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Hyperbolicity measures democracy in real-world networks
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In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a
space is negatively curved. We provide two improvements in our understanding of this quantity: first of all,
in our interpretation, a hyperbolic network is “aristocratic”, since few elements “connect” the system, while
a non-hyperbolic network has a more “democratic” structure with a larger number of crucial elements. The
second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through
this definition, we outline an “influence area” for the vertices in the graph. We show that in real networks the
influence area of the highest degree vertex is small in what we define “local” networks (i.e., social or peer-to-peer
networks), and large in “global” networks (i.e., power grid, metabolic networks, or autonomous system networks).
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I. INTRODUCTION

The most basic way to describe a graph is to consider
its metric quantities as for instance the diameter [1], the
degrees, the distances [2]. In case no other information is
available, a good choice is to consider randomly drawn edges
[3,4] and determine the expected values and distribution
of those properties in such random graphs. More recently,
the computer revolution and the pervasive presence of the
internet and worldwide web, created a whole series of complex
networks in technological systems whose properties can be
directly measured from data [5,6]. All the real networks
show particular structures of edges, making them definitely
different from random graphs. Driven by such evidence,
researchers recognized analogous structures in a variety of
other cases, ranging from biology to economics and finance
[7–10]. All these structures show a lack of characteristic scale
in the statistical distribution of the degree and small world
effect, making it therefore important to understand the basic
principles at the basis of their formation [11–14].

To bring order in this huge set of systems, it would be
extremely useful if we could classify the various networks
by means of some specific quantity differing from case to
case. In this quest to distinguish universal from particular
behavior we decide to consider the connection with the
“curvature” of the graph. Embedding spaces can have neg-
ative curvature (hyperbolic spaces), zero value of curvature
(Euclidean spaces), or positive curvature (spherical spaces).
On the basis of the hyperbolicity measure [15], it is possible to
extend such a measure of curvature for manifolds to discrete
networks. Hyperbolicity measure [15] defines the curvature for
an infinite metric space with bounded local geometry, using a
four-points condition. In detail, the hyperbolicity δ(x,y,v,w)
of a quadruple of vertices {x,y,v,w} is defined as half the

difference between the biggest two of the following sums:

d(x,y) + d(v,w), d(x,v) + d(y,w), d(x,w) + d(y,v),
(1)

where d denotes the distance between two vertices. The
hyperbolicity δ(G) of a graph G is commonly defined as
the maximum of the hyperbolicity of a quadruple of vertices
[16–20]. However, for the purposes of this work, the average
hyperbolicity of a quadruple will also have a significant role:
to distinguish the two, we will use δworst and δavg, respectively
[21]. Informally, a network is hyperbolic (respectively, hy-
perbolic on average) if δworst ( δavg) is “small” (hence, δ is a
measure of “non-hyperbolicity”). See Fig. 1 for an intuition of
the meaning of δ.

This approach attracted the interest of the community, both
in modeling this phenomenon [22], and in classifying networks
from the real world [23]. For example, it has been argued that
several properties of complex networks arise naturally, once
a negative curvature of the space has been assumed [14,24].
Similarly, others investigated the role of hyperbolicity in a
series of different networks [21] ranging from social networks
in dolphins, to characters in books, with the aim of discovering
essential edges in the path of communication. In addition, by
studying structural holes, it has been shown that most of these
networks are essentially tree-like [21].

Other works have proved several mathematical results
linking hyperbolicity with congestion: if a graph is hyperbolic
(that is, δworst is small), then some nodes will have a larger
traffic load than others [25,26]. Furthermore, in [27], the
authors prove that the maximum vertex congestion scales as
�(n2) on any hyperbolic family of graphs (that is, any family
of graphs where δworst is upper bounded by a constant). A
similar result also hold if we relax the condition on δworst [28].
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FIG. 1. An intuition of the definition of δ. In both quadruples,
assuming the lines are shortest paths, the biggest sum is d(xy) +
d(vw) (straight lines), and the other two sums are equal (dashed and
dotted lines). However, δ(x,y,v,w) > δ(x ′,y ′,v′,w′), because in the
second case the two small sums are closer to the two big sums (since
the underlying space is hyperbolic).

