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Networks with memristive elements (resistors with memory) are being explored for a variety of applications
ranging from unconventional computing to models of the brain. However, analytical results that highlight the role
of the graph connectivity on the memory dynamics are still few, thus limiting our understanding of these important
dynamical systems. In this paper, we derive an exact matrix equation of motion that takes into account all the
network constraints of a purely memristive circuit, and we employ it to derive analytical results regarding its
relaxation properties. We are able to describe the memory evolution in terms of orthogonal projection operators
onto the subspace of fundamental loop space of the underlying circuit. This orthogonal projection explicitly
reveals the coupling between the spatial and temporal sectors of the memristive circuits and compactly describes
the circuit topology. For the case of disordered graphs, we are able to explain the emergence of a power-law
relaxation as a superposition of exponential relaxation times with a broad range of scales using random matrices.
This power law is also universal, namely independent of the topology of the underlying graph but dependent
only on the density of loops. In the case of circuits subject to alternating voltage instead, we are able to obtain an
approximate solution of the dynamics, which is tested against a specific network topology. These results suggest
a much richer dynamics of memristive networks than previously considered.
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I. INTRODUCTION

The role of memory in the statistical properties of complex
systems is emerging as an important new direction of study
[1–4]. In particular, memristive circuits (circuits made of
resistors with memory) are attracting considerable attention in
view of their similarities with the dynamics of self-organizing
systems such as swarms (e.g., ants), and their ability to solve
certain optimization problems [5–8]. In fact, the physical
properties of memristors are relevant both for their practical
use, such as in the field of unconventional computing [9–12],
as well as to understand the collective behavior and learning
abilities of certain biological systems [13–17], including the
brain [18,19]. A key signature of these networks is the
presence of time nonlocality (memory), a feature, that coupled
with Kirchhoff’s conservation laws, promotes unexpected
phenomena, such as first-order phase transitions as a function
of memory content [20,21] or avalanches [22].

Yet, very little analytical advances have been made for
complex circuits made of memristors, due to the strong
nonlocal behavior introduced by the network constraints, such
as the circuit conservation laws, which make numerical results
all but necessary. In turn, it is still unclear how the memory
dynamics of each element depends on the graph connectivity.
Another important issue is the role of memory in the relaxation
to steady state of memristive networks. In other words, the
question “How does an excitation in a disordered network
of memristive elements relax to steady state?” has yet to be
answered. As mentioned above, this is not just an academic
exercise: these types of networks are being employed to solve
complex problems in a variety of different modes. Hence,
an answer to this query bears immediate relevance to the
question of how efficient such systems are as computing
machines and how fast they converge to their asymptotic stable
states.

In this paper we make three fundamental advances. For
the case of linear ideal memristors we demonstrate a closed
matrix equation of motion for the internal memory of the
circuit, which embeds the conservation laws of the system.
We derive such an equation both for current and voltage
linear controlled ones. In the bulk of the paper, however,
we focus on ideal current-controlled memristors [23], which
have a I–V zero crossing properties, rather than on the recently
discovered redox-based nanoionic memristors (RRAM) [24],
which do not satisfy this property. The results that follow do
not necessarily apply to this class of memristors. With this
equation in hand, we show that such networks can support
scale-free temporal correlations induced by the network
nonlocal properties when DC controlled. We provide an
analytical demonstration of this fact using the simplest model
of linear memristors, which is a good approximation for a
variety of actual physical systems [23,25–29]. In fact, by
means of graph-theoretic tools we show explicitly that the
spatial and temporal sectors of the dynamics are coupled
by orthogonal projections onto the subspace of fundamental
current loops. This coupling ensures the emergence of a power
law as superposition of exponential relaxations times with a
broad range of scales, which is the typical signature of “glassy”
behavior. Slow relaxation phenomena have been already
observed experimentally. Specifically, in Refs. [11,12] it has
been observed that the frequency spectrum of the resistance
in atomic switch networks is a power law, which could be
due either to self-organized criticality or to a superposition of
a broad range of relaxation timescales as we observe in the
present paper.

Ultimately, our derived equation may serve as the basis for
further analysis of the relaxation properties of circuits with
memory. In fact, for the case of AC forcing, we are able to
obtain for the first time an approximate analytical solution in
the case in which the projector operator is diagonally dominant.

2470-0045/2017/95(2)/022140(11) 022140-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.022140


F. CARAVELLI, F. L. TRAVERSA, AND M. DI VENTRA PHYSICAL REVIEW E 95, 022140 (2017)

We test numerically our obtained approximate solution in the
case of a specific graph configuration.

II. METHODS

Let us start by considering the exact solution of a linear
circuit,1 written in terms of graph quantities such as the
loop matrix description of a circuit [30], focusing on linear
memristors. Specifically, we employ a slightly modified
version of a widely used linear model of memristors described
by the equations that relate the current I (t) to the voltage
V (t) [23]:

V (t) = R(w,t)I (t), (1)

ẇ = J
β

RonI + αw, (2)

where w is the internal memory state variable, J = ±1
represents the polarity of the memristor, Ron the limiting
resistance when the memristor is in the conducting phase, and
β is a constant. In the case of the memristors of Ref. [23], made
of an oxide thin film sandwiched between two metal layers
with oxygen vacancies, one has β = 2d2

μ
, where μ represents

the electron mobility and d the size of the memristor. The
parameter α quantifies the rate of decay of the memory when
all generators are switched off. The memory resistance we
consider is limited between the values Roff in the insulating
phase and Ron in the conducting one, and depends linearly
only on the dynamical internal parameter w(t),

R(w,t) = Ron(1 − w(t)) + Roffw(t)

= Ron[1 + (r − 1)w(t)], (3)

where we have implicitly defined the constant r = Roff/Ron,
typically r � 1.

