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We apply a recent one-dimensional algorithm for predicting random close packing fractions of polydisperse
hard spheres [Farr and Groot, J. Chem. Phys. 133, 244104 (2009)] to the case of lognormal distributions of
sphere sizes and mixtures of such populations. We show that the results compare well to two much slower
algorithms for directly simulating spheres in three dimensions, and show that the algorithm is fast enough to
tackle inverse problems in particle packing: designing size distributions to meet required criteria. The
one-dimensional method used in this paper is implemented as a computer code in the C programming lan-
guage, available at http://sourceforge.net/projects/spherepack1d/ under the terms of the GNU general public
licence (version 2).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

In granular and mesoscopic systems, various material properties
depend on the close packed volume fraction of the constituent particles.
For example, in the Krieger–Dougherty [1] relation

ηr ¼ 1−ϕ=ϕmaxð Þ− η½ �ϕmax ; ð1Þ

used for estimating the viscosity of a suspension of hard particles in a
Newtonian solvent [where ηr is the viscosity relative to that of the sol-
vent, ϕ the volume fraction of the particles and [η] a number (equal to
2.5 for spheres)], the viscosity is predicted to diverge at the packing frac-
tionϕmax. Thevalueofϕmaxmaycorrespond to a randomarrangement at
low shear rates or an aligned ‘string phase’ at high shear rates [2,3], but
in either case, Eq. (1) implies that this quantity influences the viscosity
over the whole range of volume fractions. On the other hand, deform-
able particles may be packed above the Kreiger–Dougherty ϕmax, and
their material properties, such as yield stress [4,5], can be deduced
from how far above close packing the system lies.

For many colloidal and granular systems, the constituent particles do
not form regular, crystalline arrays, but instead are rather randomly ar-
rangedwhen a jammed state is reached,which represents a close packed
arrangement. The concept of random close packing (‘RCP’) was first
clearly described for monodisperse smooth hard spheres by Bernal and
Mason [6], and the packing of smooth spheres remains an important ap-
proximation for less ideal systems.

For themonodisperse case, there has been controversy over the def-
inition (and even existence [7]) of RCP, as crystallization to a face
centred cubic arrangement [8,9] is possible when sufficient opportunity
rights reserved.
to explore the configuration space is allowed. Theoretical work on ran-
dom jammed states [10] has clarified these issues, but the simplest ev-
idence for a well-defined RCP state is that different packing algorithms
generally converge to statistically very similar configurations and pack-
ing fractions. One can therefore define RCP operationally, as the out-
come of such a packing algorithm. Various algorithms have been
explored: Conceptually the simplest is the Lubachevski–Stillinger
(‘LS’) algorithm [11] in which spheres at a low volume fraction are
placed in a box with periodic boundary conditions, by random sequen-
tial addition. They are then given random initial velocities and permit-
ted to move and collide elastically while their radii grow at a rate
proportional to their initial radius, until a jammed state is reached.
This algorithm takes three input parameters: the number of spheres
Ns, the initial volume fraction ϕinit and the ratio δ of the radial growth
rate to the initial particle size. For large Ns, the final packing fraction is
only very weakly dependent on δ and ϕinit. Usually fairly large values
(around δ = 0.1) are chosen, to avoid local crystalline regions. Even
with efficient methods for identifying neighbours however, the LS algo-
rithm converges rather slowly to the jammed RCP state because of the
diverging number of collisions as this point is approached.

Other authors have therefore modified the dissipative particle dy-
namics [12] method and simulated smooth, soft (Hertzian) spheres,
with radial dissipative forces. In the limit of zero confining pressure,
these also behave as hard spheres and give extremely similar results
to the LS algorithm, although the amount of radial dissipation (or equiv-
alently the particle size) does have a very weak effect on the final RCP
volume fraction [13].