However, despite the big amount of mathematical analysis
of this quantity, researchers have rarely applied it to the
analysis of real-world networks. In this paper, based on the
aforementioned mathematical results, we will use hyperbol-
icity to measure how much a network is “democratic”: if the
network is hyperbolic (δ is small), it means that there are
few vertices with high load, and the network is aristocratic;
conversely, if δ is large, the network is democratic. Our
experiments will suggest that the best definition of democracy
is 2δavg

davg
, where davg is the average distance between two nodes:

thanks to this rescaling, this parameter is always between 0
and 1.

As far as we know, this is the first measure of democracy in a
complex network, apart from assortativity [29,30]. In any case,
our measure is quite different from the latter one, because it
is based on shortest paths and not on neighbors: consequently,
the new measure is global. Moreover, it is more robust: for
instance, if we “break” all edges by “adding a vertex in the
middle”, the hyperbolicity of the graph does not change much,
but the assortativity decreases drastically.

After providing this definition of democracy, which is
the first contribution of this paper to our understanding
of hyperbolicity, we analyze several biological, social, and
technological networks, by computing δworst and δavg, and by
showing the benefits of our definition. This analysis confirms
previous results showing that δworst is highly influenced
by “random events”, and it does not capture a specific
characteristic of the network [21]. Differently from previous
works, we will also be able to quantify this phenomenon by
analyzing more and bigger networks than previous works,
showing that the distribution of 2δworst

D
(where D is the diameter

of the graph) is approximately normal. Instead, the value of
δavg is much more robust with respect to random events, and
it allows us to effectively distinguish networks of different
kind. Our classification will be different from the classification
provided by assortativity [29,30]: for instance, a network with
few influential hubs not connected to each other is democratic
if we consider assortativity, while it is aristocratic in our
framework. Finally, we introduce the average hyperbolicity
of neighborhoods of a given node, which measures the
“importance” of a node (the k-neighborhood of a node v

is the subgraph induced by the k vertices closest to v).
Applications include the classification of complex networks
(hyperbolic networks have interesting properties, as outlined

in the literature), the analysis of nodes in a given network, and
possibly the detection of communities using hyperbolicity.

II. METHODS

There are several formal results that link the hyperbolicity
constant with democracy in complex networks. Here, we will
just refer to two of them, to provide an intuition. The first
one shows that, if for some vertices v,w, maxx,y δ(x,y,v,w) is
not high, then there is a set of small diameters that “control”
all approximately shortest paths from x to y. Consequently, a
hyperbolic network is not democratic, because δ is small, and
shortest paths are controlled by small sets.

Proposition 1 ([31], Lemma 2). Let v,w be two vertices in
a network G = (V,E), let Br (v) be the r-neighborhood of v

(that is, the set {u ∈ V : d(u,v) � r}), and let Bs(w) be the s-
neighborhood of w. Then, the diameter of the set X = Br (v) ∩
Bs(w) is at most 2 maxx,y δ(x,y,v,w) + r + s − d(v,w).

The second proposition is a sort of converse: if there is a set
of vertices controlling the shortest paths of a given quadruple
(x,y,v,w), δ(x,y,v,w) is low. Consequently, if δ is high, then
there is not a small set of vertices controlling many shortest
paths, and the network is democratic.

Proposition 2 ([31], Lemma 2). Let x,y,v,w be a quadruple
of vertices, and let us assume that there exists a set C ⊆ V of
diameter D such that all shortest paths between x,y,v,w pass
through C. Then, δ(x,y,v,w) � D.

