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The Eiffel Tower was never intended to be a perma-
nent feature of the Parisian landscape. Built for the 
1889 World Fair, the plan was to leave the tower in its 
original location until 1909, when it would be disman-
tled piece by piece and reassembled elsewhere. How-
ever, with the tower still present in 1925, a fraudster 
called Victor Lustig spotted an opportunity. Posing 
as a government official, Lustig convinced six scrap-
metal dealers that, as the maintenance costs of the 
tower had grown to outweigh all its benefits, it was 
due to be scrapped, and he invited them to bid for the 
job. An auction commenced, but as soon as the “suc-
cessful” bidder had parted with cash, Lustig fled Paris 
for Vienna. A month later he returned to repeat the 
scam, thus becoming notorious as the man who fraud-

ulently sold the Eiffel Tower for scrap metal – twice. 
Almost a century after Lustig’s con, the Eiffel 

Tower still dominates the French capital’s skyline 
and is celebrated as one of the world’s most iconic 
structures. However, even if Lustig had been tell-
ing the truth, the scrap dealer might still have been 
disappointed. One of the tower’s most remarkable 
features is its sparing use of material: if all the iron 
in the 320 m-high Eiffel Tower were melted down 
to form a solid block with a base area equal to the 
tower’s, the block would stand only 6 cm tall. This 
surprising fact is a direct result of the tower’s archi-
tect, Gustave Eiffel, having designed it to be built 
from iron beams that are much smaller than the tow-
er’s finished height. The smallest beams were used 
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to create composite beams, which were then used to 
create second-order composite structures, and so on 
for a total of three structural “generations”.

This construction method – in which structural 
elements have a non-trivial internal structure on 
many length scales – has been termed “hierarchical 
design”, and many of Eiffel’s other works also exhibit 
this same structural hierarchy. The Maria Pia Bridge 
in Portugal and the Garabit Viaduct in France are 
perhaps the most striking examples. However, it is 
not just in architecture that hierarchical design can 
be advantageous. In other areas of technology and 
elsewhere, it is often desirable to optimize material 
properties using particular substructures on multiple 
length scales. The key questions for designers and 
scientists are: under what conditions are hierarchical 
designs beneficial?  And what number of hierarchical 
generations will an optimal structure have?

Natural hierarchies
One strategy for answering these questions is to study 
examples of hierarchical design in the natural world. 
The bulk properties of many natural structures show 
remarkable variation considering the relatively few 
component materials used in their construction. One 
example is mother of pearl, or nacre. This naturally 
occurring composite material is made up of calcium 
carbonate and a small amount of organic matter in 
a “bricks-and-mortar” design: hard calcium-carbon-
ate bricks are held together with an organic mortar, 
producing a composite material with properties far 
exceeding the sum of its parts. For example, the frac-
ture resistance of nacre is up to 3000 times greater 
than that of crystals of pure calcium carbonate, 
thanks to its complex hierarchical arrangement.

Quite a different application for hierarchical 
design is found on the feet of geckos. These lizards 
have a remarkable ability to walk up vertical walls 
and even upside-down on horizontal ceilings thanks 
to a specific structure found on their toes. The pad 
of each gecko toe has a series of hairy fibres pro-
truding from it. These fibres repeatedly split into 
finer and finer “hairs” with dimensions down to the 
nanometre scale. This repeated splitting increases 
the surface area considerably, allowing the relatively 
weak Van der Waals interaction, in conjunction with 
hydrostatic interactions, to fix the gecko’s foot to a 
surface. Of course, for the gecko to be able to walk, 
it must also be able to release this adhesive connec-
tion. It can do so because the fibre structure is asym-
metric: when pulled in one direction, the interaction 
between the hairs and the surface is strong enough 
to support the gecko’s weight, but when pulled in 
another, it is greatly reduced.

