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Quantum generalisation of feedforward neural networks
Kwok Ho Wan1,2, Oscar Dahlsten1,2,3,4, Hlér Kristjánsson1,2, Robert Gardner1,2 and M. S. Kim1

We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding
ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called
feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent
on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress
quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication
protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module
can naturally be implemented photonically.
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INTRODUCTION
Artificial neural networks mimic biological neural networks to
perform information processing tasks. They are highly versatile,
applying to vehicle control, trajectory prediction, game-playing,
decision making, pattern recognition (such as facial recognition,
spam filters), financial time series prediction, automated trading
systems, mimicking unpredictable processes, and data mining.1, 2

The networks can be trained to perform tasks without the
programmer necessarily detailing how to do it. Novel techniques
for training networks of many layers (deep networks) are credited
with giving impetus to the neural networks approach.3

The field of quantum machine learning is rapidly developing
though the focus has arguably not been in the connection to neural
networks. Quantum machine learning, see e.g. refs. 4–19 employs
quantum information processing (QIP).20 QIP uses quantum super-
positions of states with the aim of faster processing of classical data
as well as tractable simulation of quantum systems. In a super-
position each bit string is associated with two numbers: the
probability of the string and the phase,21 respectively. The phase
impacts the future probabilities via a time evolution law. There are
certain promising results that concern quantum versions of
recurrent neural networks, wherein neurons talk to each other in
all directions rather than feeding signals forward to the next layer,
e.g. with the purpose of implementing quantum simulated
annealing.10, 16, 22, 23 In ref. 24 several papers proposing quantum
neural network designs are discussed and critically reviewed. A key
challenge to overcome is the clash between the nonlinear,
dissipative dynamics of neural network computing and the linear,
reversible dynamics of quantum computing.24 A key reason for
wanting well-functioning quantum neural networks is that these
could do for quantum inputs what classical networks can do for
classical inputs, e.g., compressing data encoded in quantum
superpositions to a minimal number of qubits.
We here accordingly focus on creating quantum generalisations

of classical neural networks, which can take quantum inputs and
process them coherently. Our networks contribute to a research
direction known as quantum learning,25–29 which concerns

learning and optimising with truly quantum objects. The networks
provide a route to harnessing the powerful neural network
paradigm for this purpose. Moreover they are strict generalisations
of the classical networks, providing a clear framework for
comparing the power of quantum and classical neural networks.
The networks generalise classical neural networks to the

quantum case in a similar sense to how quantum computing
generalises classical computing. We start with a common classical
neural network family: feedforward perceptron networks. We
make the individual neurons reversible and then naturally
generalise them to being quantum reversible (unitary). This
resolves the classical-quantum clash mentioned above from
ref. 24. An efficient training method is identified: global gradient
descent for a quantum generalisation of the cost function, a
function evaluating how close the outputs are to the desired
outputs. To illustrate the ability of the quantum network we apply
it to (i) compressing information encoded in superpositions onto
fewer qubits (an autoencoder) and (ii) re-discovering the quantum
teleportation protocol—this illustrates that the network can work
out QIP protocols given only the task. To make the connection to
physics clear we describe how to simulate and train the network
with quantum photonics.
We proceed as follows. Firstly, we describe the recipe for

generalising the classical neural network. Then it is demonstrated
how the network can be applied to the tasks mentioned above,
followed by a discussion of the results. Finally, we present a design
of a quantum photonic realisation of a neural module.

RESULTS
Classical neural networks are composed of elementary units called
neurons. We begin with describing these, before detailing how to
generalise them to quantum neurons.