For generic linear circuits, it is well known that one can
write the solution of the current configuration as a function of
the current and voltage sources and the cycle matrix A of the
graph associated to the circuit [30]. In order to understand
the derivation in simple terms, consider Fig. 1. The cycle
matrix is a rectangular matrix of size L × M , where L is the
number of fundamental loops and M the number of resistors
and memristors. Its introduction is motivated by the following
observation: due to the Kirchhoff’s constraints on the currents,
only a certain number of currents—which equals the number
of fundamental loops of the circuit—are linearly independent.
The number of fundamental loops can be easily calculated
from basic graph theory [31], L = M − N + 1, where N is
the number of nodes of the circuit, and N − 1 is the number
of edges in the tree T , called chords. The complementary set
of edges is denoted with T̄ , and these edges called cochords.
Therefore, the number of fundamental loops is equal to the
number of cochords.

To be specific, let us consider the case in which there are no
current sources, only voltage sources parametrized as elements
of a vector �S(t) on the set of edges (or arcs) of the graph.

1In this paper we consider only linear relations between voltages
and currents.

FIG. 1. Small instance of a random memristive network consid-
ered in this work with its chord and cochord decomposition depicted
on the right. The formal solutions of the currents can be written in
terms of the fundamental loops of the circuit. Given a circuit and an
orientation of the currents, we first find a spanning tree T , which in
the figure is given by the red edges. Each element of the tree, T is
a chord. Every remaining edge that is not in the spanning tree set
is called cochord; for each cochord it is possible to assign a mesh
variable or fundamental loop.

Similarly, let us introduce a diagonal matrix of (mem)ristances
R = diag(Ri), where the index i runs over the edges of the
network. The formal solution of the current configuration, �i,
as a function of R, �S, and A is then given by [30]

�i = −At (ARAt )−1A�S(t). (4)

The derivation is standard but elegant and is provided for
completeness in the Appendix. Equation (4) is the starting
point of our analysis. We consider the physically relevant case
of a decay to the Roff state when there are no sources in the
circuit. This is consistent with experimental observations (see,
e.g., Ref. [12]). Given a diagonal matrix P such that P =
diag(σ1, . . . ,σM ), where σj is 1 for all memristors up to M ,
one has R̄ = PR, where R is still a positive diagonal matrix
and contains the absolute values of the resistances. We can,
however, absorb the matrix P into the matrix A, by defining
Ā = AP .

We now note that the resistance matrix for pure and ideal
memristive circuits is the one of linear memristors as in Eq. (3),
where we introduce the internal memory vector �W = {wi}, i.e.,

R = diag{Ron[�1 + (r − 1) �W (t)])}. (5)

If we introduce the diagonal matrix W = diag( �W ), we can
then write the equation for the internal memory states as the
following equation:

d �W
dt

= α �W − 1

β
JAt [ĀAt + (r − 1)ĀWAt ]−1A�S(t), (6)

where J is the matrix that contains the polarity of the
memristors. For α > 0 the resistance decays to the Roff state
in the absence of sources, and for α < 0 to the Ron state.
This term is independent from the cycle matrix A, meaning
that this is a property of each single memristor, and not a
global network effect. We consider the case of homogeneous
memristor properties, i.e., they all have identical off and on
states. It is, of course, easy to generalize our results to the
inhomogeneous case.

We note that the inverse of ĀAt + (r − 1)ĀWAt exists so
long as R has all nonzero entries on the diagonal, which is
the case if both Ron and Roff are either positive or negative.
In order to simplify the notation, we introduce the matrix
�̄ = At (ĀAt )−1Ā, and S̄ = P S̄. By construction, �̄ is an

022140-2



COMPLEX DYNAMICS OF MEMRISTIVE CIRCUITS: . . . PHYSICAL REVIEW E 95, 022140 (2017)

orthogonal projector onto the subspace of fundamental current
loops when P = ±I , while it is nonorthogonal there is a
mixture of positive and negative resistances.

Let us now set ξ = r − 1. After a lengthy but trivial
computation we then derive the following equation for the
internal memory (see Appendix 2):

d �W
dt

= α �W − 1

β
J (I + ξ �̄W )−1�̄S̄(t), (7)

with I the identity matrix. This is a central result of our paper.
It is a compact equation that describes the dynamics of the
internal memory states of memristors in linear circuits based
upon projection operators. For voltage-controlled memristors,
an analogous equation has been derived in the Appendix,
which however presents similar characteristics of the one
above.

Few comments are in order. First of all, Eq. (7) has been
derived with the assumption of invertibility of W . Strictly
speaking, this means that we are considering the bulk of
the dynamics, i.e., when no memristor is in the Ron state.
Nevertheless, the final formula is independent of W−1 and is
numerically well-behaved for wi ≈ 0, which suggests it can
be extended to the boundaries as well. We note moreover that
ξ plays the role of the amount of non-linearity in the systems.

