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Abstract Information is a valuable asset in socio-economic systems, a significant part of
which is entailed into the network of connections between agents. The different interlinkages
patterns that agents establishmay, in fact, lead to asymmetries in the knowledge of the network
structure; since this entails a different ability of quantifying relevant, systemic properties
(e.g. the risk of contagion in a network of liabilities), agents capable of providing a better
estimation of (otherwise) inaccessible network properties, ultimately have a competitive
advantage. In this paper, we address the issue of quantifying the information asymmetry of
nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according
to their information content. In order to do so, each node ego-network is enforced as a
constraint of an entropy-maximization problem and the subsequent uncertainty reduction is
used to quantify the node-specific accessible information. We, then, test the performance
of our ranking procedure in terms of reconstruction accuracy and show that it outperforms
other centrality measures in identifying the “most informative” nodes. Finally, we discuss
the socio-economic implications of network information asymmetry.

Keywords Complex networks · Shannon entropy · Information theory · Ranking algorithm

1 Introduction

Recognizing the most relevant nodes in a networked system represents a topic of growing
interest. This translates into identifying nodes with key features, be they structural or func-
tional. Depending on the system under study, in fact, possessing certain featuresmay translate
into accessing a competitive advantage or prominent position in the system. The problem
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has been tackled by defining a plethora of indices, aiming at quantifying the importance of
a node in a given system: the so-called centrality measures [1–4].

The latter are intended to capture the role played by each node within the network by
optimizing an opportunely-defined objective function: examples are provided by the degree-
centrality (defined by the number of neighbors of each vertex) [2], the closeness-centrality
(defined by the average distance of the reachable nodes from any, given, node) [5], the
PageRank-centrality (defined by the number of “authoritative” nodes pointing at the vertex
under consideration) [6], etc.

Differently from all the centrality measures above, which are partial by definition, our
method focuses on the information content of the (different) interlinkages patterns of each
node. We refer to this difference as to the network information asymmetry and we will show
how it allows nodes to obtain a significantly-better estimation of the (otherwise unaccessible)
network properties.

Our novel index, in other words, measures the reduction of uncertainty that the knowledge
of the ego-network of each node allows to be gained: the node whose accessible information
provides the largest uncertainty reduction will be identified as being the “most informative”
one. More quantitatively, such a reduction is computed by comparing the Shannon entropy
benchmark value—measurable by all nodes—with the one obtained by conditioning on the
ego-network information on top of it.

Several attempts to define entropy-based indices have been made [8–11]; however, the
measures that have been proposed so far are based on specific definitions of Shannon entropy,
an evidence that severely affects their applicability.Aswewill show inwhat follows, InfoRank
can be understood as a generalization of these measures, applicable to anymaximum-entropy
ensemble and to any subset of nodes.

The paper is organized as follows. In section “Methods”, we show how InfoRank can be
computed in the simplest case of the configurationmodel (the theoretical details of the deriva-
tion of our method can be found in Appendix). In section “Results”, wemeasure InfoRank on
a number of real-world networks and verify its correlation with the reconstruction accuracy
achieved by each node. Finally, in section “Discussion” we comment on the role of network
information asymmetry in social, economic and financial systems.

2 Methods

Quantifying the benchmark information. In order to measure the information gain coming
from enforcing each node-specific ego-network,we first need to quantify the common, bench-
mark information accessible by all nodes in the networkA. To this aim, let us suppose it to be
represented by the degree sequence, which amounts at considering the usual configuration
model (CM) [12] as our benchmark model. Being the CM defined by the following system
of equations [13]

ki (A) =
∑

j (�=i)

xi x j
1 + xi x j

≡
∑

j (�=i)

pi j , ∀ i (1)

the amount of information encoded into the degree sequence can be quantified by calculating
the value of the Shannon entropy defined by the chosen constraints, i.e.

S0 = 1

2

∑

i

S(i)
0
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= −1

2

∑

i

∑

j (�=i)

[
pi j ln pi j + (1 − pi j ) ln(1 − pi j )

]

(2)

with S(i)
0 indicating the contribution of node i to the benchmark entropy S0 (the subscript 0

stresses the benchmark-like value of this functional, encoding a kind of information which is
accessible to all nodes). Intuitively, the closer the S0 value to zero, the larger the explanatory
power of the degree sequence.