Quantum neural networks
The neuron. A classical neuron is depicted at the top of Fig. 1. In
this case, it has two inputs (though there could be more). There is
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one output, which depends on the inputs (bits in our case) and a
set of weights (real numbers): if the weighted sum of inputs is
above a set threshold, the output is 1, else it is 0.
We will use the following standard general notation. The j-th

neuron in the l-th layer of a network takes a number of inputs, wðlÞ
jk ,

and an output, aðl�1Þ
k where k labels the input. The inputs are each

multiplied by a corresponding weight, wðlÞ
jk , and an output, aðlÞj , is

fired as a function of the weighted input zðlÞj ¼Pn
k¼1 w

ðlÞ
jk a

ðl�1Þ
k ,

where n is the number of inputs to the neuron (top of Fig. 1). The
function relating the output to the weighted input is called the
activation function. This is normally taken to be a non-linear
function f

P
i riaið Þ� �

≠
P

i ri f aið Þ for inputs ai and real numbers ri).
1

Commonly it is the Heaviside step function or a sigmoid.1 For
example, the neuron in the top of Fig. 1 with a Heaviside
activation function gives an output of the form:

aðlÞj ¼ 1; if zðlÞj > 0:5

0; otherwise:

8>>><
>>>:

(1)

This paper aims to generalise the classical neuron to a quantum
mechanical one. In the absence of measurement, quantum
mechanical processes are required to be reversible, and more
specifically, unitary, in a closed quantum system.20, 30 This
suggests the following procedure for generalising the neuron
first to a reversible gate and finally to a unitary gate:
Irreversible → reversible: For an n-input classical neuron having

(in1, in2, ..., inn) → out, create a classical reversible gate taking (in1,
in2, ..., inn, 0) → (in1, in2, ..., inn, out). Such an operation can always
be represented by a permutation matrix.31 This is a clean way of
rendering the classical neuron reversible. The extra ‘dummy’ input
bit is used to make it reversible30; in particular, some of the ‘2 bits
in −1 bit out’ functions the neuron can implement require 3 bits to
be made reversible in this manner.
Reversible → unitary: Generalise the classical reversible gate to

a quantum unitary taking input ψinj i1;2;:::;n 0j i
� �

! ψoutj i1;2;:::;n;out,
such that the final output qubit is the output of interest. This is the
natural way of making a permutation matrix unitary.
If the input is a mixture of states in the computational basis and

the unitary a permutation matrix,32 the output qubit will be a
mixture of 0j i or 1j i: this we call the classical special case. This way
the quantum neuron can simulate any classical neuron as defined
above. The generalisation recipe summarised in Fig. 1 also
illustrates how any irreversible classical computation can be
recovered as a special case from reversible classical computation
(by ignoring the dummy and copied bits), which in turn can be
recovered as a special case from quantum computation.

The network. In order to form a neural network, classical neurons
are connected together in various configurations. Here, we
consider feedforward classical networks, where neurons are
arranged in layers and each neuron in the l-th layer is connected
to every neuron in the (l − 1)-th and (l + 1)-th layers, but with no
connections within the same layer. For an example of such a
classical network, see Fig. 2a. Note that in this case the same
output of a single neuron is sent to all the neurons in the next
layer.1, 2

To make the copying reversible, in line with our approach of
firstly making the classical neural network reversible, we propose
the recipe:
Irreversible → reversible: For a classical irreversible copying

operation of a bit b → (b, b), create a classical reversible
gate, which can be represented by a permutation matrix,30 taking
(b, 0) → (b, b).

In the quantum case the no-cloning theorem shows one cannot
do this in the most naive way.20 For a 2-qubit case, one can use a
CNOT for example to copy in the classical computational basis30:
bj i 0j i ! bj i bj i, if bj i 2 0j i; 1j if g. Thus one may consider repla-
cing the copying with a CNOT. However when investigating
applications of the network we realised that there are scenarios
(the autoencoder in particular) where entanglement between
different neurons is needed to perform the task. We have
therefore chosen the following definition:
Reversible → unitary: The classical CNOT is generalised to a

general 2-qubit ‘fan-out’ unitary UF, with one dummy input set to
0j i, such that bj i 0j i ! UF bj i 0j i. As this unitary does not in general
copy quantum states that are non-orthogonal we call it a ‘fan-out’
operation rather than a copying operation, as it distributes
information about the input state into several output qubits. Note
that a quantum network would be trained to choose the unitary in
question.

