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A B S T R A C T

Experience curves are widely used to predict the cost benefits of increasing the deployment of a technology. But
how good are such forecasts? Can one predict their accuracy a priori? In this paper we answer these questions by
developing a method to make distributional forecasts for experience curves. We test our method using a dataset
with proxies for cost and experience for 51 products and technologies and show that it works reasonably well.
The framework that we develop helps clarify why the experience curve method often gives similar results to
simply assuming that costs decrease exponentially. To illustrate our method we make a distributional forecast for
prices of solar photovoltaic modules.

1. Introduction

Since Wright’s (1936) study of airplanes, it has been observed that
for many products and technologies the unit cost of production tends to
decrease by a constant factor every time cumulative production doubles
(Thompson, 2012). This relationship, also called the experience or
learning curve, has been studied in many domains.1 It is often argued
that it can be useful for forecasting and planning the deployment of a
particular technology (Ayres, 1969; Sahal, 1979; Martino, 1993).
However in practice experience curves are typically used to make point
forecasts, neglecting prediction uncertainty. Our central result in this
paper is a method for making distributional forecasts, that explicitly take
prediction uncertainty into account. We use historical data to test this
and demonstrate that the method works reasonably well.

Forecasts with experience curves are usually made by regressing

historical costs on cumulative production. In this paper we recast the
experience curve as a time series model expressed in first-differences:
the change in costs is determined by the change in experience. We
derive a formula for how the accuracy of prediction varies as a function
of the time horizon for the forecast, the number of data points the
forecast is based on, and the volatility of the time series. We are thus
able to make distributional rather than point forecasts. Our approach
builds on earlier work by Farmer and Lafond (2016) that showed how
to do this for univariate forecasting based on a generalization of
Moore's law (the autocorrelated geometric random walk with drift).
Here we apply our new method based on experience curves to solar
photovoltaic modules (PV) and compare to the univariate model.

Other than Farmer and Lafond (2016), the two closest papers to our
contribution here are Alberth (2008) and Nagy et al. (2013). Both papers
tested the forecast accuracy of the experience curve model, and performed
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comparisons with the time trend model. Alberth (2008) performed fore-
cast evaluation by keeping some of the available data for comparing
forecasts with actual realized values.2 Here, we build on the methodology
developed by Nagy et al. (2013) and Farmer and Lafond (2016), which
consists of performing systematic hindcasting. That is, we use an estima-
tion window of a constant (small) size and perform as many forecasts as
possible. As in Alberth (2008) and Nagy et al. (2013), we use several
datasets and we pool forecast errors to construct a distribution of forecast
errors. We think that out-of-sample forecasts are indeed good tests for
models that aim at predicting technological progress. However, when a
forecast error is observed, it is generally not clear whether it is “large” or
“small”, from a statistical point of view. And it is not clear that it makes
sense to aggregate forecast errors from technologies that are more or less
volatile and have high or low learning rates.

A distinctive feature of our work is that we actually calculate the
expected forecast errors. As in Farmer and Lafond (2016), we derive an
approximate formula for the theoretical variance of the forecast errors,
so that forecast errors from different technologies can be normalized,
and thus aggregated in a theoretically grounded way. As a result, we
can check whether our empirical forecast errors are in line with the
model. We show how in our model forecast errors depend on future
random shocks, but also parameter uncertainty, as is only seldomly
acknowledged in the literature (for exceptions, see Vigil and Sarper,
1994 and Van Sark, 2008).

Alberth (2008) and Nagy et al. (2013) compared the forecasts from
the experience curve, which we call Wright's law, with those from a
simple univariate time series model of exponential progress, which we
call Moore's law. While Alberth (2008) found that the experience curve
model was vastly superior to an exogenous time trend, our results (and
method and dataset) are closer to the findings of Nagy et al. (2013):
univariate and experience curves models tend to perform similarly, due
to the fact that for many products cumulative experience grows ex-
ponentially. When this is the case, we cannot expect experience curves
to perform much better than an exogenous time trend unless cumula-
tive experience is very volatile, as we explain in detail here.

We should emphasize that this comparison is difficult because the
forecasts are conditioned on different variables: Moore's law is condi-
tioned on time, while Wright's law is conditioned on experience. Which
of these is more useful depends on the context. As we demonstrate,
Moore's law is more convenient and just as good for business as usual
forecasts for a given time in the future. However, providing there is a
causal relationship from experience to cost, Wright's law makes it
possible to forecast for policy purposes (Way et al., 2017).

Finally, we depart from Alberth (2008), Nagy et al. (2013) and most
of the literature by using a different statistical model. As we explain in
the next section, we have chosen to estimate a model in which the
variables are first-differenced, instead of kept in levels as is usually
done. From a theoretical point of view, we believe that it is reasonable
to think that the stationary relationship is between the increase of ex-
perience and technological progress, instead of between a level of ex-
perience and a level of technology. In addition, we will also introduce a
moving average noise, as in Farmer and Lafond (2016). This is meant to
capture some of the complex autocorrelation patterns present in the
data in a parsimonious way, and increase theoretical forecast errors so
that they match the empirical forecast errors.

Our focus is on understanding the forecast errors from a simple
experience curve model3. The experience curve, like any model, is only
an approximation. Its simplicity is both a virtue and a detriment. The
virtue is that the model is so simple that its parameters can usually be

estimated well enough to have predictive value based on the short data
sets that are typically available4. The detriment is that such a simple
model neglects many effects that are likely to be important. A large
literature starting with Arrow (1962) has convincingly argued that
learning-by-doing occurs during the production (or investment) pro-
cess, leading to decreasing unit costs. But innovation is a complex
process relying on a variety of interacting factors such as economies of
scale, input prices, R&D and patents, knowledge depreciation effects, or
other effects captured by exogenous time trends.5 For instance,
Candelise et al. (2013) argue that there is a lot of variation around the
experience curve trend in solar PV, due to a number of unmodelled
mechanisms linked to industrial dynamics and international trade, and
Sinclair et al. (2000) argued that the relationship between costs and
experience is due to experience driving expectations of future produc-
tion and thus incentives to invest in R&D. Besides, some have argued
that simple exponential time trends are more reliable than experience
curves. For instance Funk and Magee (2015) noted that significant
technological improvements can take place even though production
experience did not really accumulate, and Magee et al. (2016) found
that in domains where experience (measured as annual patent output)
did not grow exponentially, costs still had an exponentially decreasing
pattern, breaking down the experience curve. Finally, another im-
portant aspect that we do not address is reverse causality (Kahouli-
Brahmi, 2009; Nordhaus, 2014; Witajewski-Baltvilks et al., 2015): if
demand is elastic, a decrease in price should lead to an increase in
production. Here we have intentionally focused on the simplest case in
order to develop the method.

