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Abstract In this paper we present a novel method to reconstruct global topological proper-
ties of a complex network starting from limited information. We assume to know for all the
nodes a non-topological quantity that we interpret as fitness. In contrast, we assume to know
the degree, i.e. the number of connections, only for a subset of the nodes in the network.
We then use a fitness model, calibrated on the subset of nodes for which degrees are known,
in order to generate ensembles of networks. Here, we focus on topological properties that
are relevant for processes of contagion and distress propagation in networks, i.e. network
density and k-core structure, and we study how well these properties can be estimated as
a function of the size of the subset of nodes utilized for the calibration. Finally, we also
study how well the resilience to distress propagation in the network can be estimated us-
ing our method. We perform a first test on ensembles of synthetic networks generated with
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the Exponential Random Graph model, which allows to apply common tools from statisti-
cal mechanics. We then perform a second test on empirical networks taken from economic
and financial contexts. In both cases, we find that a subset as small as 10 % of nodes can
be enough to estimate the properties of the network along with its resilience with an error
of 5 %.

Keywords Complex networks · Financial systems

1 Introduction

The reconstruction of statistical properties of a network when only partial information is
available is one of the outstanding and unresolved problems in the field of statistical physics
of networks [4, 13]. Addressing this issue has many concrete applications.

A paramount example is the case of financial networks where nodes represent financial
institutions and edges are various types of financial ties such as loans or derivative contracts.
These ties result in dependencies among institutions and constitute the ground for the prop-
agation of financial distress across the network. The resilience of the system to the default
or the distress of one or more institutions depends on the topological structure of the whole
network [1, 2]. In contrast, due to confidentiality issues, the information that regulators are
able to collect on the mutual exposures among institutions is very limited.

Typically the analysis of systemic risk has been done by trying to reconstruct the un-
known links in the network using the so-called Maximum Entropy (ME) algorithm. This
method assumes that the network is fully connected (for this reason this class of approaches
is called “dense reconstruction methods”). The weights of the links are then obtained via a
“maximum homogeneity” principle. This means that each node is assumed to bear a similar
level of dependence from all other nodes. After that, the method proceeds by looking for
the matrix that minimizes the distance from the uniform matrix (in which every entry has
the same value), while satisfying certain constraints (imposed in this case by the budget of
the individual banks). Such a matrix is found using the Kullback-Leibler divergence as the
objective function to minimize [5, 14, 16].

However, the hypothesis that the network is fully connected is a strong limitation of the
ME algorithm, since empirical networks show instead a largely heterogeneous degree distri-
bution. Moreover, such “dense reconstruction” leads to an underestimation of the systemic
risk [13, 14]. In Ref. [13] a “sparse reconstruction” algorithm has been proposed, that allows
to minimize the Kullback-Leibler divergence obtaining a matrix with an arbitrary level of
heterogeneity given certain constraints. The latter approach is more reliable but leaves open
the question of what value of heterogeneity would be appropriate to choose. Moreover, the
density of connections must be specified ex-ante and it is not recovered by the algorithm.

To overcome these problems, in this paper we introduce a new general method that we
name Bootstrapping Method (BM). We investigate if it is possible to estimate both the topo-
logical properties of a network and its resilience to distress propagation starting from limited
information. Notice that differently from previous work—e.g. [4], our method does not aim
at reconstructing individual missing links, but aims instead at estimating global properties.
We study how the accuracy of the estimation depends upon the size of the subset of nodes
for which the information is available. In more detail, among all the possible topological
properties, we focus on those that in the literature have been shown to play an important
role in contagion processes and in the propagation of distress, i.e., the network density [1]
and the k-core structure [12]. For the resilience, we focus on a recently introduced notion,
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DebtRank [2], which measures the systemic impact of an initial shock on one or more nodes,
whenever the links in the network represent the financial dependencies among nodes.