Efficient training with gradient descent. A classical neural network
is trained to perform particular tasks. This is done by randomly
initialising the weights and then propagating inputs through the
network many times, altering the weights after each propagation
in such a way as to make the network output closer to the desired
output. A cost function, C, relating the network output to the
desired output is defined by

C ¼ 1
2
~yðLÞ �~aðLÞ
��� ���2; (2)

where~yðLÞ is a vector of the desired outputs from each of the final
layer l = L neurons and ~aðLÞ is the vector of actual outputs, which
depends on the network weights, and :ð Þj j is the l2-norm. The cost
function is minimised to zero when the weights propagate the
input in such a way that the network output vector equals the
desired output vector.

Fig. 1 Diagram summarising our method of generalising the
classical irreversible neuron with Heaviside activation function, first
to a reversible neuron represented by a permutation matrix (P), and
finally to a quantum reversible computation, represented by a
unitary operator (U). The top neuron is a classical neuron taking two
inputs in1 and in2 and giving a corresponding output out.1 aðlÞj labels
the output of the j-th neuron in the l-th layer of the network
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Since the weights are continuous variables, the numerical
partial derivatives of the cost function w.r.t. each weight can be
found by approximating ∂C

∂w � CðwþϵÞ�CðwÞ
ϵ . After each propagation,

these partial derivatives are computed and the weights are altered
in the direction of greatest decrease of the cost function.
Specifically, each weight wðlÞ

jk is increased by δwðlÞ
jk , with

δwðlÞ
jk ¼ �η

∂C
∂wðlÞ

jk

; (3)

where η is an adjustable non-negative parameter. This training
procedure is known as gradient descent.1

Note that gradient descent normally also requires a continuous
and differentiable activation function, to allow small changes in
the weights to relate to small changes in the cost. For this reason,
the Heaviside activation function has traditionally been replaced
by a sigmoid function.1, 2 Nevertheless, gradient descent has also
been achieved using Heaviside activation functions, by taking the
weights as Gaussian variables and taking partial derivatives w.r.t.
the means and standard deviations of the appropriate Gaussian
distributions.33, 34

In the reversible generalisation, where each neuron is replaced
by a permutation matrix, we find that the output is no longer a
function of the inputs and continuous weights, but rather of the
inputs and a discrete set of permutation matrices. However, in the
generalisation to unitaries, for a gate with n inputs and outputs,
there exist an infinite number of unitaries, in contrast with the
discrete set of permutation matrices. This means that the unitaries
can be parametrised by continuous variables, which once again
allows the application of gradient descent.
Given that any unitary matrix U can be expressed as U = eiH,

where H is a Hermitian matrix,20 and that such matrices can be
written as linear combinations of tensor products of the Pauli
matrices and the identity, it follows that a general N-qubit unitary
can be expressed as

UN ¼ exp i
X3;:::;3

j1 ;:::;jN¼0;:::;0

αj1;:::;jN σj1 � :::� σjN
� � !" #

; (4)

where σi are the Pauli matrices for i ∈ {1, 2, 3} and σ0 is the 2 × 2
identity matrix. This parametrisation allows the use of the training
rule of Eq. (3), but replacing the weight wðlÞ

jk with a general
parameter αj1;:::;jN of the unitary UN:

δαj1;:::;jN ¼ �η
∂C

∂αj1;:::;jN
: (5)

A simpler and less general form of UN has been sufficient for the
tasks discussed in this paper:

U3 ¼
X4
j¼1

τj
�� � τj
� ��� Tj; (6)

where τj
�� �	 
4

j¼1¼ V 00j i; V 01j i; V 10j i; V 11j if g. V is a general 2-
qubit unitary of the form of Eq. (4). Each Tj is similarly a general 1-
qubit unitary and one can see, using the methods of35 on Eq. (4), that
this can be expressed as a linear combination of the Pauli matrices, σj:

U1�qubit ¼ eiα0 cosΩ 1þ i
sinΩ
Ω

X3
j¼1

αjσj

 !
; (7)

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22 þ α23

p
.35 To extend this to higher dimensional

unitaries, see e.g. ref. 36
The cost function we use for the quantum neural networks is, with

experimental feasibility in mind, determined by the expectation
values of local Pauli matrices (σ1, σ2, σ3) on individual output qubits, j.
It has the form

C ¼
X
i;j

fij σ
ðjÞ
i

D E
actual

� σ
ðjÞ
i

D E
desired

� �2
; (8)

where fij is a real non-negative number (in the examples to follow fij
∈ {0, 1}). We note in the classical mode of operation, where the total
density matrix state is diagonal in the computational basis, only σ3
will have non-zero expectation, and the cost function becomes the
same as in the classical case (Eq. (2)) up to a simple transformation.

