large variety of sources. The theo-
retical framework of statistical physics stands as an essen-
tial instrument to make consistent inference from data, 
whatever the level of complexity faced.

Published online 8 January 2019

1. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. 
Critical phenomena in complex networks. Rev. Mod. 
Phys. 80, 1275–1335 (2008).

2. Barabási, A.-L. & Albert, R. Emergence of scaling in 
random networks. Science 286, 509–512 (1999).

3. Yook, S. H., Jeong, H., Barabási, A.-L. & Tu, Y. 
Weighted evolving networks. Phys. Rev. Lett. 86, 
5835–5838 (2001).

4. Barrat, A., Barthelemy, M. & Vespignani, A. Weighted 
evolving networks: coupling topology and weight 
dynamics. Phys. Rev. Lett. 92, 228701 (2004).

5. Newman, M. E. J. & Girvan, M. Finding and evaluating 
community structure in networks. Phys. Rev. E 69, 
026113 (2004).

6. Fortunato, S. Community detection in graphs. Phys. 
Rep. 486, 75–174 (2010).

7. Watts, D. J. & Strogatz, S. H. Collective dynamics of 
small- world networks. Nature 393, 440–442 (1998).

8. Amaral, L. A. N., Scala, A., Barthélémy, M. &  
Stanley, H. E. Classes of small- world networks.  
Proc. Natl. Acad. Sci. U.S.A. 97, 11149–11152 (2000).

9. Chung, F. & Lu, L. The average distances in random 
graphs with given expected degrees. Proc. Natl. Acad. 
Sci. U.S.A.99, 15879–15882 (2002).

10. Albert, R. & Barabási, A.-L. Statistical mechanics of 
complex networks. Rev. Mod. Phys0. 74, 47–97 (2002).

11. Newman, M. E. J. The structure and function of 
complex networks. SIAM Rev. Soc. Ind. Appl. 
Math.45, 167–256 (2003).

12. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M.  
& Hwang, D.-U. Complex networks: structure and 
dynamics. Phys. Rep.424, 175–308 (2006).

13. Bianconi, G. & Barabási, A. L. Bose- einstein 
condensation in complex network. Phys. Rev. Lett. 86, 
5632–5635 (2001).

14. Caldarelli, G., Capocci, A., De Los Rios, P. & Muñoz, M. A. 
Scale- free networks from varying vertex intrinsic 
fitness. Phys. Rev. Lett. 89, 258702 (2002).

15. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. 
Structure of growing networks with preferential 
linking. Phys. Rev. Lett. 85, 4633–4636 (2000).

16. Medo, M., Cimini, G. & Gualdi, S. Temporal effects in 
the growth of networks. Phys. Rev. Lett. 107, 238701 
(2011).

17. Holland, P. W. & Leinhardt, S. An exponential family of 
probability distributions for directed graphs. J. Am. 
Stat. Assoc. 76, 33–50 (1981).  
This paper introduces ERGs as a formalism to 
define probability distributions for the structures 
of social networks.

18. Frank, O. & Strauss, D. Markov graphs. J. Am. Stat. 
Assoc. 81, 832–842 (1986).

19. Strauss, D. On a general class of models for 
interaction. SIAM Rev. Soc. Ind. Appl. Math. 28,  
513–527 (1986).

20. Wasserman, S. & Pattison, P. Logit models and logistic 
regressions for social networks: I. An introduction to 
markov graphs and p. Psychometrika 61, 401–425 
(1996).

21. Anderson, C. J., Wasserman, S. & Crouch, B. A p* 
primer: logit models for social networks. Soc. 
Networks 21, 37–66 (1999).

22. Snijders, T. A. B., Pattison, P. E., Robins, G. L. & 
Handcock, M. S. New specifications for exponential 
random graph models. Sociol. Methodol. 36, 99–153 
(2006).

23. Robins, G., Pattison, P., Kalish, Y. & Lusher, D. An 
introduction to exponential random graph (p*) models 
for social networks. Soc. Networks 29, 173–191 
(2007).

24. Cranmer, S. J. & Desmarais, B. A. Inferential network 
analysis with exponential random graph models.  
Polit. Anal. 19, 6686 (2011).

25. Snijders, T. A. B. Statistical models for social networks. 
Annu. Rev. Sociol. 37, 131–153 (2011).

26. Park, J. & Newman, M. E. J. Statistical mechanics of 
networks. Phys. Rev. E 70, 066117 (2004).  
In this paper, ERGs are interpreted for the first 
time as the statistical physics framework for 
complex networks.