In our method, the allocation of the links among nodes is carried out using the fitness
model [3, 11]. Differently from other network generation models, the fitness model gener-
ates a network structure starting from a non-topological variables (fitness) associated to the
nodes. This approach has been used in the past to reproduce the topological properties of
several empirical economical networks, including the network of equity investments in the
stock market [10], the interbank market [6], and the WTW [9].

To validate our method we use both synthetic networks as well as examples of real eco-
nomic systems. In all these cases, we have full information on the system and we evaluate
the accuracy of our method by using only part of the information. The two empirical cases
of study are (1) the World Trade Web (WTW), i.e. the network in which nodes are countries
and links are trade volumes (in US dollars) among them, and (2) the interbank loan network
of the so-called e-mid interbank money market. The result of our analysis is that information
on the degree of a relatively small fraction of nodes is sufficient to estimate with good ap-
proximation the above mentioned topological properties, as long as the fitness of all nodes
is known. For instance, with only about 7 % of the nodes (10 out of 185) we have a relative
error of about: 7 % on the density, 10 % on the average degree of the main core, 7 % on the
size of the main core. Similarly, we find that with about 7 % of the nodes the resilience can
be estimated with a relative error within 10 %.

At a first thought, it can be surprising that a small fraction of nodes enables to recon-
struct so well global emerging properties of the network. However, one should bear in mind
that in the method, while the degrees are known only for a subset of nodes, the fitness is as-
sumed to be known for all the nodes. Therefore, a limitation of this method could arise when
considering different topological properties as strong community structure or assortativity.
Possibly, in these situations the method would probably require a larger initial information
to obtain the same results. Investigation of these situations is left for future research. Over-
all, our method can be applied to any network representing a set of dependencies among
components in a complex system and it is thus of general interest in the field of complex
networks and statistical physics.

2 Exponential Random Graph and Fitness Model

We start by briefly describing the Exponential Random Graph Model (ERGM) and the as-
sociated fitness model. In order to generate ensembles of complex networks, both a dynamic
and a static approach can be utilized. In the dynamic case, nodes and/or links are added
step by step using for instance a “preferential attachment” algorithm. In the static case, in-
stead, the number of nodes is fixed and the links are assigned at once according to some
statistical or deterministic criterion. ERGM is one of the most studied network generation
models [7, 15]. The model can be described using the powerful mathematical formalism of
the equilibrium statistical mechanics [15].

As a specific example, we will consider the so-called fitness or hidden variables models,
where the network topology is determined by an intrinsic property (called fitness) associ-
ated with each node of the network [3]. Through this scheme we can define a framework to
investigate those networks where the topology is driven, at least in part, by non-topological
properties of the nodes. With the fitness model it is possible to study several economical
networks, ranging from the WTW (where the fitness of the model are the GDP of the var-
ious countries) [9], to the financial networks (where fitness are, for instance, the market
capitalization of each institution) [6, 10].
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Given a set of network properties, {Ca} the ERG is defined as the ensemble Ω of max-
imally random networks with {Ca} constrained to some statistical properties. More specifi-
cally, let us suppose that the ensemble averages of {Ca} are fixed:

〈Ca〉Ω ≡
∑

G

P (G)Ca(G) = C∗
a ∀a. (1)

It has been shown that Ω can be defined through a set of control parameters {θa}, the values
of which depend on the set of constraining values {C∗

a } [7, 15]. Furthermore the probability
P (G) of a network G to occur in Ω is given by P (G) = e−H(G)/Z, where we introduced the
graph Hamiltonian H(G) ≡ ∑

a θaCa(G), and the partition function Z ≡ ∑
G exp(−H(G)).