Quantifying the node-specific information. The second step of our procedure prescribes
to constrain the ego-network of each specific node. For the sake of illustration, let us focus
on node i : the aforementioned prescription amounts at posing

pi j = xi x j
1 + xi x j

= ai j , ∀ j (3)

i.e. treating as deterministic the links constituting the ego-network of i . As an example, let
us suppose that node i is linked only with nodes 2 and 3 out of the N constituting our ideal
network, i.e. that xi x2

1+xi x2
= xi x3

1+xi x3
= 1 and xi x1

1+xi x1
= xi x4

1+xi x4
= · · · = xi xN

1+xi xN
= 0. This

implies that the system of equations that node i has to solve becomes

k1(A) = x1x2
1 + x1x2

+ · · · 0 · · · + x1xN
1 + x1xN

k2(A) = x2x1
1 + x2x1

+ · · · 1 · · · + x2xN
1 + x2xN

k3(A) = x3x1
1 + x3x1

+ · · · 1 · · · + x3xN
1 + x3xN

k4(A) = x4x1
1 + x4x1

+ · · · 0 · · · + x4xN
1 + x4xN

... (4)

(notice that we have omitted the equation controlling for the value of the i-th degree, since
trivially satisfied). The system above can be rearranged by moving at the left hand side the
known entries of the adjacency matrix. More explicitly:

k1(A) =
∑

j (�=1,i)

x1x j
1 + x1x j

≡
∑

j (�=1,i)

q(i)
1 j

k2(A) − 1 =
∑

j (�=2,i)

x2x j
1 + x2x j

≡
∑

j (�=2,i)

q(i)
2 j

k3(A) − 1 =
∑

j (�=3,i)

x3x j
1 + x3x j

≡
∑

j (�=3,i)

q(i)
3 j

k4(A) =
∑

j (�=4,i)

x4x j
1 + x4x j

≡
∑

j (�=4,i)

q(i)
4 j

... (5)

where the superscript (i) stresses that the numerical value of the probability coefficients {q(i)
jk }

is induced by specifying the pattern of connections of node i (and, in general, q(i)
jk �= p jk).

The problem of quantifying the informativeness of the ego-network of each node can, in
fact, be restated by imagining that the node itself is removed from the network. In this way, a
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reduced adjacency matrix remains naturally defined, inducing, in turn, a reduced system of
equations.

Calculating the node-specific InfoRank.Let us now come to the third step of our procedure,
i.e. the computation of the InfoRank index. Once i has been removed from the network, the
entropy of the “surviving” topological structure can be measured by employing the novel
probability coefficients defined by the system of equations in (5), i.e.

S(i) = −1

2

∑

j

∑

k(�= j)

[
q(i)
jk ln q(i)

jk +
(
1 − q(i)

jk

)
ln

(
1 − q(i)

jk

)]
. (6)

Since removing different nodes will, in general, impact on the benchmark entropy S0
differently, a ranking is naturally induced by the amount of “uncertainty reduction” caused
by the removal of each node. Since our aim is identifying the node(s) possessing the largest
amount of information, in order to define a novel ranking index, let us divide S(i) by S0 and
take the complement to 1:

Ii = 1 − S(i)

S0
; (7)

as apparent from the definition, the larger the entropy reduction, the higher the rank of the
node causing it. In what follows, the index Ii will be referred to as to the InfoRank index.

Approximating the node-specific InfoRank Although formally similar, the quantities S(i)
0

and S(i), respectively defined in Eqs. (2) and (6), are conceptually very different and must not

be confused. In fact, while S(i)
0 just represents the contribution of node i to the benchmark

entropy S0, the second index S(i) quantifies the (residual) uncertainty about the network struc-
ture after the removal of node i .Whenever the effect of this removal on the remaining vertices
can be ignored (i.e. when diminishing the nodes degree by one unit doesn’t affect much the
magnitude of the surviving probability coefficients), S(i) can be indeed approximated by

S0 − S(i)
0 , further implying that

Ii � S(i)
0

S0
. (8)