Inmoving towardmore realistic systems, there are three constraints
in the above-mentioned models which one can imagine removing: the
smoothness of the particles (that is to say lack of sliding friction), their
spherical shape, and monodispersity.

http://sourceforge.net/projects/spherepack1d/
http://dx.doi.org/10.1016/j.powtec.2013.04.009
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We note in passing that monodisperse hard spheres, but with the
addition of sliding friction, have been considered in the literature, and
this leads to a family of randomly packed states [14], with RCP (apply-
ing to smooth spheres) and random loose packing (highly frictional
spheres) being the extreme ends of this spectrum. Corresponding
packing fractions are in the range 0.64 to 0.53. We also note that
RCP of non-spherical, but smooth particles have also been extensively
studied; for example in Ref [15], different smooth superelliposids are
taken as the objects to be packed.

However, the work reported here will cover only the case of poly-
disperse smooth spheres. A certain amount of theoretical effort has
been devoted to this area, notably Refs. [16–18]. The last of these ap-
pears to provide a flexible approximation scheme that could be ap-
plied to fairly general size distributions; although the authors note
that for bidisperse sphere size ratios greater than 2, the accuracy de-
clines. Despite these advances, all the theoretical approaches are to
some extent heuristic, requiring comparison to numerical data.
Therefore the most obvious route forward, which is to generalize
the numerical packing algorithms that were developed for the mono-
disperse case, remains necessary. In the present paper, the two sets of
3d simulation results we present are based on a hard sphere method
(a modification of the LS algorithm [19]) and a soft particle (‘SP’) al-
gorithm (taken directly from Ref. [13]).

However, all these direct simulation methods are computationally
rather expensive, typically taking hours or days to obtain high quality
results. Not only is it inconvenient to have to bring to bear a complex
and expensive algorithmwhen one may only be interested in the ran-
dom packing of a relatively simple size distribution, but the slow time
for solution makes solving inverse problems infeasible. By an ‘inverse
problem’ we mean searching for a size distribution which satisfies
certain packing criteria, such as finding the largest RCP volume frac-
tion given a fixed minimum and maximum size for the particles, or
other problems of a similar nature.

Recently however, a quick and apparently quite accurate algo-
rithm [13] has been described which attempts to approximate the
RCP fraction of any distribution of sphere sizes, by mapping the prob-
lem onto a one dimensional system of rods. This can allow the RCP
volume fraction to be obtained in around one second (see Table 1),
and therefore makes routine evaluation of these numbers relatively
easy. However, some care is required to implement the algorithm
for general distributions of sphere sizes, and no reference implemen-
tation code has hitherto been published.

This paper therefore aims to demonstrate that this one dimension-
al ‘rod-packing’ (RP) algorithm can be implemented efficiently for
typically encountered sphere size distributions, and also to compare
the results to the more traditional direct simulation approaches
above for calculating RCP volume fractions.

2. Log-normal size distributions

2.1. Analysing experimental data

Consider a distribution of sphere sizes. Let the number-weighted dis-
tribution of diameters be given by P3d (D), so that the fraction of the
Table 1
Simulation times t in milliseconds for the RP algorithm applied to a lognormal distribu-
tion of spheres, implemented on a 3.2GHz Intel Pentium processor for various values of
rod number N and width σ. The predicted RCP volume fraction is ϕRP.

σ N ϕRP t/ms

0.0 16,000 0.643485 40
0.5 16,000 0.707259 479
1.0 16,000 0.801339 507
0.0 64,000 0.643485 331
0.5 64,000 0.707262 2151
1.0 64,000 0.801368 2644
number of spheres with diameters between D and D + dD is P3d (D)dD.
The volume-weighted distribution of diameters will then be Pvol (D) ∝
D3P3d (D), while the surface- and diameter-weighted distributions will
be respectively Psurf (D)∝ D2P3d (D) and Pdiam (D)∝ DP3d (D).