Some hierarchical structures in nature have an 
extraordinary property: they appear the same regard-
less of the level of magnification applied. These 
structures can be considered fractal over a certain 
range of length scales. One such structure is found 
in a particular type of bone known as trabecular, or 
“spongy”, bone. Located throughout the bodies of 
humans and other animals, trabecular bone is made 
up of small beams that form an intricate latticework. 
This complex structure has long been credited as a 

Fuzzy feet This scanning electron micrograph (SEM) shows the ridges and microscopic hairs 
on the underside of a gecko’s foot.

Pearl of great price Mother of pearl, or nacre, is formed from plates of calcium carbonate in 
a “brickwork” arrangement that enhances the material’s toughness and resists cracking.

Tough stuff A false-colour SEM of trabecular bone, showing the “honeycomb” structure that 
gives the bone its strength. The spaces in-between are filled with bone marrow.
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source of the bones’ strength and low mass, but the 
exact configuration of the latticework is not specified 
in full by the genetic code. Instead, the structure is 
formed in response to prevailing stresses: strenuous 
use increases the bone mass, while inactivity reduces 
it, and this optimization routine continues through-
out the animal’s life. The substructure of the bone 
has also been found to depend on the magnitude of 
forces that are applied to it. When the applied loads 
are relatively small, the bone contains a large num-
ber of individual beams, or trabeculae, which take 
the form of long, slender columns. If the loading 
increases, the number of trabeculae decreases and 
they become shorter and stouter.

In order to learn from these remarkable geometries 
and apply these lessons to our own designs, we must 
first understand the precise relationship between 
structure and function in biological materials. For 
example, a group at the University of Manchester in 
the UK (building on theoretical work by others) has 
used a remarkable construction technique to make 
a reusable adhesive tape based on the gecko’s toe. 
This allowed them to examine directly the effects of 
density, flexibility, height and fibre diameter (among 
other parameters) on the structure’s adhesive poten-
tial. Later, researchers at the University of Akron in 
Ohio and the Rensselaer Polytechnic Institute in New 
York used a new fabrication process to create another 
tape from carbon nanotubes. This tape incorporated 
an extra level of hierarchy, and was capable of resist-
ing 10 times the shear stress of the original tape – this 
time outdoing even the gecko’s toe.

Design trade-offs
Another, perhaps more rigorous, way of answering 
questions about optimum structure is to examine the 
role of hierarchy in specific optimization problems. 
For example, if we want to support a certain load over 
a given distance, L, we could ask, “What is the least 
possible material we require?” To allow more general 
observations to be made, it is beneficial to define a 
non-dimensional volume parameter v as the volume 
of material in the structure divided by L3. A similar 

non-dimensional measure of the “heaviness of load-
ing”, f , can be made by dividing the force by L2Y (Y 
being the Young’s modulus of the material). Both 
parameters are usually smaller than 1 and they are 
linked by a simple power law relationship, v ~ fa, so 
as f approaches zero, changes in the exponent a have 
a far greater effect on v than changes to any prefactor. 

If the load-bearing structure is under tension, 
such as a cable supporting a suspension bridge, the 
amount of material required, v, will be proportional 
to the loading, f, it must withstand. But for structures 
under compression, such as columns holding up a 
building, the situation is a little more complicated. A 
solid, slender beam with uniform cross-section under 
compression will deform into a sinusoidal failure 
mode when the load reaches a critical value; you can 
see this happen if you stand a plastic 30 cm ruler verti-
cally on its end and press down on it. The fact that the 
structure can buckle this way means that the volume 
parameter v no longer scales linearly with the load-
ing factor f. Instead, v ~ f1/2 and because f is normally 
much smaller than 1, more material is required to 
support a compressive load than a load under tension.

If we replace the solid beam with a hollow tube, 
keeping the volume of material constant, this sinu-
soidal deformation can still occur, but only at much 
higher loading values. However, tubes have their own 
additional failure mode, known as Koiter buckling, 
which occurs when there is a local failure of the tube 
wall – like when an empty beer can is squashed from 
its ends. After optimizing for tube diameter and 
thickness, hollow tubes follow a relationship v ~ f 2/3. 
Hence, the volume of material required for stability 
is less than for solid beams, but still greater than that 
required for structures under tension.