3 Results

3.1 Ranking Nodes in Synthetic Networks

In order to better illustrate the meaning of the InfoRank index, let us consider two extreme
cases, i.e. the removal of either an isolated or a fully-connected node. It is intuitive that, in
both cases, the knowledge of the connections of the considered nodes adds no information
or, equivalently, that removing these nodes doesn’t lead to any uncertainty reduction. This is
readily seen by comparing the systems (1) and (5). In presence of a hub, in fact, the system
of equations ki (A) = ∑

j (�=i)
xi x j

1+xi x j
, ∀ i can be rewritten as k̃i (A)+1 = ∑

j (�=i,h)

xi x j
1+xi x j

+
1, ∀ i(�= h) (with h denoting the hub). Since solving the latter system with respect to {xi }i �=h

is equivalent to solve the former system, removing a hub doesn’t change the information
content of the network configuration; analogously, when considering an isolated node. On
the other hand, the value Ii = 1 characterizes a node whose removal induces a configuration
which is perfectly deterministic (i.e. composed by isolated nodes, cliques or both). Naturally,
in the very special case of a star graph, the central node is both the hub and the vertex with
largest InfoRank value.
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Fig. 1 Toy network, whose
nodes have been ranked
according to InfoRank (red nodes
are ranked higher than blue
nodes). Since the node with the
largest score is the one maximally
reducing the residual uncertainty
of the network, InfoRank is not
completely determined by the
nodes degrees: the center of the
star, in fact, has exactly the same
number of neighbors of other
nodes (i.e. 7); differently from
them, however, its removal would
cause and entire portion of the
network to become deterministic
(color figure online)

A relationship between InfoRank and the node degree, nonetheless, exists. In order to
understand it, let us, first, consider the approximate definition provided in Eq. (8). The node
with largest (approximate) InfoRank is also the one maximizing S(i)

0 , i.e. the one bringing
the largest contribution to the benchmark entropy S0. This is achieved by letting each of
the addenda in Eq. (2) contribute with an average coefficient pi j = ki

N−1 � 1
2 , further

implying that a ranking based on the naïve contributions to S0 would privilege nodes with
ki � (N − 1)/2 neighbors.

Let us consider the synthetic network shown in Fig. 1: upon computing the vector {S(i)
0 },

one finds that the largest contribution to S0 comes from the hub, consistently with the discus-
sion above (notice, in fact, that kh = 10 � (N−1)/2 = 11). InfoRank, instead, also accounts
for the effect that constraining the pattern of connections of a given node has on the connec-
tions of the neighboring ones. Let us compare the consequences of removing the hub and the
center of the star, from the network in Fig. 1: while removing the latter would cause an entire
portion of the network to become deterministic (7 nodes would become isolated), removing
the former, on the contrary, would just disconnect twomore nodes. InfoRank correctly assigns
the highest score to the center of the star, pointing it out as the vertex establishing the most
informative set of interconnections: our index, in other words, encodes higher-order correc-
tions to the naïve contribution S(i)

0 , by including the “effects” of the additional constraints
on the neighboring vertices.

3.2 Ranking Nodes in Real-World Networks

Let us now employ InfoRank to analyse real-world configurations. The core of our anal-
ysis will consist in a thorough comparison of a number of alternative ranking indices
(in what follows, binary, directed networks will be considered, since one of the chosen
indicators becomes trivial in the undirected case): in order to consistently compare the
ranking scores output by the selected algorithms, the former ones are normalized in order
to let them range within the same interval. More specifically, if we let R(a)

i represent
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the rank of node i according to the chosen algorithm a, the applied transformation reads

R
(a)

i = (R(a)
i − min{R(a)

i })/(max{R(a)
i } − min{R(a)

i }) ∈ [0, 1] and ensures that nodes with

minimum rank are assigned a value R
(a)

i = 0 (in blue, according to the color scale adopted

throughout the paper); viceversa, nodes with maximum rank are assigned a value R
(a)

i = 1
(in red, according to the color scale adopted throughout the paper).

The first alternative index is represented by the degree-centrality, identifying the nodes
characterized by the largest degree as the most important (i.e. central) ones. A first limitation
of such an index lies in the nature of the connectivity concept, which lacks an obvious
generalization to, e.g. the directed case we are considering in the present paper. In what
follows we will adopt the following definition

Di = kouti (9)

which ranks the nodes according to the number of their out-neighbors. As evident from the
first panel of Figs. 2, 3 and 4, the (out-)degree-centrality trivially identifies the hubs as the
most central nodes.

The second indicator we have considered is the so-called closeness-centrality [5], defined
as

Ci = 1

di
= κi∑

j di j
(10)

i.e. as the reciprocal of the average topological distance of a vertex from the other, connected
ones (κi is the number of nodes that can be reached from i—following the links direction—
and di j is the topological distance separating i from any reachable node j). Intuitively, any
two nodes are said to be “close”when their distance is “small”, i.e. few linksmust bewalked to
reach one from the other. Naturally, the nodes with Ci = 0 are the ones with zero out-degree,
while a node with exactly N − 1 connections will be also the most central one.