27. Jaynes, E. T. Information theory and statistical 
mechanics. Phys. Rev. 106, 620–630 (1957).  
In this milestone paper, Jaynes shows that 
equilibrium statistical mechanics provides an 
unbiased prescription to make inferences from 
partial information.

28. Shore, J. & Johnson, R. Axiomatic derivation of the 
principle of maximum entropy and the principle of 
minimum cross- entropy. IEEE Trans. Inf. Theory 26, 
26–37 (1980).

29. Pressé, S., Ghosh, K., Lee, J. & Dill, K. A. Principles 
of maximum entropy and maximum caliber in 
statistical physics. Rev. Mod. Phys. 85, 1115–1141  
(2013).

30. Jaynes, E. T. On the rationale of maximum- entropy 
methods. Proc. IEEE 70, 939–952 (1982).

31. Bianconi, G. The entropy of randomized network 
ensembles. Europhys. Lett. 81, 28005 (2008).  
This paper derives the Boltzmann entropy of a 
variety of network ensembles to assess the role of 
structural network properties.

32. Squartini, T., Mastrandrea, R. & Garlaschelli, D. 
Unbiased sampling of network ensembles. New J. 
Phys. 17, 023052 (2015).

33. Anand, K. & Bianconi, G. Entropy measures for 
networks: toward an information theory of  
complex topologies. Phys. Rev. E 80, 045102  
(2009).

34. Squartini, T., de Mol, J., den Hollander, F. & 
Garlaschelli, D. Breaking of ensemble equivalence in 
networks. Phys. Rev. Lett. 115, 268701 (2015).

35. Squartini, T. & Garlaschelli, D. Reconnecting statistical 
physics and combinatorics beyond ensemble equivalence. 
Preprint at https://arxiv.org/abs/1710.11422 (2018).

36. Garlaschelli, D. & Loffredo, M. I. Generalized bose- 
fermi statistics and structural correlations in weighted 
networks. Phys. Rev. Lett. 102, 038701 (2009).  
This paper develops the ERG approach for a 
general class of weighted networks.

37. Garlaschelli, D. & Loffredo, M. I. Maximum likelihood: 
extracting unbiased information from complex 
networks. Phys. Rev. E 78, 015101(R) (2008).

38. Squartini, T. & Garlaschelli, D. Analytical maximum- 
likelihood method to detect patterns in real networks. 
New J. Phys. 13, 083001 (2011).  
This paper turns ERGs into null models for 
empirically observed networks using the maximum 
likelihood principle.

39. Erdos, P. & Rényi, A. On random graphs. Publ. Math. 
Debr. 6, 290–297 (1959).  
This paper introduces the first statistical ensemble 
of random graphs.

40. Serrano, M. Á. & Boguñá, M. Weighted configuration 
model. AIP Conf. Proc. 776, 101–107 (2005).

41. Mastrandrea, R., Squartini, T., Fagiolo, G. & 
Garlaschelli, D. Enhanced reconstruction of weighted 
networks from strengths and degrees. New J. Phys. 
16, 043022 (2014).

42. Maslov, S. & Sneppen, K. Specificity and stability in 
topology of protein networks. Science296, 910–913 
(2002).  
This paper introduces the local link rewiring 
method to build a null network model.

43. Park, J. & Newman, M. E. J. Origin of degree 
correlations in the internet and other networks. Phys. 
Rev. E 68, 026112 (2003).

44. Barrat, A., Barthelemy, M., Pastor- Satorras, R. & 
Vespignani, A. The architecture of complex weighted 
networks. Proc. Natl. Acad. Sci. U.S.A. 101,  
3747–3752 (2004).

45. Maslov, S., Sneppen, K. & Zaliznyak, A. Detection of 
topological patterns in complex networks: correlation 
profile of the internet. Phys. A Stat. Mech. Appl. 333, 
529–540 (2004).

46. Colizza, V., Flammini, A., Serrano, M. A. & Vespignani, A. 
Detecting rich- club ordering in complex networks. 
Nat. Phys.2, 110 (2006).

47. Serrano, M. Á., Boguñá, M. & Pastor- Satorras, R. 
Correlations in weighted networks. Phys. Rev. E 74, 
055101 (2006).

48. Guimera, R., Sales- Pardo, M. & Amaral, L. A. N. 
Classes of complex networks defined by role- to-role 
connectivity profiles. Nat. Phys. 3, 63 (2006).

49. Bhattacharya, K., Mukherjee, G., Saramäki, J., Kaski, K. 
& Manna, S. S. The international trade network: 
weighted network analysis and modelling. J. Stat. 
Mech. Theory Exp. 2008, P02002 (2008).