For any such number-weighted size distribution P3d (D), one de-
fines an m'th moment by

μm≡∫
∞
0D

mP3d Dð ÞdD: ð2Þ

It is often the case that the volume-weighted mean diameter d4,3
and the surface-weighted mean diameter d3,2 are experimentally ac-
cessible. They are defined in terms of the moments via:

d4;3≡μ4=μ3 ð3Þ

d3;2≡μ3=μ2: ð4Þ

In studies of emulsions [20,21] it is frequently found that the
volume-weighted size distribution of droplets is log-normal, and this
can also be a good approximation for granular materials, such as sedi-
ments [22,23]. In general, if Pvol (D) is log-normal with a ‘width’ σ, it
will have the form:

Pvol Dð Þ ¼ 1
Dσ

ffiffiffiffiffiffi
2π

p exp −
ln D=D0;vol

� �h i2
2σ2

8><
>:

9>=
>;; ð5Þ

whereD0,vol is a reference diameter setting the scale. Performing the in-
tegrals of Eqs. (3) and (4), we see that

D0;vol ¼ d3;2d4;3
� �1=2

: ð6Þ

We note in passing that one could alternatively define a log-normal
distributionwith particle volume, rather than diameter, as the indepen-
dent variable; in which case, for the same physical distribution, the
volume-based lognormal width σv will be 3σ.

Returning to diameter as the independent variable, in experimental
work it is usual to plot the volume-weighted diameter distribution on a
logarithmic scale, showing the fraction of the spheres' volume per de-
cade of diameter. If we define x as the base ten logarithm of the diame-
ter measured in meters (so x counts the number of decades)

x≡log10 D=mð Þ; ð7Þ

x0≡log10 D0;vol=m
� �

; ð8Þ

then the distribution by decade corresponding to Pvol (D) is

Pdec
vol xð Þ≡ dD

dx
Pvol Dð Þ ¼ ln 10ð Þ

σ
ffiffiffiffiffiffi
2π

p exp − x−x0ð Þ2
2 σ=ln 10ð Þð Þ2

" #
: ð9Þ

We see that Pvoldec(x) has a simple normal distribution in x, and the
full width (in decades) at half maximum is very close to σ itself (more
precisely 1.023σ).

2.2. Weighted distributions

A little algebra shows that if Pvol (D) is log-normally distributed, then
so are the number-, diameter- and surface-weighted distributions. That
is to say they have exactly the same functional form as Eq. (5), with the
samewidth σ, but different values of the reference diameter. For exam-
ple the number-weighted diameter distribution is

P3d Dð Þ ¼ 1
Dσ

ffiffiffiffiffiffi
2π

p exp − ln D=D0ð Þ½ �2
2σ2

( )
; ð10Þ
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from which we deduce

μm ¼ Dm
0 exp m2σ2

=2
� �

; ð11Þ

D0 ¼ d3;2d4;3
� �1=2

d3;2=d4;3
� �3

; ð12Þ

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

d4;3
d3;2

 !vuut ; ð13Þ

while the volume-, surface- and diameter-weighted distributions have
exactly the same functional form as Eq. (10) save for D0 being replaced
by (d3,2d4,3)1/2(d3,2/d4,3)q with q = 0, 1 and 2 respectively.

Eq. (13) can often be used to estimate σ for a real lognormal dis-
tribution of particle diameters, using experimental sizing data, for ex-
ample from light-scattering.

As a general observation, if the RCP volume fraction ϕRCP is not af-
fected by equally magnifying all the spheres (and the boundary condi-
tions of the system), then for a lognormal distribution, ϕRCP will
depend only on σ, which will be the same whether we measure the
number-, surface- or volume-weighted diameter distribution. Such
magnification-independence appears to hold to a good approximation
for the LS, Kansall, Torquato and Stillinger [19] (KTS) and SP algorithms,
and is true exactly for the one-dimensional RP algorithm described in
the methods section below.

2.3. Combining several lognormal distributions

Suppose the distribution of interest is composed of a sum of sim-
pler distributions, for example monodisperse distributions (so each
individual function P3d (D) is a Dirac delta-function), or lognormal
distributions. Let these normalized number-weighted distributions
individually be the set of functions {Pi (D)}, so that

P3d Dð Þ ¼ ∑
i
aiPi Dð Þ ð14Þ

where the ai's are the fractions of the total number of particles in each
population, and therefore ∑ ai = 1. From a practical point of view,
one rarely knows the total number of particles in a sample of materi-
al: more commonly, the occluded volume vi of that fraction would be
known. This is the total volume occupied by the particles themselves,
or the volume they would displace in an Archimedean sense [25]
where they submerged in a liquid in which they were insoluble. If
the total mass of this population is mi, and the particles were all
made from a material of density ρi, then vi = mi/ρi.