Generally speaking, however, nodes with small degree do not necessarily have a small
closeness-centrality value: an example is provided by the second panel of Fig. 3, where nodes
behaving like “local hubs” (e.g. at the center of star-like subgraphs) are, in fact, characterized
by a large Ci independently from their degree. On the other hand, nodes with a large degree
do not necessarily have a large closeness-centrality value: in fact, the first panel of Fig. 4
shows that although a large number of nodes can be reached from the hub, many lie at a
large distance from it. Interestingly, as the second panel of Figs. 2 and 4 shows, the nodes
minimizing the (average) topological distances are the ones connected (but not necessarily
belonging) to the strongly connected component (SCC) that is present in these systems: in
the case of the C. Elegans neural network, then, its large reciprocity (� 0.43) further levels
out the differences between the Ci values of the SCC vertices.

The third indicator considered in the present analysis is the PageRank-centrality [6]. It is
computed by solving to iterative equation

Pi = 1 − α

N
+ α

∑

j

(
a ji

koutj

)
Pj (11)

(where we have set α = 0.85) which can be imagined to describe a Markov chain: if a ji = 1
a walker moves from j to i with probability 1−α

N + α
koutj

; if a ji = 0 such a probability

becomes 1−α
N (in a sense, the walker “jumps” from j to i). The introduction of the addendum

accounting for jumps guarantees the convergence of the formula above to the stationary
distribution of this dynamical process (which exists and is unique—its Markov chain, in fact,
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Fig. 2 C. Elegans neural
network [14]. From top to
bottom, nodes are ranked
according to their
(out-)degree-centrality,
closeness-centrality,
PageRank-centrality, InfoRank
(red nodes are ranked higher than
blue nodes). Notice that,
according to PageRank, (only)
the node with largest in-degree is
ranked first; the same node,
however, is characterized by a
zero out-degree which, in turn,
causes its closeness-induced
score to be zero as well (color
figure online)
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Fig. 3 US airports network in 1997 [15]. Nodes are ranked according to their value of (out-)degree-centrality
(left), closeness-centrality (center) and InfoRank (right—red nodes are ranked higher than blue nodes). Nodes
with a large (out-)degree-centrality (hubs) do not necessarily coincide with the nodes characterized by a large
value of closeness-centrality: in fact, although many nodes can be reached by a walker leaving the hubs, these
may lie at a large distance from it (color figure online)

becomes strongly connected and aperiodic by construction), providing the searched ranking
scores.

By oversimplifying a bit, PageRank scores higher the so-called “authoritative” nodes, i.e.
nodes that are pointed by a large number of vertices which, in turn, have low out-degree [6].
The evidence that nodes with a large PageRank value do not necessarily coincide with the
nodes having a large in-degree is provided by the Little Rock foodweb; in this particular case,
a couple of species predated by a limited number of predators can be, indeed, observed: the
former, however, constitute the only preys of the latter. In all the other cases the correlation
coefficient between the vectors {Pi } and {kini } is quite large: 0.70 for the US airports network
(in 1997), 0.82 for the C. Elegans neural network, 0.99 for both the World Trade Web and
the e-MID interbank network (notice that upon lowering α the two vectors become less
correlated, since the random contribution to the dynamics becomes the prevalent one). Such
a correlation has been also noticed elsewhere [17].

Let us now consider our novel InfoRank index. As a first observation, the ranking induced
by it shows a little overlap with the one provided by the other indices, thus confirming its
degree of novelty. The intuitive idea according to which the nodes with largest InfoRank are
the ones disconnecting the largest number of subgraphs is confirmed upon looking at the
fourth panel of Fig. 2 and the third panel of Fig. 3: when considering either the C. Elegans
neural network or the US airport networks, in fact, vertices acting as “junctions” between a
group of leaves and the remaining part of the network are often assigned an InfoRank value
that is larger than the one assigned to the “most internal” nodes. Notice that when directed
networks are considered, reducing uncertainty does not necessarily imply isolating nodes:
information can be gained, in fact, also by determining just the out- or the in-degrees.

3.3 Exploring the InfoRank Degree-Dependence

Let us now consider the World Trade Web (WTW) [18]. The main reason to include it in
our analysis lies in the value of its link density: being much denser than the other networks
considered so far, it also allows us to better understand the relationship between the InfoRank
value of a node and its degree(s).