Fig. 2 Neural network implementations of a a classical autoencoder
and b a quantum autoencoder, respectively. The blue boxes represent
the data compression devices after the training procedures.
a A classical autoencoder taking two inputs in1 ¼ að0Þ1 and in2 ¼
að0Þ2 and compressing them to one hidden layer output aðlÞ1 . The final
output layer is used in training and is trained to reconstruct the
inputs. The notation here follows ref. 1. b A quantum autoencoder
that can accommodate two input qubits that are entangled. c A plot
of the quantum autoencoder cost function w.r.t. the number of steps
used in the training procedure. In this example the input state is
picked uniformly at random from 1=

ffiffiffi
2

p� �
00j i þ 11j i; 00j i � 11j if g.

The cost function can be seen to converge to zero, showing that the
network has learned to compress the input state onto one qubit and
then later recreate the input state. The non-monotonic decrease is to
be expected as we are varying the input states. Qualitatively identical
graphs of the cost function converging to 0 were also obtained for
other examples of 2 orthogonal input states, including for the case of
3 input qubits and 1 bottleneck qubit
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It is important to note that the number of weights grow
polynomially in the number of neurons. Each weight shift is
determined by evaluating the cost function twice to get the
RHS of Eq. (5). Thus the number of evaluations of the cost function
for a given iteration of the gradient descent grows polynomially in
the number of neurons. The training procedure is efficient in this
sense. Here we do not attempt to provide a proof that the
convergence to zero cost-function, where possible, will always take a
number of iterations that grows polynomially in the number of
neurons. Note also that the statements about the efficiency of the
training procedure refer to the physical implementation with
quantum technology: the simulation of quantum systems with a
classical computer is, with the best known methods, in general
inefficient.

Example: autoencoder for data compression
We now demonstrate applications of our quantum generalisation
of neural networks described in the previous section. We begin
with autoencoders. These compress an input signal from a given
set of possible inputs onto a smaller number of bits, and are ‘work-
horses’ of classical machine learning.2

Classical autoencoder. Autoencoders are commonly achieved by
a feedforward neural network with a bottleneck in the form of a
layer with fewer neurons than the input layer. The network is
trained to recreate the signal at a later layer, which necessitates
reversibly compressing it (as well as possible) to a bit size equal to
the number of neurons in the bottleneck layer.2 The bottleneck
layer size can be varied as part of the training to find the smallest
compression size possible, which depends on the data set in
question. After the training is complete, the post-bottleneck part
of the network can be discarded and the compressed output
taken directly from after the bottleneck.
In Fig. 2a a basic autoencoder designed to compress two bits

into a single bit is shown. (Here the number of input bits, jmax = 2.)
The basic training procedure consists of creating a cost function:

C ¼
Xjmax

j¼1

inj � outj
� �2

; (9)

with which the network is trained using the learning rule of
Eq. (3). If the outputs are identical to the inputs (to within
numerical precision), the network is fully trained. The final layer is
then removed, revealing the second last layer, which should
enclose the compressed data. The number of neurons in a given
hidden layer for a classical neuron will not exceed jmax. Once the
network is trained, the removal of the post-bottleneck layer(s)
will yield a last layer of fewer neurons, achieving dimensional
reduction.2

Quantum autoencoder. We now generalise the classical auto-
encoder as shown in Fig. 2a to the quantum case. We generalise
the neurons labelled 1, 2 and 3 in Fig. 2a into unitary matrices
U1, U2 and U3, respectively, with the addition of a ‘fan-out’ gate,
UF, as motivated in the previous sections. The result is shown
in Fig. 2b as a quantum circuit model. (We follow the classical
convention that this neural network is drawn with the input
neurons as well, but they are identity operators which
let the inputs through regardless, and can be ignored in the
simulation of the network.) The input state of interest in12 is
on 2 qubits, each fed into a different neuron, generalising the
classical autoencoder in Fig. 2a. From each of these neurons, one
output qubit each is led into the bottleneck neuron U1, followed
by a fan-out of its output. We add as an extra desideratum that
the compressed bit, the output of U1, is diagonal in the
computational basis. The final neurons have the task of recreating
in12j i on the outputs labelled 6 and 8 respectively.