{θa} is the set of Lagrange multipliers associated to the constraints {C∗
a }. The fitness model

can be seen as a specific case where the set of properties {Ca} is the degree sequence
{ki}i=1,...N of the nodes of the network, that is the values of 〈ki〉 for all nodes i are fixed.
In the following, unless differently specified, we consider undirected graphs. In this case,
the partition function, H = ∑

i θiki , is exactly computable and each node can be identified
by its control parameter (or Lagrange multiplier) θi . Fixing the values of {θi} is equivalent
to fix the mean values of {ki}. In order to further clarify the role of {θi} in controlling the
topology, let us define xi ≡ e−θi . It is possible to show [15] that knowing the set {θ} for all
nodes, the ensemble is such that, for each network in Ω , two nodes i and j are connected
with a probability given by:

pij = xixj

1 + xixj

. (2)

Therefore, xi can be considered as a sort of fitness of the node i and it is related to the ability
of i to create links to other nodes.

The average in Ω of several topological properties of the network can be expressed in
terms of appropriate compositions of the linking probabilities pij for every i and j . For
instance, we can write the degree ki as

〈ki〉 =
N∑

j (�=i)=1

pij ; (3)

the average nearest neighbor degree Knn
i as

〈
knn

i

〉 =
∑

j �=i

∑
k �=j pijpjk

〈ki〉 ; (4)

and the clustering coefficient Ci as

〈Ci〉 =
∑

j �=i

∑
k �=j,i pijpjkpki

〈ki〉[〈ki〉 − 1] . (5)

In the limit of small values of fitnesses (and therefore small connectivity), xi is proportional
to the desired degree of the node i. Indeed, in this limit we can assume 〈ki〉 � ∑

j xixj ∝ xi .

3 Bootstrapping Method

The estimation of the linking probability, pij , between node i and node j is the initial step
in order to develop a network bootstrapping method. Let us suppose to have incomplete in-
formation about the topology of a given network (say G0). In particular, we assume to know
the degree ki only for a subset I of the nodes. Moreover, we assume to know, for all the
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nodes, a non-topological property, denoted as yi , that is correlated to some statistical prop-
erties of the degree ki of the nodes by a known relation as clarified below. For instance, in
the World Trade Web yi could be the country GDP, while in financial networks it can be the
operating revenue of the firm i. Given these constraints, we formulate a statistical procedure
to find the most probable estimate of the value s(G0) of a topological property S(G0) of the
network G0 compatible with the constraints. We assume two important hypotheses:

1. the network G0 can be seen as drawn from an ensemble of ERGM, that we call Ω . From
the statistical mechanics of networks we know that the value s(G0) of the property S in
G0, typically varies within the range 〈S〉Ω ± σΩ

S where σΩ
S is the standard deviation, and

〈S〉Ω the average of the property S estimated on the whole ensemble Ω .
2. each known value of the non-topological property yi is assumed to be proportional to the

fitness, denoted as xi (because a generic property of the network can be used as a fitness
variable) of the node i in the ensemble Ω , through a universal unknown parameter z:√

zyi = xi . Therefore Eq. (2) becomes:

pij = zyiyj

1 + zyiyj

. (6)

With these hypotheses, we map the problem of evaluating s(G0) into the one of choosing
the optimal ERGM ensemble Ω compatible with the constraints on G0 (knowledge of yi

for all nodes and ki for the subset I ). Once Ω is determined (it is univocally defined by
the set of {xi}), we can use the average 〈S〉Ω as a good estimation for s(G0) and σΩ

S as
the typical statistical error. More precisely, the question to address is what ensemble Ω ,
belonging to the class ERGM, is the most probable to extract the real network G0, given we
that know only partial information, i.e. {yi} and ki for the subset I of the nodes. Since we
know {yi}, i.e. the rescaled fitness values (a non topological property of the network), the
problem becomes to find the most likely value of z. For this reason we use the notation Ω(z)

for the desired ensemble.
If we knew not only {yi}, but the entire topology of the network, z could be found by

means of a maximum likelihood argument (Ref. [9]) comparing the average number of links
of a network in the ensemble Ω(z) with the total number of links L0 in G0:

〈L〉 ≡ 1

2

N∑

i=1

〈ki〉 ≡ 1

2

N∑

i=1

∑

j �=i

pij = L0, (7)

where pij contains the unknown parameter z through Eq. (6). Since {yi} and L0 are known,
the last equality of Eq. (7) defines an algebraic equation in z from which one can evaluate the
real fitnesses xi = √

zyi . Let us call z0 the estimate of z calculated in this way, and Ω(z0)

the respective ERGM ensemble. However, in our case we assume to ignore the complete
topology of the network and to know only the degrees of the nodes in a subset I . Let n be the
number of nodes of I . In this case, we cannot apply Eq. (7) to estimate z. Nevertheless, we
can still apply the maximum likelihood principle through the following relation in which the
first equality comes from the ERGM and the second one is the application of the constraint
on the knowledge of the degrees for the nodes in the subset I [15]:

∑

i∈I

〈ki〉 ≡
∑

i∈I

∑

j �=i

pij =
∑

i∈I

ki , (8)

where the degrees ki are calculated in the original network G0. For a generic subset I of the
nodes of the network the estimation is less precise than the one given by the last equality
of Eq. (7) and the two equations coincides only when I is the whole set of nodes in the
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network. However, even with just the knowledge of the degree of a single node, the Eq. (8)
yields an estimation of z, and finally of X(G0). In the following, we show that the accuracy
can be good even with a rather small subset I .

The network bootstrap of a network G0 is defined by the above equations using the
following procedure. Let us assume to know the non topological property yi of all N nodes
of the system and the links of a subset I of n < N nodes.

– Given the topological information of the links in the subset I , we compute the sum of all
known degrees of these n nodes in G0:

∑
i∈I ki .

– This sum is substituted into the Eq. (8) to obtain the relative value of z, denoted as z′, that
is an approximation of the “real” value z0.

– Through the value of z′ and the knowledge of every yi we extract all the links in the
network according to the linking probability of Eq. (6).

It is important to estimate the accuracy of the network bootstrap method both for topo-
logical and non-topological properties. To this end, we first apply the method to a synthetic
network generated using the fitness model (see Sect. 4). We then apply the method to an em-
pirical case, i.e. the WTW and the e-mid (see Sect. 5). In the second case, we test how well
we can estimate a global and non-topological property such as the resilience of the network
to distress propagation (see Sect. 6).

4 Test of BM: Synthetic Networks

Let be {Iα}, with α = 1, . . . ,M , an ensemble of subsets of the network G0, each of them
containing n nodes, for which we know the degree ki . In order to test how much our BM
estimate of the property S is precise, we will proceed in the following way:

– Evaluate z for each subset Iα from Eq. (8), and call such estimate zα ;
– Use the value zα to estimate, through the relation

√
zyi = xi , the average property 〈S〉α ≡

〈S〉Ω(zα)≡I from the corresponding ensemble Ωzα ;
– Repeat the calculation for all other sets Iα′ with α′ = 1, . . . ,M , accumulate the values

of 〈S〉α and compute the arithmetic average 〈S〉 of these quantities and the associated
standard deviation with respect to the “real” value of S(G0) across all the realizations of
Iα , for fixed n.

The property S is then estimated by averaging the 〈S〉 computed for each subset I . Notice
that each value 〈S〉 is by itself also an estimation of the true, unknown, property S.

In order to study the accuracy of the reconstruction, we study how the root mean square
error varies as a function of the size n of the subset of nodes for which information is
available. Using the fitness model and all the available information, we generate an ensemble
of networks G each one of size N and we compute several properties like the network
density, the size of the main core and the average degree of the main core. These values will
be our benchmarks to test how good is the reconstruction of the statistical and topological
properties of the network with the BM.

More precisely, we test the BM by focusing on the following three topological quantities,
which were chosen because they have been found to play a role in the distress propagation
and contagion processes and therefore are relevant to the resilience of the network to sys-
temic risk (see Sect. 1). Further properties will be studied in future work.