50. Opsahl, T., Colizza, V., Panzarasa, P. & Ramasco, J. J. 
Prominence and control: the weighted rich- club effect. 
Phys. Rev. Lett. 101, 168702 (2008).

51. Serrano, M. Á. & Boguñá, M. Topology of the world 
trade web. Phys. Rev. E 68, 015101 (2003).

52. Garlaschelli, D. & Loffredo, M. I. Fitness- dependent 
topological properties of the world trade web.  
Phys. Rev. Lett.93, 188701 (2004).

53. Garlaschelli, D. & Loffredo, M. I. Structure and 
evolution of the world trade network. Phys. A Stat. 
Mech. Appl. 355, 138–144 (2005).

54. Fagiolo, G., Reyes, J. & Schiavo, S. World trade web: 
topological properties, dynamics, and evolution.  
Phys. Rev. E 79, 036115 (2009).

55. Newman, M. E. J. Analysis of weighted networks. 
Phys. Rev. E 70, 056131 (2004).

56. Ahnert, S. E., Garlaschelli, D., Fink, T. M. A. & 
Caldarelli, G. Ensemble approach to the analysis of 
weighted networks. Phys. Rev. E 76, 016101 (2007).

57. Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K. & 
Kertész, J. Generalizations of the clustering coefficient 
to weighted complex networks. Phys. Rev. E 75, 
027105 (2007).

58. Milo, R. et al. Network motifs: simple building blocks 
of complex networks. Science 298, 824–827 (2002).

59. Shen- Orr, S. S., Milo, R., Mangan, S. & Alon, U. 
Network motifs in the transcriptional regulation 
network of escherichia coli. Nat. Genet. 31, 64 
(2002).

60. Garlaschelli, D. & Loffredo, M. I. Patterns of link 
reciprocity in directed networks. Phys. Rev. Lett. 93, 
268701 (2004).

61. Garlaschelli, D. & Loffredo, M. I. Multispecies grand- 
canonical models for networks with reciprocity. Phys. 
Rev. E 73, 015101 (2006).

62. Squartini, T. & Garlaschelli, D. in Self- Organizing 
Systems (eds Kuipers, F. A. & Heegaard, P. E.) 24–35 
(Springer Berlin, Heidelberg, 2012).

63. Stouer, D. B., Camacho, J., Jiang, W. & Amaral, L. A. N. 
Evidence for the existence of a robust pattern of prey 
selection in food webs. Proc. R. Soc. Lond. B Biol. Sci. 
274, 1931–1940 (2007).

64. Squartini, T., van Lelyveld, I. & Garlaschelli, D.  
Early-warning signals of topological collapse in 
interbank networks. Sci. Rep.3, 3357 (2013).

65. Guimerà, R., Sales- Pardo, M. & Amaral, L. A. N. 
Modularity from uctuations in random graphs and 
complex networks. Phys. Rev. E 70, 025101  
(2004).

66. Reichardt, J. & Bornholdt, S. Partitioning and 
modularity of graphs with arbitrary degree 
distribution. Phys. Rev. E 76, 015102 (2007).

67. Chung, F. & Lu, L. Connected components in random 
graphs with given expected degree sequences.  
Ann. Comb. 6, 125–145 (2002).  
This paper defines a very popular analytic model of 
networks with given degree sequence, admitting 
self- loops and multilinks.

68. Bargigli, L. & Gallegati, M. Random digraphs with 
given expected degree sequences: a model for 
economic networks. J. Econ. Behav. Organ. 78,  
396–411 (2011).

69. Fronczak, P., Fronczak, A. & Bujok, M. Exponential 
random graph models for networks with community 
structure. Phys. Rev. E 88, 32810 (2013).

70. Lancichinetti, A., Fortunato, S. & Radicchi, F. 
Benchmark graphs for testing community detection 
algorithms. Phys. Rev. E 78, 046110 (2008).

71. Karrer, B. & Newman, M. E. J. Stochastic blockmodels 
and community structure in networks. Phys. Rev. E 
83, 016107 (2011).

72. Peixoto, T. P. Entropy of stochastic blockmodel 
ensembles. Phys. Rev. E 85, 056122 (2012).

NATURe RevIeWS | PhySiCS

T e c h n i c a l  R e v i e w S

  volUme 1 | JANUARY 2019 | 69

https://arxiv.org/abs/1710.11422


73. Holme, P., Liljeros, F., Edling, C. R. & Kim, B. J. 
Network bipartivity. Phys. Rev. E 68, 056107 (2003).

74. Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. 
Randomizing bipartite networks: the case of the world 
trade web. Sci. Rep. 5, 10595 (2015).

75. Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A.  
& Pietronero, L. A new metrics for countries’ fitness 
and products’ complexity. Sci. Rep. 2, 723 (2012).

76. Caldarelli, G. et al. A network analysis of countries' 
export flows: firm grounds for the building blocks of 
the economy. PLoS ONE 7, e47278 (2012).

77. Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. 
Detecting early signs of the 2007–2008 crisis in the 
world trade. Sci. Rep. 6, 30286 (2016).

78. Payrató Borrás, C., Hernández, L. & Moreno, Y. 
Breaking the spell of nestedness. Preprint at https://
arxiv.org/abs/1711.03134 (2017).

79. Zhou, T., Ren, J., Medo, M. & Zhang, Y.-C. Bipartite 
network projection and personal recommendation. 
Phys. Rev. E 76, 046115 (2007).

80. Tumminello, M., Aste, T., Di Matteo, T. & Mantegna, R. N. 
A tool for filtering information in complex systems. 
Proc. Natl. Acad. Sci. U.S.A. 102, 10421–10426 
(2005).

81. Serrano, M. Á., Boguñá, M. & Vespignani, A. 
Extracting the multiscale backbone of complex 
weighted networks. Proc. Natl. Acad. Sci. U.S.A. 106, 
6483–6488 (2009).

82. Slater, P. B. A two- stage algorithm for extracting the 
multiscale backbone of complex weighted networks. 
Proc. Natl. Acad. Sci. U.S.A. 106, E66 (2009).

83. Radicchi, F., Ramasco, J. J. & Fortunato, S. 
Information filtering in complex weighted networks. 
Phys. Rev. E 83, 046101 (2011).

84. Goldberg, D. S. & Roth, F. P. Assessing experimentally 
derived interactions in a small world. Proc. Natl. Acad. 
Sci. U.S.A. 100, 4372–4376 (2003).

85. Latapy, M., Magnien, C. & Vecchio, N. D. Basic 
notions for the analysis of large two- mode networks.  
Soc. Networks30, 31–48 (2008).

86. Tumminello, M., Miccichè, S., Lillo, F., Piilo, J. & 
Mantegna, R. N. Statistically validated networks in 
bipartite complex systems. PLoS ONE 6, e17994 
(2011).

87. Tumminello, M., Lillo, F., Piilo, J. & Mantegna, R. N. 
Identification of clusters of investors from their real 
trading activity in a financial market. New J. Phys. 14, 
013041 (2012).

88. Neal, Z. Identifying statistically significant edges in 
one- mode projections. Soc. Netw. Anal. Min. 3,  
915–924 (2013).

89. Zweig, K. A. & Kaufmann, M. A systematic approach 
to the one- mode projection of bipartite graphs.  
Soc. Netw. Anal. Min. 1, 187–218 (2011).

90. Horvát, E.-Á. & Zweig, K. A. A fixed degree sequence 
model for the one- mode projection of multiplex 
bipartite graphs. Soc. Netw. Anal. Min. 3, 1209–1224 
(2013).

91. Gionis, A., & Mannila, H., & Mielikäinen, T. & 
Tsaparas, P. Assessing data mining results via swap 
randomization. ACM Trans. Knowl. Discov. Data 1, 14 
(2007).

92. Neal, Z. The backbone of bipartite projections: 
inferring relationships from co- authorship, 
cosponsorship, co- attendance and other co- behaviors. 
Soc. Networks 39, 84–97 (2014).

93. Gualdi, S., Cimini, G., Primicerio, K., Di Clemente, R.  
& Challet, D. Statistically validated network of portfolio 
overlaps and systemic risk. Sci. Rep. 6, 39467 (2016).

94. Saracco, F. et al. Inferring monopartite projections  
of bipartite networks: an entropy- based approach.  
New J. Phys. 19, 053022 (2017).

95. Straka, M. J., Caldarelli, G. & Saracco, F. Grand 
canonical validation of the bipartite international 
trade network. Phys. Rev. E 96, 022306 (2017).

96. Pugliese, E. et al. Unfolding the innovation system for 
the development of countries: co- evolution of science, 
technology and production. Preprint at https://arxiv.org/
abs/1707.05146 (2017).

97. Pastor- Satorras, R., Castellano, C., Van Mieghem, P.  
& Vespignani, A. Epidemic processes in complex 
networks. Rev. Mod. Phys. 87, 925–979 (2015).

98. Wells, S. J. Financial interlinkages in the United 
Kingdom's interbank market and the risk of contagion. 
Bank of England Working Paper https://doi.org/ 
10.2139/ssrn.641288 (2004).