Since theWTW topological structure can be deduced with great accuracy from the knowl-
edge of its degree-sequence(s) [19], we may also expect the latter to be correlated with the
ranking indices considered for the present analysis. This is indeed the case. As the fourth
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Fig. 4 Little Rock food web
[16]. From top to bottom, nodes
are ranked according to their
(out-)degree-centrality,
closeness-centrality,
PageRank-centrality, InfoRank
(red nodes are ranked higher than
blue nodes). Nodes with large
in-degree do not necessarily
coincide with nodes having a
large value of PageRank: this is
evident in the case of food-webs,
where species exist that are
predated by a limited number of
predators of which constitute the
only preys. In other networks
however, the correlation between
the PageRank value and the
in-degree is quite large (color
figure online)
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Fig. 5 Dependence of the (rescaled) ranking indices considered for the present analysis (closeness-centrality
open green square, PageRank centrality red asterisk, InfoRank filled blue square) on the nodes total degree.
Notice how both e-MID and theWorld TradeWeb are characterized by a strongly positive correlation between
the closeness-centrality and the total degree and the PageRank centrality and the total degree; InfoRank,
instead, is characterized by a bell-shaped trend for the same systems, whose point-of-maximum lies close to
the value ktoti � (N − 1)/2 + (N − 1)/2 = N − 1. Although the nodes providing the largest contribution to

the entropy reduction overlap with the ones maximizing S(i)
0 , this doesn’t imply that the removal of a given

node has a small impact on the other vertices (see also Fig. 6). For what concerns sparser systems, instead,
InfoRank shows an overall increasing trend while a clear functional dependence between closeness-centrality
and total degree and PageRank centrality and total degree is not visible (a weakly positive correlation between
closeness-centrality and total degree is, however, present in theC. Elegans neural network) (color figure online)

panel of Fig. 5 shows, both the closeness-centrality and the PageRank indices are highly
correlated with the total degree (i.e. ktoti = kouti + kini ). The monotonic, increasing, relation-
ship between total degree and closeness-centrality can be explained by supposing that all
countries have established a direct connection with the nodes that can be reached by them via
some other (indirect) path. This is not true, for example, for the Little Rock food web shown
in Fig. 4: in that case, the node with largest out-degree is directly connected to only some
of the reachable nodes (as a consequence, the overall distance from the set of such vertices
increases).

Themonotonic, increasing, relationship between total degree and PageRank, instead, rests
upon a double (empirical) evidence: countrieswith a large out-degree are 1) also characterized
by a large in-degree and are usually 2) “pointed” by countries with a small out-degree.

InfoRank, on the other hand, shows an overall bell-shaped trend with a maximum in
correspondence of the values ktoti � (N − 1)/2 + (N − 1)/2 = N − 1. This means that
the nodes providing the largest contribution to the entropy reduction overlap with the ones
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Fig. 6 Comparison between InfoRank Ii (filled blue square) and S(i)
0 (blue, dashed line). We have also tested

the agreement between the latter and the two approximations derived in Appendix A (both indicated with a red,

dashed line). While, for sparse networks (upper panels), S(i)
0 � ∑

(b)=in,out

[
−k(b)

i ln(k(b)
i /

√
L) + k(b)

i

]
,

for dense networks (lower panels) a non-trascurable difference exists between S(i)
0 and −(N −

1)
∑

(b)=in,out

[
p(b)
i j ln p(b)

i j +
(
1 − p(b)

i j

)
ln

(
1 − p(b)

i j

)]
with p(b)

i j = k(b)
i /(N − 1) (color figure online)

maximizing S(i)
0 . However, as evident upon inspecting Fig. 6, evident deviations from the S(i)

0
trend are clearly visible: InfoRank adjusts the estimation provided by exclusively accounting
for the nodes degrees, although its functional dependence on them is, overall, similar to the
one characterizing S(i)

0 .

3.4 Exploring the Relationship Between InfoRank and the Reconstruction
Accuracy

Aswehave seen, InfoRank individuates the node(s) reducing the network residual uncertainty
to the largest extent.Wemay, thus, suspect InfoRank to also “select” the nodes able to provide
the best reconstruction of the network itself. In order to verify our conjecture, we have explic-
itly tested the agreement between the reconstruction achieved by each node and the observed
network structure. In order to do so, we have computed an index often employed to test the
(global) goodness of a reconstruction algorithm: the accuracy, defined as 〈A〉 = 〈T P〉+〈T N 〉

N (N−1)
where 〈T P〉 is the expected number of true positives, i.e. 〈T P〉 = ∑

i
∑

j (�=i) ai j pi j , 〈T N 〉
is the expected number of true negatives, i.e. 〈T N 〉 = ∑

i
∑

j (�=i)(1 − ai j )(1 − pi j ) and N
is the total number of vertices [7]. We have then summarized our findings by calculating the
correlation between the vector {Ai } and the vector {Ii }.

