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Solid He is studied in the pressure and temperature ranges 1–40 TPa and 0–10 000 K using first-
principles methods. Anharmonic vibrational properties are calculated within a self-consistent field
framework, including the internal and free energies, density-pressure relation, stress tensor, thermal
expansion, and the electron-phonon coupling renormalization of the electronic band gap. We find that an
accurate description of electron-phonon coupling requires us to use a nonperturbative approach. The
metallization pressure of 32.9 TPa at 0 K is larger than found previously. The vibrational effects are large;
for example, at P ¼ 30 TPa the band gap is increased by 2.8 eV by electron-phonon coupling and a further
0.1 eV by thermal expansion compared to the static value. The implications of the calculated metallization
pressure for the cooling of white dwarfs are discussed.
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Helium (He) is the second most abundant element in the
Universe after hydrogen and an important component of
stellar bodies such as giant gaseous planets, main-sequence
stars, and white dwarf (WD) stars. The large first excitation
energy of atomic He of 19.82 eV leads to a high
metallization pressure for the solid phase, of the order of
tens of terapascals. Calculations [1,2] indicate that He
remains solid at terapascal pressures up to temperatures of
around 8000 K: solid He is therefore expected to occur in
the outer layers of cool WDs.
The vast majority of stars in the Universe become WDs

in their final stages of evolution, with the gravitational
attraction towards the center being balanced by the
electron degeneracy pressure of the high-density core.
The lack of a continuous energy source means that WDs
cool down until reaching thermodynamic equilibrium
with their surroundings, eventually becoming black
dwarfs. An understanding of the cooling process [3] is
essential when calculating the ages of observed WDs,
which are widely used within cosmochronology [4,5] to
date stellar clusters and galaxies, and hence to provide
bounds on the age of the Universe.
The cores of WDs are largely isothermal due to the high

thermal conductivity of degenerate electrons. Hence, the
cooling rate is mainly determined by the outer layers, which
are composed of hydrogen, He, or a mixture of both. In this
context the insulator-metal transition in solid He is central
because energy transport from the degenerate core is
dominated by electron transport through metallic He in
the deeper layers, and by photon transport through insulat-
ing He in the outermost region [6].
Recent work has focused on studying the metallization

pressure of He in the solid and fluid states [6–11]. In
the solid state [6], static-lattice electronic structure
calculations using both the diffusion Monte Carlo

(DMC) many-body technique [12,13] and theGW approxi-
mation of many-body perturbation theory [14] have shown
that standard generalized gradient approximations [15] to
density functional theory (DFT) [16,17] substantially
underestimate band gaps. In the fluid state [7], the effects
of electron-phonon coupling lead to a strong temperature
dependence of the metallization pressure. The effects of
temperature on the metallization transition in the solid state
remain an open question.
Helium is the second lightest element and therefore the

nuclear vibrational amplitudes are expected to be large and
possibly to show anharmonicity. Recent advances in the
treatment of anharmonicity from first principles make the
incorporation of these effects feasible [18–23].
Both electron-phonon coupling and thermal expansion

are important for determining band gaps in the solid state
[24–26]. Studying the effects of electron-phonon coupling
on the band gaps of solids from first principles has only
recently become possible [22,27–30]. In this Letter, we
combine first-principles calculations of anharmonicity,
electron-phonon coupling, and thermal expansion to study
the vibrational corrections to the thermal band gap of solid
He and hence determine an accurate value for the temper-
ature dependence of the metallization pressure.
We use the principal-axes approximation [22,31] to the

Born-Oppenheimer energy surface, considering indepen-
dent phonon terms and pairwise phonon-phonon inter-
actions. The resulting nuclear Schrödinger equation is
solved within the vibrational self-consistent field (VSCF)
framework [22,32] for the anharmonic vibrational energy
ES and wave function jΦSðQÞi in state S, where Q is a
collective phonon coordinate. We use second-order pertur-
bation theory to go beyond the mean-field formulation.
Phonon expectation values of a general operator ÔðQÞ are
calculated at finite temperature T according to
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hÔðQÞi ¼ 1

Z

X

S

hΦSðQÞjÔðQÞjΦSðQÞie−ES=kBT; (1)

where Z is the partition function and kB is Boltzmann’s
constant. This expectation value can be calculated by
writing the operator ÔðQÞ within a principal-axes repre-
sentation like that for the energy [22], or nonperturbatively
by sampling phase space according to the nuclear density
[28,30]. The first method is approximate, but the descrip-
tion is in terms of individual phonons, permitting direct
access to the underlying physical processes. The second
method can, in principle, lead to accurate numerical results,
but the underlying physical mechanisms are obscured. We
use a combination of both methods to obtain a full picture
of the effects of electron-phonon coupling on the band gap
of He. We note that using DFT to calculate electron-phonon
corrections to band gaps is reasonable, as the usual band-
gap underestimation cancels in the difference between the
static gap and the phonon-renormalized gap [29].
We solve the electronic Schrödinger equation to map

