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Abstract
Stability is a desirable property of complex ecosystems. If a community of interacting spe-

cies is at a stable equilibrium point then it is able to withstand small perturbations to compo-

nent species’ abundances without suffering adverse effects. In ecology, the Jacobian

matrix evaluated at an equilibrium point is known as the community matrix, which describes

the population dynamics of interacting species. A system’s asymptotic short- and long-term

behaviour can be determined from eigenvalues derived from the community matrix. Here

we use results from the theory of pseudospectra to describe intermediate, transient dynam-

ics. We first recover the established result that the transition from stable to unstable dynam-

ics includes a region of ‘transient instability’, where the effect of a small perturbation to

species’ abundances—to the population vector—is amplified before ultimately decaying.

Then we show that the shift from stability to transient instability can be affected by uncer-

tainty in, or small changes to, entries in the community matrix, and determine lower and

upper bounds to the maximum amplitude of perturbations to the population vector. Of five

different types of community matrix, we find that amplification is least severe when preda-

tor-prey interactions dominate. This analysis is relevant to other systems whose dynamics

can be expressed in terms of the Jacobian matrix.

Introduction
From the perspective of local stability analysis, if an ecosystem is close to a stable equilibrium
point then the effect of a small perturbation, such as the loss of individuals from a population,
will eventually decay and the system will return to its original equilibrium point [1, 2]. But if
the ecosystem is at an unstable equilibrium point then the perturbation will lead to the system
settling at a new equilibrium point, possibly with fewer individuals or even species [3, 4]. In
theory, ecosystems with large numbers of species and interactions are more difficult to stabilise
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[5]. However, many ecosystems contain vast biodiversity [6, 7]. Reconciling this finding with
local stability analysis has motivated ecologists for over 40 years [8].

Recently, stability criteria were extended from randomly-assembled communities to include
those with more realistic compositions of mutualistic, competitive and predator-prey interac-
tions [9]. These criteria indicate that communities in which predator-prey interactions domi-
nate are more likely to be stable. It was then shown, using empirical food webs, that the
distribution and correlation of interaction strengths has a greater effect on stability than topol-
ogy: how species interact with one another is more important than who they interact with
[10, 11].

Stability is a long-term concept: it indicates whether a system will, at some point in the
future, return to the same state as before a perturbation [12]. Reactivity, on the other hand,
indicates how a system will respond immediately after a perturbation has been applied [13–
17]. A stable system can be non-reactive, meaning that a perturbation to species’ abundances
dies down immediately, or reactive, meaning that a perturbation is first amplified before even-
tually decaying (whether a particular perturbation is amplified in practice depends on which
species are perturbed and by how much [13]). Reactivity criteria for large ecosystems indicate
that communities on the verge of instability exhibit reactive dynamics [18], and identifying a
system as reactive has been proposed as an early-warning signal for population collapse
[19–23].

The starting point for deriving criteria for both stability and reactivity is the community
matrix [24]. A spectral decomposition of the community matrix provides information on the
asymptotic behaviour of the system for stability (t!1) and reactivity (t! 0). But so far, little
information has been extracted from the community matrix regarding transient dynamics:
how the system evolves after a perturbation and before it either returns to equilibrium or
becomes unstable [25–27].

Reactive dynamics are not possible if the community matrixM is normal, i.e.,MM† =M†

M, whereM† is the adjoint ofM [28]. But ifM is a non-normal matrix, as is usually the case in
analyses of realistic ecosystems, then transient dynamics may substantially differ from the
asymptotic behaviour suggested by the eigenvalues ofM. In addition, small changes to the
entries of non-normalM can cause an otherwise stable matrix to become unstable [28]. In such
cases, the dynamics implied by non-normal matrices are better described by pseudospectra,
which detail the neighbourhood of eigenvalues in the complex plane for different average
changes to the entries inM [29].