The results are reported in Table 1: while the correlation between InfoRank and accuracy is
almost 1, when comparing the latter with the ranking values obtained via alternative indices a
worse agreement is found. In particular, when e-MID and theWTW are considered, negative
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Table 1 Table showing the Pearson correlation coefficient between the vector of accuracy values Ai and the
vector of (rescaled) ranking scores Ri

rAi ,Ri
Di Ci Pi Ii

Little Rock food web 0.44 0.34 0.27 0.97

C. Elegans neural network 0.82 0.60 0.65 0.98

US airports network (1997) 0.89 0.39 0.89 0.99

e-MID interbank network 0.52 0.44 0.57 0.99

World Trade Web (1950) 0.097 0.008 0.098 0.99

World Trade Web (1970) − 0.1 − 0.23 − 0.15 0.99

World Trade Web (2000) − 0.39 − 0.52 − 0.42 0.99

Bold numbers indicate the largest correlation coefficient among the ones characterizing the considered algo-
rithms
The transformation (which doesn’t affect the correlation value) reads R

(a)
i = (R(a)

i −
min{R(a)

i })/(max{R(a)
i } − min{R(a)

i }) ∈ [0, 1] with R(a)
i representing the rank of node i according to the

chosen algorithm a

correlation values are observed: this is due to the bell-shaped trend recovered when scattering
the accuracy values versus any of the chosen ranking indicators, as shown in Fig. 7.

3.5 Exploring the Relationship Between InfoRank and the Systemic Risk
Estimation

In this subsection, we provide evidence of how a better reconstruction accuracy can, in
turn, lead to a better estimation of relevant properties of a financial system. Let us focus
on a real network of transaction in an interbank money market. Interbank money markets
are essential for financial institutions as sources of liquidity provision. In such markets,
information asymmetry [20] translates into a better estimation of the expected payments,
widely recognized as a measure of systemic risk in networks of interbank liabilities [21].
Here, we focus on data from the e-MIDplatform (the electronicMarket of InterbankDeposit),
that served a significant percentage (∼ 17%) of the unsecured money market in the Euro
Area before the 2007–2008 crisis [23].

We apply the clearing mechanism originally proposed in [21], in the generalization dis-
cussed in [22], and compute the payment vector, whose components represent the amount a
financial institutions able to repay its creditors. When the payment of a bank is less then its
corresponding obligation, that bank is considered insolvent: hence, computing the payment
vector corresponds to identify insolvencies and estimate systemic risk in a financial network
(a detailed discussion of such measures of systemic risk is found in [24,25]). Insolvency of
bank occurs when its equity, the difference between assets and liabilities, becomes negative.
The external cash flow is given by the external assets Ae, affected by fire sales in case of
insolvency, and external liabilities Le. Both are sampled from a Gaussian distribution, with
parameters μa = 10, σa = 0.1 and μl = 1, σl = 0.1, respectively.

First, we compute the payment vector {p(r)
i }—that entails the information on systemic

risk losses—starting from the real e-MID network; second, we sample networks from the
specific ensemble of each node and compute the payment vector on each drawn configuration,
in order to evaluate the normalized squared error of these “sampled” payment vectors {p(s)

i }
with respect to the real one. Finally, we calculate the mean over the set of sampled payment
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Fig. 7 Dependence of the accuracy value on the (rescaled) ranking indices considered for the present analysis
((out-)degree-centrality brown times symbol, closeness-centrality open green square, PageRank centrality red
asterisk, InfoRank filled blue square). Notice the clear, increasing, trend describing the functional depen-
dence of the accuracy value on the InfoRank value, further confirming that the node(s) establishing the most
informative sets of interconnections are the ones characterized by the largest InfoRank value(s)

Fig. 8 Mean squared error over
the payment vector of the
financial clearing process on the
e-MID network. The parameters
that account for fire sales effect
and insolvency costs in the
Rogers and Veraart [22] clearing
mechanism are α = β = 0.9. The
dotted line is a linear fit of the
data y = −0.087 ∗ x + 0.14
(RSS = 0.0070645), while the
solid line is a quadratic fit
y = −0.79∗x2−0.063∗x+0.14
(RSS = 0.007046) (color figure
online)
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vectors and obtain the mean squared error affecting each node estimation of the chosen risk
measure: as Fig. 8 shows, errors are smaller for nodes with larger InfoRank. This, in turn,
sheds light on the relationship between financial risk and network topology, proving that a
better knowledge of the latter indeed leads to a better estimation of the former.
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4 Discussion

InfoRank represents a novel measure of the relevance of nodes in a network. We have
approached this problem from an information-theoretic point of view, by quantifying the
information content of each node-specific pattern of interconnections.