We therefore see that the total distribution of Eq. (14) can be
constructed from this more readily available information, because the
coefficients ai are related to the normalized occluded volumes vi of the
different populations through

ai ¼ vi=μ3;i

� �
∑
j

vj=μ3;j

� �" #−1

; ð15Þ

where

μ3;i≡∫
∞
D¼0D

3PidD ð16Þ

is the third moment of the relevant number-weighted size distribution.

3. Methods for 3d simulation of sphere packing

3.1. Hard spheres

The LS algorithm has been generalized to polydisperse spheres by
KTS [19], who apply it to bidisperse packings. To do this, one needs to
make some choices as to how to perform the simulation: In Ref. [19]
(and the simulations here using the same algorithm), the spheres are
all chosen to have equal mass, and furthermore the growth of the
radii must be taken into account at the moment of collision in order
to have a coefficient of restitution of unity. This latter leads to an in-
crease in kinetic energy of the system at each collision, so all the ve-
locities are then renormalized, to keep the energy constant. The
radii {ri} in this algorithm are chosen to increase in time according
to the relation

ri tð Þ ¼ 1þ tδð Þr0;i; ð17Þ

where {r0;i} are the initial radii. Eq. (17) has the property that the size
distribution remains the same throughout the simulation, apart from
a uniform magnification.

3.2. Soft spheres

The ‘SP’ approach has also been applied to a range of polydisperse
cases in Ref. [13], and due to the increased efficiency of this method,
allows many thousands of spheres to be simulated. For the purposes
of this paper, we simply quote results directly from Ref. [13].

4. Methods for the RP algorithm

4.1. The RP model and application to a lognormal distribution

The 1d algorithm for predicting the RCP fraction, described in Ref.
[13], starts by constructing a normalized distribution P1d(L) of rod
lengths L from any number-weighted diameter distribution P3d(D).
This function is also number-weighted, so that P1d(L)dL is the number
fraction of rods with lengths between Land L + dL. The construction
is:

P1d Lð Þ ¼ 2L∫∞
L P3d Dð ÞdD

∫∞
0D

2P3d Dð ÞdD
: ð18Þ

The prediction for the RCP fraction from Ref. [13] consists in taking
a collection of rods, with lengths drawn from the distribution P1d(L)
and placing them sequentially on a line in the manner described
below, starting from the longest rod, then the next longest and so
on. The rods are not positioned so as to touch one another, but are in-
stead placed so that there is a gap between any pair of rods which is
at least a fraction f = 0.7654 of the shorter of the two. Placement
consists in repeatedly inserting the longest remaining rod into the
largest available gap, which might require expanding that gap
(displacing all rods to the right of the gap an equal amount to the
right) just enough to insert the new rod while ensuring that the
above gap criterion holds between every rod pair. In the case of am-
biguity in the placement (for example placing a very small rod into
a large gap, so that many positions are available without moving
the other rods), we choose the position of such a rod to be at the left-
most end of its possible positions. In this process we also maintain pe-
riodic boundary conditions in one dimension, so that ‘expanding a
gap’ also involves increasing the length of the 1d periodic image.

At the end of this process (when the smallest rod has been
inserted), the rods will occupy a length fraction ϕRP on the line, and
this is the RP estimate for the actual RCP volume fraction of the orig-
inal spheres in space. A more detailed description is given in Ref. [13].

If we are dealing with a lognormal distribution of spheres, we see
from Eqs. (10) and (18), that

P1d Lð Þ ¼ 2L
I−1 Lð Þ
I1 0ð Þ ; ð19Þ
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Fig. 1. Estimate ϕRP (from the RP algorithm of Ref. [13]) for the random close packed
volume fraction of a log-normal distribution of sphere diameters with width σ. Insert
shows the error when compared to the fitting function of Eq. (27) in the text.
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Fig. 2. Predicted random close packed volume fraction ϕ for a collection of spheres
with a lognormal distribution of diameters of width σ. Bold curve shoes results from
the rod-packing algorithm, with N = 16000 rods. Open triangles show results from
the hard-sphere KTS algorithm, with Ns = 1024 particles, and filled diamonds show
results taken directly from Ref. [13], using a soft particle packing algorithm with
Ns = 6000 spheres.
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where