2. Empirical framework

2.1. The basic model

Experience curves postulate that unit costs decrease by a constant
factor for every doubling of cumulative production6. This implies a
linear relationship between the log of the cost, which we denote y, and
the log of cumulative production which we denote x:

= +y y ωx .t t0 (1)

This relationship has also often been called “the learning curve” or the
experience curve. We will often call it “Wright's law” in reference to
Wright's original study, and to express our agnostic view regarding the
causal mechanism. Generally, experience curves are estimated as

= + +y y ωx ι ,t t t0 (2)

where ιt is i.i.d. noise. However, it has sometimes been noticed that
residuals may be autocorrelated. For instance Womer and Patterson
(1983) noticed that autocorrelation “seems to be an important pro-
blem” and Lieberman (1984) “corrected” for autocorrelation using the
Cochrane-Orcutt procedure.7 Bailey et al. (2012) proposed to estimate
Eq. (1) in first difference

− = − +− −y y ω x x η( ) ,t t t t t1 1 (3)

where ηt are i.i.d errors N∼η σ(0, )t η
2 . In Eq. (3), noise accumulates so

that in the long run the variables in level can deviate significantly from
the deterministic relationship. To see this, note that (assuming x0=log
(1)=0) Eq. (3) can be rewritten as

2 Alberth (2008) produced forecasts for a number (1,2,… 6) of doublings of cumulative
production. Here instead we use time series methods so it is more natural to compute
everything in terms of calendar forecast horizon.

3 We limit ourselves to showing that the forecast errors are compatible with our model
being correct, and we do not try to show that they could be compatible with the ex-
perience curve model being spurious.

4 For short data sets such as most of those used here, fitting more than one parameter
often results in degradation in out-of-sample performance (Nagy et al., 2013).

5 For examples of papers discussing these effects within the experience curves frame-
work, see Argote et al. (1990), Berndt (1991), Isoard and Soria (2001), Papineau (2006),
Söderholm and Sundqvist (2007), Jamasb (2007), Kahouli-Brahmi (2009), Bettencourt
et al. (2013), Benson and Magee (2015) and Nordhaus (2014).

6 For other parametric models relating experience to costs see Goldberg and Touw
(2003) and Anzanello and Fogliatto (2011).

7 See also McDonald (1987), Hall and Howell (1985), and Goldberg and Touw (2003)
for further discussion of the effect of autocorrelation on different estimation techniques.
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which is the same as Eq. (2) except that the noise is accumulated across
the entire time series. In contrast, Eq. (2) implies that even in the long
run the two variables should be close to their deterministic relationship.

If y and x are I(1)8, Eq. (2) defines a cointegrated relationship. We
have not tested for cointegration rigorously, mostly because unit root
and cointegration tests have uncertain properties in small samples, and
our time series are typically short and they are all of different length.
Nevertheless, we have run some analyses suggesting that the difference
model may be more appropriate. First of all in about half the cases we
found that model (2) resulted in a Durbin-Watson statistic lower than
the R2, indicating a risk of spurious regression and suggesting that first-
differencing may be appropriate9. Second, the variance of the residuals
of the level model was generally higher, so that the tests proposed in
Harvey (1980) generally favored the first-difference model. Third, we
ran cointegration tests in the form of Augmented Dickey-Fuller tests on
the residuals of the regression (2), again generally suggesting a lack of
cointegration. While a lengthy study using different tests and paying
attention to differing sample sizes would shed more light on this issue,
in this paper we will use Eq. (3) (with autocorrelated noise). The sim-
plicity of this specification is also motivated by the fact that we want to
have the same model for all technologies, we want to be able to cal-
culate the variance of the forecast errors, and we want to estimate
parameters with very short estimation windows so as to obtain as many
forecast errors as possible.

We will compare our forecasts using Wright's law with those of a
univariate time series model which we call Moore's law

− = +−y y μ n .t t t1 (4)

This is a random walk with drift. The forecast errors have been ana-
lyzed for i.i.d. normal nt and for nt=vt+θvt−1 with i.i.d. normal vt
(keeping the simplest forecasting rule) in Farmer and Lafond (2016). As
we will note throughout the paper, if cumulative production grows at a
constant logarithmic rate of growth, i.e. xt+1−xt= r for all t, Moore's
and Wright's laws are observationally equivalent in the sense that Eq.
(3) becomes Eq. (4) with μ=ωr. This equivalence has already been
noted by Sahal (1979) and Ferioli and Van der Zwaan (2009) for the
deterministic case. Nagy et al. (2013), using a dataset very close to ours,
showed that using trend stationary models to estimate the three para-
meters independently (Eq. (2) and regressions of the (log) costs and
experience levels on a time trend), the identity  ̂̂ =μ ωr holds very well
for most technologies. Here we will replicate this result using difference
stationary models.

2.2. Hindcasting and surrogate data procedures

To evaluate the predictive ability of the models, we follow closely
Farmer and Lafond (2016) by using hindcasting to compute as many
forecast errors as possible and using a surrogate data procedure to test
their statistical compatibility with our models. Pretending to be in the
past, we make pseudo forecasts of values that we are able to observe
and compute the errors of our forecasts. More precisely, our procedure
is as follows. We consider all periods for which we have (m+1) years of
observations (i.e. m year-to-year growth rates) to estimate the para-
meters, and at least one year ahead to make a forecast (unless otherwise
noted we choose m=5). For each of these periods, we estimate the
parameters and make all the forecasts for which we can compute
forecast errors. Because of our focus on testing the method and

comparing with univariate forecasts, throughout the paper we assume
that cumulative production is known in advance. Having obtained a set
of forecast errors, we compute a number of indicators, such as the
distribution of the forecast errors or the mean squared forecast error,
and compare the empirical values to what we expect given the size and
structure of our dataset.

To know what we expect to find, we use an analytical approach as
well as a surrogate data procedure. The analytical approach simply
consists of deriving an approximation of the distribution of forecast
errors. However, the hindcasting procedure generates forecast errors
which, for a single technology, are not independent10. However, in this
paper we have many short time series so that the problem is somewhat
limited (see Appendix A, Figs. 15–16). Nevertheless, we deal with it by
using a surrogate data procedure: we simulate many datasets similar to
ours and perform the same analysis, thereby determining the sampling
distribution of any statistics of interest.

2.3. Parameter estimation

To simplify notation a bit, let Y t=yt−yt−1 and Xt=xt−xt−1 be
the changes of y and x in period t. We estimate Wright's exponent from
Eq. (3) by running an OLS regression through the origin. Assuming that
we have data for times i=1...(m+1), minimizing the squared errors
gives11
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Substituting ωXi+ηi for Y i, we have
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The variance of the noise ση
2 is estimated as the regression standard

error
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(7)

For comparison, parameter estimation in the univariate model Eq.
(4) as done in Farmer and Lafond (2016) yields the sample mean ̂μ and
variance K 2 of N∼Y μ K( , )t

2 .