1. density of links D, which is the ratio between the actual number of links in the network
and the maximal one compatible with the number of nodes N (i.e. N(N − 1)/2) for an
undirected graph;
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2. degree of the main core, kmain. In a network/graph, the k-core is defined as the “largest
subgraph whose nodes have at least k connections (within this subgraph, of course)” [7].
The main core is the k-core with the highest possible degree, kmain;

3. size of the main core, Smain, i.e. its number of nodes.

Each of these measures will play the role of the property X in the previous notation.
In order to use a real-world fitness, we take as reference the WTW (in year 2000) which
contains 185 nodes. We thus generate networks of size N = 185 and we use as fitness yi the
GDP from the WTW. For each of these properties we carry out the procedure described here
below.

1. Choose a value for the variable z0 (compatible with the fitness model for WTW, where
the fitness is the GDP of a country). We start with z0 = 104;

2. By using as fitness the GDP of a country, create 50 realizations of the networks from the
corresponding ERGM that we call ensemble ΩN . Compute on the this set the average
link density De;

3. Use a 51st network from the ΩN ensemble as reference network, call it G0, this will be
the network to reconstruct;

4. Start from the knowledge of the degree k of a randomly chosen set of n nodes (we start
with n = 1) and of the GDP yi for all the nodes in the network to compute an estimation
of z, say z′, from Eq. (8);

5. Using the new value z′ create a new ERGM ensemble I
(n)

1 of 50 networks;
6. Consider another set of randomly chosen n nodes of the network, generate again 50

networks from this set, and repeat this operation 100 times each time with a different
set I (n)

α (α = 1, . . . ,100) of n nodes;
7. In each of the 100 ensembles of 50 networks at fixed n, Iα estimate the average density

〈Dα〉;
8. Compute the root mean square error: σd = 1/100

∑
α

√
(〈Dα〉 − De)2. The difference

is between the average density of the reconstructed networks 〈Dα〉 and the original
average link density De;

9. Compute and plot σd/De;
10. Repeat the points from 4 to 9 using a different values of n.

The entire procedure is repeated for the quantities Smain and kmain, and the results are shown
in Fig. 1 for 3 different values of z0, corresponding to different values of density. We observe
that in all cases there is a rapid decrease of the relative error as the number of nodes n, used
to reconstruct the topology, increases. This is an indication of the goodness of the estimation
provided by the BM. Even with a single node, plus the information on the fitnesses yi of all
nodes (here, we used the GDP of the countries), we are able to estimate the topological
properties of the network with a relative error of about 13 % for the main core average
degree kmain, about 18 % for the network density D, and about 10 % for the size of main
core Smain.

As expected, if we have a denser network (Fig. 1 (d)–(f)) the relative error is smaller
because the network has more links from which the BM can reconstruct the topology. The
same trend in the decrease of the relative error is found for all the examined topological
quantities.

5 Test of BM: World Trade Web and E-mid

We now test the method on the empirical network of the WTW and the e-mid on the same
topological properties as in the previous case. The main difference is that now instead of
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Fig. 1 Esitmation of network properties as a function of the size n of the subset of nodes used for calibration.
(a) Relative error σmain

k
/kmain

e obtained with three different values of the parameter z0. (b) Relative error
of the S-main core size. (c) Relative error of the density D of the links. In all the 3 plots it is evident how
the quality of the reconstruction increases with the number of nodes used to generate the network ensemble
(Color figure online)

using a reference network generated with the fitness model and an average measure over
this network class (generated in the ensemble ΩN ), the reference is now the empirical WTW
network or the e-mid network. As fitness we use: (1) in the case of the WTW, the GDP of
the countries, and (2) in the case of e-mid, the out-strength of the nodes, that is the total
lending of each bank.

For the WTW, we use the trade volume data for the year 2000. For the e-mid, we initially
looked at daily snapshot of loans among banks. However, we found that the a high volatil-
ity of the links at this time scale prevented a robust estimation of the network properties.
Therefore, we focus on snapshots of loans aggregated at a monthly scale, as done also in
other works on the e-mid [6]. In the following, we report the results related to the snapshot
for February 1999. We performed the same analysis also for other monthly snapshots and
we found comparable results.