In Lð Þ≡∫∞
L D

nexp − ln D=D0ð Þ½ �2
2σ2

( )
dD

¼ Dnþ1
0 σ

ffiffiffi
π
2

r
e nþ1ð Þ2σ2

=2erfc
ln L=D0ð Þ
σ

ffiffiffi
2

p − nþ 1ð Þσffiffiffi
2

p
� �

;

ð20Þ

so that μm≡Im−1 0ð Þ= σ
ffiffiffiffiffiffi
2π

p� �
. In Eq. (20)

erfc xð Þ≡ 2ffiffiffi
π

p ∫∞
x exp −t2

� �
dt ð21Þ

is the complement of the error function erf(x). Furthermore, using
Eqs. (19) and (20), we see finally that

P1d Lð Þ ¼ Le−2σ2

D2
0

erfc
ln L=D0ð Þ
σ

ffiffiffi
2

p
� �

: ð22Þ

We now use the RP theory of Ref. [13] to predict the RCP fraction for
lognormal distributions of sphere diameters, using different values of σ.
We first establish a method to efficiently construct the collection of rod
lengths needed for the packing algorithm, which is applicable to mix-
tures of (potentially wide) lognormal distributions, as well as the single
lognormal distribution dealt with immediately below.

4.2. Rod lengths and analytic fit for a single lognormal distribution

The RP algorithm requires a sample of rods to be drawn uniformly
from the distribution P1d(L). This could be done randomly, but a simple
deterministic method is to find the cumulative distribution function

F Lð Þ≡∫L
0P1d L′

� �
dL′; ð23Þ

and then a set of N rods {Li} with 1 ≤ i ≤ Nwith strictly non-increasing
lengths can be constructed using the inverse of this function, via

Li ¼ F−1 2N−2iþ 1
2N

� �
: ð24Þ

Calculating the inverse of a monotonic function can be done rela-
tively efficiently using a binary search algorithm [24], provided F(L)
can be evaluated quickly. In order to obtain an explicit form for the
function F(L) of Eq. (23), we use Eq. (18) and reverse the order of
the integrations to obtain the identity

μ2F Lð Þ ¼ ∫L
L′¼0 2L′∫∞

D¼L′P3d Dð ÞdD
h i

dL′

≡∫L
D¼0D

2P3d Dð ÞdDþ L2∫∞
D¼LP3d Dð ÞdD:

ð25Þ

The integrals of Eq. (25) can be performed analytically for the log-
normal distribution of Eq. (10) to obtain

F Lð Þ ¼ 1þ L2I−1 Lð Þ−I1 Lð Þ
h i

=I1 0ð Þ

¼ 1þ L2

2D2
0

e−2σ2

erfc
ln L=D0ð Þ
σ

ffiffiffi
2

p
� �

−1
2
erfc

ln L=D0ð Þ
σ

ffiffiffi
2

p − 2σffiffiffi
2

p
� �

:
ð26Þ

Eqs. (26) and (24) thus provide a method to construct a collection
of rods for the subsequent packing algorithm.

Using a range of values of σ ∈ (0,3), samples of N = 64, 000 rods
were chosen from the distribution P1d(L), and these were processed
using the RP algorithm of Ref. [13] to provide predictions for the RCP
volume fractions of these sphere packings. These RP predictions are de-
noted ϕRP(σ). The results are shown in Fig. 1 and we find that the
predicted RCP fraction for the spheres can be accurately approximated
by the arbitrarily constructed, analytic expression

ϕapp σð Þ ¼ 1−0:57e−σ þ 0:2135e−0:57σ=0:2135

þ0:0019 cos 2π 1−e−0:75σ0:7−0:025σ4� �h i
−1

n o
:

ð27Þ

Table 1 shows some example calculation times for the RP algo-
rithm, using a 3.2 GHz Intel Pentium processor and various values
for N and σ. It is difficult to compare directly the relative speed of
the algorithm here and that in Ref. [13], since neither has been fully
optimized for speed. Nevertheless, analytically performing the inte-
grals and using a binary search to find the rod lengths do have defi-
nite advantages: calculation times of 6541 ms and 10,898 ms were
found for the conditions of lines 2 and 3 in Table 1 using the corre-
sponding code from Ref. [13]. It is to be anticipated that the advantage
of analytic integration over numerical would only increase as the dis-
tributions become wider.