Here we formalise the transition from stability to instability in terms of pseudospectra.
Using this approach, we consider the effect on dynamics of two kinds of perturbation: more
commonly studied perturbations to the equilibrium abundance of species (to the population
vector) and less commonly studied perturbations to the entries inM (which could be inter-
preted as uncertainty in, or small changes to, species’ interaction strengths [30]). We describe
critical values for community properties separating three regimes: stable and non-reactive
dynamics, stable and reactive dynamics—‘transient instability’—and unstable dynamics. We
show that system dynamics at the boundary between non-reactive stability and transient insta-
bility can be affected by perturbations to entries of the community matrix. And, given a pertur-
bation to the equilibrium abundance of species, we provide upper and lower bounds to the
maximum amplification of such perturbations during transient instability. This allows us to
sketch out the transient dynamics of complex ecosystems using only information from the
community matrix. Finally, we compare the properties of community matrices representing
ecological communities with five different types of interaction structure: random, mutualism,
competition, mixture of mutualism and competition, and predator-prey.
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Methods

Local stability analysis
Here we consider an ecological community of S species for which their population densities at
time t are given by the vector Y(t), as in Tang & Allesina [18]. The dynamics of the population
vector Y can be described by a system of coupled differential equations

dY
dt

¼ fðYÞ ð1Þ

where f = [f1, f2 � � �, fS]T is a vector of linear or nonlinear functions. An ecologically-relevant
equilibrium point is a non-negative vector Y� such that

fðY�Þ ¼ 0 ð2Þ
The community matrixM is defined as

Mij ¼
@fi
@Yj

�
�
�
�
Y¼Y�

ð3Þ

which is the Jacobian matrix evaluated at an equilibrium point [24]. It is well known that an
equilibrium point is (locally and asymptotically) stable if any infinitesimally small deviation,
ΔY(0), eventually decays to zero, i.e., limt!1 ΔY(t) = 0 [24]. In the vicinity of an equilibrium
point, the time evolution of a perturbation can be described by

DYðtÞ ¼ eMtDYð0Þ ð4Þ
Therefore, the spectrum of the community matrixM is clearly relevant for determining local
stability. If Λ(M) is the set of eigenvalues ofM, then an equilibrium point is stable if all eigen-
values have negative real part, i.e., Re(λ)< 0 8 λ 2 Λ(M) [5, 9].

Generative models for community matrices
We parameterise community matrices using four quantities: S, C, μ and σ; where S, as above, is
the number of species, C is the connectance (the fraction of realised interactions among spe-
cies), μ is the strength of intraspecific interactions and σ is the standard deviation of the
strength of interspecific interactions [9]. We assume that populations are self-regulating and so
Mii = −μ, where μ> 0. Non-normal community matrices with different types of interaction—
representing different types of ecological community—are generated by sampling off-diagonal
entries (Mij, interspecific interactions) from different bivariate distributions. Having specified a
particular distribution, stability criteria can be expressed in terms of S, C, μ and σ. Based on
these criteria, it has been shown that predator-prey community matrices are the most stable,
followed by random, competition, mixture and mutualism [9]. Generative models for these
community matrices are described below.

Random. Each off-diagonal entry is sampled independently from a normal distribution
N ð0; sÞ with probability C, and otherwiseMij = 0 with probability 1 − C.

Mutualism. Each off-diagonal pair (Mij,Mji) is sampled from a half-normal distribution
jN ð0; sÞj with probability C, and both entries are zero otherwise. These community matrices
have a (+,+) sign structure for off-diagonal pairs.

Competition. Each off-diagonal pair (Mij,Mji) is sampled from a half-normal distribution
�jN ð0; sÞj with probability C, and both entries are zero otherwise. These community matrices
have a (−,−) sign structure for off-diagonal pairs.
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Mixture of mutualism and competition. Each off-diagonal pair (Mij,Mji) is sampled from a
half-normal distribution jN ð0; sÞj with probability C/2 or�jN ð0; sÞj with probability C/2,
and both entries are zero otherwise. These community matrices have a (+, +) or (−, −) sign
structure for off-diagonal pairs.