2.4. Forecast errors

Let us first recall that for the univariate model Eq. (4), the variance
of the forecast errors is given by (Sampson, 1991; Clements and
Hendry, 2001; Farmer and Lafond, 2016)

E ⎜ ⎟= ⎛
⎝

+ ⎞
⎠

E K τ τ
m

[ ] ,M τ,
2 2

2

(8)

where τ is the forecast horizon and the subscript M indicates forecast
errors obtained using “Moore”’s model. It shows that in the simplest
model, the expected squared forecast error grows due to future noise
accumulating (τ) and to estimation error (τ2/m). These terms will re-
appear later so we will use a shorthand

≡ +A τ τ
m

,
2

(9)

We now compute the variance of the forecast errors for Wright's
model. If we are at time t=m+1 and look τ steps ahead into the future,

8 A variable is I(1) or integrated of order one if its first difference yt+1−yt is sta-
tionary.

9 Note, however, that since we do not include an intercept in the difference model and
since the volatility of experience is low, first differencing is not a good solution to the
spurious regression problem.

10 For a review of forecasting ability tests and a discussion of how the estimation
scheme affects the forecast errors, see West (2006) and Clark and McCracken (2013).

11 Throughout the paper, we will use the hat symbol for estimated parameters when
the estimation is made using only the m+1 years of data on which the forecasts are
based. When we provide full sample estimates we use the tilde symbol.
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we know that
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t τ
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To make the forecasts we assume that the future values of x are known,
i.e. we are forecasting costs conditional on a given growth of future
experience. This is a common practice in the literature (Meese and
Rogoff, 1983; Alberth, 2008). More formally, the point forecast at
horizon τ is

= + −+ +ŷ y ω x x( ).t τ t t τ t (11)

The forecast error is the difference between Eqs. (10) and (11), that is

E  ∑ ∑≡ − = − ++ +
= +

+

= +

+

y ŷ ω ω X η( ) .τ t τ t τ
i t

t τ

i
i t

t τ

i
1 1 (12)

We can derive the expected squared error. Since the Xis are known
constants, using ω from Eq. (6) and the notation m+1= t, we find

E =
⎛

⎝
⎜ +

∑
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= +
+
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X

X
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2 2 1
2

2
2

(13)

2.5. Comparison of Wright's law and Moore's law

Sahal (1979) was the first to point out that in the deterministic limit
the combination of exponentially increasing cumulative production and
exponentially decreasing costs gives Wright's law. Here we generalize
this result in the presence of noise and show how variability in the
production process affects this relationship.

Under the assumption that experience growth rates are constant
(Xi= r) and letting m= t−1, Eq. (13) gives the result that the variance
of Wright's law forecast errors are precisely the same as the variance of
Moore's law forecast errors given in Eq. (8), with  ̂=K ση. To see how
the fluctuations in the growth rate of experience impact forecast errors
we can rewrite Eq. (13) as

E
̂

̂̂= ⎛

⎝
⎜ +

+
⎞

⎠
⎟E σ τ τ

m
r

σ r
[ ] ,τ η

f

x p p

2 2
2 ( )

2

,( )
2

( )
2

(14)

where ̂σx p,( )
2 refers to the estimated variance of past experience growth

rates, ̂r p( ) to the estimated mean of past experience growth rates, and ̂r f( )
to the estimated mean of future experience growth rates.12

This makes it clear that the higher the volatility of experience (σx
2),

the lower the forecast errors. This comes from a simple, well-known fact
of regression analysis: high variance of the regressor makes the esti-
mates of the slope more precise. Here the high standard errors in the
estimation of ω (due to low σx

2) decrease the part of the forecast error
variance due to parameter estimation, which is associated with the term
τ2/m.

This result shows that, assuming Wright's law is correct, for Wright's
law forecasts to work well (and in particular to outperform Moore's
law), it is better to have cumulative production growth rates that
fluctuate a great deal. Unfortunately for our data this is typically not the
case. Instead, empirically cumulative production follows a fairly
smooth exponential trend. To explain this finding we calculated the
stochastic properties of cumulative production assuming that produc-
tion is a geometric random walk with drift g and volatility σq. In
Appendix B, using a saddle point approximation for the long time limit
we find that E[X] ≡ r ≈ g and

≡ ≈X σ σ gVar[ ] tanh ( /2),x q
2 2

(15)

where tanh is the hyperbolic tangent function. We have tested this re-
markably simple relationship using artificially generated data and we
find that it works reasonably well.

These results show that cumulative production grows at the same
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12 The past refers to data at times (1,…, t) and the future to times (t+1,…, t+τ).
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rate as production. More importantly, since 0< tanh(g/2)< 1 (and
here we assume g>0), the volatility of cumulative production is lower
than the volatility of production. This is not surprising: it is well-known
that integration acts as a low pass filter, in this case making cumulative
production smoother than production. Thus if production follows a
geometric random walk with drift, experience is a smoothed version,
making it hard to distinguish from an exogenous exponential trend.
When this happens Wright's law and Moore's law yield similar predic-
tions. This theoretical result is relevant to our case, as can be seen in the
time series of production and experience plotted in Fig. 2 and Fig. 3,
and the low volatility of experience compared to production reported in
Table 1 below.

2.6. Autocorrelation

We now turn to an extension of the basic model. As we will see, the
data shows some evidence of autocorrelation. Following Farmer and

Lafond (2016), we augment the model to allow for first order moving
average autocorrelation. For the autocorrelated Moore's law model
(“Integrated Moving Average of order 1”)

− = + +− −y y μ v θv ,t t t t1 1

Farmer and Lafond (2016) obtained a formula for the forecast error
variance when the forecasts are performed assuming no autocorrelation

E = ⎡
⎣⎢

− + ⎛
⎝

+ − + ⎞
⎠

⎤
⎦⎥

E σ θ m θ
m

θ A[ ] 2 1 2( 1) ,M τ v,
2 2 2

(16)

where = +A τ τ
m

2
(Eq. (9)). Here we extend this result to the auto-

correlated Wright's law model

− = − + +− − −y y ω x x u ρu( ) ,t t t t t t1 1 1 (17)

where N∼u σ(0, )t u
2 . We treat ρ as a known parameter. Moreover, we

will assume that it is the same for all technologies and we will estimate
it as the average of the ∼ρj estimated on each technology separately (as

Table 1
Parameter estimates.