Table 2
Predicted random close packed volume fractions for mixtures of two lognormal popu-
lations of sphere sizes, denoted ‘a’ and ‘b’. R is defined as d4,3;b/d3,4;a, and w is the pro-
portion (by occluded volume) of the ‘b’ population in the mixture. Results are shown
for the KTS [19] algorithm (ϕKTS, with values based on three repeats) and the
rod-packing [13] algorithm (ϕRP). The initial volume fraction in the KTS algorithm is
ϕinit.

Ns R σa σb w ϕinit ϕKTS ϕRP

1024 - 0 - - 0.2 0.6426 ± 0.0005 0.643
2048 - 0.3 - - 0.15 0.6671 ± 0.0006 0.671
2048 2 0 0 0.5 0.15 0.6736 ± 0.0007 0.676
2048 2 0.3 0 0.5 0.15 0.6939 ± 0.0011 0.702
2048 2 0 0.3 0.5 0.15 0.6724 ± 0.0005 0.674
2048 2 0.3 0.3 0.5 0.15 0.6931 ± 0.0002 0.699
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4.3. Rod lengths for a sum of monodisperse populations

If P3d(D) consists of a sum of δ-functions, so the individual popula-
tions are monodisperse:

P3d Dð Þ ¼ ∑
i
aiδ D−Dið Þ; ð28Þ

with {Di} being ordered such that Di > Dj if i > j, then from Eqs. (16)
and (15)

ai ¼ vi=D
3
i

� �
∑
j

vj=D
3
j

� �" #−1

: ð29Þ

Eq. (25) then becomes

F Lð Þ ¼ ∑
i:Di≤L

aiD
2
i

� �
þ ∑

i:Di>L
aiL

2
� �" #.

∑
i

aiD
2
i

� �
; ð30Þ

and the rod lengths can be calculated directly from Eq. (24).
(a) (b)

(d) (e)

Fig. 3. Random close packed configurations for the size distributions (in order)
4.4. Rod lengths for a sum of lognormal populations

Suppose instead we have a mixture of lognormal distributions, with
normalized number-weighted distributions of diameters {Pi}, and sup-
pose that for each of these, we know the volume-weighted and
surface-weighted mean diameters d4,3;i and d3,2;i and also the occluded
volume vi of each population (a plausible scenario if the actual distribu-
tion is made by physically mixing different monomodal fractions). We
define the (log) width of each population by σi, which we see from
Eq. (13) is

σ i≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln d4;3;i=d3;2;i
� �r

: ð31Þ

From Eqs. (10) and (12) we find

Pi Dð Þ ¼ 1
Dσ i

ffiffiffiffiffiffi
2π

p exp −
ln e7σ

2
i =2D=d4;3;i

� �h i2
2σ2

i

8><
>:

9>=
>;; ð32Þ

μ3;i ¼ d4;3;i
� �3

e−6σ2
i ; ð33Þ

fromwhich [using Eq.(15)] we can calculate the ai's. Then from Eq. (25)
we find

F Lð Þ ¼ ν−1∑
i

ai Ai d4;3;i
� �2 þ BiL

2
� �	 


ð34Þ

where

ν≡∑
i
ai d4;3;i
� �2

e−5σ2
i ; ð35Þ

Ai≡
e−5σ2

i

2
2−erfc

ln e7σ
2
i =2L=d4;3;i

� �
σ i

ffiffiffi
2

p −2σ iffiffiffi
2

p

2
64

3
75

8><
>:

9>=
>; ð36Þ
(c)

(f)

of Table 2, obtained by the KTS algorithm of Ref. [19]. See text for details.
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Bi≡
1
2
erfc

ln e7σ
2
i =2L=d4;3;i

� �
σ i

ffiffiffi
2

p

2
64

3
75: ð37Þ

Collectively, Eqs. (34) to (37) provide an efficient method to calcu-
late the cumulative distribution F(L) to which Eq. (24) is applied. Effi-
ciency comes from explicitly evaluating the double integrals in
Eq. (25) and (to a lesser degree) eliminating the sorting of rods which
is implicit in the description of the algorithm in Ref. [13].