Differently from other existing indices, InfoRank can both be employed to analyze any
kind of network, be it directed, weighted, etc.; and can quantify the informativeness of whole
subsets of nodes: this is usually a major limitation for the other centrality indicators, tailored
to provide single-nodes estimates.

Such an approach allows us to explore the relationship between the proposed index and
the much more general concept of information asymmetry which is supposed to affect the
interactions between agents in financial systems. As our example about financial contagion
shows, the competitive advantage represented by a larger amount of information about the
network leads to a better estimation of systemically-important properties.

It is evident, however, that computing the whole InfoRank vector requires the knowledge
of the entire network.

On one hand, complete knowledge about the network structure can be accessible to an
external authority, e.g. a central bank or a regulatory agency, interested in monitoring infor-
mation asymmetry. The authors argue that, in a similar scenario, this kind of authority could
be interested in the knowledge of the extent of information asymmetry in the market, as an
indicator of market (in)efficiency. Furthermore, the general definition of InfoRank would
allow it to identify the minimal subset of nodes allowing for the complete knowledge of
the network structure, potentially constituting a warning signal for the emergence of cartels.
This, however, requires additional analysis which constitutes the subject of ongoing research.

On the other hand, in case of missing information about the actual network structure, a
node-specific InfoRank value can be compared with an expected one, as obtained by imple-
menting a benchmark null model [7,13]. In this way, individual nodes could, in any case, test
their competitive advantage against some null hypothesis.

Finally, the ability of identifying highly informed nodes—characterized by high InfoRank
values—may also provide strategies to optimally sample networks, when gathering informa-
tion on individual nodes is costly (e.g. when surveying a financial system for regulatory
purposes).

Acknowledgements PB and TS acknowledge support from: FET Project DOLFINS No. 640772 and FET IP
Project MULTIPLEX No. 317532.

Appendix A

Here we show how the computation of S(i)
0 can be simplified in two cases of general interest.

The first one concerns sparse networks: since, in this case, the probability coefficients defined
by Eq. (1) satisfy the requirement pi j � 1, the following factorization holds pi j � xi x j ,
further implying that

S(i)
0 � −

∑

j (�=i)

[pi j ln pi j − pi j ] = −ki ln

(
ki√
2L

)
+ ki . (12)
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The second approximation is valid whenever the node i-specific probability coefficients
are well represented by their average value, i.e. pi j � ki

N−1 ≡ pi j ; in this case,

S(i)
0 � −(N − 1)

[
pi j ln pi j + (

1 − pi j
)
ln

(
1 − pi j

)]
. (13)

Appendix B

This second appendix collects the details of the derivation of our proposed methodology. Let
us focus on the simplest case of a single node (hereafter indexed by l): in order to calculate
InfoRank it can be imagined to solve two different problems. The first one concerns the
maximization of the functional

S0 = −
∑

G

P(G) ln P(G) +

−
∑

i

ηi

[
∑

G

P(G)Ci (G) − C∗
i

]
(14)

i.e. the constrained Shannon entropy, constraints encoding the benchmark information
accessible by all nodes (represented by the vector of M constraints C∗—notice that the
normalization condition of the probability distribution, P(G|η), to be determined can be
re-written as an M + 1-th constraint of the kind CM+1(G) = C∗

M+1 = 1) [13]. By solving
the constrained-optimization problem in (14), node l finds that

S0 = η · C∗ + ln Z(η). (15)

(where Z(η) = ∑
G e−η· C(G) is the so-called partition function and depends on the unknown

Lagrange multipliers η). On the other hand, the second optimization problem node l has to
solve concerns the functional

S(l) = S0 −
∑

m

ψlm

[
∑

G

P(G)alm(G) − a∗
lm

]
(16)

with S(l) being nothing else than the functional in (14) further constrained by imposing the
ego-network of node l as well (i.e. the values of the link-specific variables a∗

lm—either 0 or
1). Upon solving the second problem, the expression

S(l) = θ · C∗ +
∑

m

ψlma
∗
lm + ln Z ′(θ, ψ) (17)

(where Z ′(θ, ψ) = ∑
G e−θ · C(G)−∑

m ψlmalm (G)) is found. Notice that although S(l) and S0 are
defined by the same vector of constraints, C , the numerical values of the Lagrangemultipliers
ensuring that 〈 C〉 = C∗ will, in general, differ, whence the use of different symbols, i.e. η
and θ .