Predator-prey. The first entry in an off-diagonal pair is sampled from a half-normal distri-
bution jN ð0; sÞj and the second entry from�jN ð0; sÞj with probability C/2, or with the half-
normal distributions reversed with probability C/2, and both entries are zero otherwise. These
community matrices have a (+, −) or (−, +) sign structure for off-diagonal pairs.

Pseudospectra and transient instability
In general, the eigenvalues ofM satisfy the following definition:

LðMÞ ¼ fz 2 C : detðzI�MÞ ¼ 0g ð5Þ
or, equivalently,

LðMÞ ¼ fz 2 C :k ðzI�MÞ�1 k¼ 1g ð6Þ

meaning that if z is an eigenvalue ofM then by convention the norm of (zI −M)−1 is defined to
be infinity (see Chapter I.1 in [29]). The ‘�-pseudospectrum’ has several comparable definitions
which describe the eigenvalues of a matrix whose entries have been subject to noise of magni-
tude � (in the sense of the matrix norm) [28]. We use the following definition:

L�ðMÞ ¼ fz 2 C : jjðzI�MÞ�1jj � ��1g ð7Þ

If a matrix is normal then its �-pseudospectrum (henceforth just ‘pseudospectrum’) consists of
closed balls of radius � surrounding the original eigenvalues ofM (see Theorem 2.2 in [29]). As
mentioned earlier, normal matrices cannot exhibit reactive dynamics: perturbations of the pop-
ulation vector for a stable system decay immediately and with exponential profile as the system
returns to its original equilibrium point. But with non-normal matrices, pseudospectra can be
much larger and more intricate and reactive dynamics are possible: perturbations of the popu-
lation vector for a stable system first increase in magnitude and reach a maximum amplitude
before eventually decaying (Fig 1). This behaviour motivates a description of local stability
analysis for community matrices in terms of pseudospectra. (Besides non-normal matrices and
reactivity, it is worth noting that pseudospectra are still relevant for understanding the conse-
quences of small changes to entries in normal matrices.)

Local asymptotic stability is determined in the same way for normal and non-normal matri-
ces. The ‘spectral abscissa’ ofM is defined as

aðMÞ ¼ sup
z2LðMÞ

ReðzÞ ð8Þ

where the supremum (sup) selects for the largest (real-part) of the rightmost eigenvalue in the
set Λ(M). Stability is guaranteed for α(M)< 0. IfM is normal, then ||eMt|| = eα(M)t and dynam-
ics are completely described by α(M) see Eq (4). Otherwise, the dynamics implied byM can be
more complicated:

eaðMÞt � jjeMtjj � kðVÞeaðMÞt ð9Þ

where the columns of matrix V are the eigenvectors ofM, and κ(V) = ||V|| � ||V−1|| is known as
the conditioning of V [32–35]. The conditioning provides a bound from above—an upper
bound—to the maximum amplitude of a perturbation of the population vector (it is worth
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Fig 1. Top: Pseudospectrum of a random community matrix with S = 50, C = 0.1, μ = 1 and σ = 0.3, which is asymptotically stable. Contours in the complex
plane illustrate the effect on eigenvalues of the community matrixM for noise of magnitude � = 10r [31]. The contour for � = 0.1 (i.e., r = −1) crosses the
imaginary axis, implying that the pseudospectral abscissa is positive and so transient instability is observable. Bottom: Dynamics of ||eMt|| (arbitrary units of
time, see Eq (9)). The dashed curve represents dynamics from eigenvalue analysis, whereas the solid curve represents dynamics predicted by positive
�-pseudospectral abscissa for �� 0.1.

doi:10.1371/journal.pone.0157876.g001
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noting that κ(V) does not provide any information about the time at which the perturbation
reaches its maximum amplitude).