Similar to what presented above, we perform the test with the following procedure:

1. Compute the “real” value z0 of the model parameter z.
2. From the complete network compute the “true” density of links, DWTW and Demid;
3. Start from the knowledge of the degree k of a randomly chosen set of n nodes (we start

with n = 1) and from the knowledge of the fitness yi of all the nodes in the network to
compute an estimation of z, say z′, from Eq. (8);
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Fig. 2 WTW network. The plots from top left represent respectively: (a) the relative error in the estimation
of average degree of the main core σmain

k
/kmain

WTW computed with real WTW network following the procedure
described in the previous paragraph (b) same as in (a) but for the relative error in the size of main core
(c) same as in (a) but for the density of the links D. In all the 3 plots it is evident how the goodness of
the reconstruction of the WTW network increases with the number of nodes used to generate the network
ensemble

4. Using the new value z′ create a new ERGM ensemble I
(n)

1 of 50 networks;
5. Choose another set of randomly chosen n nodes of the network, generate again 50 net-

works from this set, and repeat this operation 100 times each time with a different set
I (n)
α (α = 1, . . . ,100) of n nodes;

6. In each of the 100 ensembles I (n)
α of 50 networks, with fixed n, estimate the average

density 〈Dα〉;
7. Compute the root mean square error: σd = 1/100

∑
α

√
(〈Dα〉 − DWTW)2, taking the dif-

ference between the reconstructed networks 〈Dα〉 and the original WTW link density
DWTW . Similarly, for the e-mid.

8. Compute and plot σd/DWTW and σd/Demid

9. Repeat the points from 4 to 9 using a different value of n.

The same test is carried out for the other quantities kmain and Smain. Results are shown in
Fig. 2 for the WTW network and in Fig. 3 for the e-mid network.

6 Test of BM: DebtRank a Measure of Systemic Risk

In order to estimate the resilience of the networks we use DebtRank (DR) a recently intro-
duced measure of the systemic impact of the distress of one or more nodes to the rest of the
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Fig. 3 E-mid network. The plots from top left represent respectively: (a) the relative error in the estimation
of average degree of the main core σmain

k
/kmain

WTW computed with a e-mid network following the procedure
described in the previous paragraph (b) same as in (a) but for the relative error in the size of main core
(c) same as in (a) but for the density of the links D. In all the 3 plots it is evident how the goodness of
the reconstruction of the e-mid network increases with the number of nodes used to generate the network
ensemble

network [2]. In particular, we also use Group DebtRank (GDR), which measures the impact
caused by a small shock on all the nodes in the network, due to the reverberations across
links in the network. The method consists in computing the impact of the shock in a recur-
sive way from the matrix of the link weights, given an initial shock ψ to one node in the
case of DR and to all nodes in the case of GDR. The rescaling factor 0 < α < 1 determines
the scale of the impact along each link in the network.

Let us focus on the WTW network. Our goal is to test how well DR and GDR are es-
timated by the network bootstrap method. We make several tests for different values of
initial shock ψ and impact rescaling factor α. Both DebtRank and Group DebtRank depend
strongly on the link weights, which are assumed to be unknown in the simulations. In fact
the fitness model reconstructs the degree sequence, but not the weights of the links. We then
use a value for each link with two rules:

– Compute the average weight by averaging the elements of the Wij matrix associated to
the n < N nodes. Use this value as homogeneous weight for all nodes.

– Assign to each node a weight similarly to what done in a gravity model (see [8]) where
the link lij has a weight proportional to the product of the GDPs GDPi · GDPj .