Both functionals achieve aminimum in their stationary point (consistentlywith our attempt
to minimize each node—residual—uncertainty). This can be easily proven, upon noticing
that the Hessian matrix of both S0 and S(l) is the covariance matrix of the constraints and,
as such, positive-semidefinite. In order to find the stationary point of S(l), node l must solve
the equations

δS(l)

δθi
= 0, ∀ i and

δS(l)

δψlm
= 0, ∀ m (18)
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which lead to the system of equations in (4). More explicitly, the second group of conditions
reads

∑

G

(
e−θ · C(G)−∑

m ψlmalm (G)

Z ′(θ, ψ)

)
alm(G) = a∗

lm, ∀ m; (19)

in order to numerically evaluate the parameters ψ , let us focus on a specific value, e.g. ψl1

controlling for the value of the entry al1. Let us now explicitly distinguish the configurations
characterized by al1 = 0 from the ones with al1 = 1: upon doing so, condition (19) can be
rewritten as

∑

G1

(
e−θ · C(G1)−ψl1−∑

m(�=1) ψlmalm

Z ′(θ, ψ)

)
= a∗

l1 (20)

i.e. as a sum over only the configurations with al1 = 1 (indicated with the symbol G1).
Analogously, we can split Z ′(θ, ψ) into the sum of two terms, i.e. Z ′(θ, ψ) = Z ′

0(
θ, ψ) +

e−ψl1 Z ′
1(

θ, ψ), where the first sum

Z ′
0(

θ, ψ) =
∑

G0

e−θ · C(G0)−∑
m(�=1) ψlmalm (21)

runs over the networks having al1 = 0 and the second sum

Z ′
1(

θ, ψ) =
∑

G1

e−θ · C(G1)−∑
m(�=1) ψlmalm (22)

runs over the networks having al1 = 1.
Solving Eq. (20) in the case a∗

l1 = 0 leads to ψl1 = +∞. As a consequence, in this case
S(l) = θ · C∗+ ln Z ′

0(
θ, ψ) since the term Z ′

1(
θ, ψ) is suppressed by the coefficient e−ψl1 that

converges to zero. On the other hand, solving Eq. (20) in the case a∗
l1 = 1 leads toψl1 = −∞

and S(l) = θ · C∗ + ln Z ′
1(

θ, ψ) since the term Z ′
0(

θ, ψ) is now suppressed by the coefficient
eψl1 (this is readily seen by multiplying both the numerator and the denominator at the left-
hand side of Eq. (20) by eψl1 ). Specifying the node-specific ego-networks, in other words,
leads to reducing the number of configurations over which the estimation of the constraints
is carried out: Z ′(θ), thus, runs over a smaller number of configurations than Z(η). The
estimation of the other parameters al2 . . . alN proceeds in an analogous way, by applying the
same line of reasoning to the “surviving” partition functions.

Let us now evaluate the expressions Z(η) and Z ′(θ) for the same value of the parameters
(say μ): since the number of addenda in Z( μ) is larger than the number of addenda in Z ′( μ), it
also holds true that ln Z( μ) ≥ ln Z ′( μ), in turn implying the inequivalence S0( μ) ≥ S(l)( μ)

to be true as well. Let us now choose a particular value of the parameters, i.e. the point of
minimum of S0: μ = η∗. Thus,

S0(η∗) ≥ S(l)(η∗) ≥ S(l)(θ∗) (23)

where the second inequality follows from the very definition of minimum. This ensures the
ratio S(l)/S0 to be smaller than one and the InfoRank index in Eq. (7) to be always well-
defined.

Our ranking procedure builds upon the evidence that, by imposing more information on
top of the common one, each node further reduces its uncertainty about the unknown network
structure: the one reducing the residual uncertainty to the largest extent is identified as the
“most informative” one.
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The same line of reasoning applies when subsets of nodes are considered, although the
resolution of such a problem may be computationally demanding: given a network of size
N , quantifying the InfoRank of all possible subsets of s nodes would require computing

(N
s

)

different Shannon entropies.
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