In complement to stability is reactivity, which describes the behaviour of a system close to
t = 0, at the application of a perturbation. The ‘numerical abscissa’ ofM is defined as

oðMÞ ¼ d
dt

jjeMtjj
�
�
�
t¼0

¼ sup
z2LðHÞ

ReðzÞ ð10Þ

whereH ¼ MþMt

2
[13–17]. The numerical abscissa is the maximum initial amplification rate fol-

lowing an infinitesimally small perturbation to the population vector. Dynamics are non-reac-
tive if ω(M)< 0 and may be reactive if ω(M)� 0. A stable system can be either reactive or
non-reactive, but an unstable system is necessarily reactive.

With non-normal matrices, perturbations to the entries ofM can affect whether a system is
stable and non-reactive or stable and reactive. In other words, perturbations to the entries ofM
can affect how a system responds to perturbations to the population vector. The effect of such
perturbations toM is not covered by Eq (10). However, we can study the pseudospectrum of a
community matrix to better understand system dynamics between the limits of reactivity and
stability. In what follows, we use the theory of pseudospectra to relate uncertainty in, or small
changes to, the entries ofM to bounds on the amplification of perturbations of the population
vector.

The ‘�-pseudospectral abscissa’ ofM is defined as

a�ðMÞ ¼ sup
z2L�ðMÞ

ReðzÞ ð11Þ

which is the largest real-part eigenvalue of the pseudospectrum ofM for a given amount of
noise �. The �-pseudospectral abscissa provides a lower bound to the maximum amplification
of a perturbation of the population vector (see Eq 14.6 in [29]):

sup
��0

a�ðMÞ
�

� sup
t�0

jjeMtjj ð12Þ

and therefore the function

fMð�Þ ¼
a�ðMÞ

�
ð13Þ

is useful for understanding transient dynamics. Eqs (12) and (13) are also valid for bounding
normal matrices with positive spectral abscissa. As �! 0, α�(M) converges to the spectral
abscissa. IfM has a positive spectral abscissa, then lim�!0 α�(M)/�!1, which confirms that
the norm is unbounded and the equilibrium point is unstable.

In the literature on pseudospectra, sup��0 fMð�Þ � KðMÞ is known as the Kreiss constant

[32, 34]. Eqs (11) (12) and (13) are useful because they relate perturbations to the matrix norm
—small changes to the elements of the community matrix as described by the noise parameter
�—to the effect of perturbations to the population vector (compare Eqs (8) and (11)). For a
given community matrix, as the size of amatrix perturbation is increased from zero there may
be some critical value �� at which fM(�*) = 1. In the pseudospectrum, this is illustrated by the
��-contour crossing the imaginary axis (Fig 1). At this point, perturbations to the equilibrium
population vector begin to be amplified.

For a stable and non-reactive system, perturbations to the population vector are not ampli-
fied and the system always returns to its original equilibrium point. For an unstable and neces-
sarily reactive system, perturbations are amplified and the system may move to a new
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equilibrium point. But for a stable and reactive system, perturbations are first amplified before
the system eventually returns to its original equilibrium point—this is transient instability.
Now that we can compute upper Eq (9) and lower bounds Eq (12) for amplifications, we are in
a position to compare the transient dynamics of different types of ecological community as
described by non-normal community matrices.

Results
We generated multiple sets of community matrices with C = 0.1, μ = 1 and various combina-
tions of S and σ for the five generative models. We first consider lower and upper bounds to the
maximum amplitude of perturbations to the population vector for random community matri-
ces, before turning our attention to the other types of interaction. The data required to repro-
duce the plots in this article are available at [36].

Lower bound for random community matrices
We numerically evaluated the �-pseudospectral abscissa using the recently proposed subspace
method [37]. Consider an ensemble of community matrices generated with random interaction
type and S = 100 and σ = 0.3, which is just below the threshold for instability
(sc ¼ mffiffiffiffi

SC
p ¼ 1ffiffiffi

10
p � 0:31). We found that the average value of fM(�) Eq (13) monotonically

increases as a function of � and eventually saturates. It is worth noting that although the aver-
age value of fM(�) monotonically increases, the average value was calculated over 100 matrices
so this may not be the case for fM(�) for a single matrix. This is for instance the case for the
Monte Carlo simulations we have performed.