We can increase the power of f (the scaling) still 
further if we take a hollow beam and – using the prin-
ciple of hierarchical design – replace it with a “space 
frame” of hollow beams. The space frame shown in 
figure 1a, for example, is made up of five octahedra 
with a tetrahedron on each end. It can be described 
as a “generation-1” structure, meaning that one level 
of hierarchy has been used to create the structure. 

1 Stereoscopy

These stereographic images illustrate how different generations of hierarchical frames are created. To view the frames as 3D images, hold 
the paper around 30 cm from your eyes and focus “through” the page until the images merge. (a) A simple generation-1 frame is comprised 
of N octahedra separating two tetrahedra; here, N = 5. (b) The generation-2 frame is constructed by replacing all compression-bearing 
beams with scaled generation-1 frames. (c) This procedure is repeated for higher generations, such as this generation-3 frame.
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After optimizing the number of octahedra and the 
radius and wall thickness of the component beams 
(which are all assumed to be identical), we find that 
this structure follows a v ~ f 3/4 power law.

If we continue this procedure of replacing all 
beams under compressive load with (scaled) space 
frames constructed from hollow beams, as in figures 
1b and 1c, we find that the scaling is always improved 
by increasing the level of hierarchy. In general, 
v ~ f (G+2)/(G+3), where G is the number of generations. 
Hence, as G tends to infinity, the scaling of volume of 
material required for a structure to be stable under 
a given compressive load approaches the best-case 
scenario of an equivalent tension load. 

Does this mean that increasing the generation 
number is always the way to go? No, because while 
the scaling increases with generation number, the 
constant of proportionality between v and f (which 
depends on the material’s properties and the geom-
etry of the structure) does not. The optimal struc-
ture is therefore obtained by making trade-offs 
between scaling and these other factors. Generally, 
as the loading decreases or the size of the structure 
increases, the scaling becomes more important and 
the optimal generation number increases. Con-
versely, for large loads or small structures, it is some-
times the case that a simple, solid beam is optimal for 
supporting the load (see box to left).

So far we have only looked at structures under 
compression, but the same patterns emerge when we 
consider different types of loading. For example, a 
hierarchical pressure-bearing structure formed from 
sheets of hierarchically embedded pipes (figure 2) 
will exhibit the same relationship between generation 
number and scaling laws, independent of its shape. 
Consequently, the same trade-offs between scaling 
and the constant of proportionality must be made to 
find the optimal generation for the structure. 

It is also interesting to look at the patterns that 
emerge from this optimization process. A struc-
ture’s fractal dimension is a measure of how details 
within the structure vary with scale or the efficiency 
with which it “fills space”. Fractal dimension can 
be measured through a “box-counting” technique 
in which a 3D space is split into boxes with a char-
acteristic length ε. The minimum number of these 
boxes required to cover a structure nε can then be 
calculated. The fractal dimension D of a structure 
can then be defined as nε ~ ε–D, and it is possible to 
calculate the optimum fractal dimension for a struc-
ture under a certain load. In general, it appears that 
as the load decreases, so does the optimum fractal 
dimension; in the case of the pressure-bearing struc-
ture, the fractal dimension also appears to converge 
towards a value of two.

Fabricating complex structures
In some ways, this approach merely serves to formal-
ize long-standing knowledge about the relationship 
between loading and the optimum level of hierarchy. 
After all, engineers have created chair legs from hol-
low tubes and cranes out of space frames for a long 
time, and Eiffel himself used three levels of struc-
tural hierarchy in designing his famous tower, long 

2 Pressure-bearing structure 

This diagram shows a first-generation pressure-bearing structure. In higher-generation 
structures, each of the cylindrical sub-structures would be replaced by a scaled version of the 
whole structure. The design shows remarkable efficiency under gentle pressure loading, and 
the structure on the largest length scale does not have to be a cylinder – any convex shape 
constructed with this same substructured material will display the same efficiency gains. 
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Cost of splitting