the Born-Oppenheimer energy surface within plane-wave
DFT [16,17] using the CASTEP code [33]. We use ultrasoft
pseudopotentials [34] with core radii of 0.212 Å, which
require an energy cutoff of 2800 eV, and Monkhorst-Pack
[35] k-point grids of spacing 2π × 0.04 Å−1. These param-
eters lead to energy differences converged to within
10−4 eV per atom and stresses to within 10−1 GPa. All
calculations are performed with the Perdew-Burke-
Ernzerhof [15] generalized gradient approximation func-
tional. We solve the vibrational Schrödinger equation
within the VSCF formalism by expanding the wave
function in a basis of simple harmonic oscillator eigen-
states. This basis is defined from a quadratic fit to the
Born-Oppenheimer energy surface calculated within the
principal-axes approximation rather than from the har-
monic approximation. Converged results are obtained using
100 simple harmonic oscillator states for each phonon
degree of freedom.
The phase diagram of solid He at low pressures is

well characterized, and the hexagonal closed-packed (hcp)
structure with a c=a ratio close to ideal is stable up to at
least 58 GPa [36]. It is usually assumed that He remains in
the hcp phase up to high pressures and temperatures, but
this does not seem to have been tested in detail.
Furthermore, at the highest pressures it is expected to
adopt the body-centered cubic (bcc) structure. We therefore
perform searches at 10 and 20 TPa using the ab initio
random structure searching (AIRSS) method [37,38] to find
low-enthalpy crystal structures of He with 12 or fewer
atoms per cell. We calculate the harmonic vibrational free
energy of the most competitive phases in the temperature
range 0–10 000 K, finding several phases that are lower in
free energy than the face-centered cubic (fcc) and bcc
phases, but none of them were more stable than hcp. In
Fig. 1 we show the static-lattice enthalpy ΔHhcp of the

closed-packed phases with respect to the hcp phase. The hcp
and double hexagonal closed-packed (dhcp) structures are
the two end members of a series of structures which differ in
the stacking of layers, and whose energies per layer vary
continuously with the fraction of stacking faults present.
We have also calculated the anharmonic free energy

ΔFanh of hcp He (see Fig. 1). At 10 TPa and zero
temperature, for example, the harmonic energy is
686.9 mev=atom and the anharmonic correction from the
independent phonon term is −1.7 meV=atom, which is
further renormalized by þ1.1 meV=atom due to the two-
body phonon term. At T ¼ 5000 K, the harmonic free
energy is 75.0 meV=atom, and the anharmonic correction
is −5.2 meV=atom. At 25 TPa and zero temperature the
harmonic energy is 903.0 meV=atom and the anharmonic
correction is only 2.1 meV=atom, whereas at T ¼ 5000 K,
the harmonic free energy is 466.6 meV=atom and the
anharmonic correction is 6.3 meV=atom. Second-order
perturbation theory does not change these results within
the reported precision, demonstrating the accuracy of the
mean-field approximation. These anharmonic corrections,
albeit larger than in heavier systems such as diamond [22],
remain remarkably small and have no discernible effect on
the relative stability of the phases considered. Furthermore,
the ratio of the anharmonic to quasiharmonic vibrational
free energy decreases with increasing pressure, suggesting
that anharmonicity becomes less important for the ener-
getics of He at high pressures.
The band structure and density of states of hcp He at

10 TPa are shown in Fig. 2. The occupied density of states
is very similar to that of a free electron gas at the same
density, only deviating from it in the gap region. The
valence-band maximum (VBM) is located along the line
joining the Γ and M points, while the conduction-band

0.0

0.2

0.4

∆H
hc

p (
eV

/a
to

m
)

0 5 10 15 20 25
Pressure (TPa)

-2.0

0.0

2.0

∆U
an

h (
m

eV
/a

to
m

)

(a)

(b)

hcp

dhcp

hcp-dhcp continuum

bcc

fcc

FIG. 1 (color online). (a) Enthalpy ΔHhcp with respect to the
hcp phase of the closed-packed phases described at the static DFT
level. (b) Anharmonic energy correction ΔUanh to the harmonic
energy of the hcp phase at zero temperature.
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minimum (CBM) is located at the Γ point, as observed
experimentally at lower pressures [39]. We have evaluated
Eq. (1), with Ô being the separation of the VBM and CBM,
both within a principal-axes representation and nonpertur-
batively [40]. Figure 3 shows the pressure dependence of
the zero-point (ZP) electron-phonon correction to the
thermal band gap of hcp He calculated nonperturbatively.
A second calculation of the same quantity with a principal-
axes representation of EgðQÞ gives information about the
underlying physical mechanisms. The out-of-plane modes
of the hcp lattice couple strongly to the electronic bands,
which opens the band gap. This coupling increases with
pressure, leading to the behavior shown in Fig. 3. This can
be further understood by analyzing the Kohn-Sham eigen-
states corresponding to the VBM and the CBM (Fig. 3). At
lower pressure these eigenstates are localized around the
atomic sites, but as pressure increases they delocalize in the
interplane direction, hence increasing the coupling with
the out-of-plane modes.
We emphasize that the nonperturbative calculation of the