99. Upper, C. Simulation methods to assess the danger of 
contagion in interbank markets. J. Financ. Stab. 7, 
111–125 (2011).

100. Anand, K. et al. The missing links: a global study on 
uncovering financial network structures from partial 
data. J. Financ. Stab. 35, 107–119 (2018).

101. Kossinets, G. Effects of missing data in social networks. 
Soc. Networks 28, 247–268 (2006).

102. Lynch, C. How do your data grow? Nature 455, 28 
(2008).

103. Amaral, L. A. N. A truer measure of our ignorance. 
Proc. Natl. Acad. Sci. U.S.A. 105, 6795–6796 (2008).

104. Guimerá, R. & Sales- Pardo, M. Missing and  
spurious interactions and the reconstruction of 
complex networks. Proc. Natl. Acad. Sci. U.S.A. 106,  
22073–22078 (2009).

105. Lu, L. & Zhou, T. Link prediction in complex networks: 
a survey. Phys. A Stat. Mech. Appl. 390, 1150–1170 
(2011).

106. Squartini, T., Caldarelli, G., Cimini, G., Gabrielli, A. & 
Garlaschelli, D. Reconstruction methods for networks: 
the case of economic and financial systems. Phys. Rep. 
757, 1–47 (2018).

107. Boguñá, M. & Pastor- Satorras, R. Class of correlated 
random networks with hidden variables. Phys. Rev. E 
68, 036112 (2003).

108. Garlaschelli, D., Battiston, S., Castri, M., Servedio, V. D. P. 
& Caldarelli, G. The scale- free topology of market 
investments. Phys. A Stat. Mech. Appl. 350,  
491–499 (2005).

109. De Masi, G., Iori, G. & Caldarelli, G. Fitness model for 
the italian interbank money market. Phys. Rev. E 74, 
066112 (2006).

110. Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M.  
& Gabrielli, A. Bootstrapping topological properties 
and systemic risk of complex networks using the 
fitness model. J. Stat. Phys. 151, 1–15 (2013).

111. Cimini, G., Squartini, T., Gabrielli, A. & Garlaschelli, D. 
Estimating topological properties of weighted 
networks from limited information. Phys. Rev. E 92, 
040802 (2015).

112. Cimini, G., Squartini, T., Garlaschelli, D. & Gabrielli, A. 
Systemic risk analysis on reconstructed economic and 
financial networks. Sci. Rep. 5, 15758 (2015).  
This paper uses ERGs in combination with the 
fitness model to reconstruct networks from partial 
information.

113. Squartini, T., Cimini, G., Gabrielli, A. & Garlaschelli, D. 
Network reconstruction via density sampling.  
Appl. Netw. Sci. 2, 3 (2017).

114. Squartini, T. et al. Enhanced capital- asset pricing 
model for the reconstruction of bipartite financial 
networks. Phys. Rev. E 96, 032315 (2017).

115. Berg, J. & Lässig, M. Correlated random networks. 
Phys. Rev. Lett. 89, 228701 (2002).

116. Park, M. E. J. & Newman, J. Solution of the two-star 
model of a network. Phys. Rev. E 70, 066146 (2004).

117. Yin, M. & Zhu, L. Reciprocity in directed networks. 
Phys. A Stat. Mech. Appl. 447, 71–84 (2016).

118. Park, J. & Newman, M. E. J. Solution for the 
properties of a clustered network. Phys. Rev. E 72, 
026136 (2005).

119. Fronczak, P., Fronczak, A. & Holyst, J. A. Phase 
transitions in social networks. Eur. Phys. J. B 59,  
133–139 (2007).

120. Bianconi, G., Coolen, A. C. C. & Perez Vicente, C. J. 
Entropies of complex networks with hierarchically 
constrained topologies. Phys. Rev. E 78, 016114 
(2008).

121. Bianconi, G. Entropy of network ensembles. Phys. Rev. 
E 79, 036114 (2009).

122. Mondragón, R. J. Network null- model based on 
maximal entropy and the rich- club. J. Complex Netw. 
2, 288–298 (2014).

123. Annibale, A., Coolen, A. C. C., Fernandes, L. P., 
Fraternali, F. & Kleinjung, J. Tailored graph ensembles 
as proxies or null models for real networks I: tools for 
quantifying structure. J. Phys. A Math. Theor. 42, 
485001 (2009).

124. Roberts, E. S., Schlitt, T. & Coolen, A. C. C. Tailored 
graph ensembles as proxies or null models for real 
networks II: results on directed graphs. J. Phys. A 
Math. Theor. 44, 275002 (2011).