This means that a natural and simple cost function is

C ¼
X3

j¼0;k¼0

Tr ρ6;8σj � σk
� �� Tr ρin1;2σj � σk

� �� �2
: (10)

Training is then conducted via global gradient descent of the cost
w.r.t. the αj1 ;:::;jN parameters, as defined in Eq. (5). During the
training the network was fed states from the given input set,
picked independently and identically for each step (i.i.d). Standard
speed-up techniques for learning were used, e.g., a momentum
term.1, 2 In training with a variety of two possible orthogonal input
states including superposition states, the cost function of the
quantum autoencoder converged towards zero through global
gradient descent in every case, starting with uniformly rando-
mised weights, αj1;:::;jN 2 �1; 1½ �. For two non-orthogonal inputs
and a 1-qubit bottleneck the cost-function will not converge to
zero as is to be expected, but the training rather results in an
approximately compressing unitary. Figure 2c shows the network
learning to compress in the case of two possible inputs:
00j i þ 11j ið Þ= ffiffiffi

2
p

and 00j i � 11j ið Þ= ffiffiffi
2

p
. One can force the

compressed output to be diagonal in a particular basis by adding

Fig. 3 Diagram of the neural network (a) and plot of the
convergence of the cost function (b) for the neural network
discovery of the teleportation protocol. a A circuit diagram of a
quantum neural network that can learn and carry out teleportation
of the state ψj i from Alice to Bob using quantum entanglement. The
standard teleportation protocol allows only classical communication
of 2 bits20; this is enforced by only allowing two connections, which
are dephased in the Z-basis (D). U1,U2 and U3 are unitaries. The blue
line is the boundary between Alice and Bob. b A plot of the
teleportation cost function w.r.t. the number of steps used in the
training procedure. The cost function can be seen to converge to
zero. The non-monotonic decrease is to be expected as we are
varying the input states. The network now teleports any qubit state:
picking 1000 states at random from the Haar measure (uniform
distribution over the Bloch sphere) gives a cost function distribution
with mean 5.0371 × 10−4 and standard deviation 1.7802 × 10−4,
which is effectively zero
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an extra term to the cost-function (e.g., desiring the expectation
values of Pauli X and Y to be zero in the case of a single qubit will
push the network to give an output diagonal in the Z-basis).

Example: neural network discovers teleportation protocol
With quantum neural networks already shown to be able to
perform generalisations of classical tasks, we now consider the
possibility of quantum networks discovering solutions to existing
and potentially undiscovered quantum protocols. We propose a
quantum neural network structure that can, on its own, work out
the standard protocol for quantum teleportation.20

The design and training of this network is analogous to the
autoencoder and the quantum circuit diagram is shown in Fig. 3a.
The cost function used was:

C ¼
X3
j¼0

Tr ψj i ψh jσj
� �� Tr ρ6σj

� �� �2
: (11)

A fully trained network can teleport the state ψj i (from Alice) to
the output port of qubit 6 (to Bob). Once trained properly, ρout1
will no longer be ψj i ψh j, as the teleportation has ‘messed up’
Alice’s state.37

In order to train the teleportation for any arbitrary state ψj i (and
to avoid the network simply learning to copy ψj i from Alice to
Bob), the training inputs are randomly picked from the axis
intersection states on the surface of the Bloch sphere.20 Figure 3b
shows the convergence of the cost function during training,
simulated on a classical computer. As can be seen, the training
was found to be successful, i.e., the cost function converged
towards zero. This held for all tests with randomly initialised
weights.