Cost Production Cumul. prod. Wright's law

T ∼μ ∼K ∼g σ͠q r~ σ͠x ∼ω ∼ση
∼ρ

Automotive 21 −0.076 0.047 0.026 0.011 0.027 0.000 −2.832 0.048 1.000
Milk 78 −0.020 0.023 0.008 0.020 0.007 0.000 −2.591 0.023 0.019
Isopropyl alcohol 9 −0.039 0.024 0.022 0.074 0.023 0.002 −1.677 0.024 −0.274
Neoprene rubber 13 −0.021 0.020 0.015 0.055 0.015 0.001 −1.447 0.020 0.882
Phthalic anhydride 18 −0.076 0.152 0.061 0.094 0.058 0.006 −1.198 0.155 0.321
Titanium dioxide 9 −0.037 0.049 0.031 0.029 0.031 0.001 −1.194 0.049 −0.400
Sodium 16 −0.013 0.023 0.013 0.081 0.012 0.001 −1.179 0.023 0.407
Pentaerythritol 21 −0.050 0.066 0.050 0.107 0.050 0.006 −0.954 0.068 0.343
Methanol 16 −0.082 0.143 0.097 0.081 0.091 0.004 −0.924 0.142 0.289
Hard disk drive 19 −0.593 0.314 0.590 0.307 0.608 0.128 −0.911 0.364 −0.569
Geothermal electricity 26 −0.049 0.022 0.043 0.116 0.052 0.013 −0.910 0.023 0.175
Phenol 14 −0.078 0.090 0.088 0.055 0.089 0.004 −0.853 0.092 −1.000
Transistor 38 −0.498 0.240 0.585 0.157 0.582 0.122 −0.849 0.226 −0.143
Formaldehyde 11 −0.070 0.061 0.086 0.078 0.085 0.005 −0.793 0.063 0.489
Ethanolamine 18 −0.059 0.042 0.076 0.076 0.080 0.005 −0.748 0.041 0.355
Caprolactam 11 −0.103 0.075 0.136 0.071 0.142 0.009 −0.746 0.071 0.328
Ammonia 13 −0.070 0.099 0.096 0.049 0.102 0.007 −0.740 0.095 1.000
Acrylic fiber 13 −0.100 0.057 0.127 0.126 0.137 0.020 −0.726 0.056 −0.141
Ethylene glycol 13 −0.062 0.059 0.089 0.107 0.083 0.006 −0.711 0.062 −0.428
DRAM 37 −0.446 0.383 0.626 0.253 0.634 0.185 −0.680 0.380 0.116
Benzene 16 −0.056 0.083 0.087 0.114 0.087 0.012 −0.621 0.085 −0.092
Aniline 12 −0.072 0.095 0.110 0.099 0.113 0.008 −0.620 0.097 −1.000
Vinyl acetate 13 −0.082 0.061 0.131 0.080 0.129 0.010 −0.617 0.065 0.341
Vinyl chloride 11 −0.083 0.050 0.136 0.085 0.137 0.008 −0.613 0.049 −0.247
Polyethylene LD 15 −0.085 0.076 0.135 0.075 0.139 0.009 −0.611 0.075 0.910
Acrylonitrile 14 −0.084 0.108 0.121 0.178 0.134 0.025 −0.605 0.109 1.000
Styrene 15 −0.068 0.047 0.112 0.089 0.113 0.008 −0.585 0.050 0.759
Maleic anhydride 14 −0.069 0.114 0.116 0.143 0.119 0.013 −0.551 0.116 0.641
Ethylene 13 −0.060 0.057 0.114 0.054 0.114 0.005 −0.526 0.057 −0.290
Urea 12 −0.062 0.094 0.121 0.073 0.127 0.011 −0.502 0.093 0.003
Sorbitol 8 −0.032 0.046 0.067 0.025 0.067 0.002 −0.473 0.046 −1.000
Polyester fiber 13 −0.121 0.100 0.261 0.132 0.267 0.034 −0.466 0.094 −0.294
Bisphenol A 14 −0.059 0.048 0.136 0.136 0.135 0.012 −0.437 0.048 −0.056
Paraxylene 11 −0.103 0.097 0.259 0.326 0.228 0.054 −0.417 0.104 −1.000
Polyvinyl chloride 22 −0.064 0.057 0.137 0.136 0.144 0.024 −0.411 0.062 0.319
Low density polyethylene 16 −0.103 0.064 0.213 0.164 0.237 0.069 −0.400 0.071 0.473
Sodium chlorate 15 −0.033 0.039 0.076 0.077 0.084 0.006 −0.397 0.039 0.875
Titanium sponge 18 −0.099 0.099 0.196 0.518 0.241 0.196 −0.382 0.075 0.609
Photovoltaics 41 −0.121 0.153 0.315 0.202 0.318 0.133 −0.380 0.145 −0.019
Monochrome television 21 −0.060 0.072 0.093 0.365 0.130 0.093 −0.368 0.074 −0.444
Cyclohexane 17 −0.055 0.052 0.134 0.214 0.152 0.034 −0.317 0.057 0.375
Polyethylene HD 15 −0.090 0.075 0.250 0.166 0.275 0.074 −0.307 0.079 0.249
Carbon black 9 −0.013 0.016 0.046 0.051 0.046 0.002 −0.277 0.016 −1.000
Laser diode 12 −0.293 0.202 0.708 0.823 0.824 0.633 −0.270 0.227 0.156
Aluminum 17 −0.015 0.044 0.056 0.075 0.056 0.004 −0.264 0.044 0.761
Polypropylene 9 −0.105 0.069 0.383 0.207 0.414 0.079 −0.261 0.059 0.110
Beer 17 −0.036 0.042 0.137 0.091 0.146 0.016 −0.235 0.043 −1.000
Primary aluminum 39 −0.022 0.080 0.088 0.256 0.092 0.040 −0.206 0.080 0.443
Polystyrene 25 −0.061 0.086 0.205 0.361 0.214 0.149 −0.163 0.097 0.074
Primary magnesium 39 −0.031 0.089 0.135 0.634 0.158 0.211 −0.131 0.088 −0.037
Wind turbine 19 −0.038 0.047 0.336 0.570 0.357 0.337 −0.071 0.050 0.750
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described in the next section). This is a delicate assumption, but it is
motivated by the fact that many of our time series are too short to
estimate a specific ρj reliably, and assuming a universal, known value of
ρ allows us to keep analytical tractability.