In addition, Eq. (7) satisfies all the network constraints
and Kirchhoff’s laws. The importance of the number of
fundamental loops is shown by the fact that dim[Span(�̄)] =
M − N + 1 ≡ L, which implies that the operator �̄ contains
information only on the fundamental loops of the circuit.

We have that P → I , and thus �̄ → �, where � =
At (AAt )−1A is an orthogonal projection. This implies that
we can always decompose any matrix or vector R = �R +
(I − �)R = R� + R̃, with �R = R�. For the case of passive
components, we can identify the operator � = (I − �) as
B(BtB)−1Bt , with B being the reduced incidence matrix (see
the Appendix).

Given the matrix (A Bt ), we can write the identity I =
(A Bt )(A Bt )−1 and using the fact that BtA = 0, it is easy to
prove that I = At (AAt )−1A + B(BtB)−1Bt = � + �, which
provides a nice interpretation for the complementary projector.
Moreover, the separation between linearity and non-linearity
is explicit in Eq. (7) and is controlled by the constant r − 1 =
(Roff − Ron)/Ron.

A direct consequence of Eq. (7) is that the internal memory
of the circuit is insensitive under certain forcing. In fact, if
�S = (I − �̄) �K for any vector �K , we have d

dt
�W = 0, due to

the relation �̄(I − �̄) = 0 valid for projectors.
We now study the consequences of Eq. (7) numerically

focusing on passive elements only. We take advantage of
the fact that there is a simple parametrization for projector
operators, given that we are interested in the average properties
of the dynamics. In this way, the only two relevant parameters
are M and N , the number of memristors and the number
of nodes, respectively. We then generate a random matrix
A of size L × M and evaluate the matrix �̄ according to
the equation � = At (AAt )−1A. The matrix A is of the form
A = (I Aτ ), where Aτ is generated using random entries with
probability 1/3 for the discrete values {−1,0,1}. We then
consider the quenched dynamics for the memory parameters

wi by integrating Eq. (7) numerically using an explicit Euler
method and studying the relaxation to steady state. In addition
to the bulk equation, we also included the constraints on the
internal memory states 0 < wi < 1.

III. RESULTS

For the present paper we focus on the case without active
components, i.e., we set P = I . For the case of constant-
voltage relaxation, we study the relaxation numerically, and
using Eq. (7) we provide arguments to explain its average
behavior.

A. DC relaxation

We consider first the case in which the applied voltage is
constant in time. Such case differs from the AC one, since
every memristor eventually reaches an asymptotic boundary
value of 0 or 1. We performed numerical simulations for the
evolution of the average memory parameters 〈w〉 as a function
of time for each single realization in Fig. 2(a). We observe that
the relaxation behavior is characterized by a slow convergence
toward the asymptotic values. We differentiate the trajectories
reaching the 1’s values from the ones reaching the 0’s values. In
Fig. 2(a) we show that both trajectories can be fitted by a power
law. We observe this in the limit r � 1 and in the numerics
we choose r ≈ 1000. The blue and red curves represent the
average parameters for the superior and inferior boundary of
the memory, respectively. In Fig. 2(b) we plot the best fit with
power law (red curve) 〈w(t)〉 ≈ t−ρ , with ρ ≈ 0.93, where the
top boundary has been inverted, i.e., 〈w〉′ = 1 − 〈w〉. (Finite-
size effects are discussed in the Appendix.)

Let us approximate the curve of each memristor as an
exponential, wi(t) = w0

i e
−λi t , where w0

i is the initial value
of the ith memristor. We focus only on the memristors which
converge to wi = 0 values. We then assume that there exists a
certain distribution P (λ) of decay times, λi .

The average behavior of the internal memory is thus
given by

〈wi(t)〉 ≈ 〈
w0

i

〉 ∫
e−λtP (λ)dλ, (8)

where we assumed that w0
i and λi are uncorrelated. If we

introduce the inverse timescale λ̃, P (λ) = λ̃e− λ

λ̃ , one has

〈wi(t)〉 = λ̃

2

∫ ∞

0
e− λ

λ̃ e−λtdλ = 1

2

1

1 + λ̃t
, (9)

where λ̃ is an artificial timescale, playing the role of a
cutoff. We thus obtain the result that for t � 1

λ̃
, on average,

memristors thermalize to the steady state as ≈1/t .
Using the relation between the projector in the loop space

and the complementary projector based on the incidence
matrix, it is easy to simulate arbitrary topologies. In fact,
we note that such “glassy” behavior shows some universal
properties, i.e., it is independent of the graph topology used. We
show this explicatively in Fig. 3, where we plot the network re-
laxation for various topologies such as the Erdos-Renyi graphs,
random regular graphs, preferential attachment graphs, and
diffusion-limited aggregation (DLA) graphs. We also consider
the case of random loop matrices A, which then form the
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FIG. 2. Average thermalization of the internal memristor memory
as a function of time, made assuming that M = 600, L = 300 for
input voltages chosen at random in [−5,5] volts and β = 10−1. (a)
Simulation of Eq. (7) for a single instance of the randomly selected
projector for each memristor (black dashed curves) and their means
for those approaching w = 1 limit (blue curve) and wi = 0 (red
curve). The shading represents the error at 1, 2, and 3 σ to show
the sensitivity of the relaxation. (b) Best fits in the power-law regime
of the average memory parameters as a function of time for the wi = 0
(blue) limit and wi = 1 (in red, where we plot 1 − 〈w〉) and the best
fit (black dashed curve). We observe a relaxation behavior that is
compatible with a power law 〈w(t)〉 ≈ t−ρ , with a best fit exponent
of ρ ≈ 0.93, against the ρ = 1 predicted theoretically.