125. Roberts, E. S. & Coolen, A. C. C. Entropies of tailored 
random graph ensembles: bipartite graphs, 
generalized degrees, and node neighbourhoods.  
J. Phys. A Math. Theor. 47, 435101 (2014).

126. Artzy- Randrup, Y. & Stone, L. Generating uniformly 
distributed random networks. Phys. Rev. E 72, 
056708 (2005).

127. Coolen, A. C. C., De Martino, A. & Annibale, A. 
Constrained markovian dynamics of random graphs.  
J. Stat. Phys. 136, 1035–1067 (2009).  
This paper introduces Monte Carlo processes for 
uniform sampling of network ensembles.

128. Roberts, E. S. & Coolen, A. C. C. Unbiased degree- 
preserving randomization of directed binary networks. 
Phys. Rev. E 85, 046103 (2012).

129. Strauss, D. & Ikeda, M. Pseudolikelihood estimation 
for social networks. J. Am. Stat. Assoc. 85, 204–212 
(1990).

130. van Duijn, M. A. J., Gile, K. J. & Handcock, M. S. A 
framework for the comparison of maximum pseudo- 
likelihood and maximum likelihood estimation of 
exponential family random graph models.  
Soc. Networks 31, 52–62 (2009).

131. Snijders, T. A. B., Koskinen, J. & Schweinberger, M. 
Maximum likelihood estimation for social network 
dynamics. Ann. Appl. Stat. 4, 567–588 (2010).

132. Schweinberger, M. Instability, sensitivity, and 
degeneracy of discrete exponential families. J. Am. 
Stat. Assoc. 106, 1361–1370 (2011).

133. Desmarais, B. A. & Cranmer, S. J. Statistical 
mechanics of networks: estimation and uncertainty. 
Phys. A Stat. Mech. Appl. 391, 1865–1876  
(2012).

134. Chatterjee, S. & Diaconis, P. Estimating and 
understanding exponential random graph models. 
Ann. Stat. 41, 2428–2461 (2013).

135. Horvát, S., Czabarka, É. & Toroczkai, Z. Reducing 
degeneracy in maximum entropy models of networks. 
Phys. Rev. Lett. 114, 158701 (2015).

136. Hastings, W. K. Monte carlo sampling methods using 
markov chains and their applications. Biometrika 57, 
97–109 (1970).

137. Mahadevan, P., Krioukov, D., Fall, K. & Vahdat, A. 
Systematic topology analysis and generation using 
degree correlations. SIGCOMM Comput. Commun. 
Rev. 36, 135–146 (2006).

138. Orsini, C. et al. Quantifying randomness in real 
networks. Nat. Commun. 6, 8627 (2015).  
This paper uses the dk- series approach to show 
that degree distributions, degree correlations and 
clustering often represent sufficient statistics to 
describe a network.

139. Foster, D., Foster, J., Paczuski, M. & Grassberger, P. 
Communities, clustering phase transitions, and 
hysteresis: pitfalls in constructing network ensembles. 
Phys. Rev. E 81, 046115 (2010).

140. Fischer, R., Leitão, J. C., Peixoto, T. P. & Altmann, E. G. 
Sampling motif- constrained ensembles of networks. 
Phys. Rev. Lett. 115, 188701 (2015).

141. Fugao Wang & Landau, D. P. Efficient, multiple- range 
random walk algorithm to calculate the density of 
states. Phys. Rev. Lett. 86, 2050–2053 (2001).

142. Kivelä, M. et al. Multilayer networks. J. Complex 
Netw.2, 203–271 (2014).

143. Boccaletti, S. et al. The structure and dynamics of 
multilayer networks. Phys. Rep. 544, 1–122 (2014).

144. De Domenico, M., Granell, C., Porter, M. A. & Arenas, A. 
The physics of spreading processes in multilayer 
networks. Nat. Phys.12, 901–906 (2016).

145. Bianconi, G. Statistical mechanics of multiplex 
networks: entropy and overlap. Phys. Rev. E 87, 
062806 (2013).  
This paper develops the ERG framework for 
multiplex networks.

146. Gemmetto, V. & Garlaschelli, D. Multiplexity versus 
correlation: the role of local constraints in real 
multiplexes. Sci. Rep. 5, 9120 (2015).

147. Menichetti, G., Remondini, D., Panzarasa, P., 
Mondragón, R. J. & Bianconi, G. Weighted multiplex 
networks. PLoS ONE 9, e97857 (2014).

148. Menichetti, G., Remondini, D. & Bianconi, G. 
Correlations between weights and overlap in 
ensembles of weighted multiplex networks. Phys. Rev. 
E 90, 062817 (2014).