The forecasts are made exactly as before, but the forecast error now
is

E ∑ ∑= + + +
=

+

−
= +

+

−H v ρv v ρv[ ] [ ],τ
j

m

j j j
T t

t τ

T T
2

1

1
1

1
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where the Hj are defined as
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The forecast error can be decomposed as a sum of independent nor-
mally distributed variables, from which the variance can be computed
as
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When generating real forecasts (Section 4), we will take the rate of
growth of future cumulative production as constant. If we also assume
that the growth rates of past cumulative production were constant, we
have Xi= r and thus Hi=−τ/m for all i. As expected from Sahal's
identity, simplifying Eq. (20) under this assumption gives Eq. (16)
where θ is substituted by ρ and σv is substituted by σu,
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(21)

In practice we compute ̂ση using Eq. (7), so that σu may be estimated as

̂ ̂= +σ σ ρ/(1 ) ,u η
2 2

suggesting the normalized error E ̂σ/τ η
2 2. To gain more intuition on

Eq. (21), and propose a simple, easy to use formula, note that for τ ≫ 1
and m ≫ 1 it can be approximated as
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(22)

For all models (Moore and Wright with and without autocorrelated
noise), having determined the variance of the forecast errors we can
normalize them so that they follow a Standard Normal distribution

E

E
N∼

E [ ]
(0, 1)τ

τ
2 (23)

In what follows we will replace ση
2 by its estimated value, so that when

E and ̂ση are independent the reference distribution is Student.
However, for small sample size m the Student distribution is only a
rough approximation, as shown in Appendix A, where it is also shown
that the theory works well when the variance is known, or when the
variance is estimated but m is large enough.

2.7. Comparing Moore and Wright at different forecast horizons

One objective of the paper is to compare Moore's law and Wright's
law forecasts. To normalize Moore's law forecasts, Farmer and Lafond
(2016) used the estimate of the variance of the delta log cost time series
K 2, as suggested by Eq. (8), i.e.

E = Kϵ / ,M M (24)

To compare the two models, we propose that Wright's law forecast
errors can be normalized by the very same value

E = Kϵ / ,W W (25)

Using this normalization, we can plot the normalized mean squared
errors from Moore's and Wright's models at each forecast horizon. These
are directly comparable, because the raw errors are divided by the same
value, and these are meaningful because Moore's normalization ensures
that the errors from different technologies are comparable and can
reasonably be aggregated. In the context of comparing Moore and
Wright, when pooling the errors of different forecast horizons we also
use the normalization from Moore's model (neglecting autocorrelation
for simplicity), A ≡ τ+τ2/m (see Farmer and Lafond (2016) and Eqs.
(8) and (9)).

3. Empirical results

3.1. The data

We mostly use data from the performance curve database13 created
at the Santa Fe Institute by Bela Nagy and collaborators from personal
communications and from Colpier and Cornland (2002), Goldemberg
et al. (2004), Lieberman (1984), Lipman and Sperling (1999),
McDonald and Schrattenholzer (2001), Moore (2006), Neij et al.
(2003), Nemet (2006), Zhao (1999) and Schilling and Esmundo (2009).
We augmented the dataset with data on solar photovoltaics modules
taken from public releases of the consulting firms Strategies Unlimited,
Navigant and SPV Market Research, which give the average selling
price of solar PV modules, and that we corrected for inflation using the
US GDP deflator.

This database gives a proxy for unit costs14 for a number of tech-
nologies over variable periods of time. In principle we would prefer to
have data on unit costs, but often these are unavailable and the data is
about prices15. Since the database is built from experience curves found
in the literature, rather than from a representative sample of products/
technologies, there are limits to the external validity of our study but
unfortunately we do not know of a database that contains suitably
normalized unit costs for all products.

We have selected technologies to minimize correlations between the
different time series, by removing technologies that are too similar (e.g.
other data on solar photovoltaics). We have also refrained from in-
cluding very long time series that would represent a disproportionate
share of our forecast errors, make the problem of autocorrelation of
forecast errors very pronounced, and prevent us from generating many
random datasets for reasons of limited computing power. Starting with
the set of 53 technologies with a significant improvement rate from
Farmer and Lafond (2016), we removed DNA sequencing for which no
production data was available, and Electric Range which had a zero
production growth rate so that we cannot apply the correction to cu-
mulative production described below. We are left with 51 technologies
belonging to different sectors (chemical, energy, hardware, consumer
durables, and food), although chemicals from the historical reference
(Boston Consulting Group, 1972) represent a large part of the dataset.
For some technologies the number of years is slightly different from
Farmer and Lafond (2016) because we had to remove observations for

13 The data can be accessed at pcdb.santafe.edu.
14 In a few cases (milk and automotive), a measure of performance is used instead of

costs, and automotive's experience is computed based on distance driven. The main re-
sults would not be severely affected by the exclusion of these two time series. Also, unit
cost is generally computed from total cost and production of a year or batch, not from
actual observation of every unit cost. Different methods may give slightly different results
(Gallant, 1968; Womer and Patterson, 1983; Goldberg and Touw, 2003), but our dataset
is too heterogenous to attempt any correction. Obviously, changes in unit costs do not
come from technological progress only, and it is difficult to account for changes in
quality, but unit costs are nevertheless a widely used and defensible proxy.

15 This implies a bias whenever prices and costs do not have the same growth rate, as is
typically the case when pricing strategies are dynamic and account for learning effects
(for instance predatory pricing). For a review of the industrial organization literature on
this topic, see Thompson (2010).
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which data on production was not available.
Fig. 1 shows the experience curves, while Figs. 2 and 3 show pro-

duction and experience time series, suggesting at least visually that
experience time series are “smoothed” versions of production time
series.

3.2. Estimating cumulative production

A potentially serious problem in experience curve studies is that one
generally does not observe the complete history of the technology, so
that simply summing up observed production misses the experience
previously accumulated. There is no perfect solution to this problem.
For each technology, we infer the initial cumulative production using a
procedure common in the “R&D capital” literature (Hall and Mairesse,
1995), although not often used in experience curve studies (for an ex-
ception see Nordhaus (2014)). It assumes that production grew as

Qt+1=Qt(1+gd) and experience accumulates as Zt+1=Zt+Qt, so that
it can be shown that =Z Q g/t t d0 0 . We estimate the discrete annual
growth rate as = − −ĝ Q Q Texp(log( / )/( 1)) 1d T t0 , where Qt0 is produc-
tion during the first available year, and T is the number of available
years. We then construct the experience variable as =Z Q ĝ/t t d0 0 for the
first year, and Zt+1=Zt+Qt afterwards.

Note that this formulation implies that experience at time t does not
include production of time t, so the change in experience from time t to
t+1 does not include how much is produced during year t+1. In this
sense we assume that the growth of experience affects technological
progress with a certain time lag. We have experimented with slightly
different ways of constructing the experience time series, and the ag-
gregated results do not change much, due to the high persistence of
production growth rates.

A more important consequence of this correction is that products
with a small production growth rate will have a very important cor-
rection for initial cumulative production. In turn, this large correction
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of initial cumulative production leads to significantly lower values for
the annual growth rates of cumulative production. As a result, the ex-
perience exponent ω becomes larger than if there was no correction.
This explains why products like milk, which have a very low rate of
growth of production, have such a large experience exponent.
Depending on the product, this correction may be small or large, and it
may be meaningful or not. Here we have decided to use this correction
for all products.