projector operator � = At (AAt )A. From the topological point
of view, these circuit graphs are rather different. However,
the relaxation behavior observed is practically identical in
all cases. We note that although preferential attachment and
DLA graphs exhibit scaling in the degree distribution and the
Hausdorff dimension, respectively, Erdos-Renyi and random
regular do not. Therefore, we expect the scaling behavior
observed is not to be attributed to a particular graph geometry,
rather it suggests a universal property of these networks.
In order to understand the relation between the spectrum of
timescales, the matrix � and the sources �S, we now consider
the dynamics in the opposite limit, namely r ≈ 1 → ξ � 1.

FIG. 3. The relaxation of the average internal memory for
various memristive circuit topologies. We consider the case of
random loop matrices, Erdos-Renyi graphs, random regular graphs,
preferential attachment graphs, and diffusion-limited aggregation in
two dimensions. Results are averaged over 100 random graphs for
each class, with approximately 400 memristors. We observe in this
case finite-size effects due to the limited size of the sample.

In this case, we can use the approximated inverse,

(I + ξ�̄W )−1 ≈ I − ξ�̄W.

We can thus write

dwi

dt
= αwi − ξ

β

∑
jkt

�̄ijwj δjk�̄kt S̄t + si

=
∑

j

(
αδij − ξ

β

∑
t

�̄ij �̄jt S̄t

)
wj + si

≡
∑

j

Oijwj + si, (10)

where si = ξ

β

∑
j �̄ij S̄j . The solution of this equation is

given by

�w(t) = eOt

(
�w0 +

∫ t

t0

e−Ot̃�s(t̃)dt̃

)
. (11)

In the case of a dc-controlled memristive network, e.g.,
�s(t) = �s, inevitably the memristors will reach their boundary
values, 1 or 0. If we, however, focus on the short dynamics
of memristors, it is interesting to study the distribution of
eigenvalues of the matrix O. For the case of random matrices
O with passive components, the distribution of eigenvalues is
given in Fig. 4. The first observation is that the distribution
is symmetrical and that for L/M → 1 the distribution flattens
out. Given that we have randomly generated voltages on the
memristors in [−V/2,V/2] with V = 100, we observe that in
this limit λ̃ of Eq. (9) can be roughly assumed to be V/2. In
all the random graph classes studied here, for high density of
loops the matrix � becomes nonsparse, and thus a dynamical
mixing behavior emerges. This is again universal property,
which seems to be the underlying reason for observing the
slow relaxation behavior for DC controlled circuits.
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FIG. 4. Distribution of eigenvalues of the matrix O [from
Eq. (10)] for the case α = 0, using the class of random loop matrices
A and for random voltage vectors in the interval S = [−50,50], and
averaged over 500 iterations, where the zero eigenvalues have been
removed. We plot L/M = 1/5, 2/5, 3/5, and 4/5 with M = 500.
The distributions have been smoothed using gaussian kernels and are
zero outside the specified range.

The emergence of a scale-free thermalization of the mean
internal parameter, with a sublinear relaxation exponent, might
be compatible with an aging phenomenon, typical of glassy
materials [32,33]. Although being dramatically different in
spirit, an analogy to the Sherrington-Kirkpatrick model stems
naturally in our analysis: the circuit graph generated at random
induces a random projector �, which in turn induces a random
coupling matrix T = (I + ξ �)−1. As it is well known, even
for band matrices the inverse is a full matrix. Therefore, in this
simple model there is no notion of distance, i.e., every other
memristor is interacting with every memristor, and thus there
is an effective nonlocality.

The slow relaxation behavior observed is compatible with
the experimental results obtained in the case of Ref. [12], where
it was observed that the power spectrum scales with a power
law behavior with exponent ≈1.34; it was also noted that such
scaling is an order of magnitude larger than the noise, and that
the effect was due to a collective network effect. In the low-
memory regime described above (0 < ξ � 1), such exponent
can be easily calculated to be equal to 2. Thus, although our
analysis fails to explain the observed exponent, it must be
noted that we are considering the linear regime only, and that
the memristors we study are of the simplest linear type.