However, analyzing hyperbolicity per se makes little sense,
because most of the networks we are analyzing are small world,
that is, distances are usually very small, and consequently δ

is usually small, too. Hence, we rescale our values, and we
consider the ratios 2δworst

D
and 2δavg

davg
, by rescaling with respect to

the diameter D and the average distance davg, respectively. This
way, we obtain a value which is independent from distances
in the graph, and measures only how “democratic” a network
is. Since we will show that 2δworst

D
is not robust, we will choose

2δavg

davg
as our definition of democracy in a complex network.

This work will confirm this interpretation by analyzing a
dataset of 93 graphs, made by 19 biological networks, 32 social
networks, and 42 technological networks.

The first experiment extends some of the activity already
done [14,21]: for each network in our dataset, we computed
the distribution of 2δworst

D
, where D is the diameter of the graph

(this value is always between 0 and 1 [32]). With respect to the
previous papers, we got more data referring to larger networks,
and we therefore deal with lower statistical errors (we have
been able to analyze bigger networks thanks to the algorithm
in [33], which is able to terminate in reasonable time on
networks with up to 100 000 vertices). The second experiment
focuses on δavg, already considered in the literature [21], but
not deeply analyzed. In particular, for each graph in the dataset,
we have considered the ratio 2δavg

davg
, where davg is the average

distance between two randomly chosen vertices [32] (this
parameter takes values in the interval [0,1]).

Although the exact computation of δavg is also hard, the

value 2δavg

davg
can be easily approximated through sampling, as

shown by the following lemma.
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Lemma 1. Let G be a graph with δworst = 2.5, and let us
sample the hyperbolicity of N = 10 000 000 quadruples of
vertices, obtaining δ1, . . . ,δN . Let hi := 2δi

davg
, and let t = 0.01

be the tolerance. Then, P(|
∑N

i=1 hi

N
− 2δavg

davg
| � t) � 2e

− Nt2

2δ2
worst =

0.07%.
Proof. By the Azuma-Hoeffding inequality [34] applied

with ai = 0 � hi � 2δworst
davg

= bi , we obtain

P

(∣∣∣∣∣
∑N

i=1 hi

N
− 2δavg

davg

∣∣∣∣∣ � t

)
� 2e

−2N2 t2∑N
i=1(bi−ai )2

� 2e
− Nt2d2

avg

2δ2
worst

� 2e
− Nt2

2δ2
worst

because davg � 1. The previous inequality applied with N =
10 000 000, t = 0.01, and δworst = 2.5 yields

P

(∣∣∣∣∣
∑10 000 000

i=1 δi

10 000 000
− δavg

∣∣∣∣∣ � 0.01

)
� 0.07%.

�
Finally, let us define the k-neighborhood of a vertex v

as the subgraph induced by the k vertices closest to v (in
case of a tie, we use a random tie-break). We have analyzed
the hyperbolicity of k-neighborhoods of v, where k ranges
between the degree of v and the number n of nodes in the
graph, with steps of ten vertices. We have chosen v as the
maximum degree vertex, which intuitively should have a large
influence area, and we have used as a benchmark of comparison
the same results from a random vertex.

We have defined the “influence area” of v as the biggest
neighborhood where 2δavg

davg
is at most half of the same value

in the whole graph. However, in order to avoid “random
deviations” (especially, when the neighborhood is small), in
our experiments we have considered the fourth neighborhood
where this event has occurred. The purpose of this analysis is
twofold: not only do we define and compute the influence area
of a vertex, but we also classify networks according to the size
of this area.

III. RESULTS

A. Worst-case hyperbolicity

Our first experiment computes the ratio 2δworst
D

in all the
networks in our dataset (Fig. 2).