3.3. Descriptive statistics and Sahal's identity

Table 1 summarizes our dataset, showing in particular the para-
meters estimated using the full sample. Fig. 4 complements the table by
showing histograms for the distribution of the most important para-
meters. Note that we denote estimated parameters using a tilde because
we use the full sample (when using the small rolling window, we used
the hat notation). To estimate the ∼ρj, we have used a maximum like-
lihood estimation of Eq. (17) (letting ∼ωMLE differ from ∼ω).

Fig. 5 compares the variance of the noise estimated from Wright's
and Moore's models. These key quantities express how much of the
change in (log) cost is left unexplained by each model; they also enter as
direct factor in the expected mean squared forecast error formulas. The
lower the value, the better the fit and the more reliable the forecasts.
The figure shows that for each technology the two models give similar
values; see Table 1.

Next, we show Sahal's identity as in Nagy et al. (2013). Sahal's
observation is that if cumulative production and costs both have ex-
ponential trends r and μ, respectively, then costs and production have a
power law (constant elasticity) relationship parametrized by ω=μ/r.
One way to check the validity of this relationship is to measure μ, r and
ω independently and plot ω against μ/r. Fig. 6 shows the results and
confirms the relevance of Sahal's identity.

To explain why Sahal's identity works so well and Moore's and
Wright's laws have similar explanatory power, in Section 2.4 we have
shown that in theory if production grows exponentially, cumulative
production grows exponentially with an even lower volatility. Fig. 7
shows how this theoretical result applies to our dataset. Knowing the
drift and volatility of the (log) production time series, we are able to
predict the drift and volatility of the (log) cumulative production time
series fairly well.

3.4. Comparing Moore's and Wright's law forecast errors

Moore's law forecasts are based only on the cost time series, whereas
Wright's law forecasts use information about future experience to pre-
dict future costs. Thus, we expect that in principle Wright's forecasts
should be better. We now compare Wright's and Moore's models in a
number of ways. The first way is simply to show a scatter plot of the
forecast errors from the two models. Fig. 8 shows this scatter plot for
the errors normalized by K A (i.e. “Moore-normalized”, see Eqs. (8)
–(9) and (24) and (25)), with the identity line as a point of comparison.
It is clear that they are highly correlated. When Moore's law over
(under)predicts, it is likely that Wright's law over(under)predicts as
well, and when Moore's law leads to a large error, it is likely that
Wright's law leads to a large error as well.

In Fig. 9, the main plot shows the mean squared Moore-normalized
forecast error ϵM

2 and ϵW
2 (see Section 2.7), where the average is taken

over all available forecast errors of a given forecast horizon (note that
some technologies are more represented than others). The solid
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σ x̂

0.01 0.05 0.50

0.01
0.02
0.05
0.10
0.20
0.50

Fig. 7. Test of Eq. (15) relating the volatility of cumulative production to the drift and
volatility of production. The inset shows the drift of cumulative production ̂r against the
drift of production ĝ .

−5 0 5 10

−5

0

5

10

εM A

ε W
A

τ
1
…
20

Fig. 8. Scatter plot of Moore-normalized forecast errors ϵM and ϵW (forecasts are made
using m=5). This shows that in the vast majority of cases Wright's and Moore's law
forecast errors have the same sign and a similar magnitude, but not always.

1 2 5 10 20

1e−01

1e+01

1e+03

τ

M
ea

n 
ε2

Moore
Wright

−4 −2 0 2 4

0.0
0.2
0.4
0.6
0.8
1.0

Student
Moore
Wright

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5
1.0
1.5
2.0
2.5

Fig. 9. Comparison of Moore-normalized forecast errors from Moore's and Wright's
models. The main chart shows the mean squared forecast errors at different forecast
horizons. The insets show the distribution of the normalized forecast errors as an em-
pirical cumulative distribution function against the Student distribution (top left) and as a
probability integral transform against a uniform distribution (bottom right).

F. Lafond et al. Technological Forecasting & Social Change xxx (xxxx) xxx–xxx

8



diagonal line is the benchmark for the Moore model without auto-
correlation, i.e. the line = −

−y Am
m

1
3 (Farmer and Lafond, 2016). Wright's

model appears slightly better at the longest horizons, however there are
not many forecasts at these horizons so we do not put too much em-
phasis on this finding. The two insets show the distribution of the re-
scaled Moore-normalized errors Aϵ/ , either as a cumulative distribu-
tion function (top left) or using the probability integral transform16

(bottom right). All three visualizations confirm that Wright's model
only slightly outperform Moore's model.

3.5. Wright's law forecast errors

In this section, we analyze in detail the forecast errors from Wright's
model. We will use the proper normalization derived in Section 2.4, but
since it does not allow us to look at horizon specific errors we first look
again at the horizon specific Moore-normalized mean squared forecast
errors. Fig. 10 shows the results for different values of m (for m=5 the
empirical errors are the same as in Fig. 9). The confidence intervals are
created using the surrogate data procedure described in Section 2.2, in
which we simulate many random datasets using the autocorrelated
Wright's law model (Eq. (17)) and the parameters of Table 1 forcing
ρj=ρ*=0.19 (see below). We then apply the same hindcasting, error
normalization and averaging procedure to the surrogate data that we
did for the empirical data, and show with blue lines the mean and 95%
confidence intervals. This suggests that the empirical data is compatible
with the model (17) in terms of Moore-normalized forecast errors at
different horizons.

We now analyze the forecast errors from Wright's model normalized
using the (approximate) theory of Section 2.4. Again we use the hind-
casting procedure and unless otherwise noted, we use an estimation
window of m=5 points (i.e. 6 years) and a maximum forecasting
horizon τmax=20. To normalize the errors, we need to choose a value
of ρ. This is a difficult problem, because for simplicity we have assumed

that ρ is the same for all technologies, but in reality it probably is not.
We have experimented with different methods of choosing ρ based on
modelling the forecast errors, for instance by looking for the value of ρ
which makes the distribution of normalized errors closest to a Student
distribution. While these methods may suggest that ρ ≈ 0.4, they
generally give different values of ρ for different values of m and τmax

(which indicates that some non-stationarity/misspecification is pre-
sent). Moreover, since the theoretical forecast errors do not exactly
follow a Student distribution (see Appendix A) this estimator is biased.
For simplicity, we use the average value of ∼ρ in our dataset, after re-
moving the 9 values of ∼ρ whose absolute value was greater than 0.99
(which may indicate a misspecified model). Throughout the paper, we
will thus use ρ*=0.19.

In Fig. 11, we show the empirical cumulative distribution function
of the normalized errors (for ρ* and ρ=0) and compare it to the Student
prediction. In Fig. 12 we show the probability integral transform of the
normalized errors (assuming a Student distribution, and using ρ=ρ*).
In addition, Fig. 12 shows the confidence intervals obtained by the
surrogate data method, using data simulated under the assumption
ρ=ρ*. Again, the results confirm that the empirical forecast errors are
compatible with Wright's law, Eq. (17).