B. AC approximate solution

For the case of AC forcing, using Eq. (7) it is possible to go
beyond the exponential approximation and provide a solution
in the approximation of diagonally dominant � matrices. For
simplicity, here we derive the exact solution for the case
of a single mesh with only one memristor with a voltage
generator, but a full derivation is provided in the Appendix.
We consider first the relation between the voltage, the current,

and a memristor:

V (t) = Ron[1 + ξw(t)]I

= β[1 + ξw(t)]
dw

dt

= β
d

dt

[
w(t) + ξ

2
w(t)2

]
. (12)

If we define the flux �(t) = ∫
dtV (t), and integrate both

sides of Eq. (12), we obtain

�(t) = β

[
w(t) + ξ

2
w(t)2

]
− K0, (13)

where K0 = β[w(0) + ξ

2 w(0)2]. Inverting for w(t), one ob-
tains

w(t) = β −
√

β2 + 2ξβ(�(t) + K0)

βξ
, (14)

and where we chose the solution sign for which w(t) is always
positive. In general, we observe that 0 � w(t) � 1. If one
introduces a sinusoidal potential V (t) = v0 sin(ωt), �(t) =
− v0

ω
cos(ωt). It is easy to see that in this case limω→∞ w(t) =

w0, implying that for large frequencies memristors loose their
memory properties, as expected.

The case of a network is a generalization of the above
procedure. The full derivation is provided in the Appendix,
but it is important to stress that such approximate solution
applies when the matrix ξ�̄W is diagonally dominant and if
the dynamics is continuous, i.e., if no memristor effectively
reaches the boundary values. The former requirement depends
on the network topology, while the latter is a condition on the
applied voltages, i.e., if the forcing is AC and the voltages are
small enough.

Analogously to the case of a single memristor, for a network
we define �i ≡ ∫ t

t0

∑
j �̄ijSj (s)ds, and is given by

wk(t) =
∑

i

�̄ki

(√(
1 + ξ

∑
j �̄ijw

0
j

)2 + 2ξ

β
�i − 1

)
ξ

+
∑

i

(I − �̄)kiw
0
i , (15)

and can be obtained by means of quadrature.
We note that such solution exists as long as, given a set of

sources identified as {ωj }, the frequencies satisfy the condition⎛
⎝1 + ξ

∑
j

�̄ijw
0
j

⎞
⎠

2

>
2ξ

β

∑
j

�̄ij

1

ωj

∀i, (16)

which is the requirement for the quadrature method we
employed to work. In order to check the validity of our
solution, we compare it to a numerically integrated solution
of the differential equation for simple network configurations.
This solution is exact for the trivial case of parallel memristors,
for which � is exactly diagonal. We test the validity of Eq. (15)
in the case of a simple network, which we show in Fig. 5. For
such a case, we first arrange the matrix �, which characterizes
the circuit in such a way that two memristors are further away
according to the Hamming distance on the graph.
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FIG. 5. Simple rectangular circuit and the definition of Hamming
distance between the memristors, defined as the minimum number of
nodes required to be traversed in order to reach the two memristors.

The matrix � with this labeling and ordering is shown
in Fig. 6(a). We note that graphs that are quasilocal imply
diagonally dominant matrices �. Interactions strengths, in
this case, decay exponentially as a function of the Hamming
distance, as it is shown in Fig. 6(b). This is a specific
example in which it is shown that even for circuits that are
regular, nonlocal spatial correlations emerge, although these
are exponentially weighted. Such circuit example serves the

FIG. 6. (a) Elements of the projector operator � for the circuit in
Fig. 5, sorted according to the Hamming distance H (i,j ) between
the memristors (i,j ). We plot that � is a diagonally dominant
operator. (b) We observe that the absolute value of the elements of �

decays exponentially in absolute value as a function of the Hamming
distance. The observed degeneracy is due to the fact that there are
many memristors with the same Hamming distance.

FIG. 7. Analytical approximation versus numerical integrations
of Eq. (7) as compared to the approximate solution of Eq. (15). We
choose Ron = β = 100 and r = 1000, with ω = 30. (a) Numerical
versus exact solution of the circuit of Fig. 5 for ξ = 0.1. (b) Numerical
versus exact solution of the circuit of Fig. 5 for ξ = 3. The deviation
from the exact solution is due to the strength of the off-diagonal terms
of the matrix I + ξ�W for large values of ξ .

purpose of graphs for which the matrix �W is diagonally
dominant, due to the fact that W is diagonal. In Fig. 7 we
thus compare the approximate solution of Eq. (15) to the one
obtained numerically, both for the case of small values of ξ

and for the case of larger values. We observe an excellent
agreement with the numerical curves for ξ � 1. The limit of
such approximation is, however, clear for larger values of ξ ,
with the exact solution deviating for a few memristors from
the numerical solution.

IV. DISCUSSION

In conclusion, we have derived a matrix differential
equation for the evolution of the internal memory states
of linear current- and voltage-driven ideal memristors in
a circuit. The differential equation is valid for any circuit
topology, it applies to current-driven and voltage-driven ideal
memristors and solves the circuit constraints based upon the
graph theoretical derivation of the current configuration, using
the formalism of spanning trees and fundamental loops in
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networks. Such equation establishes a very clear connection
between the theory of projector operators and the dynamics
of linear memristive circuits. In particular, we have found that
the network dynamics of the internal memory of the circuit
can be constructed from only a single matrix, the projector on
the space of fundamental loops of the circuit, which contains
the information on the network topology and the conservation
laws. This shows that the internal memory of the memristors
is insensitive to certain forcing modes, which fall in the kernel
of the projection operator. We believe such equation to be an
important tool for obtaining a deeper understanding of the
dynamics of the internal memory of memristive circuits.