When designing a structure, it is often useful to split a load between two or 
more supporting members. This splitting is often done for structural reasons. For 
instance, holding up a tent with two or more poles instead of one changes the 
shape of the tent in a beneficial manner and is worth the increased volume of 
material; similarly, bridges often have “legs” placed periodically along their span 
to prevent the collapse of an unsupported region. However, splitting the load in 
this way can have drawbacks, and the “cost of splitting” for compression- and 
tension-bearing beams is an important factor in hierarchical design. 

To understand this cost, let’s look more closely at the relationship between 
the amount of material in a structure and the loading it can support. The 
(dimensionless) volume parameter v is related to the loading via a simple power 
law, v = k fa. Here, k is a proportionality constant that depends only on the 
material’s properties and the geometry of the structure; f is a dimensionless 
loading parameter (and is much less than one for all realistic applications); and 
a is the scaling of the loading.

For a beam under tension, a = 1, so splitting the load does not require 
increasing the volume of supporting material. In contrast, for a simple, solid 
beam under compression, a = 1/2, so if we use two beams, each supporting half 
the load over the same distance, the loading parameter for each is halved, but 
the volume parameter is reduced by only √2. Thus, the overall volume of material 
required increases by √2. If we replace the simple beam with a hierarchical 
structure, the cost of splitting changes yet again. In general, the increase in 
volume that occurs when two hierarchical beams are used instead of one is  
21–(G+2)/(G+3) where G is the generation of the structure. 

These different scaling factors have direct consequences for the form of an 
optimal structure. The most obvious one is that more material is required to 
support compressive loads than loads under tension. A further consequence 
is that the higher the number of generations, the less difference it makes as to 
whether you have one structure holding a given load or two structures holding 
half the load each.
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before these ideas had been developed. But this scal-
ing-law approach has helped us to see that the opti-
mum number of generations depends on the loading 
conditions, and future structures can be designed 
with this principle in mind. 

Promisingly, the technologies required to make 
these complex designs are progressing apace. Work-
ing with Joel Segal of the University of Notting-
ham, UK, our group at Aalto University in Finland 
recently used 3D printing technology to produce a 
generation-2 structure with solid beams (figure 3). 
The printer uses a photosensitive polymer to build up 
the structure as a series of individual micron-thick 
layers, and each beam in it has a radius of a frac-
tion of a millimetre. This structure shows the plau-
sibility of the design and the extent to which modern 
manufacturing techniques make it possible to design 
structures with more creative geometries. Another 
collaboration of experimenters working at HRL Lab-
oratories in California, the University of California 
and the California Institute of Technology recently 
created a metallic micro-lattice of hollow beams that 
was, for a while, the lightest solid in the world. Such 
experiments can be seen as a first step towards cre-
ating metamaterials that would use hierarchical ele-
ments in place of hollow tubes, and thus producing 
structures with unprecedented properties.

Another promising area of research concerns 
nacre-like materials. It is already possible to fabri-
cate such nacre-mimetics from a wide range of base 
materials, at least on a small scale, and one of our 
collaborators’ goals is to develop an industrial-scale 
process for constructing them. By starting with mate-
rials that nature does not use for structural purposes, 
there is a chance that the advantageous properties 
of nacre and other examples of naturally occurring 
hierarchical design could even be surpassed by man-
made composites. This has already happened with 
the adhesive tape modelled after a gecko’s foot; per-
haps the same will be true for nacre, and we will see 
its mimetics used as a tough, flaw-resistant coating 
for the aeroplanes of the future. 

3 3D printed structure 

200 µm

This frame was constructed using a 3D printing technique known as 
stereolithography. In this technique a photopolymer is exposed to light only in 
regions where solid material is required. The inset shows the layered nature of 
the material, which is a consequence of the layer-by-layer printing process. 
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