5. Results and discussion

Fig. 2 shows results for the random close packed volume fraction
of a single lognormal size distribution, as a function of the distribution
width σ. We see that the RP algorithm gives good agreement with the
KTS results using Ns = 1024 spheres, and excellent agreement with
the soft particle algorithm SP, using Ns = 6000 spheres. The results
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Fig. 5. Plots of predicted RCP fraction from the RP algorithm, for a mixture of two lognormal
widths σa and σb, as shown in the figure. In each panel the horizontal axis shows the propor
system is entirely population ‘a’, and at the right hand end entirely population ‘b’. Each p
(heavy solid line), 2 (dashed line), 4 (dash-dot line) and 8 (thin solid line).
from the KTS algorithm, with the smaller number of spheres, tend
to be slightly below the RP results and those from the SP algorithm.
The SP results use a larger number of spheres, and are therefore prob-
ably more accurate than the KTS results.

As a further comparison, we also look at mixtures of two lognormal
size distributions; a family of problems which appears to be little stud-
ied in the literature. The two lognormal populations ‘a’ and ‘b’which are
combined have widths σa and σb respectively, and volume-weighted
mean diameters d4,3;a and d4,3;b. We define a size ratio

R≡d4;3;b=d4;3;a; ð38Þ

and definew to be the ratio of the occluded volume of the ‘b’ population
to that of both populations together. Thus, if both populations were
made of the samematerial, thenw is the fraction of themass of the par-
ticles that is due to the ‘b’ population.

The results are shown in Table 2 and Fig. 4, and some of the
close-packed configurations from the KTS algorithm are shown in
Fig. 3. Again, we see good agreement between the results of the RP algo-
rithm and the predictions from the KTS algorithm, but once more, the
KTS results are seen to be in general slightly below the RP results

Having provided evidence that the one dimensional RP model gives
good agreement with the more traditional simulation methods, for a
fairly broad range of sphere size distributions, we now demonstrate
that it can be used to map out parameter spaces and make interesting
predictions beyond the scope of direct simulation approaches.

For example, consider the space consisting of all possible mixtures
of any two lognormal distributions of sphere sizes. Fig. 5 shows plots
of predicted RCP fractions for this parameter space. The lower left
hand panel, which covers σa = 0 and σb = 0.6, shows the interesting
phenomenon that when one distribution is much wider than the
other, and for certain ratios of occluded volumes of the two popula-
tions, the lowest packing fraction may not be achieved for equal
values of d4,3. This is a consequence of the lognormal distribution be-
coming markedly skewed when it is broad.

With the increased speed of the RP algorithm, it becomes practical
not just to make predictions for packing fractions, but to search over
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Fig. 6. Predicted optimized RCP fraction of tridisperse sphere mixtures using the RP al-
gorithm. The individual populations have diameters d1, d2 and d3. For each such choice,
the contour plot shows the maximum RCP fraction when the relative amounts of each
of the populations have been optimized (a two-dimensional space of possibilities).
Contours are at intervals of 0.01, with the bold contours being ϕRP = 0.65 (at bottom
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moderately large spaces of distribution functions in order to find opti-
ma. Fig. 6 shows the predicted maximum RCP fraction for mixtures of
tridisperse spheres (three populations of monosize spheres). Each
point on the contour plot corresponds to a fixed pair of ratios of sizes,
and represents an optimization over all possible ratios of occluded vol-
ume (a two-dimensional composition space). Such optimization prob-
lems are difficult to approach experimentally or computationally
using more tradition packing algorithms, although the results can be
verified by either approach. Therefore an accelerated algorithm can in
this case widen the class of problems amenable to solution.

Because the algorithms used here require some patience to con-
struct in computer code, a reference implementation, written in the
‘C’ programming language [26] has been written, and made available
under the open source GNU ‘general public licence’ (GPL version 2
[27]) at the website indicated in Ref. [28].
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