The key result of this paper is that at �� � 0.085 the curve crosses one, at which point pertur-
bations are amplified and transient instability may be observable. The function fM(�) converges
for all asymptotically stable community matrices considered here.

In general, we identify regions of stability, transient instability and instability by plotting

sup��0
a�ðMÞ

�
Eq (12); in practice, we plot fM(�) for large values of �) as σ is varied (Fig 2). Similar

regions can be identified as S is varied while σ is held constant (results not shown). In the stable
region, there is no perturbation to the community matrix large enough (that can still be consid-

ered infinitesimally small) such that sup��0
a�ðMÞ

�
> 1, and so perturbations are never amplified.

At some critical point, σti, there is a level of matrix noise � = �� above which perturbations to
the population vector are amplified before decaying. As σ increases in the region of transient
instability, �� decreases until it reaches zero at σc. At this point, system dynamics are guaranteed
to be asymptotically unstable and any infinitesimally small perturbation to the population vec-
tor is amplified (without necessarily returning to the original equilibrium point). In the unsta-
ble region, fM(�) diverges and corresponding values for the lower bound should be treated with
caution.

The critical point for transient instability with S = 100 is σti � 0.22. This is very close to the
value given by reactivity criteria based on the numerical abscissa: sR ¼ 1ffiffiffiffiffi

2SC
p ¼ 1ffiffiffi

20
p [18]. Indeed,

both approaches determine whether perturbations to the population vector are amplified based
on eigenvalues related toM. As a point of difference, however, the pseudospectral approach
allows for an additional treatment of uncertainty in, or small changes to, entries of the commu-
nity matrix. For a given set of parameters, the numerical abscissa only indicates whether ampli-
fication is possible, whereas the pseudospectrum, through the �-pseudospectral abscissa, also
indicates whether amplification is possible given small changes to the strengths of interactions
among species in the community.
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Upper bound for random community matrices
We plot the frequency distribution of κ(V) Eq (9) for various combinations of S and σ to inves-
tigate the upper bound to the maximum amplitude of perturbations of the population vector.
In general, distributions are strongly peaked and fat-tailed (Fig 3). This indicates that very
large amplification is possible even for very small perturbations. The location of the peak
changes very little as σ increases, but shifts rightwards as S increases (results not shown). The
slope of the tail does not change much as either S or σ is varied. With S = 100 and σ = σc = 0.31,
the peak in the distribution of upper bound values is UBpeak(σc)� 95 and the maximum value
in the tail is UBtail(σc)* 1000. When a power law is fit to the tail, f(x)/ x − α, the exponent is
α� 2.9.

Fig 2. Regions of stability, transient instability and instability for a random community matrices with S = 100,C = 0.1 and μ = 1 as σ is varied. The y-
axis is the lower bound of the maximum amplitude of perturbations to the population vector Eq (12). Transient instability is observable as the curve crosses
one at σti � 0.22 and instability is reached at sc ¼ mffiffiffiffi

SC
p ¼ 1ffiffiffi

10
p � 0:31. At the threshold of instability, the lower bound of the maximum amplitude is LB(σc) =

1.046 ± 0.006 (mean ± standard deviation). The shaded area represents the standard error over 100 realisations.

doi:10.1371/journal.pone.0157876.g002
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Community matrices with different types of interaction
The region of transient instability varies for different types of interaction, as do lower and
upper bounds for amplification (Table 1). Transient instability becomes observable with small-
est σti with mutualism, followed by mixture, competition, random and predator-prey. This
order is the same as with the threshold for instability, σc. However, the size of the region of
transient instability, σc − σti, has a different order: predator-prey is largest, followed by random,
mutualism, competition and mixture. The pattern is similar if S is varied while σ is held con-
stant (results not shown). As expected, these findings are consistent with earlier results based
on the numerical abscissa and the correlation between off-diagonal entries in a community
matrix [18].