We want to consider the impact in case a distress in a country (i.e. a delay in the pay-
ments) propagates to the others. Since the adjacency matrix represents the economic value
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Fig. 4 WTW network. The plots represent respectively: Group DebtRank computed on the original WTW
network with empirical weights (green dashed line); the average Group DebtRank on the 100 bootstrapped
networks with weights obtained using gravity model (green dots) and respective errors; the Group DebtRank
on the original WTW network with homogeneous weights (blue dashed line); the average Group DebtRank
on the 100 bootstrapped networks with homogeneous weights (blue dots) and respective errors. The impact
rescaling factor is set as follows: (a) α = 0.1, (b) α = 0.3, (c) α = 0.5, (d) α = 0.7, (e) α = 0.9 (Color figure
online)

of the goods sold (the links are in the opposite direction), we transpose the WTW matrix
normalize the rows imposing a row stochastic condition

∑
j wij = 1.

The procedure to compute the GDR in the case of the WTW is the following. Results are
shown in Fig. 4. The procedure to compute the GDR in the case of the e-mid is completely
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Fig. 5 E-mid network. The plots represent respectively: Group DebtRank computed on the original e-mid
network with empirical weights (green dashed line); the average Group DebtRank on the 100 bootstrapped
networks with weights obtained using gravity model (green dots) and respective errors; the Group DebtRank
on the original e-mid network with homogeneous weights (blue dashed line); the average Group DebtRank
on the 100 bootstrapped networks with homogeneous weights (blue dots) and respective errors. The impact
rescaling factor is set as follows: (a) α = 0.1, (b) α = 0.3, (c) α = 0.5, (d) α = 0.7, (e) α = 0.9 (Color figure
online)

analogous, with out-strength values instead of GPDs. For the e-mid network, results are
shown in Fig. 5

1. Compute the reference Group DebtRank on the original WTW network with an initial
shock φ = 0.1. Keep this value as reference (green dashed line in the plots).
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2. Bootstrap the networks from subsets of size n < N using homogeneous weights (com-
puted as average of the weights of the only nodes that we start from in the simulation),
compute the average GDR on 50 bootstrapped networks with homogeneous weights. Re-
peat the operation 100 times changing the starting set of nodes during the generation of
the 50 networks, obtaining for each n an average value with error (blue dots). It is impor-
tant to point out that each bootstrap network is an undirected network, whereas the GDR
in the real WTW is computed using the original, directed topology. Therefore we calcu-
late the GDR on directed versions of the boostrap networks, obtained simply changing
each link in two directed links.

3. In the non homogeneous case (green dots), bootstrap the networks using weights accord-
ing to a gravity model, where the weight of the link is the product of the GDPs of each
node. In order to add a “perturbation” on such a network, we estimate empirically from
the plot of Wij vs GDPi · GDPj the average variation of the weight Wij as a function of
the GDP’s product. We then alter the corresponding adjacency matrix W ′

ij by imposing,
for each weight, a random normal error: w′

ij = wij + σN(0,1), where σ is a standard
deviation computed on wij for the corresponding fixed value of GDPi · GDPj . The new
perturbed weight matrix is then transformed to maintain the row stochasticity.

In Fig. 4, we plot the GDR for various α values, ranging from 0.1 to 0.9, in all cases the
initial shock is ψ = 0.1, 10 % of the value of the trade of every country. From the pictures
we can draw the following conclusions:

– There is a significant difference when using homogeneous weights or heterogeneous
weights. Using a constant value for the weight of each link leads to underestimating
the value of systemic risk as measured by Group DebtRank, for both WTW and e-mid
network.

– The reconstruction of the DebtRank values is relatively good even for small subsets of
nodes in the network.

– Using a gravity model (even if simplified) improves the estimate of the GDR of both the
WTW and e-mid network.

– The gap between the homogeneous GDR and the empirical one increases for larger val-
ues of the impact rescaling factor α. This can be interpreted as follows: when the network
effects are important the use of homogeneous weights in the dynamics leads to a larger
error. Conversely when the network effects (reverberation) are less important the homo-
geneous weights are not so far from the true value of the GDR.

From this analysis we can conclude that the BM performs fairly well in allowing to
estimate a global non-topological property such as the Group DebtRank. However, in order
to achieve this goal one has to chose careful the weights of links because the use of an
average value leads to inaccurate estimates, especially if the network effects are relevant.