149. Sagarra, O., Pérez Vicente, C. J. & Díaz- Guilera, A. 
Statistical mechanics of multiedge networks. Phys. 
Rev. E 88, 062806 (2013).

150. Sagarra, O., Font- Clos, F., Péerez- Vicente, C. J.  
& Díaz- Guilera, A. The configuration multiedge model: 
assessing the effect of fixing node strengths on 
weighted network magnitudes. Europhys. Lett. 107, 
38002 (2014).

151. Sagarra, O., Pérez Vicente, C. J. & Díaz- Guilera, A. 
Role of adjacency- matrix degeneracy in maximum- 
entropy-weighted network models. Phys. Rev. E 92, 
052816 (2015).

152. Mastrandrea, R., Squartini, T., Fagiolo, G. & 
Garlaschelli, D. Reconstructing the world trade 
multiplex: the role of intensive and extensive biases. 
Phys. Rev. E 90, 062804 (2014).

153. Zuev, K., Eisenberg, O. & Krioukov, D. Exponential 
random simplicial complexes. J. Phys. A Math. Theor. 
48, 465002 (2015).

154. Courtney, O. T. & Bianconi, G. Generalized network 
structures: the configuration model and the canonical 
ensemble of simplicial complexes. Phys. Rev. E 93, 
062311 (2016).

www.nature.com/natrevphys

T e c h n i c a l  R e v i e w S

70 | JANUARY 2019 | volUme 1 

https://arxiv.org/abs/1711.03134
https://arxiv.org/abs/1711.03134
https://arxiv.org/abs/1707.05146
https://arxiv.org/abs/1707.05146
https://doi.org/10.2139/ssrn.641288
https://doi.org/10.2139/ssrn.641288


NATURe RevIeWS | PhySiCS

T e c h n i c a l  R e v i e w S

155. Young, J.-G., Petri, G., Vaccarino, F. & Patania, A. 
Construction of and efficient sampling from the 
simplicial configuration model. Phys. Rev. E 96, 
032312 (2017).

156. Dixit, P. D. et al. Perspective: maximum caliber is a 
general variational principle for dynamical systems.  
J. Chem. Phys. 148, 010901 (2018).

157. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. 
Random graphs with arbitrary degree distributions and 
their applications. Phys. Rev. E 64, 026118 (2001).

158. Itzkovitz, S., Milo, R., Kashtan, N., Newman, M. E. J. 
& Alon, U. Reply to comment on ‘subgraphs in random 
networks’. Phys. Rev. E 70, 058102 (2004).

159. Catanzaro, M., Boguñá, M. & Pastor- Satorras, R. 
Generation of uncorrelated random scalefree 
networks. Phys. Rev. E 71, 027103 (2005).

160. Zamora- Lopez, G., Zlatic, V., Zhou, C., Stefancic, H.  
& Kurths, J. Reciprocity of networks with degree 
correlations and arbitrary degree sequences.  
Phys. Rev. E 77, 016106 (2008).

161. Zlatic, V. et al. On the rich- club effect in dense and 
weighted networks. Eur. Phys. J. B 67, 271–275 (2009).

162. Tabourier, L., Roth, C. & Cointet, J.-P. Generating 
constrained random graphs using multiple edge 
switches. J. Exp. Algorithm. 16, 1.1–1.15 (2011).

163. Carstens, C. J. & Horadam, K. J. Switching edges to 
randomize networks: what goes wrong and how to fix 
it. J. Complex Netw. 5, 337–351 (2017).

164. Del Genio, C. I., Kim, H., Toroczkai, Z. & Bassler, K. E. 
Efficient and exact sampling of simple graphs with 
given arbitrary degree sequence. PLoS ONE 5, 
e10012 (2010).

165. Blitzstein, J. & Diaconis, P. A sequential importance 
sampling algorithm for generating random graphs 
with prescribed degrees. Internet Math. 6, 489–522 
(2011).

166. Kim, H., Del Genio, C. I., Bassler, K. E. & Toroczkai, Z. 
Constructing and sampling directed graphs with given 
degree sequences. New J. Phys. 14, 023012  
(2012).

167. Newman, M. E. J. Random graphs with clustering. 
Phys. Rev. Lett. 103, 058701 (2009).

168. Melnik, S., Hackett, A., Porter, M. A., Mucha, P. J. & 
Gleeson, J. P. The unreasonable effectiveness of tree- 
based theory for networks with clustering. Phys. Rev. E 
83, 036112 (2011).

169. Burda, Z. & Krzywicki, A. Uncorrelated random 
networks. Phys. Rev. E 67, 046118 (2003).

170. Boguñá, M., Pastor- Satorras, R. & Vespignani, A. 
Cut-offs and finite size effects in scale- free networks.  
Eur. Phys. J. B 38, 205–209 (2004).