DISCUSSION
Quantum vs. classical
Can these neural networks show some form of quantum
supremacy? The comparison of classical and quantum neural
networks is well-defined within our set-up, as the classical
networks correspond to a particular parameter regime for the
quantum networks. A key type of quantum supremacy is that the
quantum network can take and process quantum inputs: it can for
example process þj i and �j i differently. Thus, there are numerous
quantum tasks it can do that the classical network cannot,
including the two examples above. We anticipate that they will
moreover, in some cases be able to process classical inputs faster,
by turning them into superpositions—investigating this is a
natural follow-on from this work.
We also mention that we term our above design a quantum

neural network with classical learning parameters, as the
parameters in the unitaries are classical. It seems plausible that
allowing these parameters to be in superpositions, while
experimentally more challenging, could give further advantages.
While adding the ancillary qubits ensures that the network is a

strict generalisation of the classical network, it can of course be
experimentally and numerically simpler to omit these. Then one
would sacrifice performance in the classical mode of operation,
and the network may not be as good as a classical network with
the same number of neurons for all tasks.

Visualising the cost function landscape
To gain intuitive understanding, one can visualise the gradient
descent in 3D by reducing the number of free parameters. We
sampled the cost surface and gradient descent path of a one-
input neuron (4 × 4 unitary matrix). With the second qubit
expressed as the dummy-then-output qubit, the task for the
neuron was þj i � 0j i ! þj i � 0j i and �j i � 0j i ! �j i � 1j i.

We optimised, similarly to Eq. (6), over unitaries of the form

U ¼ τj i τh j � σ0 þ τ?
�� �

τ?
� ��� σ1; (12)

where τj i ¼ cosðθ=2Þ 0j i þ eiϕsinðθ=2Þ 1j i and τ?j i ¼ sinðθ=2Þ 0j i
�eiϕcosðθ=2Þ 1j i. We performed gradient descent along the
variables θ and ϕ as shown by the red path in Fig. 4.

Scaling to bigger networks
The same scheme can be used to make quantum generalisations
of networks whose generalised neurons have more inputs/outputs
and connections. Figure 5 illustrates an M-qubit input quantum
neuron with a subsequent N-qubit fan-out gate.
If one wishes the number of free parameters of a neuron to

grow no more than polynomially in the number of inputs, one
needs to restrict the unitary. It is natural to demand it to be a
polynomial length circuit of some elementary universal gates, in
particular if the input states are known to be generated by a
polynomial length circuit of a given set of gates, it is natural to let
the unitary be restricted to that set of gates.
The evaluation of the cost function can be kept to a sensible

scaling if we restrict it to be a function of local observables on
each qubit, in particular a function of the local Pauli expectation

Fig. 4 A 3-D plot of the cost function (vertical axis) of a 2-qubit
unitary as a function of θ and ϕ (horizontal axes). The red line
represents the path taken when carrying out gradient descent from
a particular starting point

Fig. 5 Diagram of the quantum generalisation of a classical neuron
with M inputs and N outputs. The superscripts inside the square
brackets of the unitaries represent the number of qubits that the
respective unitaries act on. U[M+1] is the unitary that represents the
quantum neuron with an M-qubit input and U[N] is the fan-out gate
that fans out the output in the final port of U[M+1] in a particular
basis
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values, as was used in this paper, for which case a vector of 3n
expectation values suffices for n qubits.

METHODS
Quantum photonics neuron module
To investigate the physical viability of these quantum neural networks we
consider quantum photonics. This is an attractive platform for QIP: it has
room temperature operation, the possibility of robust miniaturisation
through photonic integrated circuits; in general it harnesses the highly
developed optical fibre-related technology for QIP purposes.38 Moreover
optical implementations have been viewed as optimal for neural networks,
in the classical case, due to the low design cost of adding multiple
connections (as light passes through light without interacting).39 A final
motivation for choosing this platform is that the tuning can be naturally
implemented, as detailed below.