The impact of shocks on individual nodes (DR) is shown in Table 1 for the WTW net-
work. The impact rescaling factor is set as α = 0.5 and the initial shock as ψ = 1. As
expected, the biggest is the GDP the biggest is the corresponding DebtRank but with some
variation due to network effects. Consider for instance a country like Canada, a big exporter
of oil and minerals, its impact on the WTW will be larger than Germany that is a strong
exporter of final goods. This analysis shows as the DebtRank measure is important to assess
the distress propagation yielding results that are not trivially contained in the size of the
countries.
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Table 1 The values of
DebtRank and the GDP rank
(year 2000) for the 20 biggest
countries in the WTW network.
Notice that the ranking according
to DebtRank agrees only in part
with the ranking by the GDP.
Depending on the size of the
exports volume, each country can
be more or less affected by a
shock on the others countries.
The values are obtained setting
α = 0.5 and ψ = 1

Country DebtRank GDP rank (2000)

USA 0.48 1

JPN 0.32 2

CAN 0.26 8

CHN 0.23 6

DEU 0.23 3

MEX 0.18 10

GBR 0.17 4

FRA 0.16 5

ITA 0.12 7

NLD 0.10 15

KOR 0.09 12

TWN 0.09 16

BEL 0.08 20

ESP 0.08 11

SGP 0.07 39

MYS 0.05 40

CHE 0.05 18

BRA 0.05 9

IRL 0.04 38

AUS 0.04 14

7 Conclusions

In this paper we proposed a novel Bootstrap Method (BM) to estimate topological proper-
ties of a network by using only partial information from its connections and an auxiliary
non-topological property, interpreted as the fitness associated to each node. This method is
particularly useful to overcome the lack of topological information which often hampers the
estimation of systemic risk in financial networks. We tested the method both on synthetic
and empirical networks. We have studied how well it is possible to estimate some topo-
logical properties relevant to systemic risk (as mentioned in the introduction) such as the
network density, the size and the average degree of the main core, as well as the a measure
of the resilience of the network to the propagation of distress.

We found that, by using about 5 % of the nodes, the density of the links, the size of
the main core, the average degree of the main core are estimated with a tolerance varying
between 1 % and 10 %, depending on the property examined. An interesting finding is that
the denser is the network the better is the estimation. We also checked how the accuracy of
the estimation increases with the size of the subset of nodes used for which information is
available. We found that this strongly depends on the accuracy of the fitness model. In the
case of the WTW, the fitness model is fairly accurate in describing how links are formed
across countries depending on their GDP and geographical distance. In the e-mid the fitness
model is less accurate but still useful.

Furthermore, the BM method was tested against a non-topological property, namely
Group DebtRank, a recently introduced measure of the systemic impact of a shock on the
nodes of the network. We found that, both for WTW and e-mid network, the method allows
to evaluate fairly well this property even starting from a small number of nodes.



734 N. Musmeci et al.

In particular, we compared the results obtained using link weights derived from the grav-
ity model of the WTW (this means that the weight of a link is proportional to the product
of the GDPs of each node) with those obtained using homogeneous weights (taken as the
average of the original weights). In the latter case, the BM estimates a value of Group Deb-
tRank that is lower than the real one. This means that when the network is simulated using
an average value for the weight, there is a systematic bias in the evaluation of systemic risk
as measured by DebtRank. Conversely, in the case of non homogeneous weights, imposing
more realistic values from the WTW fitness (gravity) model we obtain a more accurate es-
timation of the Group DebtRank. Finally we notice that the bigger is the impact factor α

in rescaling the nodes the greater is the distress propagation in the network captured by the
Group DebtRank. We observed the above results for both WTW and e-mid networks.

Further work is needed to address several issues that remain open. One could test the
accuracy of estimation obtained with the Bootstrap Method on other topological and non-
topological properties. In particular, one could try and extend the method in order to take
into account degree-degree correlations and other higher order properties.
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