renormalization of the band gap due to electron-phonon
coupling leads to quantitatively different results to the
perturbative approach. Terms beyond lowest-order pertur-
bation theory are crucial for calculating the band-gap
correction [41]. The magnitude of the band-gap renorm-
alization is amongst the largest reported, similar only to that
found in high-pressure solid hydrogen [42].
To investigate thermal expansion we have calculated the

vibrational stress tensor at finite temperatures using the
formalism of Ref. [22]. The vibrational stress tensor is
diagonal, with similar in-plane and out-of-plane stresses,
leading to an isotropic volume expansion. Figure 4 shows
the density-pressure relation at five different temperatures,
including vibrational effects. Both ZP and finite-
temperature expansions are more significant at lower
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FIG. 2 (color online). Electronic band structure (blue, on left-
hand side of figure) and density of states (red, on right-hand side
of figure) of hcp He at 10 TPa. The dashed black line is the
density of states of a free electron gas of the same density as He.
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FIG. 3 (color online). (a) ZP electron-phonon correction to the
thermal band gap of hcp solid He as a function of pressure. The
inset shows the temperature dependence of the electron-phonon
correction at a pressure of P ¼ 25 TPa. (b) Squared Kohn-Sham
eigenstate corresponding to the CBM at 10 and 25 TPa, using a
red-green-blue color scale with red corresponding to high density
and blue to low density. We have removed the regions of lowest
density for clarity.
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FIG. 4 (color online). Density-pressure-temperature phase dia-
gram of solid hcp He. At a given external pressure, the density ρ
is renormalized with respect to the static-lattice density ρstatic at
that pressure. The inset shows the density-pressure relation at
T ¼ 0 K, including the effects of ZP motion.
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pressures. At P ¼ 25 TPa, the ZP correction to the volume
at T ¼ 0 K opens the gap by 0.105 eV, and the thermal
expansion at T ¼ 5000 K opens it by 0.216 eV
Combining the effects of electron-phonon coupling and

thermal expansion, we calculate the pressure dependence
of the thermal band gap of solid He near metallization,
as shown in Fig. 5. The static-lattice DMC results are
those reported in Ref. [6], which agree with GW results.
Including electron-phonon coupling and ZP expansion at
zero temperature leads to metallization at 32.9 TPa, sig-
nificantly higher than the static-lattice value.

The vibrational band-gap renormalization near the met-
allization pressure is about 3.0–4.0 eV for temperatures in
the range 0–5000 K This represents a quantitative change in
the static-lattice value of the same order of magnitude as the
electron-correlation correction to DFT [6]. Furthermore,
our results are the first to describe the temperature
dependence of the transition. The authors of Ref. [6]
considered the effects of temperature on the electronic
band gap within path integral Monte Carlo [43], and
concluded that they are negligible. We have come to a
significantly different conclusion on this issue, but there is
insufficient information in Ref. [6] to allow a more detailed
comparison. Combining our data with those from Ref. [2],
we construct the phase diagram of He at the pressures and
temperatures relevant for cool WDs shown in Fig. 6.
In conclusion, we have presented first-principles calcu-

lations of the phase stability, electron-phonon coupling, and
thermal expansion of solid He over a range of pressures and
temperatures. We have shown that the thermodynamically
stable phase of solid He is hcp for the pressure range
1–30 TPa and temperature range 0–10 000 K including
anharmonic energies at the mean-field level. The second-
order perturbation theory used to go beyond the VSCF
approximation gives a negligible correction, suggesting
that the mean-field energy is accurate. The effects of
electron-phonon coupling on the band gap are substantial
and several times larger than the effects of thermal
expansion. A perturbative approach is inaccurate here
and a nonperturbative scheme, as we have used, is required.
We have determined the metal-insulator transition of solid
He to be at 32.9 TPa at T ¼ 0 K which may be compared
with the value 25.7 TPa obtained in Ref. [6] at the static-
lattice level.
The increase in the metallization pressure of solid He,

including the effects of electron-phonon coupling and
thermal expansion, implies that the interiors of WDs have
a thinner metallic He layer than predicted by a purely
electronic treatment, and a correspondingly thicker insulat-
ing layer where heat transport is dominated by photons.
The temperature dependence of the metallization pressure
indicates that, as WDs cool, the thickness of the metallic
layer increases at the expense of the insulating layer. These
results suggest that white dwarf stars may be older than
previously thought.

Financial support was provided by the Engineering and
Physical Sciences Research Council (U.K.). The calcula-
tions were performed on the Cambridge High Performance
Computing Service facility.
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