4. Application to solar photovoltaic modules

In this section we apply our method to solar photovoltaic modules.
Technological progress in solar photovoltaics (PV) is a very prominent
example of the use of experience curves.17 Of course, the limitations of
using experience curve models are valid in the context of solar PV
modules; we refer the reader to the recent studies by Zheng and
Kammen (2014) for a discussion of economies of scale, innovation
output and policies; by de La Tour et al. (2013) for a discussion of the
effects of input prices; and by Hutchby (2014) for a detailed study of
levelized costs (module costs represent only part of the cost of

1 2 5 10 20

5

10

20

50

100

200

τ

m=5

200

300

400

500

600

1 2 5 10 20

2

5

10

20

50

100

τ

m=8

100

200

300

400

500

1 2 5 10 20

2

5

10

20

50

100

τ

m=11

100

150

200

250

300

350

1 2 5 10 20

2

5

10

20

50

100

τ

m=14

100

150

200

250

Fig. 10. Mean squared Moore-normalized forecast errors of the
Wright's law model (Mean ϵW

2 ) versus forecast horizon. The 95%
intervals (dashed lines) and the mean (solid line) are computed
using simulations as described in the text. The grey line, asso-
ciated with the right axis, shows the number of forecast errors
used to make an average.

16 The Probability Integral Transform is a transformation that allows to compare data
against a theoretical distribution by transforming it and comparing it against the Uniform
distribution. See for example Diebold et al. (1998), who used it to construct a test for
evaluating density forecasts.

17 Alberth (2008), Candelise et al. (2013), Isoard and Soria (2001), Junginger et al.
(2010), Kahouli-Brahmi (2009), Neij (1997), Nemet (2006), Papineau (2006), Schaeffer
et al. (2004), Swanson (2006), Van der Zwaan and Rabl (2004).
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producing solar electricity), and to Farmer and Makhijani (2010) for a
prediction of levelized solar photovoltaic costs made in 2010.

Historically (Wright, 1936; Alchian, 1963), the estimation of
learning curves suggested that costs would drop by 20% for every
doubling of cumulative production, although these early examples are
almost surely symptoms of a sample bias. This corresponds to an esti-
mated elasticity of about ω=0.33. As it turns out, estimations for PV
have been relatively close to this number. Here we have a progress ratio
of 2−0.38=23%. A recent study (de La Tour et al., 2013) contains a
more complete review of previous experience curve studies for PV, and
finds an average progress ratio of 20.2%. There are some differences
across studies, mostly due to data sources, geographic and temporal
dimension, and choice of proxy for experience. Our estimate here dif-
fers also because we use a different estimation method (first-differen-
cing), and because we correct for initial cumulative production (most
other studies either use available data on initial experience, or do not
make a correction; it is quite small here, less than a MW).

In order to compare a forecast based on Wright's law, which gives
cost as a function of cumulative production, with a forecast based on

Moore's law, which gives cost as a function of time, we need to make an
assumption about the production at a given point in time. Here we
provide a distributional forecast for the evolution of PV costs under the
assumption that cumulative production will keep growing at exactly the
same rate as in the past, but without any variance, and we assume that
we know this in advance. One should bear in mind that this assumption
is purely to provide a point of comparison. The two models have a
different purpose: Moore's law gives an unconditional forecast at a
given point in time, and Wright's law a forecast conditioned on a given
growth rate of cumulative production. While it is perfectly possible to
use values from a logistic diffusion model or from expert forecasts, here
we illustrate our method based on the exponential assumption to em-
phasise again the similarity of Moore's and Wright's laws.

Our distributional forecast is

N∼+ + +y ŷ V ŷ( , ( ))T τ T τ T τ (26)

Following the discussion of Sections 2.4 and 2.6, the point forecast is
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and recalling that Xt ≡ yt−yt−1.
We now assume that the growth of cumulative production is exactly

r~ in the future, so the point forecast simplifies to

= + ∼
+ŷ y ωr τ~

T τ T (28)

Regarding the variance, Eq. (27) is cumbersome but it can be greatly
simplified. First, we assume that past growth rates of experience were
constant, that is =X r~i for i=1…T (i.e. ̂ ≈σ 0x

2 ), leading to the
equivalent of Eq. (21). As long as production grows exponentially this
approximation is likely to be defensible (see Eq. (15)). Although from
Table 1 we see that solar PV is not a particularly favourable example,
we find that this assumption does not affect the variance of forecast
errors significantly, at least for short or medium run horizons.

Since Eq. (21) is still a bit complicated, we can further assume that τ
≫ 1 and T ≫ 1, so that we arrive at the equivalent of Eq. (22), that is
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the associated ρ*=0.19.
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This equation is very simple and we will see that it gives results ex-
tremely close to Eq. (27), so that it can be used in applications.

Our point of comparison is the distributional forecast of Farmer and
Lafond (2016) based on Moore's law with autocorrelated noise, and
estimating θ*=0.23 in the same way as ρ* (average across all tech-
nologies of the measured MA(1) coefficient, removing the ≈∼θ| | 1j ). All
other parameters are taken from Table 1. Fig. 13 shows the forecast for
the mean log cost and its 95% prediction interval for the two models.
The point forecasts of the two models are almost exactly the same be-
cause  ̂ ̂= − ≈ = −ωr μ0.1209 0.1213. Moreover, Wright's law prediction
intervals are slightly smaller because ̂ = < =σ K0.145 0.153η . Overall,
the forecasts are very similar as shown in Fig. 13. Fig. 13 does also show
the prediction intervals from Eq. (29), in red dotted lines, but they are
so close to those calculated using Eq. (27) that the difference can barely
be seen.

In Fig. 14, we show the Wright's law-based distributional forecast,
but against cumulative production. We show the forecast intervals
corresponding to 1, 1.5 and 2 standard deviations (corresponding ap-
proximately to 68, 87 and 95% confidence intervals, respectively). The
figure also makes clear the large scale deployment assumed by the
forecast, with cumulative PV production (log) growth rate of 32% per
year. Again, we note as a caveat that exponential diffusion leads to
fairly high numbers as compared to expert opinions (Bosetti et al.,
2012) and the academic (Gan and Li, 2015) and professional (Masson
et al., 2013; International Energy Agency, 2014) literature, which
generally assumes that PV deployment will slow down for a number of
reasons such as intermittency and energy storage issues. But other
studies (Zheng and Kammen, 2014; Jean et al., 2015) do take more
optimistic assumptions as working hypothesis, and it is outside the

scope of this paper to model diffusion explicitly.