By focusing on the case of dc-controlled circuits, we have
provided sufficient evidence that the average relaxation of
the internal memory to the boundary values is far from ex-
ponential and “universal”, namely topology-independent. We
have shown this by generating random projection operators,
but such result is consistent with simulations performed using
memristive random circuits. We have also given arguments that
the slow relaxation is due to the superposition of memristive
dynamics decaying with a broad range of timescales at least
in the regime of “low” memory, i.e., when nonlinearities are
negligible.

For the case of AC controlled circuits, we have shown that
an approximate solution can be obtained, and which agrees
with the numerical solution in the limit of the approximation of
low memory and for diagonally dominant projector operators.
This also provides direct evidence of the usefulness of the
derived equations, and shows in a specific sense how the
graph topology and the constraints enter the dynamics of
the internal memory. We have also studied the projector
operator in the case of a simple graph with a local structure.
In a specific example, we have shown that although the
graph exhibits a local structure, a certain amount of nonlocal
spatial correlations emerges due to the circuit constraints. This
nonlocal correlation is found to be bounded by an exponential
function in the Hamming distance on the graph. We believe
such property to apply to other local graphs, but further study
is required to confirm this intuition.

These results reveal the rich dynamics of complex networks
with memory and establishes a new research direction in
memristive circuits. Further studies are required to see if
such equations and results can be extended to nonideal
memristors. In fact a similar equation may be derived for other
classes of circuits with memory (including meminductors and
memcapacitors [28]), allowing a deeper understanding of the
relation between memory (time nonlocality) and topology of
the graph.
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APPENDIX: SUPPORTING INFORMATION

1. Formal solution of linear circuits

In this section we recall the basics of graph theory used
to derive Eq. (A5) and provide the notation used throughout

the main text [30,31]. We start by considering a graph G with
N nodes and M edges, which describes the topology of a
resistive circuit. As it is standard practice, we then introduce
an orientation O for the currents circulating on the graph,
which has 2m possible configurations, with m being the number
of edges (or arcs). From the point of view of graph theory,
the graph representing the circuit must be connected, and
the degree of each node i satisfies di > 2. For each node,
we can introduce a potential vector pα , and for each edge
a current ik , where we use latin indices for the edges, and
greek indices for the nodes; greek indices with tildes represent
instead cycles on the graph. Given an orientation O, we can
introduce two matrices: BO

αk , which is a matrix of size N × M ,
and a cycle matrix AO

ξ̃m
, which is of size C × M , where C

is the number of cycles of the graph. From now on, we will
suppress the orientation apex for simplicity. A valid current
configuration is one in which

∑M
j=1 Bαj ij = B�i = 0, which

represents the Kirchhoff current law (KCL). In order for B

to have the linear independence of the rows, one row has to
be removed, introducing thus the reduced incidence matrix. In
the following, we will thus consider only results derived with
this matrix rather than the full one.

Given a potential vector based on the nodes, the vector
of voltages applied to each edge can be written as {v̄}k =
vk = ∑

ξ Bt
ξkpk , where t represents the matrix transpose.

The Kirchhoff voltage law (KVL) can thus be written as∑
k Aξ̃kvk = 0, an equation that is simply saying in graph

theory terms that the circuitation of the voltage on edges
belonging to a cycle (or mesh in circuits) must be zero. This
automatically implies that in general B · At = A · Bt ≡ 0.
Analogously, this implies that �i · �v = 0, which represents the
conservation of energy, or Tellegen’s theorem in circuits.

Let us now introduce a spanning tree T (cochords), and the
set of edges of the graph not included in the tree asT , or chords,
are given by T̄ . For each element of the chord T̄ , we assign
a cycle, called fundamental loop. The number of fundamental
loops is given by L = M − N + 1. As a matter of fact, each
current can be written as a superposition of the currents flowing
in the fundamental loops, denoted with jξ̃ , and one has that
�i = At�ic. In the basis in which we reorder the edges in the tree
to come first, one can write A = (AT ,Ac), and since now Ac

corresponds to fundamental cycles, Ac is the identity matrix,
Ac = I . A similar rearrangement can be made also for the the
incidence matrix B, and thus one has (BT ,Bc) · (AT , I )t = 0,
which implies At

T = −B−1
T Bc. We now note that since B�i = 0,

one has BT �iT + Bc
�ic = 0 → �iT = −B−1

T Bc
�ic = At

T ic. Since
Ac = I , this implies that �i = (At

T �ic,�ic) = At�ic. Since A is
derived from the reduced incidence matrix, this is called
reduced loop matrix.

If we now write the equation for the circuit, i.e., �v = R�i +
�S(t), we note that applying the operator A on the left, we obtain
the identity A�v = 0 = AR�i + A�S(t). We now use �i = At�ic,
and obtain (ARAt )�ic = −A�S0(t). If we now write the solution
of the current, we obtain

�i = At�ic = −At (ARAt )−1A�S(t), (A1)

which is the starting point of this paper. We stress that since
A is derived from a reduced incidence matrix, then ARAt is
always invertible for nonzero resistances.
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2. Derivation of the main dynamical equation

The starting point of the derivation is Eq. (A1). We consider
the convention in which w = 0 corresponds to Ron and w = 1
to Roff, which is a memristor with opposite polarity to the one
introduced in Ref. [23]. First of all, let us first say that it is easy
to parametrize the presence of active components. In this case,
one can simply introduce negative resistances in Eq. (A1), for
instance, introducing a matrix P = diag(±1, . . . ,±1), where
+1 are assigned to passive components, while −1 to active
components. It is easy to see that P satisfies the property
P 2 = I . The resistances are thus encoded in the matrix
R̃ = PR = RP , and Eq. (A1) simply becomes

�i = −At (AR̃At )−1A�S(t)

= −At (APRAt )−1A�S(t)

= −At (ĀRAt )−1A�S(t).