Fig 3. Distribution of upper bounds of the maximum amplitude of perturbations to the population vector Eq (9) for random community matrices
generated with S = 100,C = 0.1 and μ = 1 and seven values of σ (10,000 realisations). Distributions are fat-tailed and the slope of the tail does not change
with σ.

doi:10.1371/journal.pone.0157876.g003
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Predator-prey community matrices are relatively stable and exhibit the largest range of
parameter values for transient instability. The lower bound to the maximum amplitude of per-
turbations of the population vector also reaches its largest value among the five types of inter-
action for predator-prey community matrices. However, the peak in the distribution of upper
bounds is at lower amplification and the slope of the tail is steeper (Table 1). This implies that
perturbations are typically amplified less severely compared to the other types of interaction
and the very largest possible amplitudes are not as large.

Mutualism (+, +) and competition (−, −) have different critical points for transient instabil-
ity and instability, but similar bounds to the maximum amplitude of perturbations of the popu-
lation vector. Interestingly, the peak in the distribution of upper bounds is at lower
amplification for community matrices with a mixture of these two interaction types. The larg-
est upper bound, UBtail(σc), however, is similar to mutualism and competition, so the exponent
α is shallower.

Discussion
Here we described transient instability for non-normal community matrices using local stabil-
ity analysis and pseudospectra. We showed how the shift from stable and non-reactive dynam-
ics to transient instability changes if perturbations are applied to the community matrix. We
also characterised how perturbations of the population vector are amplified during periods of
transient instability for different types of interaction. We found an early, sharp and severe tran-
sition between stability and instability with mutualism, mixture and competition, but a later,
longer and less severe transition with predator-prey community matrices.

In this study, we assumed a random topology of interactions between species. Although the
correlation between interaction strengths—and therefore the predominant type of interaction
in a community matrix—may be more important than topology for stability [10, 11], it remains
to be seen whether this is the case with transient instability. Nevertheless, it is likely that the
particular trajectory of a perturbed system is sensitive to topology, and, of course, the direction
of initial perturbation of the population vector. Understanding transient dynamics at this level
of detail requires analysis of pseudoeigenvectors in addition to pseudoeigenvalues (see Chapter
I.4 in [29]).

Local stability analysis is only one approach to understanding the capacity for ecosystems to
withstand external shocks [38, 39]. It will be informative to compare how the time evolution of
the same shock to the same system is assessed under different approaches to measuring the
‘stability’, ‘persistence’ or ‘resilience’ of ecosystems [12].

Stability, in principle, promises a degree of certainty that biodiversity will not be lost [1, 2].
Reactivity has been suggested as a possible early-warning signal for the onset of instability [19–
23]. Transient instability not only fills the gap between these two concepts, but also highlights
new consequences of rapid environmental change. The longer the period of transient instability

Table 1. Properties of community matrices with S = 100,C = 0.1, μ = 1.

Type σti σc LB(σc) UBpeak(σc) UBtail(σc) α

Mutualism 0.11 0.16 1.02 100 *1000 3

Mixture 0.17 0.19 1.02 77 *1000 2.7

Competition 0.17 0.20 1.02 100 *1000 3

Random 0.22 0.31 1.03 95 *1000 2.9

Predator-prey 0.37 0.87 1.10 60 *500 3.4

doi:10.1371/journal.pone.0157876.t001
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and the larger the amplification of perturbations of the population vector, the more susceptible
an ecosystem is to multiple perturbations. One perturbation may drive a stable system into a
period of transient instability that eventually dissipates; but two or three perturbations in quick
succession may force the system to a new, unknown equilibrium point that may correspond to
a loss of species and biodiversity. Pseudospectra can be used to investigate which ecosystems
are at risk of instability, and what could be done to mitigate that risk.
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