5. Conclusions

We presented a method to test the accuracy and validity of ex-
perience curve forecasts. It leads to a simple method for producing
distributional forecasts at different forecast horizons. We compared the
experience curve forecasts with those from a univariate time series
model (Moore's law of exponential progress), and found that they are
fairly similar. This is due to the fact that production tends to grow
exponentially18, so that cumulative production tends to grow ex-
ponentially with low fluctuations, mimicking an exogenous exponential
time trend. We applied the method to solar photovoltaic modules,
showing that if the exponential trend in diffusion continues, they are
likely to become very inexpensive in the near future.

There are a number of limitations and caveats that are worth re-
iterating here: our time series are examples from the literature so that
the dataset is likely to have a strong sample bias, which limits the ex-
ternal validity of the results. Also, many time series are quite short,
measure technical performance imperfectly, and we had to estimate
initial experience in a way that is largely untested. Clearly, the ex-
perience curve model also omits important factors such as R&D. Finally,
we make predictions conditional on future experience, which is not the
same as doing prediction solely based on time. In settings where pro-
duction is a decision variable, e.g. Way et al. (2017), and where
Wright's Law is not spurious, forecasts conditional on experience are the
most useful. However, it remains true that to make an unconditional
forecast for a point in time in the future, using Wright's law also re-
quires an additional assumption about the speed of technology diffu-
sion. Thus in a situation of business as usual where experience grows
exponentially, using Moore's law is simpler and almost as accurate.

The method we introduce here is closely analogous to that in-
troduced in Farmer and Lafond (2016). Although Moore's law and
Wright's law tend to make forecasts of similar quality, it is important to
emphasize that when it comes to policy, the difference is potentially
very important. While the correlation between costs and cumulative
production is well-established, we should stress that the causal re-
lationship is not. But to the extent that Wright's law implies that cu-
mulative production causally influences cost, costs can be driven down
by boosting cumulative production. In this case one no longer expects
the two methods to make similar predictions, and the method we have
introduced here plays a useful role in making it possible to think about
not just what the median effect would be, but rather the likelihood of
effects of different magnitudes.
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Appendix A. Comparison of analytical results to simulations

To check whether the analytical theory is reasonable we use the following setting. We simulate 200 technologies for 50 periods. A single time
series of cumulative production is generated by assuming that production follows a geometric random walk with drift g=0.1 and volatility σq=0.1
(no correction for previous production is made). Cost is generated assuming Wright's law with ση=0.1, ω=−0.3 and ρ=0.6.

Forecast errors are computed by the hindcasting methodology, and normalized using either the true ρ or ρ=0. The results are presented in Fig. 15
for m=5,40 and for estimated or true variance ( ̂ ̂= +σ σ ρ/ 1v η

2 or = +σ σ ρ/ 1v η
2 ). In all cases, using the proper normalization factor ρ=ρ* makes

the distribution very close to the predicted distribution (Normal or Student). When m=5 and the variance is estimated, we observe a slight
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Fig. 14. Distributional forecast for the price of PV modules up to 2025, using Eqs. (26),
(27) and (28).

18 Recall that we selected technologies with a strictly positive growth rate of production.
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departure from the theory as in Farmer and Lafond (2016), which seems to be lower for large m or when the true σv is known.
To see the deviation from the theory more clearly, we repeat the exercise but this time we apply the probability integral transform to the resulting

normalized forecast errors. We use the same parameters, and another realization of the (unique) production time series and of the (200) cost time
series. As a point of comparison, we also apply the probability integral transform to randomly generated values from the reference distribution
(Student when variance is estimated, Normal when the known variance is used), so that confidence intervals can be plotted. This allows us to see
more clearly the departure from the Student distribution when the variance is estimated and m is small (left panel). When the true variance is used
(center panel), there is still some departure but it is much smaller. Finally, for the latest panel (right), instead of generating 200 series of 50 periods,
we generated 198000 time series of 7 periods, so that we have the same number of forecast errors but they do not suffer from being correlated due to
the moving estimation window (only one forecast error per time series is computed). In this case we find that normalized forecast errors and
independently drawn normal values are similar.

Overall these simulation results confirm under what conditions our theoretical results are useful (namely, m large enough, or knowing the true
variance). For this reason, we have used the surrogate data procedure when testing the errors with small m and estimated variance, and we have used
the normal approximation when forecasting solar costs based on almost 40 years of data.

Appendix B. Derivation of the properties of cumulative production

Here we give an approximation for the volatility of the log of cumulative production, assuming that production follows a geometric random walk
with drift g and volatility σq. We use saddle point methods to compute the expected value of the log of cumulative production E[log Z], its variance
Var(log Z) and eventually our quantity of interest ≡ ≡σ X ZVar( ) Var(Δ log )x

2 . The essence of the saddle point method is to approximate the integral
by taking into account only that portion of the range of the integration where the integrand assumes large values. More specifically in our calculation
we find the maxima of the integrands and approximate fluctuations around these points keeping quadratic and neglecting higher order terms.
Assuming the initial condition Z(0)=1, we can write the cumulative production at time t as = + ∑ =

+∑Z e1t i
t gi a

1
j
i

j, where a1,…,at are normally
distributed i.i.d. random variables with mean zero and variance σq

2, describing the noise in the production process. E[log Z] is defined by the
(multiple) integral over ai

Fig. 15. Test of the theory for forecast errors. Top: m=5; Bottom: m=40. Left: estimated variance; Right: True variance.
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Fig. 16. Test of the theory for forecast errors. In the 3 cases m=5. On the left, the variance is estimated. In the centre, errors are normalized using the true variance. On the right, we also
used the true variance but the errors are i.i.d.
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with = − ∑ =S a Z({ }) log(log )i i
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σ1 2
i
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2 , which we will calculate by the saddle point method assuming ≪σ 1q
2 .

The saddle point is defined by the system of equations ∂ = ∂ = ∂ ∂ = ⋯S a i t({ *}) 0, / , 1i i i ai for which we can write
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where a *i is the solution of the saddle point equations and = ∂ ∂ =G S a({ })|ij i j i a a
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. In the saddle point approximation we restrict ourselves to quadratic
terms in the expansion (31) which makes the integral (30) Gaussian. Then we obtain
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Substituting this a *i into the eS a({ *})i term in Eq. (32) we obtain after some algebra
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The calculation of Gij as a second derivative gives
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which leads to
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Here we used the formula detG=exp(trlog G) and an easy expansion of log G over σq
2. Now putting formulas (34) and (A.1) into (32) we obtain
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The calculation of Z and its derivatives at ai=0 is straightforward. If g>0, for large t it gives the very simple formula
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With the same procedure as for Eqs. (30)–(38) we calculate the expectation value of E(log 2Z), E(log Z(t)log Z(t+1))−E(log Z(t))E(log Z(t+1))
which leads to similar formulas as Eqs. (A.1)–(37), but with different coefficients. The result for g>0 and t →∞ reads
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