As in the main text, we define the matrix Ā = AP and we
also use the dynamical properties of the memristors, d

dt
wj =

Jj (Ron/β) ij + αwj , with Jj representing the polarity of the
memristor. The goal of this section is to derive a dynamical
equation, which is in terms of projectors only. For this purpose,
we use the Woodbury identity to write the equation in terms
of projector only,

(Q + UCV )−1 = Q−1[I − U (C−1 + V Q−1U )−1V Q−1],

(A2)

where Q and C are square matrices of size n and k,
respectively, and V and U are rectangular matrices, and which
is valid as long as Q and C have inverses.

We first introduce the parameter ξ = r − 1, which, as it
will become clear soon, can be thought of as the amount of
nonlinearity present in the system. Using Eq. (A2), we are thus
able to rewrite the inverse (ĀRAt )−1, obtaining

(ĀAt + ξ ĀWAt )−1

= (ĀAt )−1

[
I − Ā

(
W−1

ξ
+ �̄

)−1

At (ĀAt )−1

]
, (A3)

where we introduced the operator �̄ ≡ At (ĀAt )−1Ā. It is
important to say that the operator ĀA is invertible, as we
are considering the reduced loop matrix, and J is full rank
by construction. Using the result of Eq. (A15) for the inverse
(�̄ + B)−1 and derived in Appendix section 3, we can now
obtain the final equation:

β

Ron

d �W
dt

= − J
Ron

At (ĀAt )−1Ā(I − ξ W )At (ĀAt )−1AS(t̃)

+ β

Ron
α �W + ξ 2

Ron

×J �̄(I + ξ W�̄)−1W�̄WAt (ĀAt )−1A�S,

where we introduced J = diag(Ji). If we now use the
identity P 2 = I , we can write �S = P 2 �S = P S̄ and obtain the

equation

β

Ron

d �W
dt

= − 1

Ron
J �̄(I − ξ W )�̄S̄(t) + βα

Ron

�W

+ 1

Ron
ξ 2J �̄(I + ξ W�̄)−1W�̄W�̄S̄(t),

(A4)

in which we used the fact that [W,S̄] = 0 since the two matrices
are diagonal and J = I . Finally, we use the fact that �̄(I +
ξW�̄)−1 = �̄

∑∞
k=0(−ξW�̄)k = ∑∞

k=0(−ξ �̄W )k�̄ = (I +
ξ�̄W )−1�̄, and obtain the final result shown in Eq. (A5). Using
the matrix Taylor expansion in ξ = r − 1, we can finally write
the equation

d �W
dt

= α �W − 1

β
J (I + ξ �̄W )−1�̄S̄(t), (A5)

which is our final result. We note that �̄ = At (ĀAt )−1Ā is
the most general description of a nonorthogonal projection
operator. In the matricial limit P → I , then Ā → A and thus
the projector becomes orthogonal again.

It is also easy to see that for P = ±I , then Ā = ±A.
As such, �̄ is indeed an invariant under this symmetry. In
fact, (ĀAt )−1 = ±(AAt )−1, and thus � is invariant. However,
S̄ → ±S, which means that this is simply a change of current
flow. Although currents in a circuit are defined up to a change
of direction, this implies that the circuit is not invariant under
this symmetry.

The above result can, in principle, be extended with little
effort to the case of voltage-controlled memristors. Let us
assume that the equation for the evolution of internal memory
is of the type

d �W
dt

= ρ �V . (A6)

In this case, we can write

1

ρ

d �W
dt

= �V = R�i, (A7)

and using the equations we derived, we obtain

d �W
dt

= ρRon(I + ξW )�i

= ρ(I + ξW )J (I + ξ �̄W )−1�̄S̄(t), (A8)

which is the extension of the equation above to the case of
voltage-controlled memristors.

3. Matrix inverse

Let us now prove an inversion equation, where we assume
that B and � + B are invertible:

(� + B)−1 = B−1 + X, (A9)

and aim to find the matrix X. By definition, we have

I = (B−1 + X)(� + B)

= [B−1� + X(� + B) + BB−1]

= [B−1� + X(� + B) + I ]. (A10)
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Using this identity, we can find the matrix X by inversion:

X = −B−1�(� + B)−1

= −B−1�(B−1 + X)

= −B−1�B−1 − B−1�X, (A11)

which can be rewritten as

X = −(I + B−1�)−1B−1�B−1. (A12)

This implies the following inversion formula:

(� + B)−1 = B−1 − (I + B−1�)−1B−1�B−1, (A13)

which is the identity we use to reach the final equation and
requires only the invertibility of the matrices B and � + B,
but not the invertibility of �. Such identity is important since
in our case � represents a projector operator, meanwhile B

represents W−1/(r − 1). Starting from the identity I = (� +
B)(B−1 + X), we obtain the identity

(� + B)−1 = B−1 − B−1�B−1(I + �B−1)−1, (A14)

which implies that

(I + B−1�)−1B−1�B−1 = B−1�B−1(I + �B−1)−1.