We design a neuron as a module that can then be connected to other
neurons. This makes it concrete how experimentally complex the network
would be to build and operate, including how it could be trained.
The design employs the Cerf–Adami–Kwiat (C–A–K) protocol,40 where a

single photon with polarisation and multiple possible spatial modes
encodes the quantum state; the scheme falls into the category of hyper-
entangling schemes, which entangle different degrees of freedom. One
qubit is the polarisation; digital encodings of the spatial mode labels give
rise to the others. With four spatial modes this implements 3 qubits, with
basis 0=1j i H=Vj i 0=1j i, where H/V are two different polarisation states, and
the other bits label the four spatial modes. The first bit says whether it is in
the top two or bottom two pairs of modes and the last bit whether it is the
upper or lower one in one of those pairs. This scheme and related ones
such as in refs. 41, 42 are experimentally viable, theoretically clean and can
implement any unitary on a single photon spread out over spatial modes.
In such a single photon scenario they do not scale well however. The
number of spatial modes grows exponentially in the number of qubits.
Thus for larger networks our design below would need to be modified to

Fig. 6 Diagrams showing the structure of the proposed quantum optical neuron module: a the basic structure of inputs and outputs, b a
more detailed circuit diagram, and c the structure of the experimental implementation. a Simplifying restriction: the first neuron takes one
input and one dummy input and its designated output is fed into the next neuron. b A circuit diagram of the neural module. Following C–A–K
there are 3 qubits, with basis 0=1j i H=Vj i 0=1j i, where H/V label different polarisation states, and the other bits label the four spatial modes. We
define the input to the module to be carried by the middle (polarisation) qubit. The neuron U1 has the form of Eq. (6), modifying the output
conditional on the input state. The swaps ensure that the next neuron module U2 also gets the input via the polarisation. c The optics circuit of
the neuron module. There are four spatial modes labelled 00j i; 01j i; 10j i and 11j i. Initially only 00j i and 10j i have non-zero amplitudes and the
second spatial qubit is not manipulated. The polarisation of the single photon is also manipulated. The two beamsplitters in bold at points A
and D are variable (and can be replaced by Mach–Zehnder interferometers with variable phase). B and E are variable phase shifters and C
shows a variable polarisation shifter. G and F are the two spatial modes available before a splitting occurs at H via a polarising beamsplitter,
where the (fixed) polarisation rotator implements SWAP1. The beamsplitters with extra inputs at I allow for an additional spatial qubit to be
manipulated, with J, K and L representing the components required for a SWAP gate. Before entering the second unitary, the second level
splitting modes are brought close
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something less simple, e.g., accepting probabilistic gates in the spirit of the
KLM scheme,43 or using measurement-based cluster state quantum
computation approaches.38

Before describing the module we make the simplifying restriction that
there is one input qubit to the neuron and one dummy input. We will
ensure that the designated output qubit can be fed into another neuron,
as in Fig. 6a.
We propose to update the neural network by adjusting both variable

polarisation rotators, and spatial phase shifters in a set of Mach–Zehnder
interferometers as shown in Fig. 6c. In this we are able to change the
outputs from each layer of the network. The spatial shift could be induced
by varying the strain or temperature on the waveguides at given locations,
to change their refractive indices and hence the relative phase; this may
have additional difficulties in that silicon waveguides are birefringent.44

Alternatively we can tune both polarisation and spatial qubits via the
electro–optic effect.
This circuit can be made more robust and miniaturised using silicon or

silica optical waveguides.38 They have been extensively used to control
spatial modes and recently also polarisation.45 Several labs can implement
the phase shifting via heaters or the electro–optic effect. Conventionally
phase shifters built upon the electro–optic effect are known to work in the
megahertz region and have extremely low loss.38 For many applications
this would be considered slow, but our tuning only requires (in the region
of) a few thousand steps. Taking into account that each step requires
approximately 1000 repetitions, around 300 for each of the three Pauli
measurements, a learning task could be completed in the order of
seconds. While it appears that this effect will be the limiting factor in terms
of speed, photodetectors are able to reach reset times in the tens of
nanoseconds, while the production of single photons through parametric
down conversion has megahertz repetition rates.46

Data availability
This is a theoretical paper and there is no experimental data available
beyond the numerical simulation data described in the paper.
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