171. Neyman, J. & Pearson, E. S. On the problem of the 
most efficient tests of statistical hypotheses. Philos. 
Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 231,  
289–337 (1933).

172. Burnham, K. P. & Anderson, D. R. (eds) Model 
Selection and Multimodel Inference: A Practical 
Information- Theoretic Approach (Springer- Verlag,  
New York, 2002).

173. Akaike, H. A new look at the statistical model 
identification. IEEE Trans. Autom. Control 19,  
716–723 (1974).

174. Wagenmakers, E.-J. & Farrell, S. Aic model selection 
using akaike weights. Psychon. Bull. Rev. 11, 192–196 
(2004).

175. Burnham, K. P. & Anderson, D. R. Multimodel 
inference: understanding aic and bic in model 
selection. Sociol. Methods Res. 33, 261–304 (2004).

176. Braunstein, S. L., Ghosh, S. & Severini, S. The 
laplacian of a graph as a density matrix: a basic 
combinatorial approach to separability of mixed 
states. Ann. Comb. 10, 291–317 (2006).

177. Anand, K., Bianconi, G. & Severini, S. Shannon  
and von neumann entropy of random networks with 
heterogeneous expected degree. Phys. Rev. E 83, 
036109 (2011).

178. Anand, K., Krioukov, D. & Bianconi, G. Entropy 
distribution and condensation in random networks 
with a given degree distribution. Phys. Rev. E 89, 
062807 (2014).

179. De Domenico, M. & Biamonte, J. Spectral entropies  
as information- theoretic tools for complex  
network comparison. Phys. Rev. X 6, 041062 
(2016).

180. Delvenne, J.-C., Lambiotte, R. & Rocha, L. E. C. 
Diffusion on networked systems is a question of 
time or structure. Nat. Commun. 6, 7366  
(2015).

181. Masuda, N., Porter, M. A. & Lambiotte, R. Random 
walks and diusion on networks. Phys. Rep. 716-717, 
1–58 (2017).

182. Demetrius, L. & Manke, T. Robustness and network 
evolution- an entropic principle. Phys. A Stat. Mech. 
Appl. 346, 682–696 (2005).

183. Lott, J. & Villani, C. Ricci curvature for metric- measure 
spaces via optimal transport. Ann. Math. 169,  
903–991 (2009).

184. Sandhu, R. et al. Graph curvature for differentiating 
cancer networks. Sci. Rep. 5, 12323 (2015).

185. Sandhu, R. S., Georgiou, T. T. & Tannenbaum, A. R. 
Ricci curvature: an economic indicator for market 
fragility and systemic risk. Sci. Adv. 2, e1501495 
(2016).

Acknowledgements
G. Cimini, T.S., F.S. and G. Caldarelli acknowledge support 
from the EU projects CoeGSS (grant no. 676547), 
Openmaker (grant no. 687941), SoBigData (grant no. 
654024) and DOLFINS (grant no. 640772). D.G. acknowl-
edges support from the Dutch Econophysics Foundation 
(Stichting Econophysics, Leiden, Netherlands). A.G. acknowl-
edges support from the CNR PNR Project CRISISLAB funded 
by the Italian government. G. Caldarelli also acknowledges 
the Israel i–Ital ian project MAC2MIC f inanced by  
Italian MAECI.

Author contributions
All authors contributed to all aspects of manuscript pre-
paration, revision and editing.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

  volUme 1 | JANUARY 2019 | 71


	The statistical physics of real-world networks
	Statistical mechanics of networks
	Exponential random graphs. 
	Alternative ensemble constructions
	Imposing local constraints. 

	Pattern validation
	Null models for networks. 
	Network motifs and communities. 
	Bipartite networks and one-mode projections. 

	Network reconstruction
	The problem of partial information. 
	Comparing models from different constraints
	The fitness ansatz. 

	Beyond local constraints
	Approximate and numerical methods. 
	Markov chain Monte Carlo. 

	Generalized network structures
	Networks of networks. 
	Simplicial complexes. 

	Perspectives and conclusion
	Boltzmann, von Neumann and Kolmogorov entropies

	Acknowledgements
	Fig. 1 Construction of the microcanonical and canonical ensemble of networks from local constraints.
	Fig. 2 One-mode projection of the network of countries and products they export and its statistical validation against a null hypothesis derived from the BiCM.
	Fig. 3 Statistical reconstruction of an interbank network given by bilateral exchanges among banks.
	Fig. 4 Generalized network structures.