These results show that the distribution of the ratio 2δworst
D

is
approximately Gaussian, both in the whole dataset and in each
single kind of network. The average ratio is 0.521, and the
standard deviation is 0.085. Moreover, a χ -square goodness
of fit test applied to the previous data does not reject the
hypothesis that the distribution is Gaussian with mean 0.5
and variance 0.085, with a very high confidence level [35].
This result confirms that the value of δworst in real-world
networks is not much “smaller than expected”, the result
already obtained in the past [21]. This experiment confirms that
real-world networks are not hyperbolic, at least in the sense
of δworst: this is the first main result of this paper. However,
we are able to perform a further step: the Gaussian probability

FIG. 2. The distribution of 2δworst
D

in the graphs in our dataset.
The bar corresponding to the value p contains all networks where
p − 0.5 < 2δworst

D
� p + 0.5.

distribution makes us think that δworst is influenced by random
events. Indeed it does not reflect particular characteristics of
the network, since the same distribution arises from networks
of different kinds.

Social networks show a slightly different behavior, since
many of them have a larger value of 2δworst

D
, between 0.65 and

0.75. However, this is due to the presence of several financial
(e-MID, a platform for interbank lending) networks, where the
ratio is often 2

3 or 3
4 since the diameter is 3 or 4.

Despite this particular case, we may conclude that the ratio
2δworst

D
is not a characteristic of the network, but it mainly

depends on “random events” that have a deep impact on this
value. This conclusion is further confirmed by the particular
case of the e-MID networks: this parameter changed from
0.750 in 2011 to 0.286 in 2012, only because a simple path of
length 3 increased the diameter from 4 to 7.

B. Average hyperbolicity

In the past, the average hyperbolicity δavg of a quadruple of
vertices was rarely analyzed: the only known result is that it is
usually significantly smaller than δworst [21]. In order to fill this
gap, we have computed the ratio 2δavg

davg
, where davg denotes the

average distance in the network (also this parameter lies in the
interval [0,1] [32]). Detailed results for each single network
are plotted in Fig. 1 of the Supplemental Material [36].

The average hyperbolicity is usually an order of magnitude
smaller than the average distance: in this sense, real-world
networks are indeed hyperbolic. Moreover, it is possible
to make a distinction between networks that are “more
democratic”, like the e-MID networks or the peer-to-peer
networks (where δavg is large), and networks that are “more
centralized”, like some social networks and most autonomous
systems networks.

C. Hyperbolicity of neighborhoods

Since the hyperbolicity of a graph is closely related to
the existence of a small part of the graph controlling most
shortest paths, we have analyzed which subgraphs of a given
graph have small values of δ. Intuitively, these subgraphs
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FIG. 3. (Color online) The value of 2δavg

davg
for neighbors of a

randomly chosen vertex (up left), or the maximum degree vertex
(up right); Sn is the number of vertices in the neighbors, while S is
the total number of vertices. Results are shown for a social network, a
biological network, a technological network, and (below) a synthetic
network.

should be “less democratic” than the whole graph, in the
sense that they are contained in the “influence area” of a
small group of vertices. In this analysis, we have tried to spot
the influence area of a single vertex, by measuring 2δavg

davg
on

neighborhoods of v in increasing order of size. In order to
prove the effectiveness of this approach, we have first tested
a synthetic power-law graph [37] made by three communities
of 1 000 vertices each (see the lowest plot in Fig. 3). We have
computed the hyperbolicity of neighborhoods of the vertex v

with highest degree: we can see a local minimum close to the
size of a community. In our opinion, this minimum appears
because the neighborhood is “dominated by the community”,
and consequently by the center v of the community. This result
confirms the link between the value of 2δavg

davg
and the influence

area of a vertex.
Finally, we passed to the analysis of neighborhoods in real-

world networks. The upper plots in Fig. 3 show the same results
for one network of each kind:

(i) a social network, the General Relativity and Quantum
Cosmology collaboration network;

(ii) a biological network, the yeast metabolic network;
(iii) a technological network, the peer-to-peer Gnutella

network in 2004.
As a benchmark of comparison, we have also considered the
hyperbolicity of neighborhoods of a random vertex.