(A15)

This is the result we used in order to derive the differential
equation for the internal memory.

4. Finite-size effects

We now mention some observed factors influencing the
quality of the power law. The number of memristors controls
the emergence of the power-law decay. Numerically, we
observe that M ≈ 100 is enough to have a faithful power law.
In Fig. 8 we can see that when L/M is fixed and M → ∞, the
limit M can be considered as a thermodynamic limit, i.e., the
power law emerges for large M .

FIG. 8. Average relaxations for fixed ratios L/M = 0.5, with
M = 20, 40, 80, 160, 320, 640 and initial memristors set at wi = 1.
These are not averaged over many quenched dynamics, but single
simulations. We observe that for increasing values of M , the
curves suppress the fluctuations and converge to the slow dynamics
phenomenon for the average memory.

5. AC approximate solution

In this section we derive the approximate solution for the
case of AC forcing of the main equation derived in the text.
For a single memristor (or single mesh) it is in fact possible to
derive an exact equation for the memory, and this applies also
to the simpler case of many memristors in parallel, for which
� is a diagonal matrix. It is thus clear that for a class of graphs
for which � is diagonal such quadrature can be obtained in
the case in which the memristors will not reach the boundary
values, thus in the approximation of differentiable dynamics.

It is thus important that we understand first in which sense
it is possible to approximate a matrix by a diagonal one. As it
turns out, this statement depends on the type of functional one
aims to minimize. Specifically, in which sense is it possible to
say that

Z = �̄W ≈ Y, (A16)

where Y is a diagonal matrix? Such approximation is valid for
the case in which Z and Y are acting on a vector, as we will
show shortly. We demand that, given any vector �v,

Z�v − Y �v ≈ 0

is true pointwise for each element of the resulting vector, and
thus obtain∑

j,k

�ikδkjwjvj =
∑

j

�ijwjvj ≈
∑

j

yiδij vj , (A17)

thus, for any element vj , one has∑
j

(�ijwj − yiδij )vj = 0 ∀�v, (A18)

and thus we require that �ijwj − yiδij ≈ 0. Summing over j

we obtain

yi =
∑

j

�ijwj . (A19)

Once we have derived the diagonal matrix, which approximate
�̄W , the derivation follows similar steps to the case of a single
memristor. We first multiply Eq. (A5) by �̄, noticing that
the right-hand side of this equation is invariant under this
transformation, and subsequently by (I + ξ�̄W ), obtaining

β(I + ξ �̄W )�̄
d �W
dt

= −�̄S̄(t). (A20)

Since �̄ is a projector, it is necessary to account at the end for
this step. We now use the diagonal approximation of the matrix
�̄W applied on the vector �̄ d �W

dt
, we can now repeat the steps

of the single memristor case for each single element, with the
key difference that now the memory has to be projected on
the loop space. We introduce the variable �y = �̄ �w, and after
having introduced Y = diag(�y), obtain

β(I + ξY )
d �Y
dt

= −�̄S̄(t). (A21)

Since Y is a diagonal matrix, Y d �Y
dt

acts on each element of
the vector as 1

2
d
dt

y2
i . We thus note that we can write the

matrix equation again as vectorial equation, and for each
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component write

β
d

dt

(
yi + ξ

2
y2

i

)
= −[�̄S̄(t)]i and thus

β

(
yi + ξ

2
y2

i

)
= −

∫ t

t0

[�̄S̄(s)]ids + β

[
y0

i + ξ

2

(
y0

i

)2
]

= −
∫ t

t0

[�̄S̄(s)]ids

+ β

2ξ

⎡
⎢⎣

⎛
⎝1 + ξ

∑
j

�̄ijw
0
j

⎞
⎠

2

− 1

⎤
⎥⎦.

(A22)

In the case in which the sources are AC controlled with
ω � 1, the memory elements will oscillate without ever
reaching the boundaries. In this case, the solution we provided
fully describes the dynamics. In order to see this, we write

explicitly the solution as a function of �. We parametrize �S as
Si(t) = vi cos(ωit + φi). Thus, we have∫ t

t0

Si(s)ds = vi

ωi

[sin(ωit + φi) − sin(ωit0 + φi)]. (A23)

We now impose that the pseudoinverse of the matrix � satisfies
the initial condition of the differential equation. This implies
the addition of a term (I − �)k(t) for an arbitrary vector k(t).
However, the vector k can be fixed at time t = 0 by imposing
the initial condition. In this case, w0 = w(t = 0) = ��w0 +
(I − �)w0 = w0. If we define z0

i = (1 + ξ
∑

j �̄ijw
0
j )2, and

invert the quadratic equation, we obtain the final Eq. (A24):

wk(t) =
∑

i

�̄ki

[√
z0
i + 2ξ

β

∑
j �̄ij

∫ t

t0
Sj (s)ds − 1

]
ξ

+
∑

i

(I − �̄)kiw
0
j , (A24)

which is the equation found in the main body of the paper.
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