The plots show that the value of δavg in increasing-size
neighborhoods of the maximum degree vertex grows almost
linearly with the neighborhood size, until it converges to the
value of δavg in the whole graph. Convergence time differs
from graph to graph. In biological networks, convergence was
reached at a size close to n

2 , while in the social and in the
technological networks convergence is reached before. For
neighborhoods of a random vertex, we outline a different
behavior: at the beginning, the growth is not monotone, like
in the previous case, and it is much more irregular. In our
opinion, this is due to the fact that, when the neighborhood

FIG. 4. (Color online) The derivative with respect to the neigh-
borhoods proportion Sn/S of the value of 2δavg

davg
, in neighborhoods of

the maximum degree vertex and of random vertices.

grows, it reaches more and more “influential” vertices, and the
first neighborhood that touches such a vertex corresponds to a
local maximum in the plot. This issue is further confirmed by
Fig. 4, where the derivative of 2δavg

davg
is shown.

For this reason, we have focused on the maximum degree
vertex, and, in order to have more general results, we have
analyzed all graphs in the dataset. Figure 2 of the Supplemental
Material [36] shows the size of the maximum neighborhood
having ratio 2δavg

davg
at least half than the same ratio in the whole

graph. Actually, we have plotted the fourth neighborhood
where this condition is satisfied, in order to avoid random
deviations.

We outline that the influence area of an individual is
small in social and peer-to-peer networks, compared to a
biological or autonomous system network. This standard
behavior has a few exceptions: first of all, protein-protein
interaction networks (string, ecoli.interaction) are
different from other biological networks, and the influence
area is smaller. Furthermore, the social network GoogleNW
contains a vertex with an enormous influence area: this
network is the set of Google pages, and the central vertex
v considered is the page www.google.com, which clearly
dominates all others. Another particular case is the social
network facebook_combined: this network is a collection of
ego-networks from Facebook, and links are made if common
interests are retrieved. We think that this network is different
from the others because it is a small subgraph of a bigger graph
(where all Facebook users are considered), and the choice
of the subgraph has a strong impact on the topology of the
network, which does not reflect the standard behavior.

IV. DISCUSSION

In the literature, several works have analyzed the hyperbol-
icity of a complex network. They used this quantity in order to
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classify real-world networks and in order to draw conclusions
about the impact of hyperbolicity on the network topology.
However, these works are mainly based on the analysis of
δworst, which has two drawbacks: it is not robust, that is, small
modifications on the network can have deep impacts on its
value (especially if the attach is targeted), and it is not scalable,
that is, it can be exactly computed only on small networks. In
this work, we confirmed and quantified these conclusions, and
we proposed a different approach: using δavg instead of δworst, a
parameter already considered in the literature. We interpreted
this parameter as a measure of “democracy” in a network, and
we classified different networks according to how democratic
they are.

We have shown that technological autonomous system
networks are less “democratic” than social or biological
networks, in agreement with our intuition (since AS graphs
have a “built-in” hierarchy, while in social networks everyone
has the same role). Moreover, we have applied this concept to
neighborhoods of influential nodes. We have clearly outlined
the influence area of a node, whose size strongly depends on the
graph considered. Indeed, nodes have a rather small influence
area in social and peer-to-peer networks, while in autonomous
systems and biological networks the influence area can be

close to half the graph. A possible explanation of this behavior
is that the former networks are “distributed”, in the sense that
each node has a goal (downloading in peer-to-peer networks,
and creating relationships in social networks), and edges are
created locally by nodes that try to reach the goal. On the
other hand, the latter networks have global goals (connecting
everyone in the network, or making a cell live), and the creation
of edges is “centralized”.

This work provides an interpretation of the average
hyperbolicity. Possible applications include not only the
classification of networks according to this parameter, but also
the classifications of nodes in a network, or the classification
of different communities. These communities might be demo-
cratic, if everyone has “the same role” and δavg is high, or not
democratic, if there is a group of few nodes that keeps the
community together, making δavg small.
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